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Abstract: Prolidase is a ubiquitous enzyme that plays a major role in the metabolism of proline-rich
proteins. Prolidase deficiency is a rare autosomal recessive inborn metabolic and multisystemic
disease, characterized by a protean association of symptoms, namely intellectual disability, recurrent
infections, splenomegaly, skin lesions, auto-immune disorders and cytopenia. To our knowledge,
no published review has assembled the different clinical data and research studies over prolidase
deficiency. The aim of this study is to summarize the actual state of the art from the descriptions of all
the patients with a molecular diagnosis of prolidase deficiency reported to date regarding the clinical,
biological, histopathological features, therapeutic options and functional studies.
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1. Introduction

Prolidase is a ubiquitous cytosolic dipeptidase that liberates proline or hydroxyproline in the final
stage of endogenous and dietary protein catabolism. Prolidase contributes to the turnover of collagen
and other proline-containing proteins [1–3].

Pathogenic variants in the PEPD gene (OMIM*613230) encoding prolidase cause a rare recessive
inborn error of metabolism named prolidase deficiency (PD) (OMIM#170100) [4–6]. PD requires a
multisystemic therapeutic approach of each symptom, currently without any definitive cure [7–10].

Due to a severely reduced prolidase activity in PD, a large amount of proline remains in the form
of imidodipeptides X-Proline and X-Hydroxypyroline, which are excreted in the urine [11]. Thus,
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the hallmark of PD is a massive imidopeptiduria associated with elevated proline or hydroxyproline
containing dipeptides in plasma [3,6,11–13]. The confirmation of PD diagnosis relies on the
measurement of the cellular prolidase activity and on the identification of PEPD gene variant [4,12,14,15].
The intra/extra-familial variable expressivity and the lack of correlation between phenotype and
genotype are not yet understood [16–18].

The incidence of PD is of 1–2 per 1 million births [19,20], but is more frequent in some populations,
as the Druze and Arab Muslim minority in Israel [17,18,21]. Since its first description in 1968 by
Goodman and colleagues [13], less than a hundred patients with a molecular confirmation for PD
diagnosis, from very different ethnic and geographical backgrounds, have been reported [5,18,22].

In this study, we summarize the actual state of the art from the descriptions of all the reported
patients with a molecular diagnosis of PD and report a new splicing variant c.1344 + 2T > A in PEPD.
The aim was, firstly, to describe the phenotypical spectrum of this rare disease with great variability
and no agreed therapeutic options and, secondly, report the different functional studies in order to
progress in the understanding of this rare disease.

2. Materials and Methods

PubMed (https://www.ncbi.nlm.nih.gov/pmc/) and Human Gene Mutation Database Professional
(HGMD®, Qiagen, Aarhus C, Denmark) were initially searched up to 1 February 2020. Studies
were not excluded based on date of publication. The PubMed search strategy used a combination of
medical subject heading (MeSH) terms and text keywords: prolidase and/or PEPD gene and prolidase
deficiency. This approach was also employed for the other databases, keeping subject headings
and keywords as similar as possible between the search strings. We included in this study all the
patients reported with a molecular diagnosis of PD. We excluded case reports studies that did not
report a genetic analysis. Variant nomenclature were verified with Varsome (Saphetor SA, Lausanne,
Switzerland) [23], Mutalyzer (2.0.32) (https://mutalyzer.nl/) [24] and University of California Santa
Cruz Genome Browser (http://www.genome.ucsc.edu/) [25]. Prolidase 3D modulization with variant
localizations were performed with PyMOL (the PyMOL Molecular Graphics System, Version 1.7,
Schrodinger, LLC, New York, NY, USA) and human protein database (5M4Q). DNA sequencing in
the reported patient was performed with a BigDyeTM Terminator v3.1 cycle sequencing kit on an ABI
Prism 3130XL Analyzer (Applied Biosystems, Foster City, CA, USA) following the manufacturer’s
instructions. Sequences were analyzed with the SeqScapeTM software v.2.5.

