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Abstract: To evaluate fuzzy information precisely, researchers and practitioners are apt to use
linguistic variables to model vague or uncertain contexts in natural language. In this paper, some
new operation laws for continuous linguistic terms using strict t-norms and t-conorms are defined.
Significantly, these operation laws have some desirable properties and are closed on the restricted
continuous linguistic term set. On the basis of these new linguistic operation laws, a series of
triangular t-(co)norm-based linguistic generalized power geometric operators are developed. In order
to consider the interactive influence and interrelationship of decision makers (DMs) and attributes, a
decision-making trial and evaluation laboratory (DEMATEL)-based method for linguistic multiple
attributes group decision making (MAGDM) is proposed. In the method, the weighting information
for DMs and attributes are dependent on the initial direct-relation matrices among DMs and attributes,
respectively. Finally, a numerical example is provided. In comparison with the existing methods, two
aspects of the DEMATEL-based method for linguistic MAGDM in the work can be highlighted: the
underlying operators for linguistic terms using strict t-norms and t-conorms that are closed on the
set of the restricted continuous linguistic term set; and the techniques in determining the weighting
information, with which the weighting information for DMs and attributes are determined by the
interactive influence and interrelationship among DMs or attributes.

Keywords: multiple attribute group decision making; t-norms; t-conorms; linguistic terms;
generalized power geometric operator; DEMATEL method

1. Introduction

Multiple attributes group decision making selects the best alternative(s) among a
family of alternatives using the available information for each attribute given by a group
of DMs. However, in the real world, there are vague or uncertain contexts that cannot be
evaluated precisely in a numerical way [1]; then, researchers and practitioner are apt to
use linguistic information to model uncertainty or evaluate fuzzy information in natural
language, i.e., linguistic variables [2–4]. In contrast to the usual fuzzy set or intuitionistic
fuzzy set in modeling quantitative aspects, linguistic variables can be reasonably used to
represent one’s evaluation preference for the alternatives [5]. Linguistic decision making
has became popular in solving complex selection problems. Until now, multiple attributes
group decision making using linguistic variables have been applied to many fields, such
as personnel evaluation, military-system performance evaluation, tenure evaluation for
university faculty [6,7], and contractor selection [5].

In the literature, there are two typical linguistic models: one is on the basis of the
extension principle [8–12], where the linguistic process is embedded to match a pre-defined
fuzzy sets of linguistic terms; the other one is based on symbols and makes computa-
tions on the indices of linguistic labels [13], such as the two-tuple linguistic representation
model [14–17], the virtual linguistic model [18], intervals of linguistic terms [19], the pro-
portional two-tuple model [20], and four-tuple linguistic representation [21]. Recently,
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in order to accommodate DMs’ preferences in a more flexible way, some innovative lin-
guistic settings have been proposed. For instance, hesitant fuzzy linguistic term sets [22]
are proposed to consider several possible linguistic values; coupled with probabilistic
information [23], the probabilistic linguistic term is innovated; linguistic Z-Numbers [24]
and two-dimensional linguistic variables [5] are linguistic information with both cognitive
information and the reliability of information.

As is known, the usual resolution scheme for linguistic MAGDM is composed of the
aggregation phase and the exploitation phase. In first phase, individual decision matrices
are aggregated to an overall one by reasonable linguistic aggregation operators, such as
those in [4,7,11,18,19,25–38]. Among these linguistic aggregation operators, the power ones,
developed by the classical power average and geometric operators [39,40] and featuring
their discounted weighting on the outer input arguments, are of great importance from the
perspective of the consensus degree in aggregation. In [25], the partitioned Bonferroni mean
in the linguistic two-tuple environment is used to capture the expressed interrelationship
among the attributes. In the exploitation phase, the alternatives must be ranked by a
structured criterion to obtain the most desirable one. Many known techniques can be
employed to formulate a reasonable criterion by aggregating the preference values of
different attributes, such as the projection method [41], the extended VIKOR method [42],
and the DEMATEL method [43].

In particular, the linguistic term set is considered in this work. The points of departure
for the work lie in two aspects: the underlying operations for the linguistic terms and
the aggregations of the linguistic terms. For the former, the underlying linguistic oper-
ations are fundamental in the methodologies for the linguistic decision making. Up to
now, there are some known operations on the linguistic term set [4,18,44]. By these opera-
tions, some unreasonable linguistic terms that are larger than the maximum linguistic term
can be obtained. In other words, the closeness of these operations cannot be guaranteed
(see Example 1). Thus, it is necessary to provide more reasonable operations for the linguis-
tic terms. Specifically, in this paper, to overcome some defects of the classical operation
laws for linguistic terms, some new operation laws for continuous linguistic terms us-
ing strict t-norm and t-conorm are defined and a series of triangular t-(co)norm-based
(T-based) linguistic generalized power geometric operators, i.e., a T-based linguistic gener-
alized power geometric (T-LGPG) operator, T-based linguistic weighted generalized power
geometric (T-LWGPG) operator, T-based linguistic ordered weighted generalized power ge-
ometric (T-LOWGPG) operator and T-based linguistic hybrid generalized power geometric
(T-LHGPG) operator, are developled. The decision-making trial and evaluation laboratory
(DEMATEL) method [45,46] is a useful tool for analyzing correlations among factors and
solutions of the correlated factor analysis problems. Thereby, the DEMATEL method is
employed in determining weighting information for DMs and attributes by initial direct-
relation matrices for DMs and attributes, respectively. By this means, the weighting vector
for DMs and attributes can be determined objectively by the interactive influence and
interrelationship among DMs and attributes.

This paper is organized as follows. In Section 2, some basic concepts on t-norms
and t-conorms, and linguistic term sets, are reviewed; then, some new operations in a
linguistic environment using strict t-norms and t-conorms are defined; based on these new
operations, the linguistic generalized power operations are developed and their properties
are investigated; in the end of this part, the linguistic approaches to MAGDM are presented.
In order to show the feasibility of the operators and the method, an illustrative example and
some discussions are given in Section 3. Finally, some concluding remarks are summarized.

2. Methods and Methodology
2.1. Preliminaries
2.1.1. Some Concepts and Results on t-Conorms

In this part, a short review on t-norms and t-conorms is presented; the details can also
be found in the monographs [47,48].
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A triangular norm (t-norm for short) is a binary function T : [0, 1]2 → [0, 1] which is
commutative, nondecreasing, and associative with neutral element 1; a triangular conorm
(t-conorm for short) is a binary function R : [0, 1]2 → [0, 1] which is commutative, non-
decreasing, and associative with neutral element 0. T-norms and t-conorms, with differ-
ent neutral elements (1 and 0, respectively), are widely used in fuzzy logical operations
and information aggregation. T-norm and t-conorm are said to be dual to each other if
it holds that T∗(x, y) = 1 − T(1 − x, 1 − y), which is a t-conorm if T is a t-norm; and
R∗(x, y) = 1− R(1− x, 1− y) is a t-norm if R is a t-conorm. The most referred to t-norms
in applications are the product t-norm TP and the Łukasiewicz t-norm TL, which are,
respectively, defined by

TP(x, y) = xy;

TL(x, y) = max(x + y− 1, 0).

Dually, the most referred t-conorms are the product t-conorm RP and the Łukasiewicz
t-conorm RL, which are, respectively, given by RP(x, y) = x + y − xy, and RL(x, y) =
min(x + y, 1).

