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Abstract: The coenzyme A (CoA)-independent transacylation system catalyzes fatty acid transfer
from phospholipids to lysophospholipids in the absence of cofactors such as CoA. It prefers to
use C20 and C22 polyunsaturated fatty acids such as arachidonic acid, which are esterified in
the glycerophospholipid at the sn-2 position. This system can also acylate alkyl ether-linked
lysophospholipids, is involved in the enrichment of arachidonic acid in alkyl ether-linked
glycerophospholipids, and is critical for the metabolism of eicosanoids and platelet-activating factor.
Despite their importance, the enzymes responsible for these reactions have yet to be identified.
In this review, we describe the features of the Ca2+-independent, membrane-bound CoA-independent
transacylation system and its selectivity for arachidonic acid. We also speculate on the involvement
of phospholipase A2 in the CoA-independent transacylation reaction.

Keywords: CoA-independent transacylation system; acyltransferase; phospholipase A2;
lysophospholipid; lysophospholipase/transacylation; platelet-activating factor; alkyl-ether linked
phospholipid; eicosanoid; cPLA2γ

1. Introduction: Diversity of Fatty Acids in Glycerophospholipids

Various types of glycerophospholipid classes with different polar head groups, such as choline,
ethanolamine, serine, and inositol glycerophospholipids, are present in mammalian cells and tissues
(Table 1). Each phospholipid is sub-classified into the diacyl, alkylacyl, or alkenylacyl type based
on the chemical linkage of the fatty chain—i.e., acyl ester, ether, and vinyl ether bonds—at the sn-1
position of glycerol [1–10]. Figure 1 shows the chemical structures of diradyl phospholipids and their
lysophospholipids as examples of choline glycerophospholipids. The radyl group can be an acyl,
alkyl, or alkenyl group; diradyl phospholipids therefore include diacyl, alkylacyl, and alkenylacyl
phospholipids. Radyl lysophospholipids are the deacylated form of each diradylphospholipid.
Each sub-classified phospholipid is further grouped into distinct molecular species depending on the
chain length and degree of unsaturation at the sn-1 and -2 radyl residues. Different combinations of
head groups, sn-1 linkages, and fatty chains can yield several hundred different molecular species of
glycerophospholipids in mammalian tissues [3–13].
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Table 1. Classification and abbreviations of glycerophospholipids and lysophospholipids discussed in
this review.

Class Subclass Chemical Other Names

Diradyl glycerophospholipid

Choline
glycero-phospholipid

1, 2-Diacyl 1, 2-Diacyl-sn-glycero-3-phosphocholine
(1,2-Diacyl-GPC) Phosphatidylcholine (PC)

1-O-Alkyl-2-acyl 1-O-Alkyl-2-acyl-sn-glycero-3-phosphocholine
(1-Alkyl-2-acyl-GPC)

Plasmanylcholine
Alkyl phosphatidylcholine

1-O-Alkenyl-2-acyl 1-O-Alkenyl-2-acyl-sn-glycero-3-phosphocholine
(1-Alkenyl-2-acyl-GPC)

Plasmenylcholine
Alkenyl phosphatidylcholine

Choline plasmalogen

Ethanolamine
glycero-phospholipid

1, 2-Diacyl 1, 2-Diacyl-sn-glycero-3-phosphoethanolamine
(1,2-Diacyl-GPE) Phosphatidylethanolamine (PE)

1-O-Alkyl-2-acyl 1-O-Alkyl-2-acyl-sn-glycero-3-phospho-
ethanolamine (1-Alkyl-2-acyl-GPE)

Plasmanylethanolamine
Alkyl phosphatidylethanolamine

1-O-Alkenyl-2-acyl 1-O-Alkenyl-2-acyl-sn-glycero-3-phospho-
ethanolamine (1-Alkenyl-2-acyl-GPE)

Plasmenylethanolamine
Alkenyl phosphatidyethanolamine

Ethanolamine plasmalogen

Serine glycero-
phospholipid 1, 2-Diacyl 1, 2-Diacyl-sn-glycero-3-phosphoserine

(1,2-Diacyl-GPS) Phosphatidylserine (PS)

Inositol
glycerol-phospholipid 1, 2-Diacyl 1, 2-Diacyl-sn-glycero-3-phosphoinositol

(1,2-Diacyl-GPI) Phosphatidylinositol (PI)

Radyl lysophospholipid

Choline
glycerol-phospholipid

1-Acyl 1-Acyl-sn-glycero-3-phosphocholine
(1-Acyl-GPC)

Lysophosphatidylcholine (LPC)
1-Acyl lysoPAF

1-O-Alkyl 1-O-Alkyl-sn-glycero-3-phosphocholine
(1-Alkyl-GPC)

1-Alkyl lysophosphatidylcholine
(1-Alkyl LPC)

Lyso platelet activating factor
(LysoPAF)

1-O-Alkenyl 1-O-Alkenyl-sn-glycero-3-phosphocholine
(1-Alkenyl-GPC)

1-Alkenyl lysophosphatidylcholine
(1-Alkenyl LPC)

Choline lysoplasmalogen

Ethanolamine
glycerol-phospholipid

1-Acyl 1-Acyl-sn-glycero-3-phosphoethanolamine
(1-Acyl-GPE)

1-Acyl lysophosphatidylethanolamine
(1-Acyl LPE)

1-O-Alkyl 1-O-Alkyl-sn-glycero-3-phosphoethanolamine
(1-Alkyl-GPE)

1-Alkyl
lysophosphatidylethanolamine

(1-Alkyl LPE)

1-O-Alkenyl 1-O-Alkenyl-sn-glycero-3-phosphoethanolamine
(1-Alkenyl-GPE)

1-Alkenyl
lysophosphatidylethanolamine

(1-Alkenyl LPE)
Ethanolamine lysoplasmalogen

Serine
glycerol-phospholipid

1-Acyl 1-Acyl-sn-glycero-3-phosphoserine
(1-Acyl-GPS)

1-Acyl lysophosphatidylserine
(1-Acyl LPS)

2-Acyl 2-Acyl-sn-glycero-3-phosphoserine
(2-Acyl-GPS)

2-Acyl lysophosphatidylserine
(2-Acyl LPS)

Inositol
glycerol-phospholipid

1-Acyl 1-Acyl-sn-glycero-3-phosphoinositol
(1-Acyl-GPI)

1-Acyl lysophosphatidylinositol
(1-Acyl LPI)

2-Acyl 2-Acyl-sn-glycero-3-phosphoinositol
(2-Acyl-GPI)

2-Acyl lysophosphatidylinositol
(2-Acyl LPI)



Biology 2017, 6, 23 3 of 26

Biology 2017, 6, 23  3 of 26 

 

Figure 1. Diradyl choline glycerophospholipids and their lysophospholipids. The radyl moiety 

corresponds to an acyl, alkyl, or alkenyl group. All choline glycerophospholipids contain a glycerol 

backbone, which is shown on a pink background. The chemical linkage of the fatty chain at the sn-1 

position of the backbone is shown on a yellow background. Each class of choline 

glycerophospholipid is further sub-classified into 1,2-diacyl, 1-O-alkyl-2-acyl, or 1-O-alkenyl-2-acyl 

types according to the chemical linkage of the fatty chain at the sn-1 position of the glycerol 

backbone. Their lysophospholipids are formed by fatty acid deacylation at the sn-2 position of the 

backbone. In the case of diradyl phospholipids, deacylation occurs at the sn-1 or -2 position, yielding 

a 2- or 1-acyl lysophospholipid, respectively. Fatty chains at the sn-1 and -2 positions are shown in 

blue and red, respectively. 
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Figure 1. Diradyl choline glycerophospholipids and their lysophospholipids. The radyl moiety
corresponds to an acyl, alkyl, or alkenyl group. All choline glycerophospholipids contain a glycerol
backbone, which is shown on a pink background. The chemical linkage of the fatty chain at the sn-1
position of the backbone is shown on a yellow background. Each class of choline glycerophospholipid
is further sub-classified into 1,2-diacyl, 1-O-alkyl-2-acyl, or 1-O-alkenyl-2-acyl types according to the
chemical linkage of the fatty chain at the sn-1 position of the glycerol backbone. Their lysophospholipids
are formed by fatty acid deacylation at the sn-2 position of the backbone. In the case of diradyl
phospholipids, deacylation occurs at the sn-1 or -2 position, yielding a 2- or 1-acyl lysophospholipid,
respectively. Fatty chains at the sn-1 and -2 positions are shown in blue and red, respectively.

