
����������
�������

Citation: AlGhadhban, A.; Showail,

A. SALMA: A Novel Middlebox

Infrastructure System Based on

Integrated Subnets. Systems 2022, 10,

165. https://doi.org/10.3390/

systems10050165

Academic Editors: Zhan Shu and

Pingyu Jiang

Received: 4 August 2022

Accepted: 19 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

SALMA: A Novel Middlebox Infrastructure System Based
on Integrated Subnets
Amer AlGhadhban 1 and Ahmad Showail 2,3,*

1 Department of Electrical Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia
2 Department of Computer Engineering, Taibah University, Madinah 42353, Saudi Arabia
3 Department of Computer Science, University of California, Irvine, CA 92697, USA
* Correspondence: ashowail@taibahu.edu.sa

Abstract: Middleboxes are critical components in today’s networks. Due to the variety of net-
work/security policies and the limitations of routing protocols, middleboxes are installed in multiple
physical locations to face high traffic with few considerations for efficiency. Reducing the number
of deployed middleboxes would reduce capital and operation costs. Moreover, some flows prefer
to bypass one or more in-path middlebox where they provide useless services, such as payload
compression for multimedia streams. These challenges can be partially tackled by network function
virtualization (NFV) schemes with the costs of performance reduction and replacement expenses.
Given the rapid growth and the wide adoption of software-defined networking solutions and the
recent advances in managing middleboxes’ configuration, the consolidation of middleboxes is becom-
ing easier than before. We designed and evaluated SALMA, a new pre-NFV practical solution that
systematically recreates the infrastructure of middleboxes by proposing the Integrated Middleboxes
Subnets scheme. In this work, we attempted to reduce the number of installed middleboxes by
implementing horizontal integration of middleboxes’ functions, such as every pair of middleboxes
being integrated into a dedicated hardware box. We support the motivation for creating SALMA
with a practical survey of in-production middleboxes from 30 enterprises. Our solution addresses
key challenges of middleboxes, including cost, utilization, flexibility, and load balancing. SALMA’s
performance has been evaluated experimentally as well.

Keywords: systems architecture; network infrastructure; middleboxes; software defined networking;
network management system

1. Introduction

Middleboxes are widely adopted in broadband, enterprise networks, and lately, in
data center networks. In today’s networks, the number of deployed middleboxes is on
par with the number of forwarding elements [1]. Several studies forecast continued rapid
growth of the middlebox market; the cloud security market alone is expected to reach
$11 billion by 2022 [2]. At the same time, the operators need to reduce the deployment
costs of middleboxes to align their capital expenses with the current reduction of average
revenue per user [3]. The topology-dependent nature of middleboxes and the inflexibility
of routing protocols restrain prior practical initiatives from efficient middlebox deployment
in today’s networks [1,4,5].

To allow middleboxes to perform their tasks on particular flows, they must be carefully
placed within the physical infrastructure of the enterprise network. Middlebox placement
is usually done in an ad hoc manner supported by error-prone manual configuration. In
reality, the physical locations of middleboxes are selected based on certain network and
security strict-policies with little consideration for their efficiency [4]. As a result, multiple
middleboxes of the same type are scattered inside the network to face in-scope traffic. By
in-scope traffic, we mean flows that are required by security policies to be examined by

Systems 2022, 10, 165. https://doi.org/10.3390/systems10050165 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems10050165
https://doi.org/10.3390/systems10050165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-4350-2759
https://orcid.org/0000-0001-6026-9739
https://doi.org/10.3390/systems10050165
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems10050165?type=check_update&version=2

Systems 2022, 10, 165 2 of 23

a sequence of middleboxes.1 These practices lead to low utilization of network resources
and an increased network operation complexity in terms of management, troubleshooting,
and maintenance. The resources available cannot be fully utilized despite the fact that the
workloads are highly appropriate to do so. Moreover, certain classes of traffic, such as mul-
timedia, need to bypass some of the in-path middleboxes, such as the WAN optimizer [3,6].
In today’s networks, administrators recraft the network infrastructure and use manual
configuration supported by tunneling methods to have a reasonable degree of control in
order to manage network resources. Also, middleboxes may be misconfigured accidentally,
which leads to network isolation and/or traffic policy violation. These drawbacks, among
others, encourage researchers to propose a better solution to utilize network resources and
augment the availability of middleboxes.