3. Results

3.1. Population

Seventy-five patients have been reported with a molecular analysis of PEPD, 34 males and
37 females aged from three months to 47 years (gender data were not available for four patients)
(Table S1). Eight patients with PD were known to be deceased between two months and 36 years of
age [10,18,22,26–28]. Prenatal diagnosis was performed in two families [18,22].

3.2. Phenotypical Characterization of Patients with PD

3.2.1. First Symptoms of PD

The first symptoms are an inconstant association of developmental delay, splenomegaly, repetitive
infections, dermatological lesions, autoimmune manifestations (“systemic lupus erythematosus (SLE)
or SLE-like phenotype” and increased IgE) and cytopenia (anemia and thrombocytopenia) [5,18,26,29]
(Figure 1a). Thirty-one patients presented the first symptoms before two years of age (Figure 1b).
There is an intrafamilial heterogeneity in the age of onset and severity of symptoms [16,18,22];
two individuals diagnosed with PD were asymptomatic at, respectively, 11 and 29 years of age [16,30].
The dermatological lesions are not necessarily the first signs of the disease, but it is rather an association
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of symptoms appearing progressively between the neonatal period and adulthood (birth to the third
decade) [4,8,17,18,31]. Most patients develop the first symptoms during early childhood, before 10 years
of age, but a late onset of leg ulcers appearing during the third decade have also been reported [4]
(Figure 1b).

3.2.2. Developmental Delay/Intellectual Disability and Other Neurologic Features

Developmental delay or intellectual disability (moderate, mild or severe) was present in 71%
(48/68) patients (Figure 1a). Nevertheless, 20 patients aged from four to 47 were reported without any
delay [4,10,16,18,22,28,30,32–37], two had normalized their previous developmental delay [16,38], three
patients had speech delay [10,18] and one had motor delay with normal intellectual development [16]
(Table S1). The expression of developmental delay may vary among siblings [16,35], suggesting that
other factors play a role in the severity of the phenotype.

In addition to above, other features noted were bilateral combined deafness, amblyopia, optic
atrophy [8] and mixed sensory-neuronal hearing deafness [39]. Seizures were reported in a four-year-old
girl who had PD and SLE with central nervous system (CNS) vasculitis. The MRI in this patient
showed multiple bilateral subcortical white matter lesions mainly over the parieto-occipital area with
leptomeningeal enhancement [29]. Multiple bilateral microthrombosis in the cerebral white matter
were found on the MRI in another patient [40]. Computer tomography of the skull of a four-year-old
boy with PD showed a slight cortical and cerebellar atrophy [37].

3.2.3. Dysmorphy

Facial dysmorphism was present in 93% (54/58) patients (Figure 1a). Proptosis and/or hypertelorism
and saddle nose are reported as a part of the symptoms of PD [18] (Table S1). The majority of patients
are described with facial dysmorphism, a peculiar or unusual characteristic [10,18,22,26,29].

3.2.4. Dermatological Symptoms

PD can be associated with a broad scope of dermatological symptoms.

Chronic Ulcers

In total, 61% (41/67) of patients were described with cutaneous ulcers (Figure 1a). The cutaneous
ulcerations appear in early childhood and may affect children in the first years of life [16,41]. They are
chronic, recurrent, extensive, irregular, bilateral, sometimes painful and, especially, predominant on
the lower limbs [8,16,31,41–43]. It is important to notice that ulcers are often present and suggestive
for PD, but their absence does not exclude the diagnosis. The ulcerations may appear on the dorsal
part of the foot and on the sole and extend all over the legs, sometimes leading to tendon lesions and
severe skin infections [4,8,9,22,26,41]. There were no obvious triggering factors, apart from a trauma
described in three patients [16,34,35]. The ulcers may also arise on a previously weakened skin by
pruritic or eczematous lesions [8,16,42,44]. Examination of the blood vessels by angiography of the
lower extremities in one patient did not show occlusion [8]; venous Doppler examination was reported
as normal in another patient [44].

Additional Dermatological Signs

Eczema or dermatitis were reported in 58% (18/31) of patients (Figure 1c), described as eczematous
skin [16,45] or eczematous lesions on the legs [8] and eczematous eruptions [41]. Crusting dermatitis
on the face and extremities was a frequent symptom of PD reported in the Druze population [18].