2. Fatty Acid Remodeling System of Glycerophospholipids

Various types of fatty acids are present in each glycerophospholipid at the sn-1 or -2 position of
the glycerol backbone. Observation of differences in turnover rates of fatty acyl and glycerol moieties
of phospholipids led to the identification of acyl-CoA:lysophospholipid acyltransferase in rat liver
and the subsequent discovery of the fatty acid remodeling system (Table 2 and Figure 2) [14,15],
which increases the diversity of fatty acids in phospholipids [1–6]. Fatty acids are first incorporated
into glycerophospholipids during de novo synthesis; some polyunsaturated fatty acids (PUFAs) such
as arachidonic acid (5,8,11,14-eicosatetraenoic acid, 20:4 n-6) are then incorporated by the remodeling
system. Stearic acid (octadecanoic acid, 18:0) is also incorporated at the sn-1 position during the
remodeling process.

The remodeling system includes acyltransferases and transacylation of lysophospholipids that
catalyze fatty acid transfer between an acyl donor and acceptor lysophospholipid (Table 2) [4–13].
The acyl donors for acyl-CoA:lysophospholipid acyltransferases are fatty acyl-CoAs, the activated
forms of fatty acids that facilitate fatty acid transfer to acceptor molecules. The activation of free
fatty acids consumes ATP. In contrast, the transacylation system employs the esterified fatty acids in
phospholipids as acyl donors that are transferred to acceptor lysophospholipids. This transacylation
reaction is essentially ATP-independent.



Biology 2017, 6, 23 4 of 26

Table 2. Acyltransferases and transacylation systems involved in fatty acid remodeling.

Acyltransferases and
Transacylation Systems Cofactor Acyl Donor Acyl Acceptor Fatty Acid

Transferred Enzyme(s) Involved

Acyl-CoA:Lysophospholipid
Acyltransferase

Acyl-CoA LPC, LPE, LPS,
LPI

AGPAT family
MBOAT family

CoA-Independent
Transacylation System None

Phospholipids 1-O-alkyl-GPC C20, C22 PUFA
at sn-2 Not IdentifiedPC, PE 1-O-Alkenyl-GPE

CoA-Dependent
Transacylation System CoA

Phospholipids
PI > PC, PE

LPC, LPE, LPS,
LPI

20:4, 18:2 at
sn-2 18:0 at sn-1

Involvement of
Acyl-CoA
Acyltransferases

Lysophospholipase/Transacylation None LPC, LPE LPC, LPE cPLA2γ (PLA2 G4C)

Exogenous arachidonic acid is not typically introduced into phospholipids via de novo synthesis
but is instead incorporated during fatty acid remodeling [3–13]. This is important for the biosynthesis
of lipid messengers since arachidonic acid is the precursor of eicosanoids such as prostaglandins and
leukotrienes. In de novo synthesis of phospholipids, fatty acids that are saturated or exhibit a low
degree of unsaturation, such as oleic acid (9-octadecenoic acid, 18:1 n-9), are often incorporated at
the sn-2 positions of phospholipids. Their hydrolysis by phospholipase A2 (PLA2) releases the fatty
acid, and the resultant lysophospholipids are acylated by acyl-CoA:lysophospholipid acyltransferases.
Since acyltransferases prefer PUFA-CoAs such as arachidonoyl-CoA, PUFAs accumulate in the sn-2
positions of phospholipids during the deacylation–reacylation cycle (Lands cycle) (Figure 2).
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Figure 2. Fatty acid remodeling of phospholipids by the deacylation–reacylation cycle (Lands cycle).
The Lands cycle begins with PLA2, which releases a fatty acid from a phospholipid, and then
another fatty acid is incorporated into the phospholipid by an acyl-CoA:1-acyl lysophospholipid
acyltransferase. Exogenous PUFAs, such as arachidonic acid, are incorporated into phospholipids
during the cycle. Exogenous stearic acid is also concentrated at the sn-1 positions of phospholipids by
a similar deacylation–reacylation cycle consisting of phospholipase A1 (PLA1) and acyl-CoA:2-acyl
lysophospholipid acyltransferases. ATP is required for acyl-CoA synthesis in the reacylation step.
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Two different transacylation systems (CoA-dependent and CoA/cofactor-independent) are
also involved in fatty acid remodeling (Figure 3). CoA-dependent transacylation activity was first
reported in rat liver microsomes [16]. In this reaction, esterified fatty acids in phospholipids are
transferred to lysophospholipids to form phospholipids in the presence of CoA without generating
free fatty acids [7–11,16–23]. CoA-dependent transacylation uses a variety of glycerophospholipids,
such as phosphatidylcholine (PC) and phosphatidylinositol (PI), as acyl donors and lyso-type
glycerophospholipids, such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI),
as acyl acceptors (Table 1). This activity is distributed in the membrane fractions of mammalian tissues
and cells, including in microsomes. The Km for CoA in the CoA-dependent transacylation reaction
is very low (1–4 µM), suggesting that the reaction proceeds in the presence of physiological levels of
CoA. We have proposed that the CoA-dependent transacylation reaction is mediated by a combination
of reverse and forward reactions of acyl-CoA:lysophospholipid acyltransferases [7,8,23–27].
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Figure 3. CoA-dependent and -independent transacylation reactions. (A) In CoA-dependent
transacylation, sn-1 or -2 fatty acids are transferred between phospholipids and lysophospholipids in the
presence of CoA. This reaction uses choline, ethanolamine, serine, and inositol glycerophospholipids as
acyl donors and lysophospholipids as acyl acceptors. PI is a typical, highly effective acyl donor.
(B) In CoA-independent transacylation, only sn-2 fatty acids are transferred, using choline and
ethanolamine glycerophospholipids as acyl donors. This system preferentially employs 1-O-alkyl
and 1-O-alkenyl choline and ethanolamine lysophospholipids as acceptors. 1-O-Alkyl-GPC and
1-O-alkenyl-GPE are represented as acyl acceptors because these lysophospholipids are effective acyl
acceptors. The fatty chain at sn-1 and fatty acid at sn-2 are shown in blue and red, respectively;
the transferred fatty acid is shown on a yellow background.
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In contrast to CoA-dependent transacylation, the mechanisms of CoA-independent transacylation
are not fully understood. In this review, we describe the properties and possible mechanisms of the
CoA/cofactor-independent transacylation system. We hypothesize that this reaction is catalyzed by
PLA2, as described in detail below.

3. Alkyl- or Alkenyl-Type Glycerophospholipids Contain Large Amounts of PUFAs, Such as
Arachidonic Acid

As previously mentioned, choline and ethanolamine glycerophospholipids are sub-classified into
diacyl, alkylacyl, and alkenylacyl types based on the chemical linkage of the fatty chains (i.e., acyl ester,
ether, and vinyl ether bonds) at the sn-1 position of glycerol [3,5–10] (Figure 1 and Table 1). Serine and
inositol glycerophospholipids in mammalian tissues are of the diacyl type.