The idempotents of a t-norm T are those x satisfying T(x, x) = x. The bounds 0
and 1 are trivial idempotents. A continuous t-norm T is called Archimedean if it has no
non-trivial idempotents. An Archimedean t-norm T is called strict if T(x, x) < 1 for all
x < 1. An Archimedean t-norm, which is not strict, is called nilpotent. The typical strict and
nilpotent t-norm and t-conorm are the product t-norm TP and the Łukasiewicz t-norm TL,
respectively. Archimedean t-conorms can be represented by one-place functions, i.e., the
so-called generators.

Theorem 1 ([48]). Let T and R be t-norm and t-conorm, respectively. Then, the following state-
ments hold.

1. T is Archimedean if and only if there is a continuous strictly decreasing unary function
t : [0, 1]→ [0, ∞] with t(1) = 0, such that

T(x, y) = t−1(min(t(x) + t(y), t(0))) (1)

for all x, y ∈ [0, 1], where t is called additive generator of T.
2. R is Archimedean if and only if there is a continuous strictly increasing unary function

r : [0, 1]→ [0, ∞] with r(0) = 0, such that

R(x, y) = r−1(min(r(x) + r(y), r(1))) (2)

for all x, y ∈ [0, 1], where s is called additive generator of R.

In fact, if r(1) < ∞(r(1) = ∞), then R is nilpotent (strict). Moreover, if T and R are
strict, then Equations (1) and (2) reduce to T(x, y) = t−1(t(x) + t(y))) and R(x, y) =
r−1(r(x) + r(y)), respectively. Note that there are families of parameterized strict t-
conorms, such as the Hamacher family, the Frank family, the Schweizer–Sklar family,
and the Aczél–Alsina family, which are widely employed in many fields of research.
Without loss of generality, the Hamacher t-norms and t-conorms shown in Table 1 will
be used.

Table 1. Hamacher t-norm TH
δ and t-conorm RH

δ .

Formulas for t-(co)norm The Additive Generators

TH
δ (x, y) =

{
0, δ = x = y = 0;

xy
δ+(1−δ)(x+y−xy) , else. t(x) =

{
1−x

x , δ = 0
ln δ+(1−δ)x

x , δ > 0;

RH
δ (x, y) =

{
1, δ = 0 and x = y = 1;
x+y+(δ−2)xy

1+(δ−1)xy , else, r(x) =

{
x

1−x , δ = 0

ln δ+(1−δ)(1−x)
1−x , δ > 0;
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In particular, TH
0 = TE (the Einstein t-norm), and TH

1 = TP; RH
0 = RE (the Einstein

t-conorm); RH
1 = RP.

2.1.2. Linguistic Term Sets and the Related Notations

In practical decision making, there exists many uncertain or vague contexts, which
can be modelled by linguistic information. Computing with words (CW) is one of the
prominent methodologies in processing linguistic information.

In this part, some linguistic notations are recalled.

Definition 1 ([4]). For an even and positive integral n, a linguistic term set (also be called the
linguistic evaluation scales) is a finite and totally ordered discrete linguistic term set S = {sαi |
i = 0, 1, · · · , n} with sα0 ≤ sα1 ≤ · · · ≤ sαn , where sαi is a possible value of linguistic terms and
n + 1 is the granularity in the linguistic term set.

Usually, n + 1 ≤ 13. In general, the following requirements on the linguistic term set
S are necessary.

• There exists the negation operator: Neg(sαi ) = sαj such that j = n− i;
• The set is ordered: sαi ≤ sαj if and only if αi ≤ αj if and only if i ≤ j;
• Max operator: max(sαi , sαj) = sαi if sαi ≥ sαj ;
• Min operator: min(sαi , sαj) = sαj if sαi ≥ sαj .

In the literature [4], there are many classical forms of linguistic term sets having some
particular characteristic of information representation. Here, the notation S = {si | i =
0, 1, · · · , n.} will be used throughout of the paper. The continuous linguistic term set is
given by Ŝ = {sα | 0 ≤ α ≤ n}, where the maximum element is consistent with sn and the
minimum element is consistent with s0. If sα ∈ S, then sα is called an original linguistic
term; otherwise, sα is called a virtual linguistic term.

2.2. New Operations in Linguistic Environment Using Strict t-Conorms

Definition 2. Let sα, sβ ∈ Ŝ and µ ≥ 0, then the operations ⊕, µ(·) on Ŝ are, respectively,
defined as:

1. sα ⊕ sβ = s
nR( α

n , β
n )

;

2. µsα = snr−1(µr( α
n ))

;
3. sα � sβ = s

nT( α
n , β

n )
;

4. (sα)µ = snt−1(µt( α
n ))

,

where R is a strict t-conorm whose generator is r(x) and T is a strict t-norm, the generator of which
is t(x).

Trivially, the above operations are closed in Ŝ. Further, the following properties of the
above operations can be easily checked.

Theorem 2. Let sα, sβ, sγ ∈ Ŝ and λ, µ ≥ 0, then

1. sα ⊕ sβ = sβ ⊕ sα;
2. sα ⊕ (sβ ⊕ sγ) = (sα ⊕ sβ)⊕ sγ;
3. sα ⊕ sβ ≥ sα ⊕ sγ if sβ ≥ sγ;
4. sα ⊕ sα0 = sα;
5. µ(sα ⊕ sβ) = µsα ⊕ µsβ;
6. (µ + λ)sα = µsα ⊕ λsα;
7. sα � sβ = sβ � sα;
8. sα � (sβ � sγ) = (sα � sβ)� sγ;
9. sα � sβ ≥ sβ � sγ if sβ ≥ sγ;
10. sα � sn = sα;
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11. (sα � sβ)
µ = sµ

α � sµ
β;

12. (sα)µ+λ = (sα)µ � (sα)λ;

Up to now, there exist some known operations on the linguistic term set [4].
Based on the continuous linguistic evaluation scale Ŝ1 = {sα | α ∈ [0, q]}, where q is
a sufficiently large positive integer, Dai et al. [44] defined ⊕ and λ(·) as, respectively,

1. sα ⊕ sβ = sα+β;
2. λsα = sλα;
3. sα � sβ = sαβ;
4. sλ

α = sαλ ;

By these operations, some unreasonable linguistic terms that exceed the maximum
linguistic term sn can be obtained. For illustration, an example is presented in the following.

Example 1. Let S = {s0 = none, s1 = very low, s2 = low, s3 = medium, s4 = high, s5 =
very high, s6 = perfect.}, thus Ŝ = {sα | 0 ≤ α ≤ 6}; then, by the operations in [4,18,44], some of
the obtained results s2⊕ s5 = s7, 3s4 = s12, s2� s5 = s10 and s2

5 = s25 are bigger than s6(perfect),
which seems to be unrealistic and meaningless. Nevertheless, by Definition 2, it can be obtained that,
if R = RP, then s2 ⊕ s5 = s5.3333, 3s4 = s5.7778, s2 � s5 = s1.6667 and s2

5 = s4.1667, all of which
are between two original linguistic terms. Therefore, the newly proposed operations in Definition 2
can fix the referred defect by their closeness in Ŝ.

Note that, here, only strict t-norms and t-conorms are employed in the operations, to
guarantee the reasonability of the obtained results. If some nilpotent t-norms and t-conorms
are employed, some obtained results may be unreasonable. For instance, put R = RL in
Example 1; then, it can be obtained that s3 ⊕ s3 = s6. In other words, two ‘medium’ results
in ‘perfect’, which are uninterpretable in practical information aggregating.