To address this shortcoming of utilization, the scattered middleboxes could be effi-
ciently gathered in multiple centralized subnets. Middleboxes from the same type would
be integrated together, forming one super middlebox. In turn, the super middlebox should
be able to handle the traffic from other subnets, in addition to the traffic of its own subnet.
Accordingly, we need a mechanism to forward the traffic from remote subnets to the right
middlebox before it reaches its final destination. Researchers in pLayer [7] proposed the
Layer-2 mechanism to route traffic through a sequence of middleboxes connected to a
policy-based switch. Unfortunately, this solution did not address the issues of load bal-
ancing, utilization, and cost. Similarly, the authors of CoMb [4] proposed a method for
middlebox function-level consolidation into a shared hardware box. In the same context,
several other solutions have proposed moving middleboxes from the enterprise network to
the cloud [8–10]. These efforts suffer from the high latency of routing the internal traffic to
the cloud. In addition, they likely face serious hindrances in terms of resilience and security
concerns, due to several challenges. Some examples are the hard-to-modify dedicated
hardware middleboxes, the growing rigorous security practices and their concerns, and
the serious resistance to deploying radical solutions. As an alternative, we propose a more
practical solution that can make use of the available resources.

Network function virtualization (NFV) is a leap network technology that offers multi-
ple features and open a wide range of development opportunities [11–17]. NFV leverages
existing virtualization advances to abstract general-purpose hardware, facilitating the de-
ployment of hardware-based network functions (NF) in a virtual environment. Although
NFV offers those remarkable features, it is still intractable to maing the virtualized NFs
function correctly on the ground. The NFV has multiple processing and practical limi-
tations. The packet processing speed in modern OSes is 10 to 20 times slower than in a
hardware network interface. The current advances in the speed of network interfaces and
conventional switches that allow up to 100 Gbps add pressure on the NFV and software-
based packet processing to cope with these speeds. At 100 Gpbs, the processing time of
a small packet, 64B, is 6.7 nanoseconds, which is in order of one cycle in modern CPUs.
This speed adds a burden on switch designers. Indeed, the vendors of conventional hard-
ware switches struggled to meet this processing speed. They could barely find enough
processing time to run critical switch features (e.g., flow classification). Moreover, when
the NFV is used to perform the middleboxes’ functions, the traffic needs to flow from NFs
to another according to the service chaining policy. These NFs reside either in a single or in
multiple machines. The packet forwarding between NFs in a single machine encountered
the context switching challenge. Similarly, the latter case suffers from packet queuing and
processing challenges, as the packets should go through multiple virtual and physical
network interfaces. Besides that, the VM users encounter poor network connectivity due to
virtualization faults and compatibility problems. These drawbacks and limitations hinder
the adoption of NFV-based solutions in practice, as it has been shown in our survey. That
is to say nothing of the cost of replacing middleboxes’ hardware and software with new
NFV-enabled devices.

In this work, we take a backward step to introduce a solution that lies between
conventional middlebox implementations and NFV adoption which prepares the enterprise

Systems 2022, 10, 165 3 of 23

network infrastructure towards NFV. The presented solution aims at efficient repositioning
of in-operation middleboxes by efficiently integrating them into multiple clusters close
to their traffic flows. These clusters are partitioned into two main parts: (primary and
backup). The primary clusters hold the most efficient middleboxes, in terms of QoS criteria,
and others are grouped in the backup clusters. In this case, the out-of-service middleboxes
can be replaced by NFV-based solutions. This practice would enable gradual migration
from legacy middleboxes to NFV. Moreover, we built our solution to minimize adoption
barriers in practice. The name of our novel framework is SALMA, and it is based on the
software-defined networking (SDN) concept that addresses cost, utilization, availability,
and operation complexity. The middleboxes from the same type, defined as peers, are
integrated into a single powerful middlebox, and their policies are accumulated after
passing validation and verification procedures. A middlebox manager is added to empower
network administrators with the ability to steer traffic towards the required sequence of
middleboxes. The integrated middleboxes are replicated across multiple subnets to increase
their availability and to spread the traffic load among these subnets. Moreover, in the
same context of the previous solutions [4,7], we aim to solve the shortcomings above by
relaxing the network core from the interposer devices, maintaining the policy sequences as
illustrated in [5], raising the flexibility and utilization of the middleboxes, and balancing
the traffic load between them. Our solution is practical, as only edge switches, and the
subnets of middleboxes must be able to communicate through OpenFlow. This is a common
practice and is available in a variety of network hardware these days.

Our main contributions in this work are as follows:

• We did a survey on the current deployments and costs of middleboxes in 30 enterprises
of various sizes. We found that a large number of the investigated middleboxes are
highly underutilized.

• We solved the challenges raised, i.e., the policy chaining of middleboxes, topology
dependence, and consolidation challenge, by proposing SALMA. This is the main
contribution of this paper.

• We invented a novel encoding mechanism by exploiting a correlation between the
service policy chaining and the address space in packet headers in order to allow the
forwarded packets to traverse a pre-definded sequence of middleboxes.

2. Motivation

Before discussing the proposed work, we present the results of a study that we
performed on the deployment of middleboxes in multiple enterprise networks to highlight
their challenges and limitations.