Large amounts of ether-linked phospholipids, including 1-O-alkyl-2-acyl-glycerophosphocholine
(1-O-alkyl-2-acyl-GPC) and 1-O-alkenyl-2-acyl- glycerophosphoethanolamine (1-O-alkenyl-2-acyl-GPE,
ethanolamine plasmalogen), are present in various tissues (Table 1). In the human heart, nearly 30–40%
of choline glycerophospholipids are 1-O-alkenyl-2-acyl-GPC (choline plasmalogen) [3,7,8]. Even more
striking is the fact that almost 30% of the glycerophospholipids in the adult human brain and up to
70% of myelin sheath ethanolamine glycerophospholipids are ethanolamine plasmalogens [3,5–11,28].
In addition, high levels of 1-O-alkyl-2-acyl-GPC and ethanolamine plasmalogen are present in white
blood cells such as polymorphonuclear leukocytes, macrophages, and eosinophils [3,5–11,28]. In rabbit
alveolar macrophages, 1-O-alkylacyl-GPC and 1-O-alkenylacyl-GPE account for 32.5% and 61.2% of
choline and ethanolamine glycerophospholipids, respectively (Figure 4A,B) [3,5–11,28].

Arachidonic acid (20:4n-6), a common precursor of eicosanoids, is usually esterified at the
sn-2 position in each phospholipid class [3,5–11,28]. Notably, arachidonic acid levels are higher
in ether-linked phospholipids than in their diacyl counterparts. In rabbit alveolar macrophages,
a significant proportion of arachidonic acid is located at the sn-2 positions of 1-O-alkyl-2-acyl-GPC and
1-O-alkenyl-2-acyl-GPE (Figure 4C) [28]. In human eosinophils, large amounts of arachidonic acid are
esterified to 1-O-alkyl-2-acyl-GPC (92.0% in choline glycerophospholipids) and 1-O-alkenyl-2-acyl-GPE
(86.6% in ethanolamine glycerophospholipids) [29].
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Figure 4. Composition of alkenylacyl, alkylacyl, and diacyl choline (A) and ethanolamine
(B) glycerophospholipids and distribution of arachidonic acid in glycerophospholipids (C) of rabbit
alveolar macrophages. Ether-linked phospholipids, including 1-O-alkyl-2-acyl and 1-O-alkenyl-2-acyl
types, account for approximately 40% and 70% of choline and ethanolamine glycerophospholipids,
respectively. Arachidonic acid (20:4) is mostly distributed in ether-linked phospholipids, including
1-O-alkyl-2-acyl-GPC and 1-O-alkenyl-2-acyl-GPE. Modified from Sugiura et al. [30].

The functions of ether-linked phospholipids have not yet been fully elucidated. The alkyl ether
bond is more chemically stable than the ester bond and resistant to hydrolysis by esterases, including



Biology 2017, 6, 23 7 of 26

phospholipases. The vinyl ether bond (alkenyl ether bond) is susceptible to acid but resistant to
phospholipases. The lack of the carbonyl oxygen at the sn-1 position affects the hydrophilicity of the
headgroup and allows stronger intermolecular hydrogen bonding between the headgroups of the lipid.
These properties favor the formation of non-lamellar structures that are expressed in the high-affinity
structure of ethanolamine plasmalogen, allowing it to adopt an inverse hexagonal form [31].

Plasmalogens are present in various human tissues of the nervous and cardiovascular systems
and are especially enriched in the myelin sheath, where they may contribute to membrane insulation.
The vinyl ether bonds of plasmalogens can protect mammalian cells against the damaging effects
of reactive oxygen species; reduced levels of brain tissue plasmalogens have been associated with
Alzheimer’s disease [32], X-linked adrenoleukodystrophy [33], and defects in central nervous system
myelination [34].

An important function of ether-linked membrane phospholipids is arachidonic acid storage.
As mentioned earlier, arachidonic acid is highly enriched in ether-linked phospholipids such
as 1-O-alkyl-2-acyl-GPC and 1-O-alkenyl-2-acyl-GPE (Figure 4C). The former is the precursor of
platelet-activating factor (PAF), a potent bioactive mediator. The synergistic synthesis of PAF and
eicosanoids is discussed in Section 6.

4. CoA-Independent Transacylation Activity between Diacyl Phospholipids
and Ether-Linked Lysophospholipids

The CoA-independent transacylation reaction (Figure 3B) was first described in human
platelets [35,36]. Similar transacylation activity was also detected in microsomes and the
membrane fractions of several mammalian cells and tissues, including macrophages [17–19,37,38],
neutrophils [39,40], and platelets [41] and the brain [42,43], heart [44], testis [45], and Ehrlich cells [46].
This reaction catalyzes fatty acid transfer from diacyl-type glycerophospholipids to a variety
of lysophospholipids even in the absence of cofactors; this is in contrast to CoA-dependent
transacylation, which requires CoA. CoA-independent transacylation does not require a
divalent cation such as Ca2+. 1-Radyl-2-lyso-GPC and 1-radyl-2-lyso-GPE (Figure 3B) but
not 1-acyl-glycerophosphoinositols (1-acyl-GPI and 1-acyl LPI), 1-acyl-glycerophosphoserines
(1-acyl-GPS and 1-acyl lysophosphatidylserine), or 1-acyl-glycerophosphates (1-acyl-GP and 1-acyl
lysophosphatidic acid) act as acyl acceptors; thus, the headgroups of the acceptor lipids are
limited to phosphocholine and phosphoethanolamine [17,18,25]. For fatty chain linkage at the
sn-1 position of the acyl acceptor glycerol, three subclasses—1-O-alkenyl-GPC, 1-O-alkyl-GPC,
and 1-acyl-GPC—have been shown to be effective acceptors, with 1-O-alkyl-GPC undergoing the most
rapid acylation. 1-O-Alkenyl-GPE, 1-O-alkyl-GPE, and 1-acyl-GPE are also acylated with arachidonic
acid transferred from diacyl-GPC [18,25].

Regarding donor glycerophospholipids, choline glycerophospholipids—particularly diacyl-GPC—
are the preferred substrate [17,18,25]. Although diacyl-GPE also serves as a donor, diacyl-GPI is
not involved when 1-O-alkyl-GPC is the acceptor. In terms of the positional specificity of fatty
acids in the glycerol backbone, fatty acids esterified at the sn-2 but not the sn-1 positions of diacyl
glycerophospholipids participate in CoA-independent transacylation. In contrast, free fatty acids and
acyl-CoAs are not used as acyl donors. Fatty acids transferred by the CoA-independent transacylation
system are limited to C20/C22 chain-length PUFAs, such as 8,11,14-eicosatrienoic acid (20:3n-6,
dihomo-γ-linolenic acid), arachidonic acid (20:4n-6), 5,8,11,14,17-eicosapentaenoic acid (20:5n-3),
4,7,10,13,16-docosapentaenoic acid (22:4n-6), and 4,7,10,13,16,19-docosahexaenoic acid (22:6n-3, DHA);
both n-6 and n-3 fatty acids can be transferred [17–19,35–37,43].

The substrate specificity and tissue distribution of CoA-independent transacylation explain the
complement of alkyl ether-linked phospholipids in mammalian cells and tissues. Large amounts of
ether-linked phospholipids, including 1-O-alkyl-2-acyl-GPC and 1-O-alkenyl-2-acyl-GPE, are detected
in tissues such as the brain and heart and in inflammatory cells such as neutrophils, macrophages,
platelets, and lymphocytes. Although a high proportion of arachidonic acid (20:4 n-6) is found at the
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sn-2 positions of ether-linked glycerophospholipids [6], arachidonoyl-CoA acyltransferase activity for
1-O-alkyl-GPC and 1-O-alkenyl-GPC is very low [47–49]. In contrast, CoA-independent transacylation
was observed in the membrane fractions of various mammalian tissues excluding the liver [17,18],
in which ether-containing phospholipids are almost completely absent [3]. The tissue distribution of
CoA-independent transacylation activity appears to be closely related to the amounts of ether-linked
glycerophospholipids in these tissues. The fatty acid specificity of this activity in vitro reflects the fatty
acid pattern at the sn-2 positions of ether-linked glycerophospholipids [3,11,18]. CoA-independent
transacylation is assumed to play an important role in the acylation of ether-linked lysophospholipids
to generate PUFA-containing ether-linked glycerophospholipids.