Telangiectasias were present in 71% (10/14) of patients (Figure 1c), mainly located in the lower
limbs but also on the cheeks, shoulders and knees [8,34,35,42,43,46]. A rash was reported in 67% (10/15)
of patients (Figure 1c). There is a clinical variability in the presentation of the rash described as a
persistent scaling, erythematous with secondary crusts [32], fine purpuric, maculopapular [18,29] or
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“eczema-like rash” [22]. Another patient had a purple rash localized on the back of his hands and on
his earlobes [29]. Photosensitivity was reported in 33% (3/9) of patients (Figure 1c) [4,26].

3.2.5. Recurrent Respiratory Infections and Pulmonary Lesions

Recurrent infections, namely respiratory infections, pneumonia or upper respiratory tract
infections [47], are present in 76% (37/49) of patients (Figure 1a). [4,8,10,12,17,21,22,28,31,32,35,38,44,45].
In a retrospective study performed on 21 patients in Israel by Nir et al., 57% of patients, with ages
ranging from 10 to 33 years, had a history of recurrent pulmonary infections, and 47% had a diagnosis
of chronic lung disease. On the CT scans, different features were found, such as cystic changes,
bronchiectasis, diffuse ground glass attenuation and linear atelectasis, suggesting that the respiratory
component of the disease should be carefully considered [47]. An additional patient with PD and SLE
had pulmonary fibrosis. His videothoracoscopic lung biopsy showed diffuse alveolar fibrosis with
excessive collagen deposition, architectural distortion and alveolar cysts [48]. A 16-month-old boy of
South Asia with PD was diagnosed with anti-neutrophil cytoplasmic antibody-associated pulmonary
capillaritis. Despite apparent good disease control, a CT scan of the chest at the age of five years
revealed progressive pulmonary fibrosis and cystic changes. [49].

Recurrent infections, including pneumonia, are a major complication for PD, which can
compromise the survival [18,39,47], but no follow-up studies about life expectancy have been
published yet.

3.2.6. Failure to Thrive

Fifty-three percent (21/40) of patients presented a failure to thrive (Figure 1a) [18,28,50]. Of these,
12 patients were previously investigated by Besio et al. in the light of bone abnormalities, namely short
stature, microcephaly, osteopenia and genu valgum [28]. The features of the skeletal abnormalities
were studied thanks to the dal/dal mouse, an animal model for PD that compromised longitudinal
bone growth and abnormal geometrical bone properties. This work suggested that lack of prolidase
activity is required for normal skeletogenesis, especially at an early age when the requirement for
collagen synthesis and degradation is the highest [28].

3.2.7. Gastroenterologic Symptoms

Splenomegaly was found in 72% (31/43) of patients (Figure 1a) [18,22,39], sometimes requiring
splenectomy [29]. Hepatomegaly was present in 53% (8/15) of patients [17,22] (Table S1).

An esophagogastroduodenoscopy and colonoscopy performed in a five-weeks-old patient showed
scattered gastric and colonic ulcerations [22] and active colitis with multiple linear aphthous ulcers in
the left colon in a 21-month-old girl [51]. Colonoscopy in a five-year-old boy showed pancolitis with
serpiginous ulcers and pseudopolyps consistent with early Crohn’s disease [50].

3.3. Biological Characterization of Patients with PD

3.3.1. Hematologic Disorders

Anemia was reported in 76% (19/25) of patients (Figure 1d) [22,29,31,33,45,52], of which two
had SLE [29]. Anemia could be microcytic hypochromic associated with iron deficiency [8,45,53] or
hemolytic with a positive Coombs test [21,29]. Thrombocytopenia was found in 56% (10/18) of patients
(Figure 1d) [18,22,29,33].

3.3.2. Immunologic Disorders

The immunological disorders included hypergammaglobulinemia with high IgE levels, SLE and
hypocomplementemia with low C3-C4 [29,32] (Figure 1d).