2.1. Survey Details

We conducted a survey with around 30 enterprise networks as participants. The goal
of this survey was to demonstrate the challenges and limitations in existing deployments
in today’s networks. We collected the number of middleboxes, the average number of
employees assigned to every middlebox, and the costs of different middlebox platforms.
The studied enterprises are in various business sectors. They are Internet Service Providers
(ISPs), telecommunications companies, academic institutions, and financial organizations. For
security reasons, we were not allowed to reveal the identities of businesses that participated
in the survey. Thus, we classified the survey results based on enterprise size (i.e., large,
medium, and small). Our dataset included 4 small enterprises (fewer than 1000 hosts),
11 medium enterprises (between and 1000 and 10,000 hosts), and 15 large enterprises (10,000
to 100,000 hosts). Figure 1 shows the number of middleboxes deployed in the three classes
of networks of the participating enterprises. The type of middlebox is abbreviated on the
x-axis as follows: WO stands for WAN optimizer, PX stands for proxy, LB stands for load
balancer, VS stands for VPN server, IDS stands for intrusion detection system, and FW stands
for firewall.

Systems 2022, 10, 165 4 of 23

(a) (b)

(c)

Figure 1. Number of middleboxes that are deployed in enterprise networks of various sizes.
(a) Middleboxes in small enterprises. (b) Middleboxes in medium enterprises. (c) Middleboxes
in large enterprises.

2.2. Middleboxes Cost

The cost of middleboxes is not limited to the hardware cost. In addition, the manage-
ment cost of middleboxes is also high. It includes the number of assigned employees, the
cost of training, the number of middlebox failures during the year, and the estimated mean
cost to repair (MCTR). Table 1 lists the average middlebox price based on the network
size. Additionally, the estimated MCTRs per year for the participating enterprises are
illustrated in Figure 2. To be able to estimate MCTR, we asked the participating enterprises
the following questions:

1. What is the average network engineer’s salary?
2. How many engineers are assigned to fix a single failure?
3. What is a failure’s mean time to repair?
4. What is the number of failures within a year?

Table 1. Middleboxes’ prices (thousand $) for various network sizes.

Small Medium Large Very Large

Firewall 1.4–3.1 4.3–14.8 20–44 50–104
IPS 0.56–1.1 5–21 35–50 84–200

WAN Opt. 1.7–10.5 12.5–24 26–59 114–235

Figure 2. MCTR of all middlebox failures during a year.

From these questions, we built our MCTR estimation. Since the majority of failures
are due to human-based errors, such as misconfiguration or traffic overload [1,10], we

Systems 2022, 10, 165 5 of 23

did not include the cost of spare parts in our estimation. In fact, MCTR would have been
higher had the cost of the spare parts been included. It is clear from Figure 2 that the
cost is positively proportional to the number of middleboxes deployed in the network.
Hence, a key factor in reducing the cost of middleboxes is reducing the number of deployed
middleboxes; any reduction in the number of deployed middleboxes is going to affect
other costs directly. Instead of trying to reduce the cost of management by providing a
sophisticated management console, or by increasing the utilization of middleboxes, it is
easier to just simply lower the number of middleboxes deployed.

2.3. Utilization of Middleboxes

The collected statistics showed that multiple duplicate middleboxes of the same type, (i.e.,
IP firewall, IDS/IPS, or load balancer) were installed inside the same network. For example,
when we closely looked at one of the investigated service-provider networks, we found that
every interface that was associated with an untrusted network was connected to a firewall
and an IDS. In some cases, duplicate middleboxes are installed in parallel for high availability.
Thus, the utilization of the firewalls and IDSs relies on the activities of the customers in the
connected branches. To demonstrate our claim, we collected the utilization statistics of four
middleboxes (two firewalls and two load balancers) installed in various locations inside a
service-provider network, as shown in Figure 3. In fact, we noticed that every common service
chain is grouped in an independent set, so firewalls must exist in every set. This means that
the maximum utilization of every set could not exceed the firewall utilization. Additionally,
the datasets provided have multiple firewalls and load balancers; their utilization was similar
to that displayed in the figure. The statistics were collected during October.

(a) (b)

(c) (d)

Figure 3. The utilization of four independent middleboxes installed in different locations inside
a service-provider network. (a) Firewall 1 (FW1). (b) Firewall 2 (FW2). (c) Load balancer 1 (LB1).
(d) Load balancer 2 (LB2).