There are few studies on the upregulation of CoA-independent transacylation activity.
Treatment of platelets with phorbol ester or diacylglycerol was shown to enhance CoA-independent
transacylation [50], which was also increased by treatment of human neutrophils with tumor necrosis
factor-α [51].

Two structurally distinct compounds, SK&F 98625 [diethyl 7-(3,4,5-triphenyl-2-oxo-2,3-
dihydro-imidazole-1-yl)heptane phosphonate] and SK&F 45905 [2-[2-(3-4-chloro-3-(trifluoromethyl)
phenyl)-ureido]-4-(trifluoromethyl)phenoxy]-4,5-dichlorobenzenesulfonic acid], have been shown
to inhibit CoA-independent transacylation [52] via competition with acceptor lysophospholipids
(IC50: 6–19 µM) while having little or no effect on related enzymes including lysoPAF acetyltransferase,
14-kDa secretory PLA2, and cyclooxygenase. The antiproliferative agent ET-18-O-CH3 (1-O-octadecyl-2-
O-methyl-GPC) similarly inhibits CoA-independent transacylation (IC50, 0.5 µM) [53]. These compounds
have been shown to inhibit proliferation and induce apoptosis in HL-60 monocytic leukemia
cells, suggesting a link between CoA-independent transacylation, remodeling of ether-containing
phospholipids with arachidonic acid, and leukemia cell survival. Because SK&F 98625 and SK&F 45905
exhibited potent inhibition of 5-lipooxygease and modest inhibition of acyl-CoA:lysophospholipid
acyltransferase, respectively [52], further development of specific inhibitors is needed.

5. Incorporation and Mobilization of Arachidonic Acid in Lipid Subclasses via Acyl-CoA
Acyltransferases and CoA-Independent Transacylation

The behavior of arachidonic acid in cells, including its incorporation into each lipid class,
highlights the distinct roles and substrate specificities of acyl-CoA:lysophospholipid acyltransferases
and the CoA-independent transacylation system. Exogenously added arachidonic acid is primarily
incorporated into phospholipids in various cell types. Radiolabeled arachidonic acid was mainly
incorporated into the diacyl-GPC subclass in intact rabbit alveolar macrophages (Figure 5A, red circles
after a brief incubation (7.5 min) [54,55]. However, very little was incorporated into ether-linked
phospholipids (Figure 5A,B, blue squares and green diamonds). Incorporation of arachidonic acid
into diacyl-GPC during short-term incubation is thought to occur via sequential reactions of acyl-CoA
synthetase and acyl-CoA:1-acyl-GPC acyltransferase (Lands pathway; Figure 2). The fact that ATP,
CoA, and Mg2+ are required for the formation of acyl-CoA from free fatty acids by acyl-CoA synthetase
indicates that energy is needed for fatty acid incorporation via the Lands pathway.

In pulse-chase-labeled macrophages, esterified arachidonic acid in the diacyl-GPC subclass was
gradually transferred to 1-O-alkyl-2-acyl-GPC (Figure 2A, blue squares) and 1-O-alkenyl-2-acyl-GPE
(Figure 2B, green diamonds) [54,55]. Similar incorporation and mobilization of arachidonic acid have
been observed in neutrophils [39,40], platelets [41,56], HL-60 cells [57], and endothelial cells [58,59].
Esterified DHA (22:6n-3) in the diacyl-GPC subclass was also transferred to 1-O-alkyl-2-acyl-GPC and
1-O-alkenyl-2-acyl-GPE in alveolar macrophages [38].

However, although linoleic acid (9,12-octadecadienoic acid, 18:2n-6) was rapidly incorporated into
subclasses of diacyl-GPC and diacyl-GPE via the Lands pathway, subsequent mobilization of linoleic
acid from diacyl-GPC and diacyl-GPE subclasses to 1-O-alkyl-2-acyl-GPC and 1-O-alkenyl-2-acyl-GPE
was not observed [54]. The transfer of arachidonic acid or DHA from diacyl-GPC to
1-O-alkyl-2-acyl-GPC and 1-O-alkenyl-2-acyl-GPE can be explained by CoA-independent activity,
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since the fatty acid and acceptor specificities resemble those of the CoA-independent transacylation
reaction in in vitro cell-free assays. Such gradual transfers may account for the accumulation of
arachidonic acid or DHA in ether-linked glycerophospholipids, such as 1-O-alkyl-2-acyl-GPC and
1-O-alkenyl-2-acyl-GPE, in inflammatory cells [18,54].

The incorporation of exogenous arachidonic acid into PI was also observed during short-term
incubation [54,55]. However, the arachidonic acid in PI did not serve as an acyl donor in the
CoA-independent transacylation system.
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Figure 5. Incorporation and mobilization of arachidonic acid in lipid classes of rabbit alveolar
macrophages. (A,B) Macrophages were pulse-labeled with radioactive arachidonic acid for 7.5 min. After
removal of labeled fatty acids, cells were chased for the indicated periods. The radioactive arachidonic
acid in 1-O-alkenyl-2-acyl (green diamonds), 1-O-alkyl-2-acyl (blue squares), and 1,2-diacyl (red circles)
choline glycerophospholipids (A) and ethanolamine glycerophospholipids (B) was measured.
(C) Schematic illustration of the incorporation and mobilization of arachidonic acid in different lipid
classes. Arachidonic acid was first incorporated into diacyl-GPC via sequential reactions of acyl-CoA
and acyl-CoA:1-acyl-GPC acyltransferase (one in red circle). Arachidonic acid in diacyl-GPC was
then transferred to 1-O-alkyl-GPC (two in blue circle) and 1-O-alkenyl-GPE (three in green circle) by
CoA-independent transacylation. Modified from Sugiura et al. [54].

6. Involvement of the CoA-Independent Transacylation System in PAF Metabolism

PAF was originally identified as a potent bioactive phospholipid mediator released from
IgE-stimulated basophils that can induce aggregation of rabbit platelets [60]. Its chemical structure
was identified as 1-O-alkyl-2-acetyl-sn-GPC [60–63]. PAF is a biologically active glycerophospholipid



Biology 2017, 6, 23 10 of 26

that is presumed to mediate inflammatory responses, including anaphylaxis and septic shock, through
the seven transmembrane-type G protein-coupled PAF receptor (Figure 6) [64].

In inflammatory cells including neutrophils, eosinophils, and macrophages, PAF is mainly synthesized
via the so-called remodeling (deacylation–reacetylation) pathway (Figure 6) [3–11]. Inflammatory
cells contain large amounts of the PAF precursor 1-O-alkyl-2-acyl-GPC [3,5,7,8]. Arachidonic acid
accumulates in the sn-2 position of 1-O-alkyl-2-acyl-GPC; 1-O-alkyl-2-arachidonoyl-GPC is hydrolyzed
by cytosolic PLA2α (cPLA2α) to form 1-O-alkyl-GPC (lysoPAF) and arachidonic acid (Figure 6) [65–67].
Subsequently, lysoPAF acetyltransferases (LPCAT2 and LPCAT1) transfer acetate from acetyl-CoA to
the sn-2 position of lysoPAF to generate PAF (Figure 6, reacetylation) [68–70].
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Figure 6. Biosynthesis and degradation of PAF. The PAF precursor 1-O-alkyl-2-acyl-GPC is hydrolyzed
by a PLA2 protein such as cPLA2α to form 1-O-alkyl-GPC (lysoPAF) (Reaction 1). LysoPAF is
also formed by the CoA-independent transacylation system through fatty acid transfer from
1-O-alkyl-2-acyl-GPC to a lysophospholipid (Reaction 1’). The lysophospholipid acceptor for the
CoA-independent transacylation system is formed by hydrolysis mediated by a PLA2 protein such
as cPLA2α (Reaction 0). The bioactive phospholipid PAF is formed by lysoPAF acetyltransferase
(LPCAT1 and LPCAT2) through the reacetylation of lysoPAF. PAF activates the PAF receptor to
trigger intracellular signaling. Because arachidonic acid is formed by PLA2 in the deacylation
step (Reactions 1 and 0), eicosanoids, prostaglandins (PGs), and leukotrienes (LTs) are synthesized
simultaneously by the COX and LOX pathways. PGs and LTs activate PG and LT receptors. PAF and
PGs/LTs simultaneously activate the cells. In contrast, PAF is degraded through the deacetylation
process by PAF acetylhydrolase (PAF-AH, Reaction 3). The resultant lysoPAF is further converted to
1-O-alkyl-2-acyl-GPC through the CoA-independent transacylation system (Reaction 4). The reactions
involved in the synthesis of PAF are indicated in red, and those involved in the degradation of PAF are
indicated in blue.

