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Abstract: (1) Background: Here, we characterize COVID-19’s waves, following a study presenting
negative associations between first wave COVID-19 spread parameters and temperature. (2) Methods:
Visual examinations of daily increases in confirmed COVID-19 cases in 124 countries, determined
first and second waves in 28 countries. (3) Results: The first wave spread rate increases with country
mean elevation, median population age, time since wave onset, and decreases with temperature.
Spread rates decrease above 1000 m, indicating high ultraviolet lights (UVs) decrease the spread
rate. The second wave associations are the opposite, i.e., spread increases with temperature and
young age, and decreases with time since wave onset. The earliest second waves started 5–7 April at
mutagenic high elevations (Armenia, Algeria). The second waves also occurred at the warm-to-cold
season transition (Argentina, Chile). Second vs. first wave spread decreases in most (77%) countries.
In countries with late first wave onset, spread rates better fit second than first wave-temperature
patterns. In countries with ageing populations (for example, Japan, Sweden, and Ukraine), second
waves only adapted to spread at higher temperatures, not to infect the young. (4) Conclusions:
First wave viruses evolved towards lower spread. Second wave mutant COVID-19 strain(s) adapted
to higher temperature, infecting younger ages and replacing (also in cold conditions) first wave
COVID-19 strains. Counterintuitively, low spread strains replace high spread strains, rendering
prognostics and extrapolations uncertain.

Keywords: COVID-19; exponential slope; regression; random drift; adaptation for low pathogenicity

1. Introduction

Spread parameters of the Covid-19 pandemic decrease with temperature [1]. This could be a
direct effect of temperature causing faster aerosol evaporation, limiting travel time and distance of
airborne droplets with viral particles. Alternatively, high temperature due to insulation is a proxy
for ultra-violet light (UV) exposure. UVs are highly mutagenic and can decrease viral “viability”.
Prediction or early detection of second waves could be valuable for policy decisions [2] and seems
more accurate than usually believed [3]. The same is true for determining climatic conditions favorable
to viral spread [4,5]. Surprisingly, comparisons among Italian regions show that in May, temperature
increased viral spread, a pattern opposite to that observed in March [6]. Hence, this observation on
Italian regions predicts that when comparing different countries, second wave spread parameters
could increase with temperature.
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2. Methods

We followed the same methodology as in [1] by using coefficients (slopes) from regression analyses,
adjusting an exponential model y = a∗exp(b∗x) where y is the daily number of new confirmed COVID-19
cases, x is the number of days since wave onset, a is a constant, and b is the slope. This corresponds to
the log-transformed version ln y = ln a + b∗x. Daily numbers of new cases and total numbers of tests
per countries are from [7], data on mean elevation from [8], mean temperature from [9], and counts of
mutations from [10,11]. For each country, population density is from [12] and median population age
from [13].

Visual graph examinations, also called eyeballing, can produce spurious results because of
arbitrariness in defining the start of the new trend [14], in this case a new increase in infection cases.
Applying statistical models accounting for non-stationary patterns rather than eyeballing does not
alleviate the problem of over-detection of changepoints in trends [15]. Solving this problem requires
complex methods, mainly by applying simulations to the data [16,17].

We used a simplified statistical approach to test for visual detection of the start of the second wave.
We set a moving time window size of 20 days. We calculated, for each period of 20 days, the Pearson
correlation coefficient r between time and daily numbers of new cases and examined r as a function of
the first day included in the moving window. Typically, high r values corresponding to a fast increase
of the first wave are followed by a decrease in r. We searched for a second high (local maximum) r,
which presumably indicated the onset date of the second wave according to this statistical method.
Onset dates as determined visually and by this statistical method were compared.

Note that window size is the only arbitrary parameter of this approach. Results could vary
according to window size, and the optimal window size could vary according to different datasets.
Solving these specific problems, as well as the overall problem of breaking point detection, is beyond
our scope. This would not contribute to the issue at stake and would detract attention from the urgent
epidemiological and environmental aspects of the ongoing pandemic.