Definition 3. The relative deviation of two linguistic terms sα and sβ in S is defined by

d(sα, sβ) =
|α− β|

n
. (3)

2.3. Generalized Power Geometric of Linguistic Terms Using Strict t-Norms and t-Conorms

In this part, based on the new operators on the restricted continuous linguistic term set,
the triangular (co)norms-based (T-based) linguistic generalized power geometric (T-LGPG)
operator, the T-based linguistic weighted generalized power geometric (T-LWGPG) opera-
tor, the T-based linguistic ordered weighted generalized power geometric (T-LOWGPG)
operator and the T-based linguistic hybrid generalized power geometric (T-LHGPG) opera-
tor are defined.

2.3.1. Reviews on Generalized Power Geometric Operator

Definition 4 ([49,50]). Let {a1, a2, . . . , am} be a set of real numbers. The generalized power
geometric (GPG) operator is defined as

GPGλ(a1, a2, · · · , am) =
1
λ

 m
∏

k=1
(λak)

1+TS(ak)
m
∑

k=1
(1+TS(ak))

, (4)

where λ ∈ (−∞, 0)
⋃
(0,+∞) and TS(ak) =

m
∑

j=1,j 6=k
Supp(ak, aj) with Supp(ak, aj) being the

support for ak from aj satisfying the following properties.

1. Supp(a, b) ∈ [0, 1];
2. Supp(a, b) = Supp(b, a);
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3. If d(a, b) < d(x, y), then Supp(a, b) > Supp(x, y), where d(a, b) is the distance between a
and b. In other words, the closer two numbers, the more they support each other.

If λ = 1 is chosen suitably, the GPG operator reduces to power geometric (PG)
operator [39], i.e.,

PG(a1, a2, ..., am) =
m

∏
k=1

a

1+TS(ak)
m
∑

k=1
(1+TS(ak))

k

In what follows, the T-LGPG operator, T-LWGPG operator, T-LOWGPG operator and
the T-LHGPG operator, are, respectively, defined.

2.3.2. T-LGPG Operator

Definition 5. Assume {sα1 , sα2 , · · · , sαm} ⊂ Ŝ, let R be a strict t-conorm whose additive generator
is r(x) and T be a strict t-norm, the additive generator of which is t(x). Then, T-LGPG operator is
defined as

T-LGPG(sα1 , sα2 , · · · , sαm) =
1
λ

m
�

i=1

(
λsαi

) 1+TS(sαi )
m
∑

i=1
(1+TS(sαi )) , (5)

where λ ∈ (0,+∞) and TS(sαk ) =
m
∑

j=1,j 6=k
Supp(sαk , sαj) with Supp(sαk , sαj) being the support

for sαk from sαj satisfying the following properties.

1. Supp(sα, sβ) ∈ [0, 1];
2. Supp(sα, sβ) = Supp(sβ, sα);
3. If d(sα, sβ) < d(sα′ , sβ′), then Supp(sα, sβ) > Supp(sα′ , sβ′), where d(sα, sβ) is the relative

deviation of sα and sβ. In other words, the closer two linguistic terms, the more they support
each other.

Theorem 3. Assume {sα1 , sα2 , · · · , sαm} ⊂ Ŝ; let R be a strict t-conorm whose additive generator
is r(x) and T be a strict t-norm, the additive generator of which is t(x). Then

T-LGPG(sα1 , sα2 , · · · , sαm) =
1
λ

m
�

i=1

(
λsαi

)vi = s
nr−1( 1

λ r(t−1(
m
∑

i=1
vit(r−1(λr( αi

n ))))))
, (6)

where vi =
1+TS(sαi )

m
∑

i=1
(1+TS(sαi ))

.

Proof. It can be obtained by direct calculation in virtue of Definitions 2 and 5.

In particular, if λ = 1, then

T-LGPG1(sα1 , sα2 , · · · , sαm) =
m
�

i=1
svi

αi = s
nt−1(

m
∑

i=1
vit(

αi
n ))

, (7)

which can be seen as the T-based linguistic power geometric (T-LPG) operator.

Corollary 1. If Supp(sαi , sαj) = c ∈ [0, 1] for all i 6= j, then

T-LGPG(sα1 , sα2 , · · · , sαm) = s
nr−1( 1

λ r(t−1(
m
∑

i=1

1
m t(r−1(λr( αi

n ))))))
.

Proof. In this case, it can be obtained that vi =
1
m .

Trivially, the following properties of T-LGPG operator hold:
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1. Commutativity: T-LGPG(s′α1
, s′α2

, · · · , s′αm) = T-LGPG(sα1 , sα2 , · · · , sαm) for any per-
mutation (sα′1

, sα′2
, · · · , sα′m) of (sα1 , sα2 , · · · , sαm);

2. Idempotency: T-LGPG(sα, sα, · · · , sα) = sα;
3. Boundedness: smin

α ≤ T-LGPG(sα1 , sα2 , · · · , sαm) ≤ smax
α , where smax

α = max(sα1 , sα2 ,
· · · , sαm) and smin

α = min(sα1 , sα2 , · · · , sαm).

Nevertheless, the T-LGPG operator is not monotonic, which can be shown by a
counterexample.

Example 2. Let Ŝ = {sα | 0 ≤ α ≤ 8}, R = RH
2 , T = TH

2 and λ = 3; assume the sup-
port TS(sαk ) is determined by Equations (12)–(14). Then, T-LGPG(s7.5, s7, s1.2, s1.1) = s2.1174,
T-LGPG(s7, s7, s1.2, s1.1) = s2.1224, and T-LGPG(s6, s7, s1.2, s1.1) = s2.1062, where T-LGPG(s7, s7,
s1.2, s1.1) > T-LGPG(s7.5, s7, s1.2, s1.1) and T-LGPG(s7, s7, s1.2, s1.1) > T-LGPG(s6, s7, s1.2, s1.1).
Thus, generally, T-LGPG operator is not monotonic. Similar to the classical power average [40],
if some input argument becomes too far away, it will be discounted by its diminished weighting factor.

2.3.3. T-LWGPG Operator

In fact, in the T-LGPG operator, all the input arguments in consideration are of equal
importance. Sometimes, different weightings of the input arguments are necessary in prac-
tice. Hereby, the T-LWGPG operator is presented in the following, where different weights
can be assigned to each input argument according to the differences in their importance.

Definition 6. Let {sα1 , sα2 , · · · , sαm} ⊂ Ŝ, then T-LWGPG operator is defined as

T-LWGPGλ,w(sα1 , sα2 , · · · , sαm) =
1
λ

m
�

i=1

(
λsαi

) wi(1+TS′(sαi ))
m
∑

i=1
wi(1+TS′(sαi )) , (8)

where w = (w1, w2, · · · , wm)T is the associated weighting vector such that wi ∈ [0, 1] and
m
∑

i=1
wi = 1, TS′(sαk ) =

m
∑

i=1,i 6=k
wiSupp(sαk , sαi ).

By direct calculation, the following result can be derived.

Theorem 4. Assume {sα1 , sα2 , · · · , sαm} ⊂ Ŝ, let R be a strict t-conorm whose additive generator
is r(x) and T be a strict t-norm, the additive generator of which is t(x), then

T-LWGPGλ,w(sα1 , sα2 , · · · , sαm) = s
nr−1( 1

λ r(t−1(
m
∑

i=1
v′i t(r

−1(λr( αi
n ))))))

, (9)

where v′i =
wi(1+TS′(sαi ))

m
∑

i=1
wi(1+TS′(sαi ))

.