CoA-independent transacylation also triggers PAF biosynthesis through the formation of
lysoPAF (Figure 3, deacylation). The addition of 1-O-alkenyl-GPE (lysoplasmalogen) has been
shown to increase the amount of PAF produced by opsonized zymosan-stimulated polymorphonuclear
leukocytes, although 1-O-alkenyl-GPE is not a direct precursor of PAF synthesis [71]. The addition
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of 1-O-alkenyl-GPE to cells induces the formation of lysoPAF from 1-O-alkyl-2-arachidonoyl-GPC.
Other lysophospholipids including LPC (1-acyl-GPC) and lysophosphatidylethanolamine
(LPE, 1-acyl-GPE) also enhance lysoPAF production via CoA-independent transacylation (Figure 6,
deacylation). Upon activation of cPLA2α by inflammatory stimuli, not only lysoPAF but also
1-O-alkenyl-GPE and other choline and ethanolamine lysophospholipids are formed, since all
choline and ethanolamine glycerophospholipids serve as cPLA2α substrates. This increase in
lysophospholipids leads to the generation of lysoPAF via CoA-independent transacylation followed
by an increase in PAF generation [71–73].

PAF is degraded (deacetylated) by PAF acetylhydrolase (PAF-AH) (Figure 6, degradation) [74–76]
to yield lysoPAF, which is further acylated by CoA-independent transacylation to regenerate the PAF
precursor 1-O-alkyl-2-arachidonoyl-GPC (Figure 6, reacylation).

PAF and eicosanoids are simultaneously formed in inflammatory cells [3–11]. A portion of the
arachidonic acid (20:4n-6) released from the PAF precursor 1-O-alkyl-2-arachidonoyl-GPC by cPLA2α
may be metabolized to prostaglandins and leukotrienes by the cyclooxygenase (COX) and lipoxygenase
(LOX) pathways, respectively (Figure 6). Accumulation of arachidonic acid in 1-O-alkylacyl-GPC
is favorable for the simultaneous synthesis of PAF and various eicosanoids in inflammatory cells.
As stated earlier, supplementation of eosinophilic leukemia cells with DHA decreased the arachidonic
acid content in 1-O-alkyl-2-acyl-GPC via competition with the CoA-independent transacylation
reaction [77] and resulted in a reduction in PAF formation. These results suggest that phospholipid
remodeling by CoA-independent transacylation is important for the synthesis of not only eicosanoids
but also PAF in accelerated inflammation.

7. Possible Molecular Mechanisms of CoA-Independent Transacylation Reactions

Little is known about the molecular mechanisms of CoA-independent transacylation, such as the
enzymes responsible for the reaction, which have yet to be purified; these enzymes are difficult to
solubilize due to the high sensitivity of their enzymatic activity to various detergents [18]. Additionally,
the genes encoding these enzymes have not yet been identified.

It was previously reported that several forms of extracellular secreted PLA2 (sPLA2), including
pancreatic and venom PLA2s, operated in a reverse reaction in low-polarity solvents [78]—that is,
free fatty acids were transferred to LPC (1-acyl-GPC) to form PC (Figure 7A, red arrows).
Results indicated that PLA2 could catalyze the acyltransferase reaction under specific conditions.
This prompted us to examine the potential contribution of PLA2 to acyltransferase and transacylation
activities in membranes, which resemble the environments of low-polarity solvents that exclude water
molecules, although a transacylation reaction was not reported in the earlier study [78].

We propose that CoA-independent transacylation reactions are catalyzed by enzymes belonging
to the PLA2 family. Based on the characteristics of the CoA-independent transacylation system
(Sections 4 and 5), we speculate that Ca2+-independent and membrane-bound PLA2 proteins that
selectively transfer C20–22 PUFAs including arachidonic acid are involved in this process (Figure 7).

The CoA-independent transacylation reaction comprises two steps: the first is the formation of
the fatty acyl–PLA2 complex by the half-reaction of PLA2 (step 1a in Figure 7B), and the second is
the transfer of fatty acids from this complex to lysophospholipids (step 2b in Figure 7B), which is
the reverse reaction of step 1a. The fatty acyl–PLA2 complex can also react with a water molecule to
complete the hydrolytic (PLA2) reaction (step 2a). It is critical that CoA-independent transacylation
activity be present in the membrane fraction, including the microsomes, and nearly absent from the
cytosolic fraction [18]. The catalytic site should be in a hydrophobic environment within the membrane
to limit access to water molecules, thereby inhibiting hydrolysis and promoting transacylation.

It has been reported that CoA-independent transacylation involves enzyme(s) that are
biochemically and pharmacologically distinct from cPLA2α and the 14-kDa sPLA2 [79]. This is
consistent with our hypothesis that the enzyme in question is a membrane-bound and non-soluble
PLA2 (Figure 7B).
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Figure 7. Possible mechanism of acyltransferase and transacylation activity catalyzed by PLA2.
(A) Acyltransferase activity of venom PLA2 in a low-polarity organic solvent. We hypothesize that
an intermediate fatty acyl–enzyme complex mediates the PLA2 reaction, which includes formation of
a fatty acyl–enzyme complex by the half-reaction of PLA2 (step 1a) and fatty acid transfer from the
complex to a water molecule (step 2a). Acyltransferase activity is demonstrated in the reverse PLA2
reaction and consists of steps −2a and −1a (red arrows). (B) Proposed model of the CoA-independent
transacylation system. We hypothesize that a Ca2+-independent and membrane-bound PLA2 catalyzes
the CoA-independent transacylation reaction, which consists of two steps: formation of a fatty
acyl–enzyme complex as an intermediate by the half-reaction of PLA2 (step 1a) and transfer of a
fatty acid from the acyl–enzyme complex to a lysophospholipid (step 2b), which is the reverse of step
1a. (C) Lysophospholipase/transacylation and CoA-independent transacylation reactions catalyzed
by cPLA2γ. cPLA2γ can catalyze CoA-independent transacylation (described in panel B) as well as
the lysophospholipase/transacylation reaction. Lysophospholipase/transacylation involves two steps:
formation of a fatty acyl–enzyme complex by the half-reaction of lysophospholipase (or PLA1) (step 1b),
and fatty acid transfer from the acyl–enzyme complex to lysophospholipid (step 2b). The transferred
fatty acid is shown in red. X and Y represent parts of polar headgroups of phospholipids.
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8. Intracellular PLA2

We propose that CoA-independent transacylation is catalyzed by enzymes belonging to the
PLA2 family—specifically, intracellular PLA2s. Before discussing the candidate enzymes, we first
describe intracellular PLA2, which hydrolyzes glycerophospholipids at the sn-2 position to release
fatty acids and lysophospholipids. As stated earlier (Figure 2), PLA2 is involved in the first step of
the deacylation–reacylation cycle (Lands cycle) as well as in the synthesis of lipid mediators such as
eicosanoids or PAF (Figure 6).