3. Results

3.1. Relationship between Covid-19 Cases and Mean Elevation

Figure 1 plots slopes of exponential regressions on time of daily new cases (calculated as a function
of days since first 100 confirmed cases) as a function of mean country elevation. Exponents (which
estimate contagion rates) increase with temperature up to 900–1000 m, then, drop above 1000 m,
especially for landlocked high elevation countries. This analysis potentially disentangles co-linearities
between temperature and UV.

The trend below 1000 m confirms previously described effects of temperature on spread parameters,
as temperature decreases with elevation. The drop in the exponents above 1000 m elevation indicates
direct UV effects, probably by increasing deleterious mutations. These observations are for exponents
estimated for the first Covid-19 wave, for each country (Table 1).

We use this pattern as preliminary evidence to justify the working hypothesis that changes in
epidemiological patterns between first and second waves could be due to mutations.
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Figure 1. Slope of daily new confirmed Covid-19 cases as a function of mean country 
elevation. (Circles) Countries contributing to the positive trend with elevation, up to 1400 
m, r = 0.468, two tailed p = 0.0018; (X) Countries contributing to the negative trend with 
elevation, down to 110 m, r = −0.375, two tailed p = 0.01. Note that for countries above 1000 
m, landlocked or isolated countries tend to fit the negative trend (for example, Bolivia, 
Ethiopia, Armenia, and Afghanistan) as opposed to countries with large coastal 
populations (for example, Chile and South Africa) and landlocked Nepal and Switzerland 
probably contaminated by tourists from low elevation countries. Peru has a low slope and 
a large coastal population. Data are from Table 1. 

3.2. Covid-19 Viruses Evolve Over Time 

The number of mutations in a country increases with time since first wave onset (r = 0.561, two-
tailed p = 0.00084, Figure 2). Time since onset is indeed proportional to replicational cycles, and viral 
population evolution. No meaningful correlation was observed between mutation numbers and 
country mean temperature or elevation. The results remain qualitatively unchanged after excluding 
from analysis extreme datapoints (Nepal, London, UK). 

Identical mutations sometimes occur in different populations of the Covid-19 virus [18], called 
parallel evolution. Close positions of African, Asian, European and South American countries with 
high elevation in Figure 1 potentially suggest parallel evolutions at high altitudes affecting spread 
parameters of these distant viral lineages. Strengthening this point, Georgia, which was not initially 
included in our sample, has a low first wave slope = 0.0346 with a mean altitude of 1432 m. 
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Figure 1. Slope of daily new confirmed Covid-19 cases as a function of mean country elevation. (Circles)
Countries contributing to the positive trend with elevation, up to 1400 m, r = 0.468, two tailed p = 0.0018;
(X) Countries contributing to the negative trend with elevation, down to 110 m, r = −0.375, two tailed
p = 0.01. Note that for countries above 1000 m, landlocked or isolated countries tend to fit the negative
trend (for example, Bolivia, Ethiopia, Armenia, and Afghanistan) as opposed to countries with large
coastal populations (for example, Chile and South Africa) and landlocked Nepal and Switzerland
probably contaminated by tourists from low elevation countries. Peru has a low slope and a large
coastal population. Data are from Table 1.

3.2. Covid-19 Viruses Evolve Over Time

The number of mutations in a country increases with time since first wave onset (r = 0.561,
two-tailed p = 0.00084, Figure 2). Time since onset is indeed proportional to replicational cycles,
and viral population evolution. No meaningful correlation was observed between mutation numbers
and country mean temperature or elevation. The results remain qualitatively unchanged after excluding
from analysis extreme datapoints (Nepal, London, UK).

Identical mutations sometimes occur in different populations of the Covid-19 virus [18],
called parallel evolution. Close positions of African, Asian, European and South American countries
with high elevation in Figure 1 potentially suggest parallel evolutions at high altitudes affecting spread
parameters of these distant viral lineages. Strengthening this point, Georgia, which was not initially
included in our sample, has a low first wave slope = 0.0346 with a mean altitude of 1432 m.