In particular, if there is no support between the input arguments, i.e.,

Supp(sαi , sαj) = 0 for i 6= j, then T-LWGPGλ,w(sα1 , sα2 , · · · , sαm) = 1
λ

m
�

i=1
(λsαi )

wi , which

can be seen as the T-based linguistic generalized weighted geometric (T-LGWG) operation
of (sα1 , sα2 , · · · , sαm). Note that the properties of idempotency and boundedness of the
T-LWGPG operator can be easily checked. However, commutativity of the T-LWGPG oper-
ator does not hold. Actually, in Example 2, if we further assume w = (0.1, 0.2, 0.3, 0.4)T,
then T-LWGPGw(s2, s3, s4, s5) = s3.5609, and T-LWGPGw(s5, s4, s3, s2) = s2.7580.

2.3.4. T-LOWGPG Operator

The ordered weighted average operator by Yager [51] is featured by its reordering steps.
Furthur, Yager provided a generalization of the OWA operator, i.e., GOWA operator [52].
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By incorporating these elements into the linguistic operator, the T-LOWGPG operator can
be defined.

Definition 7. Let {sα1 , sα2 , · · · , sαm} ⊂ Ŝ, then T-LOWGPG operator is defined as

T-LOWGPGλ(sα1 , sα2 , · · · , sαm) =
1
λ

m
�

i=1
(λsβi )

ωi , (10)

where ωi = ϕ( Ri
TV ) − ϕ(

Ri−1
TV ), Ri =

i
∑

j=1
Vβ j , R0 = 0, TV =

m
∑

i=1
Vβi , Vβi = 1 + TS(sβi ),

TS(sαk ) =
m
∑

j=1,j 6=k
Supp(sαk , sαj), ϕ : [0, 1] → [0, 1] is a basic unit-interval monotonic(BUIM)

function satisfying ϕ(0) = 0, ϕ(1) = 1 and ϕ(x) ≥ ϕ(y) if x ≥ y, and sβi is the i-th largest
argument of sαj , j = 1, 2, · · · , m.

Theorem 5. If ϕ(x) = x, then T-LOWGPGλ(sα1 , sα2 , · · · , sαm) = T-LGPGλ(sα1 , sα2 , · · · , sαm).

Proof. Since ϕ(x) = x, then ωi = ϕ( Ri
TV )− ϕ(

Ri−1
TV ) =

1+TS(sβi
)

m
∑

i=1
(1+TS(sβi

))
; thus,

T-LOWGPGλ(sα1 , sα2 , · · · , sαm) = T-LGPGλ(sβ1 , sβ2 , · · · , sβm).

By commutativity of the T-LGPG operator, it follows that T-LOWGPGλ(sα1 , sα2 , · · · ,
sαm) = T-LGPGλ(sα1 , sα2 , · · · , sαm).

Combining the above theorem and Corollary 1, the following result can be derived.

Corollary 2. If ϕ(x) = x and Supp(sαi , sαj) = c ∈ [0, 1] for all i 6= j, then

T-LOWGPGλ(sα1 , sα2 , · · · , sαm) = s
nr−1( 1

λ r(t−1(
m
∑

i=1

1
m t(r−1(λr( αi

n ))))))
.

Corollary 3. If ϕ(x) =
{

1, x > 0;
0, x = 0;

then T-LOWGPGλ(sα1 , sα2 , · · · , sαm) = smax
α ; If ϕ(x) ={

0, x < 1;
1, x = 1;

then T-LOWGPGλ(sα1 , sα2 , · · · , sαm) = smin
α ;

Proof. For the former case, (ω1, ω2, · · · , ωm)T = (1, 0, · · · , 0)T; then,

T-LOWGPGλ(sα1 , sα2 , · · · , sαm) = 1
λ

m
�

i=1
(λsβi )

ωi = s
nr−1( 1

λ r(t−1(
m
∑

i=1
ωit(r−1(λr( βi

n ))))))
=

sβ1 = smax
α ;

For the latter case, the result can be checked similarly.

2.3.5. T-LHGPG Operator

In order to systhesize the charcteristics of the ordered weighted averaging operators
and the weighted arithmetic averaging operators, Xu and Da [53] defined the hybrid
weighted averaging (HWA) operator. Recently, Liao and Xu [54] established a family of
intuitionistic fuzzy hybrid weighted aggregation operators. In line with the two operators,
the T-LHGPG operator for linguistic terms is defined.

Definition 8. Let {sα1 , sα2 , · · · , sαm} ⊂ Ŝ, then T-LHGPG operator is defined as

T-LHGPGλ(sα1 , sα2 , · · · , sαm) =
1
λ

m
⊕

i=1
(λs′βi

)ωi , (11)
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where ω = (ω1, ω2, · · · , ωm)T is an associated vector with 0 ≤ ωi ≤ 1 and
m
∑

i=1
ωi = 1; s′βi

is the i-th largest argument of the weighted linguistic terms S′αi
= mwisαi , (i = 1, 2, · · · , m),

w = (w1, w2, · · · , wm)T is the weighting vector satisfying that 0 ≤ wi ≤ 1 and
m
∑

i=1
wi = 1, m is

the balancing coefficient.

Remark 1. The associated vector ω = (ω1, ω2, · · · , ωm)T can be determined as that in
Definition 7. Particularly, if the weighting vector w = ( 1

m , 1
m , · · · , 1

m )T, then

T-LHGPGλ(sα1 , sα2 , · · · , sαm) = T-LOWGPGλ,ω(sα1 , sα2 , · · · , sαm);

if ω = ( 1
m , 1

m , · · · , 1
m )T, then T-LHGPGλ(sα1 , sα2 , · · · , sαm) =

1
λ

m
⊕

i=1
(λs′βi

)
1
m , i.e., the T-based

arithmetic generalized geometric operator of the weighted linguistic terms s′βi
.

The four generalized power operations of linguistic terms in the above consider both
the underlying linguistic terms and the interactions among them. The importance of all
the underlying inputs is emphasized in the T-LWGPG operator, and the T-LOWGPG
operator highlights the importance of each argument in their ordering, and, further, the
T-LHGPG operator underlines both the underlying linguistic terms and their ordering

position. Moreover, the weight vi =
1+TS(sαi )

m
∑

i=1
(1+TS(sαi ))

for the linguistic term sαi , presented in

aforementioned definitions, relies on all the underlying inputs sαi (i = 1, 2, · · · , m) and
considers the mutual supportive information of the inputs in the aggregating process,
which can relieve the effect of outliers among the inputs on the aggregated results by
setting fewer weights for them. In practical MAGDM, it is unavoidable that some DMs may
present unexpectedly lower (or higher) uncertain preference values to the dissatisfying
(or preferred) alternatives. The dramatic emphasis of these linguistic operators lies in
that the underlying weights are settled by the measurement for the mutual supportive
information among all the inputs. If the evaluation by a DM is more similar (or closer) to
those by the other DMs, then more weight would be assigned to the corresponding input
in these operators. Therefore, using these operators in the settlement of linguistic MAGDM
problems can result in more reasonable and significantly balanced conclusions.

2.3.6. Determination of TS(sαi ) for the Operators

In order to quantify TS(sαi ), the following steps are recommended.