Hypergammaglobulinemia IgE was present in 64% (9/14) of patients (Figure 1d) [12,17,22,32,33,53].
The evolution of the IgE levels was reported in one patient. This patient had progressively increasing
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IgE levels between one and three years of age, reaching 77 600 IU/mL and a Grimbacher score of 34 [32].
Another patient had IgE levels of 1000–2000 IU/mL with a Grimbacher score of 41. A 20-year-old girl
had elevated serum immunoglobulin levels of IgE (3300 IU/mL, N = < 100 IU/mL); a comparative
expression profile of mRNA involved in the inflammatory response showed increased expressions of
IL-23 and TNF-alpha [33].

Systemic lupus erythematosus or SLE-like phenotype was reported in 29% (6/21) of patients
(Figure 1a) [16,21,26,29]. Previous studies found that about 10% of PD patients present with complete
deficiency have SLE [54]. Several patients, mainly young children, were diagnosed with PD and SLE:
a boy aged six years [16], siblings of eight and 12 years [39], and four other unrelated patients of 4, 16,
22 and 24 years [29,48]. Some prolidase-deficient individuals in previous studies only had antibodies
against the Sm antigens of the spliceosome, the 60 kD Ro antigen of the Ro-hYRNA complex, chromatin
or native DNA, whereas other prolidase-deficient individuals developed an incomplete lupus with
serological positivity or a full-blown SLE [54].

Hypocomplementemia was present in 40% (4/10) of patients (Figure 1d) [29,39], of which three
had SLE [29]. Serum levels of C1q have been normal [34,54]. CH50 were not reported in the reviewed
patients’ cohort. Besides, elevated levels of IgG [8,29,32,39] and decreased neutrophil chemotaxis [32]
were also previously described.

3.3.3. Imidopeptiduria

Analysis of urinary amino acids in all tested patients revealed a massive excretion of
imidodipeptides such as proline-glycine or proline-hydroxyproline [4,7,11]. Imidopeptiduria is
therefore an essential biochemical marker for the diagnosis, the excretion of imidodipeptides being
negligible in a healthy person (Figure 1d) [15,19]. The dipeptides also accumulate in the fibroblasts
and blood of the patients [4]. Their levels are lower in the serum than in urine [19]. In five patients,
the levels of accumulated dipeptides did not correlate with the severity of the disease [4].

Imidopeptiduria is frequently diagnosed by high-performance liquid chromatography (HPLC)
analysis by high ninhydrin-positive peaks (Figure 1d). Elevated ninhydrin-positive peaks are
secondarily identified after hydrolysis of the urine sample, followed by a second quantitative
analysis of the profiles of proline and hydroxyproline. Other diagnostic approaches to detect
the urinary imidopeptides are exchange chromatography, thin-layer chromatography, capillary
electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) [7,11]. Imidopeptiduria can be detected early during the newborn period, even in
an asymptomatic person [4,20]. Nevertheless, increased imidodipeptides excretions have also been
reported in cases of patients with increased bone turnover, multiple fractures osteomalacia and
rickets [19]. The measurement of the cellular enzymatic activity and/or genetic sequencing of PEPD
confirm the diagnosis. A study evaluating the levels of urinary proline containing dipeptides did not
show any direct levels correlation after supplementations by MnCl2, vitamin C and L-proline, although
the levels of urinary dipeptides were generally lower during the treatment period [45]. During a trial
of apheresis exchanges, repeated monthly for four months, determinations performed on the urine of
two patients showed a reduction of imidodipeptides concentrations [55].
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4. Treatments and Follow-Up

There is neither definitive cure for PD nor consensus for treatment [7,56]. As described below,
different approaches were thought to slightly improve the dermatological symptoms in PD: enhancing
collagen metabolism with oral supplementation of ascorbic acid or glycine/proline, improving prolidase
activity and stability with manganese chlorite [45] and diminishing the immunological reaction by
antihistaminic and corticosteroids [29]. Topical application of proline [32,44] or 5% proline and 5%
glycine [33] or topical proline application under occlusion were also found to be beneficial in a patient
with chronic ulcers [44]. Temporary clinical benefits in the ulcer-healing process were achieved by
skin-grafting in one patient [8]. Hyperbaric oxygen therapy, in an attempt to minimize ulcer extension
and to decrease the bacterial population, was also performed, with encouraging results [9].