Biology 2020, 9, 226 4 of 16
Biology 2020, 9, x FOR PEER REVIEW 4 of 15 

 

 
Figure 2. Mutation numbers as a function of days since onset of first wave (determined on 31 May). 

3.3. Determination of First and Second Waves 

Here, we study exponents estimated for second Covid-19 waves, derived from visually 
examining daily new cases in 123 countries. We explored temporal-, geographic-, demographic- and 
temperature-associated patterns of second wave spread parameters. We examined graphs plotting 
daily numbers of new confirmed cases (as daily updated at https://www.worldometers.info/ 
coronavirus/ [2]) for 123 countries. Second waves were visually determined, with examples in Figure 
3 (Iran and Argentina). Second waves occurred in 26 countries, along patterns shown for Iran (broken 
first wave, second wave started from a low rate). The pattern shown for Argentina (new slope after 
inflection in first wave still in its growing phase (note the logarithmic scale of the y axis of Figure 3B)) 
occurs only in one other country, i.e., neighboring Chile. For Argentina and Chile, the new second 
wave slope occurred during the hot-to-cold season transition, in early April, corresponding to an 
early October northern hemisphere seasonal shift. 
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Figure 2. Mutation numbers as a function of days since onset of first wave (determined on 31 May).

3.3. Determination of First and Second Waves

Here, we study exponents estimated for second Covid-19 waves, derived from visually
examining daily new cases in 123 countries. We explored temporal-, geographic-, demographic-
and temperature-associated patterns of second wave spread parameters. We examined graphs
plotting daily numbers of new confirmed cases (as daily updated at https://www.worldometers.info/

coronavirus/ [2]) for 123 countries. Second waves were visually determined, with examples in Figure 3
(Iran and Argentina). Second waves occurred in 26 countries, along patterns shown for Iran (broken
first wave, second wave started from a low rate). The pattern shown for Argentina (new slope after
inflection in first wave still in its growing phase (note the logarithmic scale of the y axis of Figure 3B))
occurs only in one other country, i.e., neighboring Chile. For Argentina and Chile, the new second
wave slope occurred during the hot-to-cold season transition, in early April, corresponding to an early
October northern hemisphere seasonal shift.

https://www.worldometers.info/
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Figure 3. First and second waves of Covid-19 epidemy in Iran (A) and Argentina (B). First 
wave onsets are defined from the day the cumulative total number of confirmed cases 
passes 100 cases. Onset of second waves is determined visually. All countries, but Chile, 
follow the general pattern, as in the example for Iran, where the new wave follows a 
decrease; Chile follows the pattern of Argentina. Note the log scale for the Figure 3B y axis. 
This presentation mode was chosen in order to visually enhance slope change. Data are 
from Table 1. 

The lower second vs. first wave slopes in Figure 3 are not due to temperature increase, as could 
be expected from negative correlations between first wave slopes and temperature [1]. This is because 
for Argentina and Chile (Table 1), lower slopes correspond to hot-to-cold season transition, but not 
cold-to-hot seasons. Table 1 compares the first and second wave slopes. 

Figure 3. First and second waves of Covid-19 epidemy in Iran (A) and Argentina (B). First wave onsets
are defined from the day the cumulative total number of confirmed cases passes 100 cases. Onset of
second waves is determined visually. All countries, but Chile, follow the general pattern, as in the
example for Iran, where the new wave follows a decrease; Chile follows the pattern of Argentina.
Note the log scale for the Figure 3B y axis. This presentation mode was chosen in order to visually
enhance slope change. Data are from Table 1.