1. For a set of linguistic terms {sα1 , sα2 , · · · , sαm}, a consensus degree matrix can be
constructed in virtue of the relative deviation of linguistic terms. That is,

S = (skj)m×m (12)

where skj = s(sαk , sαj) =
2
π arccos(d(sαk , sαj)) and d(sαk , sαj) is the relative deviation

of sαk and sαj given in Definition 3.
2. Compute the average support of sαk from all the other linguistic terms by

AS(sαk ) =
1

m− 1

m

∑
j=1,j 6=k

skj (13)
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3. Normalize the average support to obtain the relative support of sαk from all the other
linguistic terms, which is viewed as TS(sαk ). Namely,

TS(sαk ) =
AS(sαk )

m
∑

j=1
AS(sαj)

(14)

2.4. Framework of the Linguistic MAGDM Using T-Based Linguistic Generalized Power
Geometric Operators

As is illustrated in the above-mentioned section, T-based linguistic generalized power
average operators take account of the interactive supports of the input arguments in the
aggregation process, which can lessen the influence of outer data on the aggregated results
by discounting the weights to those unfair ones. Therefore, power operators show their
superiority in aggregating information by different DMs from the angle of consensus.
Following that, the T-based linguistic generalized power average operators will be used in
the method for linguistic MAGDM. Furthermore, in existing literature, MAGDM research
mainly focuses on the decision matrices by DMs to obtain the desirable alternative and
ignore the correlations among the related attributes. In what follows, the linguistic MAGDM
considering both the decision matrices and correlation information among the attributes
are investigated.

2.4.1. Presentation of Linguistic MAGDM

Linguistic MAGDM is to select the best alternatives from a set of alternatives on
the basis of linguistic preference values on different attributes by a group of decision
makers (DMs). The related symbols and notations in the linguistic MAGDM are stipulated
as follows.

1. {A1, A2, · · · , Am} is a set of m attributes and Ai is the ith attribute;
2. {X1, X2, · · · , Xn} is a set of n alternatives and Xj is the jth alternative;
3. {D1, D2, · · · , Dl} is a set of l decision makers(DMs) or experts and Dk is the kth DM;

4. The individual linguistic decision matrix given by Dk is R(k) =
(

r(k)ij

)
m×n

, where

r(k)ij ∈ S is a linguistic individual preference value for alternative Xj on the attribute
Ai. In detail,

R(k) =

X1 X2 · · · Xn

A1
A2
...

Am


r(k)11

r(k)21
...

r(k)m1

r(k)12

r(k)22
...

r(k)m2

· · ·
· · ·

· · ·

r(k)1n
r(k)1n

...
r(k)1n


5. The overall linguistic decision matrix is R =

(
rij
)

m×n, where rij ∈ Ŝ is a compre-
hensive preference value for alternative Xj on the attribute Ai, by a synthesized

consideration of the individual preference values r(k)ij (k = 1, 2, · · · , l). In detail,

R =

X1 X2 · · · Xn
A1
A2
...

Am


r11
r21
...

rm1

r12
r22
...

rm2

· · ·
· · ·

· · ·

r1n
r1n

...
r1n


6. The overall rating value of the j-th alternative Xj(j = 1, 2, · · · , n) is rj, which is a full

and complete evaluation from each attribute Ai(i = 1, 2, · · · , m) and on the basis of
which the alternatives can be ranked.
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2.4.2. DEMATEL-Based Method for Determining the Individual Attribute Weights and
DMs’ Weights

In this part, the principal procedure of the DEMATEL-based method for determining
weights for attributes and DMs is presented.

Suppose that the set of attributes is {A1, A2, · · · , Am} and the correlations among
attributes can be depicted as in Figure 1. In detail, the arrowed line linking two attributes
means that there exists a correlation between them. The value of the line represents the
intensity degree of the correlation. The larger the value, the higher the intensity degree.
Further, the direction of the arrowed line shows the influence relationship.

Figure 1. The correlations among attributes.

In virtue of the DEMATEL method [45,46], the procedure of the DEMATEL-based
method for determining the individual attribute weight by each DM is summarized as
follows:

(i) Construct the initial direct relation matrix Z(k) =
(

zij
(k)
)

m×m
by DM Dk, where zij

represents the existence and intensity of the correlation between attributes Ai and
Aj. Usually, z(k)ij ∈ {0, 1, 2, 3, 4}. For DM Dk, z(k)ij = 4, there is the most intensity of

correlation between attributes Ai and Aj, while z(k)ij = 0 means there is no correlation
between attributes Ai and Aj. In particular, there is no correlation between Ai and

itself, i.e., z(k)ii = 0.

(ii) Obtain the normalized the direct-relation matrix X(k) =
(

x(k)ij

)
m×m

, where x(k)ij =

z(k)ij

max
1≤i≤n

n
∑

j=1
z(k)ij

. Generally, the normalized matrix X(k) is characterized as a sub-stochastic

matrix obtained from an absorbing Markov chain matrix by deleting all rows and
columns associated with the absorbing states. For each normalized matrix X(k),
the following properties hold.

(1) lim
t→∞

X(k)t
= O (the null matrix).

(2) lim
t→∞

(E+X(k)1
+X(k)2

+ · · ·+X(k)t
) = (E−X(k))−1, where E is the identity matrix.

(iii) Obtain the individual overall relation matrix T(k) =
(

t(k)ij

)
m×m

for DM Dk, where

t(k)ij represents the overall intensity of correlation between attributes Ai and Aj.

Specifically, T(k) = lim
t→∞

(X(k)1
+ X(k)2

+ · · ·+ X(k)t
) = X(k)(E− X(k))−1.
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(iv) Calculate the individual overall intensity c(k)i that attribute Ai influences others by

c(k)i =
m
∑

j=1
t(k)ij ; calculate the individual overall intensity h(k)i that attribute Ai is influ-

enced by others by hi =
m
∑

i=1
t(k)ij .

(v) Calculate the individual prominence of each attribute. The individual prominence

p(k)i of the attribute Ai is calculated by p(k)i = c(k)i + h(k)i , which characterizes the

importance of the attribute Ai by DM Dk. The larger the individual prominence p(k)i ,
the more important the attribute Ai is by DM Dk.

(vi) Obtain the individual attribute weighting vector w(k) = (w(k)
1 , w(k)

2 , · · · , w(k)
m )T, where

w(k)
i =

p(k)i
m
∑

i=1
p(k)i

.

Similarly, an initial direct relation matrix for DMs can be used to illustrate the cor-
relations and interactive influences among DMs. Therefore, by similar steps as above,
a weighting vector u = (u1, u2, · · · , ul)

T for DMs can also be obtained.

2.4.3. Individual Attribute Weight and Overall Attribute Weight

According to the DEMATEL-based method in the above, different initial direct relation
matrices by different DMs may result in different attribute weights, which are called individual
attribute weights by DMs. Following that, to obtain an overall attribute weight, a method to
aggregate individual attribute weights by minimizing relative entropy is presented.

Definition 9 ([55]). Let v(1) = (v(1)1 , v(1)2 , · · · , v(1)m )T and v(2) = (v(2)1 , v(2)2 , · · · , v(2)m )T be two

weighting vectors such that v(1)i ≥ 0, v(2)i ≥ 0(i = 1, 2, · · · , m), and
m
∑

i=1
v(1)i =

m
∑

i=1
v(2)i = 1.

Then RE(v(1), v(2)) =
m
∑

i=1
v(1)i ln v(1)i

v(2)i

is called the relative entropy of v(1) to v(2).

The relative entropy RE(v(1), v(2)) is used to model the dissimilarity of v(1) and
v(2). The relative entropy RE(v(1), v(2)) reaches its minimum, i.e., RE(v(1), v(2)) = 0,
if v(1) = v(2).