The PLA2 enzyme superfamily consists of over 30 enzymes, with members such as sPLA2, cPLA2,
Ca2+-independent PLA2 (iPLA2), PAF-AH, and lysosomal PLA2 classified according to localization
(extracellular vs. intracellular), sequence homology, or biochemical characteristics. A systematic group
numbering system has been proposed for these enzymes [80]. Figure 8 shows a phylogenetic tree of
intracellular and related PLA2s.

cPLA2αwas identified as a key enzyme in eicosanoid synthesis [4,65–67,81–83] that selectively
hydrolyzes arachidonic acid-containing phospholipids when cells are activated by extracellular stimuli,
thereby stimulating eicosanoid synthesis. It is also involved in PAF synthesis (Figure 6). cPLA2α
(PLA2G4A) harbors the conserved GXSXG sequence for lipase activity as well as a calcium-dependent
lipid-binding domain that resembles the C2 domain of calcium-dependent protein kinase C enzymes
(Figure 9). cPLA2α also has several serine residues that are phosphorylated by protein kinases, and it
is activated by intracellular Ca2+ via C2 domain-mediated membrane binding and phosphorylation in
response to extracellular stimuli. A study using transgenic mice lacking cPLA2α demonstrated the
importance of prostaglandin and leukotriene synthesis in the allergic reaction and in parturition [84].

cPLA2 (PLA2G4) family enzymes were identified based on their sequence similarity to
cPLA2α [85–87]. cPLA2β (PLA2G4B), cPLA2δ (PLA2G4D), cPLA2ε (PLA2G4E), and cPLA2ζ
(PLA2G4F) were found to form the cPLA2β gene cluster, and all have both the lipase consensus
sequence (GXSXG) and the C2 domain [87] (Figure 8).

Another enzyme belonging to the cPLA2 (PLA2G4) family, cPLA2γ (PLA2G4C), was identified
as an ortholog of cPLA2α [85,86,88–93] and contains a lipase consensus sequence but lacks the C2
domain (Figure 9). Interestingly, cPLA2γ was found to contain a prenylation motif (CAAX box)
at its C-terminus and a putative myristoylation motif at its N-terminus [85,86,88–93]. The subcellular
localization of cPLA2γ also differs from those of other cPLA2 family members: it is detected in
membrane fractions, including in the endoplasmic reticulum. In addition to having Ca2+-independent
PLA2 activity, cPLA2γ exhibits PLA1 [85] and lysophospholipase [88,89,92,93] activities.

Another important group of intracellular PLA2s is the Ca2+-independent PLA2 family (iPLA2,
PLA2G6) (Figure 8) [80,94–98], also known as the patatin-like phospholipase domain-containing
protein (PNPLA) family [99]. Like cPLA2α, iPLA2β (PLA2G6A, PNPLA9) is also a serine-based
enzyme, but its PLA2 activity was shown to be Ca2+ independent and was not specific to
arachidonic acid-containing phospholipids [94–97]. iPLA2β is thought to play a pivotal role
in phospholipid remodeling, including in the deacylation–reacylation cycle (Figure 2), since its
inhibition by bromoenollactone reduces arachidonic acid incorporation into phospholipids in P388D1
macrophages [94], phorbol ester-differentiated U937 macrophage-like cells [95], and uterine stromal
cells [96]. iPLA2-mediated generation of LPC (1-acyl-GPC) is associated with increased incorporation
of arachidonic acid in PC (diacyl-GPC). In addition, iPLA2β has been implicated in lysophospholipid
accumulation under hypoxic conditions; this can lead to the aggravation of arrhythmia, given the
abundance of iPLA2β and its substrate, plasmalogen, in the myocardium [100–102].

Another isoform of iPLA2, iPLA2γ (PLA2G6B, PNPLA8), is a membrane-bound enzyme that may
also be involved in the deacylation step of phospholipid remodeling. Recombinant iPLA2γ exhibits
PLA1 and PLA2 activities depending on substrate type (Figure 8) [103]. Purified iPLA2γwas shown
to hydrolyze oleic acid at the sn-2 position of 1-stearoyl-2-oleoyl-GPC, suggesting that it possesses
PLA2 activity. Mass spectrometric analyses demonstrated that purified iPLA2γ readily hydrolyzed
saturated or monounsaturated aliphatic groups at either the sn-1 or -2 positions of phospholipids.
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In addition, purified iPLA2γ liberated arachidonic acid from the sn-2 position of 1-O-alkenyl-GPC
(plasmenylcholine). In contrast, incubation of iPLA2γ with 1-palmitoyl-2-arachidonoyl-GPC
resulted in the rapid release of palmitic acid (hexadecanoic acid, 16:0) and selective accumulation
of 2-arachidonoyl LPC (2-arachidonoyl-GPC), which was not further metabolized by iPLA2γ.
These results indicate that iPLA2γ has PLA1 activity when arachidonic acid is present at the sn-2
position of diacyl PC.

Other iPLA2 (PLA2G6, PNPLA) family enzymes include lysophospholipases (PNPLA6 and
PNPLA7) and triacylglycerol lipases (PNPLA1-5) (Figure 8) [80,98,99].

PAF-AHs are PLA2s that hydrolyze PAF and oxidized phospholipids (Figures 6 and 8) [74–76,80,104].
PAF-AH I (PLA2G8) is an intracellular PAF-AH. The catalytic subunits PLA2G8A and PLA2G8B
(also termed α1 and α2 subunits) form homo- and heterodimers. PAF-AH II (PLA2G7B) is another
type of intracellular PAF-AH belonging to the plasma PAF-AH (PLA2G7A) family [74–76,80,105,106].
These enzymes hydrolyze not only PAF but also oxidized phospholipids—i.e., those that are oxidatively
modified to contain short- or medium-chain fatty acids.

1 
 

 
Figure 8. Phylogenetic tree of related phospholipases. Enzymes in the cPLA2, patatin-like PLA (iPLA2),
PLA/AT, and intracellular and extracellular PAF-AH families are included in the tree. Amino acid
sequences of each enzyme were obtained from GenBank and SwissProt and were aligned using
the ClustalW program distributed by the DNA Data Bank of Japan. The phylogenetic tree was
generated using the TreeView program. Branch lengths represent the evolutionary distances between
sequence pairs.

Lysosomal PLA2 (LPLA2, PLA2G15) is a PLA2 enzyme located in lysosomes that exhibits Ca2+

independence and has an acidic pH optimum [80,107]. It is also referred to as lysophospholipase 3
(LYPLA3), since it also exhibits lysophospholipase activity. The same enzyme has also been named
lecithin-cholesterol acyltransferase (LCAT)-like lysophospholipase (LLPL) because this enzyme has 49%
amino acid sequence identity to LCAT.

The PLA/AT (PLA2G16) family comprises a novel group that includes the Ca2+-independent
N-acyltransferase (iNAT), which is involved in the synthesis of N-acyl PE [108]. These enzymes
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belong to the lecithin-retinol acyltransferase family and are negative regulators of the proto-oncogene
Ras; indeed, iNAT is also known as HRAS-like suppressor (HRASLS) 5. Other family members
include H-Rev107 (HRASLS3), HRASLS2, and tazarotene-induced gene (TIG) 3 (HRASLS4) [109–111].
These enzymes exhibit PLA1 or PLA2 activities to release free fatty acids from glycerophospholipids,
with a preference for hydrolysis at the sn-1 position [109–111].

9. cPLA2γ Catalyzes CoA-Independent Transacylation Reactions that Transfer Arachidonic Acid
to Ether-Linked Lysophospholipids

We previously suggested that cPLA2γ (PLA2G4C) may be responsible for CoA-independent
transacylation [92,93]. cPLA2γ (PLA2G4C) was identified as an ortholog of cPLA2α (PLA2G4A) [85,86],
whose activity was shown to be Ca2+ independent due to the absence of a C2 domain that is conserved
in other cPLA2 (PLA2G4) family enzymes and is involved in Ca2+-dependent lipid binding. cPLA2γ
is membrane bound owing to the presence of lipidation motifs, including a C-terminal CAAX
farnesylation motif (Figure 9A,B). The membrane-bound and Ca2+-independent properties of cPLA2γ
are similar to those of the CoA-independent transacylation system.