The lower second vs. first wave slopes in Figure 3 are not due to temperature increase, as could
be expected from negative correlations between first wave slopes and temperature [1]. This is because
for Argentina and Chile (Table 1), lower slopes correspond to hot-to-cold season transition, but not
cold-to-hot seasons. Table 1 compares the first and second wave slopes.
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Table 1. Exponential slopes of first and second Covid-19 waves in countries with two detected waves.
Columns 1, Country; Column 2, T, mean annual temperatures; Column 3, E, mean elevation; Column 4,
D, density; Column 5, A, median age in that country. Start S1 for first wave is the date when cumulated
total confirmed cases reached 100, start S2 for second wave is visually estimated as in Figure 3. Numbers
following second wave onset date indicate differences with onset dates determined by other methods,
see Sections 3.11 and 3.12. Slopes are the exponent b from the exponential regression y = a∗exp(b∗x),
where y is the number of new daily cases and x the number of days since 100 cumulated cases for the
first wave, or second wave start. First wave data were completed by data from [1] and countries with
mean elevation >900 m (indicated with *). In Kenya and Sri Lanka, erratic data prevent estimating first
wave slopes.

Country T E D A 1st wStart S1 2nd wStart S2

Africa
Algeria 22.5 800 18 28.1 20/3 0.1594 07/4 −4 0.0316
Kenya 24.75 752 82 19.7 12/5 1 5 0.0740

Ethiopia * 22.2 1330 101 17.9 21/4 0.1259
Morocco * 17.1 909 80 29.3 21/3 0.1161
Rwanda * 17.85 1598 470 19.0 04/4 0.0615

South Africa * 17.75 1034 48 27.1 17/3 0.257
Asia

Afghanistan * 12.6 1885 49 18.9 26/3 0.107
Bahrain [1] 27.15 1 1983 32.3 09/3 0.1884

Iran 17.25 1305 51 30.3 26/2 0.2641 01/5 −1 24 0.0438
Iraq 14.03 312 90 20.0 14/3 0.1184 15/4 1 0.041

Japan [1] 11.15 438 333 47.3 20/2 0.0872
Kazakhstan 6.4 387 7 30.6 26/3 0.0856 08/5 −4 22 0.0933
Kyrgyzstan 1.55 2988 32 26.5 30/3 0.0671 25/4 3 0.0271

Lebanon 16.4 1250 672 30.5 14/3 0.2286 19/4 −2 0.0757
Malaysia [1] 25.4 538 99 28.5 08/3 0.1042 12/5 5 0 0.0794

Nepal * 8.1 3265 201 24.1 06/5 0.207
Oman 25.6 310 15 25.6 25/3 0.0972 02/5 −3 7 0.0936

Pakistan * 20.20 900 274 23.8 15/3 0.1301
Philippines 25.85 442 362 23.5 14/3 0.1627 22/5 7 9 0.1772

Singapore [1] 26.45 15 7894 34.6 28/2 0.0551 02/5 28 3 0.0641
South Korea 11.5 282 517 41.8 20/2 0.1664 06/5 −10 6 0.0585

Sri Lanka 26.95 228 332 32.8 08/5 0 0.1347
Tajikistan * 2.00 3186 64 24.5 02/5 0.0418
Uzbekistan 12.05 353 $ 73 28.6 28/3 0.1231 26/4 1 0.0238

Australia [1] 21.65 330 3 38.7 09/3 0.1832
Europe

Armenia 7.15 1792 99 35.1 18/3 0.0809 05/4 −1 4 0.057
Austria [1] 6.35 910 106 44.0 08/3 0.2825
Azerbaijan 11.95 384 116 32.3 25/3 0.1422 25/4 0 0.0676
Belgium [1] 9.55 181 378 41.4 06/3 0.1963

Czech Rep. [1] 7.55 433 135 42.1 11/3 0.257 13/5 11 15 0.0474
Denmark 42.2
France [1] 10.7 375 123 41.4 29/2 0.2898

Germany [1] 8.5 263 233 47.1 29/2 0.2624
Italy [1] 12.45 538 200 45.5 22/2 0.2475

Lithuania 6.2 110 73 43.7 21/3 0.0394 05/5 −6 5 0.0554
Malta 19.2 1 1567 41.8 23/3 0.0712 19/4 −13 −10 0.0536

N Macedonia 9.8 741 81 37.9 21/3 0.0858 03/5 1 0.0528
Netherlands [1] 9.25 30 421 42.6 05/3 0.2485

Norway [1] 1.5 460 17 39.2 09/3 0.2716
Poland 7.85 173 123 40.7 14/3 0.1562 05/4 −21 −36 0.0094

Portugal 15.15 372 112 42.2 13/3 0.0301 09/5 −1 13 0.0431
Spain [1] 13.3 660 93 42.7 25/2 0.335

Sweden [1] 2.1 320 23 41.2 05/3 0.2572
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Table 1. Cont.