Assume the initial direct relation matrix by DM Dk is Z(k) =
(

z(k)ij

)
m×m

(k = 1, 2, · · · , l)

and the individual attribute weighting vector w(k) = (w(k)
1 , w(k)

2 , · · · , w(k)
m )T can be obtained

by the DEMATEL-based method. In order to obtain the overall attribute weighting vector
w = (w1, w2, · · · , wm)T, the following mathematical programming model can be structured.

min
l

∑
k=1

ukRE(w, w(k)) (15)

s.t.


m
∑

j=1
wj = 1

wk ≥ 0.
(16)

where u = (u1, u2, · · · , ul)
T is the weighting vector for DMs and it can be assigned before-

hand or objectively determined by some known methods. Here, the weighting vector for
DMs is determined by the DEMATEL-based method in the above subsection. To obtain the
solution of the programming problem, a Lagrange function is defined as

L(vS, λ) =
l

∑
k=1

ukRE(w, w(k)) + (λ− 1)(
m

∑
j=1

wj − 1) =
l

∑
k=1

uk

m

∑
j=1

wj ln
wj

w(k)
j

+ (λ− 1)(
m

∑
j=1

wj − 1), (17)
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where (λ− 1) is the Lagrange multiplier. Thus, the following equations can be obtained:
∂L
∂wj

=
l

∑
k=1

uk(1 + ln
wj

w(k)
j

) + (λ− 1) =
l

∑
k=1

uk ln
wj

w(k)
j

+ λ = 0, (j = 1, 2, · · · , l)

∂L
∂λ =

m
∑

j=1
wj − 1 = 0,

By calculation with the above series of equations, it follows that

wj =

l
∏

k=1

(
w(k)

j

)uk

m
∑

j=1

l
∏

k=1

(
w(k)

j

)uk
(j = 1, 2, · · · , m) (18)

Thus, the overall attribute weighting vector w = (w1, w2, · · · , wm)T can be obtained.

2.4.4. Algorithm for the Approach to Linguistic MAGDM

The linguistic approach to decision making, based on T-based generalized power
geometric operators, can be summarized as follows:

1. Through full negotiation and investigation, a group of DMs {D1, D2, · · · , Dl} and the
initial direct relation matrix ZD =

(
zij
)

l×l for DMs are determined by the advisory
committee for decision making. By the initial direct relation matrix ZD for DMs and
the similar steps in Section 2.4.2, the weighting vector u = (u1, u2, · · · , ul)

T for DMs
can be determined.

2. On the basis of their experience and knowledge about referred alternatives, each
DM Dk(k = 1, 2, · · · , l) provides his/her individual linguistic decision matrix R(k) =(

r(k)ij

)
m×n

and initial direct relation matrices Z(k) =
(

z(k)ij

)
m×m

(k = 1, 2, · · · , l).

3. Obtain the overall decision matrix R =
(
rij
)

m×n by T-LWGPG operator. In detail, rij
is calculated by

rij = T-LWGPGλ,u(r
(1)
ij , r(2)ij , · · · , r(l)ij ), (19)

where u is the weighting vector for DMs obtained in the first step.
4. By the initial direct relation matrices Z(k) for attributes, the individual attribute

weighting vectors w(k) = (w(k)
1 , w(k)

2 , · · · , w(k)
m )T can be obtained. Obtain the attribute

weighting vector w = (w1, w2, · · · , wm)T by Equation (18).
5. Obtain the overall rating values rj (j = 1, 2, · · · , n) for each alternative Xj by T-LHGPG

operator, i.e.,
rj = T-LHGPGλ(r1j, r2j, · · · , rmj), (20)

where the associated weighting vector is the attribute weighting vector w.
6. Rank all the alternatives Xj (j = 1, 2, · · · , n) by overall rating values rj.

3. Illustrative Example and Discussion

In this section, the aforementioned approach is employed in evaluating university
faculty for tenure and promotion, which is adapted from [6,7]. Then, some remarks on the
selection of the parameters are provided. Finally, some comparison analysis with existing
methods are performed.

3.1. On the Evaluation for Tenure and Promotion

Academic tenure was introduced to guarantee the right of the teachers and researchers
to academic freedom. However, since the 1970s, colleges and universities in the US have
seen a steady decline in the percentage of tenured or tenure-track teaching positions.
For those that are tenure track, in general, it takes years to earn tenure while working
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as an assistant professor. However, the statistics from the United States Department of
Education shows that the combined tenured/tenure-track rate was 56% for 1975, 46.8% for
1989, and 31.9% for 2005. In other words, 68.1% of US college scholars were neither tenured
nor eligible for tenure in 2005. In Columbia University, only 10–20% of assistant professors
can ultimately obtain tenure. Therefore, tenure has gradually become a type of job security
for scholars. The scholars in universities are apt to fiercely pursue and compete for limited
resources. In order to consider all the necessary elements fully and comprehensively, tenure
is usually determined by a combinational consideration of research, teaching, and service,
with each factor weighted according to the principles of a particular university.

In the following, let {X1, X2, X3, X4, X5} be the set of five faculty candidates (alternatives)
to be evaluated using linguistic terms. Assume that three attributes, including c1: teaching,
c2: research, and c3: service, are taken into account for evaluating the university faculty for
tenure and promotion. Four DMs Dk (k = 1, 2, 3, 4) are requested by the advisory commit-
tee for evaluation to assess the five faculty candidates in linguistic terms, where the set of
linguistic terms S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor,
s4 = fair, s5 = slightly good, s6 = good, s7 = very good, s8 = extremely good}. The
decision matrices R(k) =

(
r(k)ij

)
3×5

are listed in Tables 2–5, respectively.

Table 2. Decision matrix given by DM D1.

X1 X2 X3 X4 X5

c1 s7 s5 s4 s6 s7
c2 s5 s6 s7 s3 s5
c3 s5 s6 s6 s5 s6

Table 3. Decision matrix given by DM D2.

X1 X2 X3 X4 X5

c1 s5 s4 s6 s7 s7
c2 s7 s5 s5 s5 s6
c3 s4 s6 s6 s6 s5

Table 4. Decision matrix given by DM D3.

X1 X2 X3 X4 X5

c1 s6 s3 s7 s6 s5
c2 s7 s4 s6 s4 s6
c3 s5 s5 s5 s7 s5

Table 5. Decision matrix given by DM D4.

X1 X2 X3 X4 X5

c1 s5 s7 s6 s4 s4
c2 s6 s6 s5 s6 s5
c3 s5 s6 s7 s5 s4

In addition, the DMs should provide their initial direct-relation matrices
Z(k) =

(
z(k)ij

)
3×3

(k = 1, 2, 3, 4) for attributes based on their knowledge background (see

Tables 6–9).
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Table 6. Initial direct-relation matrix for attributes by DM D1.

A1 A2 A3

A1 0 1 0
A2 2 0 3
A3 2 2 0

Table 7. Initial direct-relation matrix for attributes by DM D2.

A1 A2 A3

A1 0 3 1
A2 2 0 4
A3 2 3 0

Table 8. Initial direct-relation matrix for attributes by DM D3.

A1 A2 A3

A1 0 3 2
A2 4 0 4
A3 3 3 0

Table 9. Initial direct-relation matrix for attributes by DM D4.

A1 A2 A3

A1 0 2 2
A2 3 0 3
A3 4 2 0

The advisory committee for evaluation should give the initial direct-relation matrix
for DMs ZD =

(
zij
)

4×4 (See Table 10). In what follows, it is assumed that δ = 1 for both the
Hamacher t-norm and t-conorm and λ = 2.

Table 10. Initial direct-relation matrix for DMs given by the advisory committee.