Enzyme replacement therapy has been performed by blood transfusion or allogeneic hematopoietic
stem cell transplantation [7,10,53,57]. Erythrocyte transfusion showed a slight improvement in ulcer
healing [43,58], as well as apheresis exchanges (replacing prolidase-deficient red blood cells with
normal filtered cells) repeated monthly for four consecutive months in two PD patients [55]. Allogeneic
hematopoietic stem cell transplantation in one patient showed improvement in prolidase activity;
however, the patient died from a secondary infection three months after the transplantation [10]. Due to
its invasiveness, other therapeutic approaches have also has been investigated, such as transfusion
by previously Mg2+-activated erythrocytes [57], adenovirus-mediated gene transfer [59], intracellular
delivery of liposome-encapsulated prolidase [60] and pharmacological chaperones [14], which may
become future treatments of PD.

For patients with SLE and PD, there are no specific treatment recommendations to date. A girl
with SLE, Coombs-positive hemolytic anemia and resistant thrombocytopenia to steroid therapy,
cyclophosphamide or intravenous immunoglobulin therapy were reported with an improvement of the
hematological and immunological manifestations nine months after a splenectomy [18]. SLE treatment
did not show an effect on the skin lesions, as reported in a four-and-a-half-year-old patient who
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was treated with oral prednisone and hydroxychloroquine [29] and in a 16-year-old girl treated with
prednisone, azathioprine and dipyridamole [26]. Rituximab was reported as an effective treatment in
lupus nephritis and skin ulcers due to PD in two patients [61].

In the absence of formal surveillance guidelines, an annual check-up is recommended with: skin
examination for evidence of malignant transformation in patients with chronic recalcitrant skin ulcers,
complete blood count, liver function tests and an abdominal ultrasound examination to assess the
sizes of the liver and spleen, as well as a follow-up by a pulmonologist and an immunologist and
assessments of motor and cognitive developments [56].

5. Prolidase Structure Activity and Regulation

Human prolidase is a glycoprotein that belongs to the pita-bread fold enzymes [6,38,62].
Prolidase cleaves imidodipeptides coming from the intracellular degradation of collagen and
other proline-containing proteins, including dietary proteins [2,63]. Its preferential substrate is
the glycyl-proline dipeptide [63,64]. Prolidase (also called prolidase I) has an isoform; prolidase II is
less characterized but also able to hydrolyze imidodipeptides [65,66]. Contrary to prolidase I, prolidase
II shows higher activity with methionine-proline dipeptides [67].

Prolidase I is a homodimer composed by monomers of 54.3 kDa each [68,69]. A monomer is
formed by an N-terminal domain (Nt, from amino acid number 1 to 184) and a C-terminal catalytic
domain (Ct, from amino acid 185 to 493) (Figure 2) [70]. During the maturation of the polypeptide,
the Nt chain is processed by removal of the methionine residue and acetylation of the Nt alanine [2,62].
The catalytic domain is created by a “pita-bread” fold and contains a Mn2+ center surrounded by two
binding pockets. As prolidase also belongs to the family of the metalloproteases, Mn2+ is required to
stabilize the enzyme and secure the substrate in the binding pockets [1,63,71]. Its optimum catalytic
activity is at pH 7.8 and 37–50 ◦C [72]. The mechanism of the reaction was proposed by analogy with
the prolidase of Escherichia coli and Pyroccocus furiosus [63,73]. Substrate and product binding were
studied on the crystal structure of the wild-type human prolidase [70].

Prolidase activity was severely diminished in all the tested patients ranging from 1–9% of the
control, except for one patient with 36% of enzymatic activity in his red blood cells. The latter
had recurrent ulcers and intellectual deficiency and died at 11 years of age [28]. The enzymatic
activity was tested in the red blood cells, leukocytes, fibroblasts or transfected cells [4,9,10,27,28,72,74].
No correlations between enzyme activities with clinical severity were found [35]. A study of the
activity and expression of prolidase in the fibroblast for three different mutants of the PEPD gene,
p.Glu412Lys, p.Tyr231del and p.Gly448Arg, showed a reduced expression of the protein compared to
the wild-type in all the cells, with no correlation between the activity levels and expression suggestive
of a compensatory mechanism. In this study, the Vmax in all three mutants was diminished in
comparison to the wild-type, and the Km was increased for Gly-Pro and Phe-Pro dipeptides [14].