Country T E D A 1st wStart S1 2nd wStart S2

Switzerland [1] 5.5 1350 208 42.4 04/3 0.2388
UK [1] 8.45 162 280 40.5 04/3 0.2223

North America
Canada [1] −5.35 487 4 42.2 10/3 0.2432

Cuba 25.2 108 102 41.5 27/3 0.0706 17/5 −2 4 0.0517
El Salvador 24.45 442 319 27.1 10/4 0.0783 21/4 2 2 0.0535
Guatemala 23.56 759 162 22.1 09/3 0.088 01/5 −2 −1 0.1109

Panama 25.4 360 56 29.2 18/3 0.1443 19/5 5 7 0.1195
Mexico * 21.00 1111 64 28.3 18/3 0.1759
USA [1] 8.55 760 34 38.1 02/3 0.2882

South America
Argentina 14.8 595 16 31.7 18/3 0.1485 05/5 3 20 0.0427
Bolivia * 21.55 1192 10 24.3 30/3 0.0647

Brazil 32.6
Chile 8.45 1871 23 34.4 15/3 0.1906 30/4 2 10 0.0586
Peru * 19.6 1555 25 28.0 29/3 0.0915

$ from https://www.atlasbig.com/en-us/countries-average-elevation.

3.4. Geographical Second Wave Clusters

Visual data examinations such as in Figure 3 for 123 countries, on 31 May, detect second waves in
28 countries from four continents (Africa (2), Americas (North, 4 and South, 2), Asia (12) and Europe
(8)). For Kenya and Sri Lanka, first wave slopes could not be determined (Table 1). Earliest second
waves are from Armenia and Poland (5 April), and Algeria (7 April). Second waves are distributed into
the following four geographic clusters (from earliest to latest): one spreading from the high elevation
Eurasian plateau to surrounding countries (5/4 Armenia, 15/4 Iraq, 19/4 Lebanon, 25/4 Azerbaijan,
Kyrgyzstan, 26/4 Uzbekistan, 1/5 Iran, 2/5 Oman, 8/5 Kazakhstan), a Central American cluster (21/4 El
Salvador, 1/5 Guatemala, 17/5 Cuba, 19/5 Panama), a South American cluster (30/4 Chile, 5/5 Argentina),
and a South-East Asian cluster (2/5 Singapore, 8/5 Sri Lanka, 12/5 Malaysia, 22/5 Philippines). For the
three latter, geographically disconnected clusters, the earliest second waves are within a period of
11 days.

3.5. Second Wave Slopes versus First Wave Slopes

Second wave slopes are lower than first wave slopes for 20 among 26 countries (exceptions include
Guatemala, Kazakhstan, Lithuania, Philippines, Portugal, and Singapore), a statistically significant
majority (two tailed sign test, p = 0.0047). The mean second wave slope decreases by 43% as compared
with the first wave slope.

3.6. Second Wave Spread Rates and Temperature

Figure 4 plots first and second wave slopes as a function of mean annual temperature. Analyses
for the 16 countries from [1] show a negative association between first wave slope and mean annual
temperature (open circles in Figure 4), producing r = −0.606, two tailed p = 0.0128. The overall pattern
for the first wave (37 countries added, filled circles and filled triangles) remains qualitatively as in [1]
(r = −0.329, p = 0.00817, one tailed test, considering all 53 countries).

https://www.atlasbig.com/en-us/countries-average-elevation
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Figure 4. Slope of exponential regression of daily new cases vs. time, as a function of mean annual
temperature, comparing trends for first wave slopes (open circles from [1], filled circles and filled
triangles from the present study), and second wave slopes (open triangles). Data are from Table 1.