D1 D2 D3 D4

D1 0 1 3 2
D2 1 0 1 0
D3 4 2 0 2
D4 1 4 3 0

Firstly, by the initial direct relation matrix ZD for DMs given by the advisory committee
for evaluation, with the similar steps as those in Section 2.4.2, the weighting vector for
DMs can be obtained. Namely, u = (u1, u2, u3, u4)

T = (0.2710, 0.1856, 0.3041, 0.2392)T.
Consequently, by Equation (19), the overall decision matrix can be obtained

R =

 s5.6586 s4.2508 s5.4350 s5.4469 s5.2988
s6.0147 s5.0466 s5.6586 s4.1498 s5.4292
s4.7756 s5.6537 s5.8027 s5.5913 s4.9160

.

Secondly, by the initial direct-relation matrices Z(k) =
(

z(k)ij

)
3×3

(k = 1, 2, 3, 4) for

attributes and the steps in Section 2.4.2, the individual attribute weighting vectors can
be obtained, respectively, and listed as follows: w(1) = (0.2624, 0.3924, 0.3452)T; w(2) =
0.2830, 0.3764, 0.3407)T; w(3) = 0.3220, 0.3578, 0.3203)T; w(4) = 0.3418, 0.3214, 0.3367)T.
By Equation (18) and the weighting vector u for DMs, the overall attribute weighting vector
w = (0.2160, 0.4488, 0.3352)T can be obtained. By Equation (20), the overall rating values
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for each candidate can be obtained. Namely, r1 = s5.1108, r2 = s4.7263, r3 = s5.3641, r4 =
s4.1106, r5 = s4.9146. Here, the BUIM function φ(x) = x2 is used.

Finally, the five faculty candidates can ranked as X3 � X1 � X5 � X2 � X4.

3.2. Notes for the Parameters

Practically, too many parameters may lead to some confusions in applications and
distortions in the results in some sense. However, the following facts must be highlighted.
Using 900 different combinations of the parameters δ (from 1 to 30) of Hamacher t-norms
and t-conorms and assuming λ = 2, it can be found that the ranking orders are sensitive
to the different combinations of the parameters of Hamacher t-norms and t-conorms.
Therefore, in order to guarantee the stability of the ranking results, the parameters for the
related Hamacher t-norm and t-conorm should be consisitent. In other words, the duality
of the Hamacher t-norm and t-conorm should be maintained in the approach. From the
aspect of simplicity of calculation, TP and RP are recommended in the approach.

For illustration, the interactions of the overall rating values to the parameter λ are
shown in Figure 2, where TP and RP are used and the parameter λ ranges from 0.01 to
5. Clearly, the ranking results are stable with respect to the parameters λ in the range.
However, from the angle of the simplicity of calculation, the parameter λ should not be
too large.

Figure 2. The interactions of the overall rating values to the parameter λ.

3.3. Comparison Analysis with Existing Works

For convenience, some results of the tenure evaluation in the literature are listed in
Table 11. It is demonstrated that the best candidate by the method in the paper is X3, which
is consistent with those by the existing methods.

Table 11. Ranking results of the related works.

Approaches Underlying Operators Weighting Vectors for DMs
and Attributes Results

Zhou et al. [7] LGPOWA Objectively determined X3 � X1 � X5 � X2 �
X4(λ = 1, 2; λ→ 0)

X3 � X1 � X5 � X4 �
X2(λ = −1)

Merigó et al. [6] ILGHA/ILGOWA (0.35, 0.28, 0.24, 0.13)T/
(0.3, 0.4, 0.3)T X3 � X2 � X1 � X4 � X5

In the paper T-LWGPG/T-LHGPG By DEMATEL-based method X3 � X1 � X5 � X2 �
X4(λ ∈ [0.05, 30])

Compared with the methods in [6,7], the method in this paper can be illuminated
considering the following two aspects.
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(i) The employed operations for linguistic terms. In this paper, the newly proposed
linguistic operations are based on strict t-norms and t-conorms and closed on the set
of the restricted continuous linguistic term set Ŝ. In the methods in [6,7], the classi-
cal linguistic operations [4], which are not closed on Ŝ, are used. As demonstrated in
Example 1, the classical linguistic operations may result in some unrealistic and meaning-
less results. Therefore, the underlying operations for linguistic terms are more reasonable
than those employed in [6,7].

(ii) The techniques to determine the weighting information. In the method by Merigó
et al. [6], the weights for DMs and attributes are given by subjective knowledge and
experience. Consequently, the inevitably excessive preference of some DM or attribute
may lead to some biased results. In the method by Zhou et al. [7], the weights for both
DMs and attributes are all determined by the mutual supports of input arguments from
the angle of the consistency of the preference values; thus, they ignored the fact that the
attribute values of an alternative may be quite different on different attributes. In the
approach of this paper, the DMs’ weights and attribute weights are objectively determined
by the initial direct-relation matrices using the DEMATEL-based method. In other words,
weighting information for DMs and attributes are dependent on the interactive influence
and interrelationship among DMs or attributes. Hence, objectivity and reasonability can
be guaranteed.

4. Conclusions

In this paper, to overcome some defects of the classical operation laws for linguistic
terms, some new operation laws for continuous linguistic terms using strict t-norms and
t-conorms were defined and a series of T-based linguistic generalized power geometric
operators, i.e., T-LGPG operator, T-LWGPG operator, T-LOWGPG operator and T-LHGPG
operator, were developed. In addition, then, the DEMATEL method was employed
in determining weighting information for DMs and attributes by initial direct-relation
matrices for DMs and attributes, respectively. By these means, the weighting vector
for DMs and attributes can be determined objectively by the interactive influence and
interrelationship among DMs and attributes. An illustrative example on faculty evaluation
for tenure was presented. Comparison analysis with existing methods was performed.
In contrast with the existing methods, the method in the work can be highlighted in two
aspects: the newly proposed linguistic operations, which are based on strict t-norms and
t-conorms and closed on the set of the restricted continuous linguistic term set Ŝ; and the
techniques in determining the weighting information, with which the DMs’ weights and
attribute weights were objectively determined by the initial direct relation matrices using
the DEMATEL-based method.

Notably, in the method, the original linguistic term sets are used and the underly-
ing operations are based only on the pertaining indices. Thus, the method in this work
may not applicable in more practical and more complex situations where hesitancy may
exist, i.e., people may use more than one linguistic term to express her/his evaluations
or preferences. In order to facilitate linguistic decision making in more complex environ-
ments, there are some innovative extensions for the linguistic terms, such as the hesitant
fuzzy linguistic term sets [22], the linguistic Z-Numbers [24], the 2-dimension linguistic
variables [5], the probabilistic linguistic terms [56] and the reformulated probabilistic lin-
guistic terms [43], which provide some insightful directions for the further research on
the topic. In the future, these innovative derivatives could be appealingly engaged in the
methodologies for linguistic decision making.
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27. Merigó, J.M.; Palacios-Marqué, D.; Zeng, S.Z. Subjective and objective information in linguistic multi-criteria group decision
making. Eur. J. Oper. Res. 2016, 248, 522–531. [CrossRef]

28. Merigó, J.M.; Casanovas, M.; Martínez, L. Linguistic aggregation operators for linguistic decision making based on the Dempster-
Shafer theory of evidence. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2010, 18, 287–304. [CrossRef]

29. Wang, J.Q.; Wu, J.T.; Wang, J.; Zhang, H.Y.; Chen, X.H. Interval-valued hesitant fuzzy linguistic sets and their applications in
multi-criteria decision-making problems. Inf. Sci. 2014, 288, 55–72. [CrossRef]