Animal studies on rats revealed that the activity of the enzyme varies with the developmental
stages and the cellular type. Indeed, in rat brains, the activity of prolidase increases three days
before birth, reaches a nadir at two days after birth and then gradually increases until day 21 [75].
In the intestinal cells, kinetic parameters (Km and Vmax) were shown to be site-dependent and, thus,
different in the duodenum, jejunum and colon. Jejunal and duodenal prolidase were sensitive to
dietary restrictions, and their pH activity profiles at 24 h postfeeding were different from that at
48 h postfeeding [76]. Then, also, posttranslational modifications play a role in the regulation of
prolidase, namely upregulation of the activity by nitric oxide via the phosphorylation of prolidase
serine/threonine residues [77], increase of the manganese concentration [14,37,78] or presence of sulfur
amino-acids [66].

6. Molecular Genetics

Prolidase is conserved between many species, including archaea and bacteria [1]. The PEPD
gene encodes prolidase, which contains 493 amino acids [79]. It maps to the chromosome 19q13.11
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(GRCh38/hg38), spans 134 kb containing 15 exons (NM_000285.4) and is transcribed into a 2.3-kb
mRNA [80].

Among the 75 PD patients, 35 variants were found, including 16 missense/nonsense variants,
9 splice variants (including the one reported in this paper in our patient), 9 insertions/deletions (indel)
and 1 large deletion (copy number variation) (Figure 3) (Tables S1 and S2). The variants are spread
along the gene, but most are present within the region encoding for the Ct catalytic domain, especially
the missense variants (Figure 3). We observed hot-spot mutations in the 8th, 12th and 14th exons
(Figure 3). Five splicing variants concern the Nt-domain, and two variants concern the last codon of
the Nt domain; the 27 other variants localized in the Ct domain, and a large deletion encompassed
the entire PEPD gene [5] (Figure 3). Nonsense variants involving the Ct domain do not predict for a
more severe form of the disease [22,28,39,81]. The variants were graded using the American College
of Medical Genetics and Genomics variant classification system (Table S2). In this work, we also
reported a new splicing pathogenic variant c.1344 + 2T > A in a four-year-old girl presenting with a
failure to thrive, hepatosplenomegaly, recurrent infections and imidopeptiduria (Tables S1 and S2).
For the pathogenicity prediction, 85 single nucleotide polymorphisms were studied in silico [82],
and additional studies of the structural effect of eight single amino acid variants on high-resolution
crystal structures of human prolidase highlighted four possible inactivation mechanisms: disruption
of the catalytic Mn2(OH−) center, introduction of chain disorder along with the displacement of
important active site residues, rigidification and flexibilization of the active site [83]. To our knowledge,
the correlation between the variants type, enzymatic deficiency and clinical signs has not yet been
studied [22].
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Figure 2. Crystal Structure of one subunit of wild-type Human prolidase dimer as a ribbon representation
with reported missense and nonsense variants in patients with PD. The N-terminal domain is colored
in green, and the catalytic C-terminal domain in orange. Mn2+ ions are represented in dotted, violet
spheres and Pro ligand with blue sticks to indicate the location of the active sites of the prolidase dimer.
Variants are represented as red spheres. The figure performed using PYMOL (the PyMOL Molecular
Graphics System, Version 1.7, Schrodinger, LLC, New York, NY, USA) and human protein database
(5M4Q) [70].
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7. Histology of Patient’s and Animal Model’s Tissues