We examined whether cPLA2γ catalyzes CoA-independent transacylation using
1-O-[3H]alkyl-GPC (lysoPAF) as a substrate (Figure 9C) [92,93]. When purified cPLA2γ was
incubated with 1-O-[3H]alkyl-GPC, 1-O-[3H]alkyl-GPC was acylated in the presence of PC
(1-palmitoyl-2-arachidonyl-GPC). The transfer of arachidonic acid to ether-linked lysophospholipids
was confirmed using 2-[14C]arachidonic acid-containing PC or PE as the acyl donor [93]. A schematic
of the reaction is depicted in Figure 9C (right) and shows that cPLA2γ promoted CoA-independent
transacylation of 1-O-alkyl-GPC (Figure 7C, reactions 1a + 2b). A farnesylation-defective mutant also
exhibited comparable CoA-independent transacylation activity, suggesting that farnesylation is not
essential for transacylation activity.

10. cPLA2γ Exhibits High Lysophospholipase/Transacylation Activity

Although cPLA2γ can catalyze CoA-dependent transacylation, it also exhibits lysophospholipase/
transacylation activity (Figure 9). Lysophospholipase A hydrolyzes lysophospholipids to release fatty
acids (Figure 7C, reactions 1b + 2a), whereas lysophospholipase/transacylation involves the transfer of
cleaved fatty acids to lysophospholipids to form diradyl phospholipids (Figure 7C, reactions 1b + 2b).

When purified cPLA2γ was incubated with [14C]LPC (1-[14C]palmitoyl-GPC), [14C]palmitic
acid was released, suggesting that cPLA2γ catalyzes the lysophospholipase reaction (Figure 7C,
reactions 1b + 2a) [92,93]. In addition, [14C]PC was formed; analysis of the product [14C]PC by
digestion with snake venom PLA2 revealed [14C]palmitic acid at both the sn-1 and -2 positions
of [14C]PC. These results indicate that cPLA2γ catalyzed the transfer of [14C]palmitic acid at the
sn-1 position of [14C]LPC to the hydroxy group at the sn-2 position of another [14C]LPC, confirming
that [14C]LPC acts as both acyl donor and acceptor in the lysophospholipase/transacylation reaction
(Figure 7C, reactions 1b + 2b) [92,93].

1-O-Alkyl-GPC acts only as an acyl acceptor due to the resistance of the alkyl ether
bond to cleavage. The addition of LPC increased the acylation activity of 1-O-alkyl-GPC
rather than that of PC (Figure 9B), suggesting that cPLA2γ prefers lysophospholipids
(lysophospholipase/transacylation) to phospholipids (CoA-dependent transacylation reaction) as
acyl donors (Figure 9B) [92,93]. CoA-independent transacylation and lysophospholipase/transacylation
differ in terms of the acyl donor: the former uses phospholipids such as PC and PE, whereas the
latter uses LPC. The lysophospholipase/transacylation activity of cPLA2γ was markedly higher
than its CoA-independent transacylation activity. cPLA2γ also exhibited higher lysophospholipase
activity (sequential reactions, steps 1b and 2a in Figure 7C) than PLA2 activity (sequential reactions,
steps 1a and 2a in Figure 7C) [92,93], which may explain the ratio of each transacylation reaction
(step 1a vs. 1b). These results indicate that cPLA2γ is not the enzyme responsible for CoA-independent
transacylation-mediated accumulation of arachidonic acid in ether-linked phospholipids.
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The physiological roles of cPLA2γ remain unclear. We also predict that cPLA2γ has
important functions in the heart because it is highly expressed in this tissue [85,86]. In addition,
lysophospholipids including lysoplasmalogen have been shown to accumulate in ischemic heart
tissue [112–114]. Under hypoxic conditions, Ca2+-independent PLA2 (iPLA2β) is thought to
be involved in lysophospholipid accumulation, since iPLA2β and its substrate plasmalogen are
abundant in the myocardium [100–102]. Lysoplasmalogen as well as LPC are also known to
trigger cardiac arrhythmia [112–114]. In iPLA2β transgenic mice, cardiac ischemia enhances iPLA2β
activity, leading to increased lysophospholipid accumulation and aggravation of arrhythmia [102].
Given that the lysophospholipase and transacylation reactions of cPLA2γ can reduce the levels of toxic
lysophospholipids, we hypothesize that cPLA2γ has a protective role against arrhythmia [92,93].
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Figure 9. Structure and transacylation activity of cPLA2γ (PLA2G4C). (A) Schematic representation
of sequence homologies among the primary types of cPLA2 (PLA2G), containing two homologous
catalytic domains flanked by gene-specific sequences. A lipase consensus sequence (GXSGS) is located
at the N-terminus of domain A. cPLA2α and cPLA2β both have an N-terminal C2 domain that is
involved in Ca2+-dependent phospholipid binding. Human cPLA2γ has a CAAX box and putative
N-myristoylation site at the C- and N-termini, respectively. cPLA2α can be phosphorylated at Ser505
by mitogen-activated protein kinases (MAPKs), at Ser515 by Ca2+/calmodulin-dependent protein
kinase II, and at Ser727 by MAPK-interacting kinase 1 or a closely related isoform. Post-translational
modifications such as C-terminal farnesylation and N-terminal N-myristoylation are depicted.
(B) Transacylation activity of cPLA2γ. Purified cPLA2γC-FLAG was incubated with [3H]alkyl-GPC in
the absence or presence of PC or LPC as acyl donors; the products were analyzed by thin-layer
chromatography and the radioactivity of [3H]alkylacyl-GPC was measured. cPLA2γ exhibits
CoA-independent transacylation activity for 1-O-alkyl-GPC and uses both phospholipids (upper,
CoA-independent transacylation) and lysophospholipids (lower, lysophospholipase/transacylation)
as the acyl donor, with preference for the latter. The transferred fatty acyl moiety is shown on a
yellow background.
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11. Other Enzymes that Catalyze Transacylation Reactions

Our group has investigated the enzymes responsible for CoA-independent transacylation [92,93].
Although cPLA2γ can catalyze this reaction, it also exhibits high lysophospholipase/transacylation
activity (Figure 9B). Below, we discuss the possibility that other PLA2s participate in CoA-independent
transacylation (Table 3).

Table 3. Phospholipases that catalyze transacylation reactions.

Family Candidates Cofactor Reactions Acyl Donor Acyl Acceptor Features

cPLA2
(PLA2G4)

cPLA2γ
(PLA2 G4C)

None

CoA-independent
transacylation

Phospholipids
PC, PE

1-O-alkyl-GPC1-
O-Alkenyl-GPE Low activity?

Lysophospholipase/
transacylation LPC, LPE

LPC, LPE
1-O-alkyl-GPC1-
O-Alkenyl-GPE

Clearance of
lysophospholipid?

cPLA2α
(PLA2 G4A) None Lysophospholipase/

transacylation
Phospholipids

PC, PE LPC, LPE

cPLA2ε
(PLA2G4E) Ca2+ N-acyltransferase PC, PE PE Anandamide

synthesis

iPLA2
(PNPLA,
PLA2G6)

iPLA2ε
(PNPLA3)

None
Triacylglycerol

lipase/transacylase
Triacylglycerol Acylglycerol

Triacylglycerol
degaradation/

synthesis

iPLA2ζ
(PNPLA2)

iPLA2η
(PNPLA4)

PLA/AT
(HRASLS,
PLA2G16)

HRASLS5
(iNAT)

None

N-acyltransferase PC, PE PE
Anandamide

synthesisHRASLS3
(H-Rev107)

HRASLS2
CoA-independent

transacylation PC, PE LPC, LPE
Preference to sn-1

fatty acid than sn-2
ones as acyl donor

HRASLS4
(TIG3)

14-3-3
protein
family

30 kDa PLA2 None Transacylation
reaction?