Second wave slopes (open triangles, Figure 4) increase with temperature (r = 0.537, two tailed
p = 0.00321). Unknown mechanisms enable second wave viral population spread at high
temperatures. Earliest second wave occurrences at high elevations (Armenia, Algeria) may not
be circumstantial. High UV regimes, increasing mutation rates, could occasionally favor selection of
temperature-adapted viruses.

3.7. Time Since Start of First Wave for Low Slopes

For some countries, first wave slopes are closer to the regression line defined by second wave
slopes than to the regression line defined by the first wave slopes. These countries are indicated in
Figure 4 by filled triangles (second wave onset date before country): 9/3 Guatemala, 13/3 Portugal,
18/3 Armenia, 21/3 Lithuania, North Macedonia, 23/3 Malta, 25/3 Oman, 26/3 Afghanistan, Kazakhstan,
27/3 Cuba, 29/3 Peru, 30/3 Bolivia, Kyrgyzstan, 4/4 Rwanda, 10/4 El Salvador, 2/5 Tajikistan. On 31
May, the mean time since first wave onset in these countries was 65.19 days, significantly less than
76.32 days since first wave onset in remaining countries that fit best the negative trend (two tailed
t-test, p = 0.0228). Hence, first wave viral population dynamics evolved with low spread in the latter.

3.8. Slopes and Times Since Start of First and Second Waves

Time since first wave onset increases with spread slope (r = 0.4968, p = 0.00018, two tailed test,
Figure 5A). Outliers with high slopes despite recent start associate with high elevation, outliers with
low slope despite early first wave have developed marine commerce. Time since first wave start could
be a proxy of temperature, as early first waves occurred in February vs. late ones that occurred in
April. Seasonal temperature might decrease slopes at their start for countries with a late first wave.
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However, mean annual temperature across countries does not correlate with the time since first wave
onset. Hence, the effect in Figure 5A seems independent of mean temperature.

This contrasts with patterns for the second wave, where time since second wave onset correlates
negatively with second wave slope (r = −0.5649, p = 0.0026, two tailed test, Figure 5B). Hence, second
wave viral populations could increase their spread over time, possibly implying adaptation.

3.9. Elevation and Population Density

Mean country elevation correlates negatively with time since first wave onset (r = −0.6095,
p = 0.0000016, two tailed test). This suggests that the pandemic reached more elevated and
possibly isolated countries later. Low elevation also associates with ports and probable spread
via marine commerce.

Notable is that at this point, no pandemic property (Table 1) correlates with population density.
One would have expected that slopes increase with population densities, but this is not the case (first
wave, r = −0.1779 and p = 0.2068; second wave, r = 0.0128 and p = 0.94845, two tailed tests). It seems
that most COVID-19 cases are in dense urban centers. These densities could vary among different
cities, but mean country density does not reflect this. New York city and Singapore could have similar
urban densities, but population densities for their respective countries vary due to size differences in
surrounding low population areas. Hence, no correlation could be observed using our simple method.

3.10. Median Age and Spread Rates

First wave virus strains mainly hit the elderly. Hence, the positive correlation between slope
and median population age in Figure 6A (r = 0.414, one tailed p = 0.0011) fits the expected higher
contagiousness in ageing populations. Note outliers as indicated in Figure 6A. For the second
wave, the opposite association occurs, i.e., slopes are the highest for countries with low median age
(r = −0.418, two tailed p = 0.0023, Figure 6B). This new information is crucial for future management
of the pandemic. Second wave viruses apparently adapted to infect the larger reservoir of potential
younger hosts, in addition to adapting to spread at higher temperatures.

Data gathered until mid-June find second waves in additional countries. For countries with
median ages above 36 years (Bulgaria, Japan, Moldova, Serbia, Sweden, and Ukraine), the trend for
these second wave slopes fits that observed for the first wave slopes as a function of median age
in Figure 6A. This indicates that in these countries with late second wave onset and high median
age, viruses only adapted to seasonal temperature increase, but not to the relatively few young in
these populations.