30. Wu, D.R.; Mendel, J.M. Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst.
2007, 15, 1145–1161. [CrossRef]

31. Wu, Z.B.; Chen, Y.H. The maximizing deviation method for group multiple attribute decision making under linguistic environ-
ment. Fuzzy Sets Syst. 2007, 158, 1608–1617. [CrossRef]

32. Xu, Y.J.; Da, Q.L. Standard and mean deviation methods for linguistic group decision making and their applications. Expert Syst.
Appl. 2010, 37, 5905–5912. [CrossRef]

33. Xu, Y.J.; Merigó, J. M.; Wang, H.M. Linguistic power aggregation operators and their application to multiple attribute group
decision making. Appl. Math. Model. 2012, 36, 5427–5444. [CrossRef]

34. Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain
linguistic environment. Inf. Sci. 2004, 168, 171–184. [CrossRef]

35. Xu, Z.S. An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with
uncertain multiplicative linguistic preference relations. Decis. Support Syst. 2006, 41, 488–499. [CrossRef]

36. Xu, Z.S. On generalized induced linguistic aggregation operators. Int. J. Gen. Syst. 2006, 35, 17–28. [CrossRef]
37. Xu, Z.S. EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations. Int. J. Uncertain.

Fuzziness Knowl. Based Syst. 2004, 12, 791–810. [CrossRef]
38. Zhou, L.G.; Chen, H.Y. The induced linguistic continuous ordered weighted geometric operator and its application to group

decision making. Comput. Ind. Eng. 2013, 66, 222–232. [CrossRef]
39. Xu, Z.S.; Yager, R.R. Power-geometric operators and their use in group decision making. IEEE Trans. Fuzzy Syst. 2010, 18, 94–105.
40. Yager, R.R. The power average operator. IEEE Trans. Syst. Man Cybern. Part Syst. Humans 2001, 31, 724–731. [CrossRef]
41. Ju, Y.B.; Wang, A.H. Projection method for multiple criteria group decision making with incomplete weight information in

linguistic setting. Appl. Math. Model. 2013, 37, 9031–9040. [CrossRef]
42. Ju, Y.B.; Wang, A.H. Extension of VIKOR method for multi-criteria group decision making problem with linguistic information.

Appl. Math. Model. 2013, 37, 3112–3125. [CrossRef]
43. Yi, Z.H. Decision-making based on probabilistic linguistic term sets without loss of information. Complex Intell. Syst. 2022, 8,

2435–2449. [CrossRef]
44. Dai, Y.Q.; Da, Q.L.; Xu, Z.S. New evaluation scale of linguistic information and its application. Chin. J. Manag. Sci. 2008, 16,

145–149.
45. Fontela, E.; Gabus, A. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Memorial

Institute Geneva Research Centre: Geneva, Switzerland, 1972.
46. Suo, W.L.; Feng, B.; Fan, Z.P. Extension of the DEMATEL method in an uncertain linguistic environment. Soft Comput. 2012, 16,

471–483. [CrossRef]
47. Alsina, C.; Frank, M.J.; Schweizer, B. Associative Functions: Triangular Norms and Copulas; World Scientific Publishing Co.:

Singapore, 2006.
48. Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Springer: Berlin/Heidelberg, Germany, 2000.
49. Dyckhoff, H.; Pedrycz, W. Generalized means as model of compensative connectives. Fuzzy Sets Syst. 1984, 14, 143–154.

[CrossRef]
50. Zhang, Z.M. Generalized Atanassov’s intuitionistic fuzzy power geometric operators and their application to multiple attribute

group decision making. Inf. Fusion 2013, 14, 460–486. [CrossRef]
51. Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern.

1988, 18, 183–190. [CrossRef]
52. Yager, R.R. Generalized OWA aggregation operators. Fuzzy Optim. Decis. Mak. 2004, 3, 93–107. [CrossRef]
53. Xu, Z.S.; Da, Q.L. An overview of operators for aggregating information. Int. J. Intell. Syst., 2003, 18, 953–969. [CrossRef]
54. Liao, H.C.; Xu, Z.S. Intuitionistic fuzzy hybrid weighted aggregation operators. Int. J. Intell. Syst. 2014, 29, 971–993. [CrossRef]
55. Qian, M.P.; Gong, G.L.; Clark, J.W. Relative entropy and learning rules. Phys. Rev. A 1991, 43, 1061–1070. [CrossRef] [PubMed]
56. Liao, H.C.; Mi, X.; Xu, Z.S. A survey of decision-making methods with probabilistic linguistic information: Bibliometrics,

preliminaries, methodologies, applications and future directions. Fuzzy Optim. Decis. Mak. 2020, 19, 81–134. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2015.08.017
http://dx.doi.org/10.1007/s00500-015-1668-7
http://dx.doi.org/10.1016/j.ejor.2015.06.063
http://dx.doi.org/10.1142/S0218488510006544
http://dx.doi.org/10.1016/j.ins.2014.07.034
http://dx.doi.org/10.1109/TFUZZ.2007.896325
http://dx.doi.org/10.1016/j.fss.2007.01.013
http://dx.doi.org/10.1016/j.eswa.2010.02.015
http://dx.doi.org/10.1016/j.apm.2011.12.002
http://dx.doi.org/10.1016/j.ins.2004.02.003
http://dx.doi.org/10.1016/j.dss.2004.08.011
http://dx.doi.org/10.1080/03081070500422836
http://dx.doi.org/10.1142/S0218488504003211
http://dx.doi.org/10.1016/j.cie.2013.07.021
http://dx.doi.org/10.1109/3468.983429
http://dx.doi.org/10.1016/j.apm.2013.04.027
http://dx.doi.org/10.1016/j.apm.2012.07.035
http://dx.doi.org/10.1007/s40747-022-00656-2
http://dx.doi.org/10.1007/s00500-011-0751-y
http://dx.doi.org/10.1016/0165-0114(84)90097-6
http://dx.doi.org/10.1016/j.inffus.2013.02.001
http://dx.doi.org/10.1109/21.87068
http://dx.doi.org/10.1023/B:FODM.0000013074.68765.97
http://dx.doi.org/10.1002/int.10127
http://dx.doi.org/10.1002/int.21672
http://dx.doi.org/10.1103/PhysRevA.43.1061
http://www.ncbi.nlm.nih.gov/pubmed/9905122
http://dx.doi.org/10.1007/s10700-019-09309-5

	Introduction
	Methods and Methodology
	Preliminaries
	Some Concepts and Results on t-Conorms
	Linguistic Term Sets and the Related Notations

	New Operations in Linguistic Environment Using Strict t-Conorms
	Generalized Power Geometric of Linguistic Terms Using Strict t-Norms and t-Conorms
	Reviews on Generalized Power Geometric Operator
	T-LGPG Operator
	T-LWGPG Operator
	T-LOWGPG Operator
	T-LHGPG Operator
	Determination of TS(si) for the Operators

	 Framework of the Linguistic MAGDM Using T-Based Linguistic Generalized Power Geometric Operators
	Presentation of Linguistic MAGDM
	DEMATEL-Based Method for Determining the Individual Attribute Weights and DMs' Weights
	Individual Attribute Weight and Overall Attribute Weight
	Algorithm for the Approach to Linguistic MAGDM


	Illustrative Example and Discussion
	On the Evaluation for Tenure and Promotion
	Notes for the Parameters
	Comparison Analysis with Existing Works

	Conclusions
	References

