Supplemental Materials

Figure S1. Analysis of purified, *E. coli* expressed, thioredoxin- (Trx) and histidine- (His) tagged fusion proteins by denaturing SDS polyacrylamide gel electrophoresis (SDS-PAGE). (A) Coomassie blue stained SDS-PAGE gel containing samples (3 μ g) of soluble protein fractions after Ni-NTA purification. (B) Western blot of a duplicate gel of that in panel A probed with an anti-His tag antibody. The samples run on the gels were thoredoxin (Trx), the β C1 protein encoded by Cotton leaf curl Multan betasatellite, β C1, the transcriptional activator protein (TrAP), C4 protein (C4) and V2 protein (V2) encoded by *Cotton leaf curl Kokhran virus*.

βC1, uninduced

βC1, induced

Figure S2. (A) Transgenic *N. benthamiana* plants harbouring constructs for the expression of *Cotton leaf curl Kokhran virus* TrAP, C4 and V2 under the control of the *Cauliflower mosaic virus* 35S promoter. (B) *N. benthamiana* plants transformed with a construct for the expression of Cotton leaf curl Multan betasatellite β C1 under the control of a dexamethasone inducible promoter. The phenotypes of plants following dexamethasone induction of β C1 expression are shown for induction of (B) two month old plants and (C) plants at the 6-8 leaf stage (sprayed with dexamethasone for 3 consecutive days). Arrows indicate leaf curling in panel B.

Oligo	Sequence (5' to 3') *
C2-EcoRI-F	GGC <u>GAATTC</u> ATGCAATCTTCATCACCCT
C2-SalI-R	ATAT <u>GTCGAC</u> CTAAAGACCCTTAAGAAACG
C4-EcoRI-F	GGC <u>GAATTC</u> ATGGGACTCCTCACTTGC
C4-SalI-R	GAT <u>GTCGAC</u> CTAGTTCCTTAATGACTCTA
V2-EcoRI-F	GGC <u>GAATTC</u> ATGTGGGATCCACTGTTAA
V2-SalI-R	TAT <u>GTCGAC</u> CTAGGAACATCTGGACTT
βC1-EcoRI-F	GGC <u>GAATTC</u> ATGACACCGAGCGGAACA
βC1-XhoI-F	GGC <u>CTCGAG</u> ATGACACCGAGCGGAACA
βC1-HindIII-R	GGC <u>AAGCTT</u> TTAAACGGTGAACTTTTTATTG
βC1-SpeI-R	GGC <u>ACTAGT</u> TTAAACGGTGAACTTTTTATTG
CMPS-F	ATCCTGGCAGACAAAGTGG
CMPS-R	GAAGTAGGATCTCTAGAA
GFP-G-F	AGTAAAGGAGAAGAACTTTTCAC
GFP-G-R	TGATCTGGGTATCTTGAAAAGC
GFP-F-F	TATGAAGCGGCACGACTTC
GFP-F-R	GATCCTGTTGACGAGGGTG
GFP-P-F	GAGCTTAAGGGAATCGATTTCA
GFP-P-R	TCGTTGGGATCTTTCGAAAGG
GFP-FL-F	ATGAAGACTAATCTTTTTCT
GFP-FL-R	TAAAGCTCATCATGTTTGTA
21nt siRNA	AGAGUGCCAUGCCCGAAGGUU
21nt DNA	AGAGTGCCATGCCCGAAGGTT
24nt siRNA	AGAGUGCCAUGCCCGAAGGUUAUU
SalI-XbaI-HA-Tag	GCGTCGACGTCTTGCTCTAGAGATGTATCCATATGATGTTCCGGATTACGC
	GGAACGAGCTATACAAGG

Table S1. Oligonucleotides used in the study.

* In each case the introduced restriction endonuclease recognition site is underlined.