The histological analysis mainly focused on the patient’s skin surrounding the ulcers. The reported
dermatological lesions were leukocytoclastic vasculitis [10] and nonspecific inflammatory changes [36].
Deposition of amorphous substance was also described as resembling amyloid fibrils in the vicinity
of capillaries. In this case were additionally found, within the endothelial cells of the capillaries,
round or ovoid structures (1µm in diameter) with or without membranes, with coarse granules of
protein or lipid compounds and high electron density [8]. Fragmentation, as well as irregularities
in the collagen, were described in the microscope examination but were not revealed by electronic
microscopy. Electron microscopy examination showed swelling of the endothelial cells, constriction
of the capillary lumens and thickening of the basal lamina [8]. Long-term cultured fibroblasts from
PD patients analyzed with light and electron microscopy were rounder and more branched-out than
controls with increased cytosolic vacuolization, interruption of the plasma membrane, mitochondrial
swelling and cristae modifications. Light microscopy and capillary electrophoresis analysis also
showed a significant intracellular accumulation of imidodipeptides in the cell-layer of all the studied
patients, and the study of the mitochondrial transmembrane potential performed using JC-1 showed a
decreased mitochondrial membrane potential (cellular damage), leading to the assumption that a lack
of prolidase activity in the fibroblast may trigger a necrosis-like cellular death [4].

In mice, prolidase was found to be also expressed in the CNS, namely the cerebellum, hippocampus,
caudatum, cortex, midbrain and thalamus [84]. A study on the dark-like mice, the animal model for PD
with a 4-pb deletion in exon 14, showed an irregular layering of the dendrites above the hippocampal
formation compared to the controls, with especially thinner and interrupted pial basal membrane;
abnormal cerebellar cortex lobulation and overgrown blood vessels [84]. A further study confirmed
that PD affects neuronal maturation during development of a brain cortex area [85]. Focusing on
the cerebellar cortex, thinner collagen fibers and disorganized basement membrane below the pial
meninx were described in the same animal model, as well as aberrant cortical granule cell proliferation
and migration, associated to defects in brain lamination and, in particular, in maturation of Purkinje
neurons and the formation of synaptic contacts [85].
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An additional study with the dark-like mouse showed a reduced bone growth (femur length) and
structural defects, such as bone volume and trabecular thickness, which was associated with impaired
chondrocytes proliferation and an increased apoptosis rate in the proliferative zone of the bone, causing
a delay of the formation of the second ossification [28]. The dark-like mouse also developed a congenital
heart defect that included septal defects and cardiomyocytes hypertrophy [86], but to our knowledge,
PD in humans has not yet been described to be associated with hypertrophic cardiomyopathy.

8. Pathophysiology of PD

Physiopathology of PD is not clearly understood, as there is marked phenotypic variability among
affected individuals [18,22]. The broad symptomatology of PD may be explained by a major role
of prolidase in different tissues and cellular functions. The small number of studied patients in this
work may probably under or overestimate the prevalence of the clinical and biological signs found
in patients, but it is the first performed study that tried to estimate the prevalence of the main PD
symptoms in all the reported PD patients with a genetic diagnosis. The protean association, with a
variable intrafamilial expressivity of dermatological lesions, developmental delay, splenomegaly,
repetitive infections, autoimmune manifestations (“systemic lupus erythematosus (SLE) or SLE-like
phenotype” and increased IgE) and cytopenia (anemia and thrombocytopenia) are thus suggestive of
PD (Figure 1) [5,18,26,29,56].

First, the lack of proline or increased accumulation of imidodipeptides resulting from PD may
perturb the functions of the imidodipeptides-dependent proteins. In fact, prolidase is involved
in the recycling of imidodipeptides containing proteins such as collagen [87]. Collagen is a main
structural protein of the extracellular matrix in the various connective tissues of the human body,
and its dipeptides present a large substrate for prolidase [88–91]. Studies of fibroblasts cultures from
three prolidase-deficient patients showed an increase in the rapidly degraded collagen and a decrease
in the proline pool [92]. It was thus hypothesized that a lack of proline may also have an impact on
other proline-dependent proteins, such as glutamatergic neurons [90]. In parallel to a lack of proline,
the highly increased accumulation of imidodipeptides, as observed in fibroblasts of PD patients,
may have an effect on the cellular functions [4].