Phospholipids
PC, PE

PAFAH II
(PLA2G7)

PAF-AH II None Transacetylation PAF, Oxidized
Phospholipid

1-O-Alkenyl-GPE,
sphigosine

Transfer of short
chain fatty acid

Plasma
PAF-AH None Transacetylation LPC, LPE LPC, LPE Transfer of short

chain fatty acid

Lysosomal
PLA2

LPLA2
(PLA2G15) None Transacylation PC 1-O-Alkenyl-GPE,

ceramide

cPLA2α (PLA2G4A), another cPLA2 family enzyme, was also shown to exhibit transacylation
activity [115]. However, cPLA2α preferentially uses lysophospholipids as substrates in the
transacylation reaction, transferring the fatty acids in LPC to another LPC to yield PC in the
lysophospholipase/transacylation reaction (Table 3). Ca2+ is essential for cPLA2α-catalyzed PLA2
activity and for the binding of PLA2 to the membrane or micelles where the substrate is located.
However, cPLA2α-catalyzed lysophospholipase activity towards micelles was not stimulated by Ca2+,
and cPLA2α-catalyzed lysophospholipase/transacylase activity was low.

Another PLA2 isoform may participate in the CoA-independent transacylation system.
The 30-kDa PLA2 belonging to the 14-3-3 protein family catalyzes the cleavage of the sn-2 arachidonic
acid in phospholipids though the formation of a stable acyl–enzyme complex as an intermediate [116].
The occurrence of this arachidonic acid–enzyme complex may suggest that arachidonic acid in the
complex to specifically transfer to putative nucleophilic acceptors including water (PLA2 activity) and
lipids (transacylation activity).
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The PLA/AT family enzymes [HRASLS3 (H-rev107), HRASLS4 (TIG3), and HRASLS2] were also
shown to exhibit CoA-independent transacylation activity [108–111]. The fatty acids at the sn-1 or
sn-2 positions of donor phospholipids are transferred to LPC in a Ca2+-independent manner, with
preference for the transfer of sn-1 rather than sn-2 fatty acids. These enzymes also exhibit PLA1 or
PLA2 activities, releasing free fatty acids from glycerophospholipids with a preference for hydrolysis at
the sn-1 position [108–111]. Although these enzymes could catalyze CoA-independent transacylation,
they are not thought to be involved in the acylation of ether-linked lysophospholipids with arachidonic
acid based on their positional preference (Figure 10A) (Table 3).

The PLA/AT family enzymes are reported to exhibit another type of transacylation activity for the
synthesis of N-acyl PE (Ca2+-independent N-acyltransferase, iNAT) (Table 3) [108]. iNAT can catalyze
the transfer of fatty acids at the sn-1 position of PC to an amino group of PE in the absence of Ca2+

to yield N-acyl PE (Figure 10B). H-Rev107 (HRASLS3), HRASLS2, and TIG3 (HRASLS4) also exhibit
such transacylation activity [109–111]; HRASLS2 showed high iNAT activity, while the activities of
H-rev107 and TIG3 were low. Recently, cPLA2ε (PLA2G4E) was also shown to catalyze a similar
but Ca2+-dependent transacylation reaction [117]. This Ca2+-dependent NAT activity (Ca-NAT) was
consistent with the presence of the conserved C2 domain involved in Ca2+-dependent lipid binding in
cPLA2ε. Ca-NAT and iNAT activities are thought to involve N-acylethanolamines such as anandamide
(Figure 10B) [7,8,108–111,118–121].
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Figure 10. CoA-independent transacylation and biosynthesis of anandamide and related
N-acylethanolamines by PLA/AT family enzymes. (A) PLA/AT family enzymes catalyze
CoA-independent transacylation. Fatty acids at the sn-1 or -2 positions of acyl donor phospholipids
are transferred to LPC (1-acyl-GPC), with preference for sn-1 over sn-2 fatty acids. (B) Fatty acids
at the sn-1 positions of phospholipids are transferred to the amino group of PE to form N-acyl
PE by NATs. N-acyl PEs are hydrolyzed by N-acyl PE-specific PLD to form N-acylethanolamines.
Anandamide is an N-arachidonoyl species of N-acylethanolamine whose biosynthesis involves a rare
fatty acid—i.e., arachidonic acid at the sn-1 position of a phospholipid. The transferred fatty acid is
shown on a yellow background.



Biology 2017, 6, 23 19 of 26

Type 2 intracellular PAF-AH (PAF-AH II) may exhibit transacylation activity (Figure 8)
(Table 3) [122–125]. The transfer of the acetyl group from PAF to lysophospholipid acceptors was
demonstrated in the HL-60 membrane fraction (CoA-independent transacetylation) [122,123]. Purification
and cDNA cloning revealed that the transacetylation activity was due to PAF-AH II [124,125]. PAF-AH
II catalyzed transacetylation from PAF to 1-radyl-GPC, 1-radyl-GPE, 1-acyl-GPS, 1-acyl-GPI, 1-radyl-GP,
and lysoplasmalogen. Sphingosine also served as an acceptor. PAF-AH-catalyzed transacetylation
showed broader acceptor specificity than the CoA-independent transacylation system, which transfers
long-chain acyl moieties. These differences in substrate donor and acceptor specificities suggest that
the CoA-independent transacetylase and CoA-independent transacylation systems are composed of
two different enzymes.

Plasma-type PAF-AH was also shown to exhibit transacylation activity (Figure 8) (Table 3) [126].
The occurrence of transacetylase activity was demonstrated in human plasma low-density lipoproteins,
which transfer acetyl groups from PAF to lysophospholipids. This enzyme was able to transfer not
only the acetyl moiety but also short-chain acyl moieties including propionyl (C3:0), butanoyl (C4:0),
and valeroyl (C5:0) residues.

Lysosomal PLA2 (LPLA2, PLA2G15) was also reported to catalyze transacylation reactions
(Figure 8) (Table 3). Abe et al. identified this enzyme as having novel activity for the synthesis
of 1-O-acyl-ceramide [127]. Activity was characterized by transfer of the sn-2 fatty acid of PC to
the 1-hydroxyl group of N-acetylsphingosine. The product of this reaction was 1-O-acylceramide
(1-O-acyl-N-acetylsphingosine). Further characterization employing the recombinant protein revealed
that the enzyme predominantly exhibited PLA2 activity rather than ACS activity. Thus, this enzyme is
now known as lysosomal PLA2 (LPLA2) [128,129].

12. Concluding Remarks and Future Directions

In this review, we summarized the characteristics and physiological significance of
the CoA-independent transacylation system, which is involved in fatty acid remodeling of
glycerophospholipids and in the accumulation and enrichment of arachidonic acid in alkyl ether-linked
phospholipids in the brain, heart, and various inflammatory cells. This system is also important for
the metabolism of eicosanoids and PAF. Despite its importance, the component enzyme(s) have not
yet been identified. We described here the reaction mechanism of CoA-independent transacylation
and discussed the involvement of Ca2+-independent and membrane-bound PLA2. In Section 11,
we discussed how many lipases, including PLA2s, can catalyze transacylation, even although their
substrate specificities differ. This lends support to the rationale behind our proposed model (Figure 7)
for the involvement of PLA2 in CoA-independent transacylation.

A detailed analysis of enzymological data revealed that cPLA2γ is not the enzyme responsible for
CoA-independent transacylation, since it prefers to use lysophospholipids rather than phospholipids
as acyl donors. However, this in vitro substrate specificity may be due to the solubilities of lyso and
diradyl phospholipids as acyl donors. Further detailed characteristics of cPLA2γ will be needed,
including analyses using cPLA2γ-knockdown or -knockout macrophages or neural cells, to investigate
the involvement of cPLA2γ in the accumulation of arachidonic acid in ether-linked phospholipids.

Identifying the enzyme(s) involved in the CoA-dependent transacylation system will require a
combination of highly specific probes—including substrates/inhibitors with covalent modifications
such as photoaffinity labeling—and sensitive methodologies such as liquid chromatography–tandem
mass spectrometry. This information will improve our understanding of the physiological significance
of alkyl ether phospholipids and the biosynthesis of PAF and eicosanoids.
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