In some countries, the second wave could be an artefact due to sudden policy changes such
as increasing daily test numbers, which increase numbers of new reported cases, but do not reflect
any epidemiological change. Other second wave slopes estimated after 31 May fit the trend in
Figure 6B. This is the case for Bahrain, the Democratic Republic of Congo, Ghana, Guatemala, Iran,
Israel, and Jordan. These patterns could be explained by policy differences between countries. Our
interpretation remains biological and suggests that viruses evolve in relation to host populations and
climatic conditions because country-specific sampling artefacts are unlikely to produce overall patterns
across countries such as those in Figures 5 and 6.
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Figure 6. (A) First wave slope and (B) second wave slope, as a function of country median age.
For second wave slopes, the figure plots the residual values after adjusting second wave slopes for time
since second wave start (regression in Figure 4B), which corresponds to the main correlate of second
wave slopes. Data are from Table 1.

3.11. Eyeballing versus Statistical Evaluation of Second Wave Onset Date

Second wave detection by visual examinations (eyeballing) has an arbitrary component. However,
statistical methods mimicking the process underlying visual detections, which assume the onset of a
new wave could occur any day, are biased for false positive detections [14,15]. In addition, the size of
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the moving window used in these methods is also arbitrary, which can lead to false negatives if the
exponential increase period of the new wave is much shorter than the period of the window. Analyses
accounting for different window sizes in different countries are unrealistic and beyond the scope of
our analyses.

Figure 7 presents the visual and statistical estimation of the onset date of the second wave for
Sweden. Visual estimation considers the minimum preceding a clear increase pattern in daily new
confirmed cases, indicated by a triangle. This is the first of June (1/6), one day after we stopped our
initial sampling of second waves. Figure 7B plots the Pearson correlation coefficient r calculated
between the number of days since February 15 and the daily number of new confirmed cases for
Sweden, the very data from Figure 7A. Calculations are done for a moving window of 20 consecutive
days, and r is plotted as a function of the first day included in that moving window. Figure 7B shows
that the highest rs are for the first wave, at the beginning of the epidemy in Sweden. Then r values
decrease and increase again towards a second local maximum of r = 0.55, on 1 June.

Patterns from Figure 7A are typical and show how relatively little differences exist between visual
and statistical estimations for the onset of the second wave. The first value following second wave
onset dates in Table 1 indicate the numbers of days between the date set by eyeballing and that set by
the statistical method. A value of −1 means that eyeballing determined the onset day one day earlier
than the presumably more objective method using moving windows. Shifts between dates set by both
methods are random. In half of the cases, eyeballing detects earlier, and the other half later second
waves than the moving window method. Most shifts (77%) are small, between −5 and +5 days.

Hence, eyeballing is not biased as compared with an objective method for detecting second waves.
However, eyeballing has the advantage that it does not arbitrarily set a priori the window size for
detection of second waves, but rather adjusts its detection between two clear extreme dates during
which a more or less monotonous increase in daily new cases occurred. In addition, eyeballing is rapid
and simple. More formal statistical methods estimating P values of non-stationarity (meaning a new
phenomenon in the time series) based on Monte-Carlo approaches require heavy computational efforts,
justified in much more messy data, such as climatological data [14,15].
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Figure 7. (A) Number of daily new confirmed cases in Sweden as a function of time since February 15;
(B) Pearson correlation coefficient r for a running window of 20 consecutive days in (A), calculated for
the whole period presented in (A), as a function of the days corresponding to the first date included in
the running window. Visual examination of (A), and the local maximum of r in (B) define second wave
onset at the same date, 1 June.

3.12. Total Numbers of Tests

An important caveat to our analyses is that for each country, they assume equal sampling effort
across the whole period under study. However, numbers of tests vary across periods, hence an increase
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in the number of confirmed cases could result from an increase in tests, rather than from a second
wave. The former is a sampling artefact, whereas the second is a natural phenomenon.