Secondly, several studies showed a relation between prolidase activity and factors regulating
collagen homeostasis, regulation of cell growth, differentiation and migration. Indeed, β1 integrin is a
transmembrane-signaling protein of which the activation [2] leads to the stimulation of transcription
factors and the expression of many proteins involved in the latter cellular functions [93,94]. β1 integrin
receptor signaling was found to upregulate prolidase activity [2,95,96]. Additional studies in
human dermal fibroblasts showed that echistatin (desintegrin) downregulated prolidase activity
and expression [2,96]. On the contrary, insulin growth factor, a strong inducer of collagen biosynthesis,
upregulated prolidase activity [90,97]. In the animal model, PD affected neuronal maturation,
proliferation and migration [85], as well as bone growth and structure [28].

Then, PD symptoms reveal an involvement of prolidase regulation in the immune system.
The mechanism by which prolidase deficiency may predispose to SLE is unknown. Defects in apoptosis
are important in the pathogenesis of SLE, and a lack of free proline, resulting from PD, may impair
apoptosis mediated through the proline oxidase pathway [54]. It was suggested that an impaired
resolution of neutrophilic inflammation in PD could result in an increased exposure to autoantigenic
material in the setting of acute inflammation, where normal tolerogenic signals are absent, resulting in
autoimmunity [54]. Studies on TGFβ, a multifunctional cytokine with an active role in autoimmune
functions, cancer, fibrotic and cardiovascular diseases, [98,99] found that inhibitors of prolidase
activity induced a decreased expression of TGFβ 1 and of its receptor in cultured fibroblasts [100].
Besides, HIF-1α, a transcription factor important for collagen turnover in the process of inflammation,
angiogenic signaling, and immune functions [101–104], was found to be dependent of prolidase
expression in colorectal and breast cancer cells [2,105].
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A study also focused on the role of prolidase as a supplier for cells with limited in glucose supplies.
Proline may be metabolized into ∆1-pyrroline-5-carboxylate, glutamate and, then, α-cetoglutarate and
used for the tricarboxylic acid cycle supply [95] in cancer cells. Regarding cancer, to our knowledge,
no patients presenting cancer have been published yet, but this issue may be underestimated in relation
to the young cohort of the reported patients. Additional studies reported that the inhibition of prolidase
activity upregulated NF-κB expression, an inhibitor of type I collagen gene expression involved in the
inflammation, development and regulation of, namely, cytokine, chemokines, cell cycle regulators,
adhesion molecules and antiapoptotic factors [2,106,107] (Figure 4).
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Figure 4. Different mechanisms may be involved in the pathophysiology of PD. Imidodipeptides,
as glycylproline, are split out by prolidase. In the representation of the enzymatic reaction, glycine
is colored in blue, proline in black. Prolidase activity participates to the recycling of imidopeptide-
containing proteins. As reported by previous studies, other cellular factors and receptors are dependent
on, or are regulated by, prolidase activity or expression (IGFR, HIF-1α, TGFβ1 and NK-κB). Insulin
growth factor and β1 integrin receptor signaling upregulate prolidase activity [2,95–97]. Inhibitors
of prolidase activity induce a decrease of TGFβ 1 and its receptor [100] and upregulates NF-κB
expression [2]. HIF-1α expression was shown to be prolidase-dependent [2,105].

9. Conclusions

PD is a rare but probably underdiagnosed disorder that may escape diagnosis because of its
progressive and inconstant symptoms. Since prolidase is a key enzyme for many metabolic and
signaling cellular pathways, its deficiency contributes to the development of a large association of
dermatological lesions, developmental delay, dysmorphy, splenomegaly, repetitive infections and
autoimmune manifestations. Although marked phenotypic variability is not yet understood, this
study firstly describes the phenotypic spectrum from all patients with PD and a genetic diagnosis, then
reports the histopathological features, therapeutic options and functional studies investigated in PD.
This study highlights that a great majority of the variants reported in PD to date are localized in the
Ct domain of prolidase. Future whole-genome and multiomics studies in PD patients may help to
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understand the phenotypic variability among affected individuals, as well as phenotype-genotype
correlations, offering some clues and targets for future treatments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/9/5/108/s1,
Table S1: Clinico-biological features and genetic results in PD patients. Table S2: Mutations of PEPD in PD patients.
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