For that reason, we used total daily numbers of tests done for each country for which these
data were available for the relevant period at [7] for countries for which Table 1 has second waves,
and repeated visual examinations for daily percentages of positive tests among all tests done that
day. The second value following second wave onset dates in Table 1 indicates differences in numbers
of days between onset dates determined by eyeballing percentages vs. numbers of positive cases.
Value −1 indicates that eyeballing numbers of positive cases detect an onset date that is earlier by one
day than eyeballing percentages of positive cases. A bias exists in these differences, i.e., using numbers
of positive cases detects later onsets dates in 16 among 19 countries where both approaches produced
different dates. This is a statistically significant majority of countries according to a one-tailed sign test
(p = 0.0022).

This suggests that using more information (number of positive cases and total number of
tests) enables earlier detection of the phenomenon than when using only numbers of positive cases.
In addition, because percentages detect earlier second waves, this means that increases detected
according to numbers of positive cases did not produce false positives, but rather false negatives for
the period that second waves remained undetected when using numbers rather than percentages.
This indicates that increases in testing efforts do not occur independently of onsets of second waves.
We suggest that medical experts probably sense very early on a change in the kinetics and increase
testing efforts at these periods.

4. Discussion

Analyses confirm that the spread of first wave COVID-19 decreases with temperature.
They indicate that UVs also decrease the spread of first wave COVID-19. Second wave COVID-19 is
characterized by a lower spread and by infecting younger age classes. Second wave spread increases
with temperature.

This inversion of trends between first and second waves, at one to two months interval, is highly
peculiar. The possibility that a different virus was cryptic and minor during the first wave and became
dominant as conditions changed during the second wave, cannot be excluded. However, trends
with time and mutation numbers suggest that a specific virus evolved from one state to another.
The earliest second waves, in high elevation countries, suggest UV-induced high mutation rates
hastened adaptation. Adaptations could independently arise in different virus populations [18].

Alternative explanations relate to human behaviors and policies. Negative trends of spread
with temperature in winter and positive ones in spring could reflect tendencies to stay inside in
winter, and during warmer weather. Trends with population age could also be explained by seasonal
differences in behaviors of different age groups. However, this would imply different complex
explanations for each of the three independent pattern inversions described here, with temperature,
population age, and time since wave onset. Non-random mutations could channel changes of viral
RNA between two local structural optima, as described for COVID-19 in [19], one putatively adapted
to cold and one to warm weather. This is more parsimonious than assuming different explanations for
each of the three correlations reported here. This mutation hypothesis is also in line with observations
that the earliest second waves usually occur at high altitudes where UVs could increase mutation rates.

This does not exclude the possibility of combined effects of mutations and behavioral changes in
human populations (more alerted authorities and public adapting their behaviors), as well as fewer
susceptible hosts (most infection-prone individuals are already been infected). However, the most
parsimonious explanation is also likely to be the main factor in the case of a combined factor scenario.

Note that analyses determined clear patterns in relation to various cofactors of the pandemic,
despite uncertainties in data. For example, reported over unreported cases ratio [20] apparently vary
hugely between countries depending on their mode of counting and public health policy, rendering
predictions for the future of the pandemic highly uncertain. A striking major point is unexplained
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and open for optimistic interpretations from a health-oriented point of view. Usually, strains with
high spread replace those with low spread. However, low spread second wave viruses replace fast
spread first wave viruses, in an increasing number of countries. This could suggest that third wave
spread could further decrease. Another counterintuitive point is that for the sample of examined
countries, viral spread does not increase with population density. Hence, accepted knowledge in
relation to epidemics seems inadequate regarding the current pandemic. Hence, prognostics and
interpretations of observed patterns, whether pessimistic or optimistic, cannot be trusted, as these are
based on previous knowledge contradicting the current fast-to-slow spread evolution of COVID-19.

5. Conclusions

Current analyzes suggest that a third wave will occur with a possibly lower spread than for the
first and second waves. A study is currently in progress to study its characteristics, in particular the
correlations with the geo-climatic and demographic variables highlighted in [1] and in this article.
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