In reality, middlebox duplication is done not only to achieve high availability, but also
due to topology-dependent conditions. Typically, middleboxes are scattered all over the
network in order to implement the network policy on the right traffic. This duplication

Systems 2022, 10, 165 6 of 23

practice results in low middlebox utilization as well. We found that the firewalls studied
showed a serious utilization gap because of the topology-dependent conditions and routing
protocol stiffness. This is due to the fact that the traffic of untrusted domains has to be
monitored and examined by the firewall/IDS policies regardless of its volume. Furthermore,
the available routing protocols are not flexible enough to provide a sufficient degree
of control. In fact, when we analyzed the middleboxes’ utilization statistics, we found
variability during a small period of time (i.e., one or more days), which is aligned with
previous findings [4]. However, when these groups of firewalls are integrated into a single
firewall and all the in-scope traffic is forwarded to that box, the utilization will be increased,
and all the overall cost (management, operation, and others) will be reduced.

2.4. Middleboxes’ Placement

Due to network structure limitations and policy constraints, we found that the mid-
dleboxes in the surveyed networks are physically located between networks to be able
to enforce certain policies on a particular group of services and/or end-hosts, which are
defined here as in-scope systems. Despite the fact that this enables middleboxes to be
on the path of in-scope traffic, it complicates the network management and hinders the
deployment of recent network agility services [1,10]. In reality, middleboxes, such as load
balancers, VPN servers, and WAN optimizers, which are physically installed in the path
of bi-directional traffic, are often useless and may add an extra overhead to the exchanged
traffic [6]. For instance, the potential speedup from deploying the load balancer is θ(t);
however, the load balancing algorithm introduces an extra overhead Loverhead to perform its
load-balancing function. When the delay of Loverhead is greater than the obtainable speedup
θ(t), it is better to bypass the load balancer until the obtainable speedup θ(t) is greater than
the load-balancing overhead Loverhead. In fact, researchers found benefits in bypassing the
load balancer even in the return path of network traffic [18]. To give another example, let
us consider the voice and video traffic as examples of delay-sensitive flows. Holding such
traffic back in the WAN optimizer for compression will introduce an unnecessary delay and
jitter. Additionally, the video streams are already compressed, so additional compression
will not be beneficial. Consequently, VoIP or video should bypass the WAN optimizer.

3. Problem Statement

In the investigated enterprises, each group of middleboxes was installed in the face
of certain traffic of particular users. Thus, these middleboxes are configured to perform
certain network/security policies on the passing traffic. In an individual enterprise there are
M middleboxes (number of them). Every group of middleboxes is gathered in a single set,
S1, S2, S3, . . . Sn, and the total number of sets is N. A single set contains different types of
midddleboexs and is placed in one of the entry points (known as the point of presence (PoP))
of the enterprise network. These sets are implanted in the network path of a certain group
of users to execute specific QoS and security policies on their traffic. For instance, the VPN
users entail different QoS and security measures than the visitors for the enterprise website.

The network designers typically select the place of every set with little consideration
for their optimization. Indeed, the sets’ places are critical, and they suffer the same fate: the
failure or delay in one of the set members impacts the performance of the whole set. One
way to mitigate this challenge is by replicating the set members, which in return increases
the total capacity Cm and reduces the utilization, and increases the expenses. Assume the
utilization of a set i is Ui, where its value is proportionally related to the traffic load of its

users λi
E. Therefore, Ui =

λi
E
C i

m
. In order to elevate the utilization, we need either to add

new load (e.g., more users) or decrease the available capacity. The administrator does not
control the users’ behavior or places. In addition, the administrator has limited control over
the middleboxes’ processing capacity2. This is not only for one set, since the enterprises
and ISPs have hundreds of sets to serve internal and external PoPs, which means a huge
number of unused resources.

Systems 2022, 10, 165 7 of 23

In this work we aim at providing the network administrator enough governance on
these two factors. The main obstacle to optimizing the performance of the middleboxes is
the network’s structure. To overcome this issue, the sets of middleboxes are decoupled from
their places and regathered in new sets. The decoupling technique introduces multiple
challenges. First, how does the solution engage the users with their corresponding set of
middleboxes? Second, how does the solution forward the Ei traffic to the set Si over the
enterprise network? Third, how does the solution make sure the new set have enough
capacity to handle the aggregated traffic load? Finally, the solution needs to optimize the
assignment process between the traffic load and the sets of the middleboxes. We elaborate
more on these concerns in Section 4.

Instead of randomly reassigning the group of users to the middleboxes’ sets, we need
to search for the optimal set that satisfies certain constraints, such as capacity and the
security/network policy. The target optimal function is:

The first constraint, the capacity of the new sets, is enough to serve the total traffic
load from all sets.

N

∑
i=1

λi
E ≤ CL (1)

We can rewrite this constraint to be as follows:

Eτ ≤ CL
QoS (2)

Assume the matrix EEEτ has all the traffic workload on previous sets before the new
arrangement, and the CL

QoS matrix has the capacity of all individual middleboxes in every
new set. Since the traffic load is different during a working day, E is a fat matrix which
has the time with a resolution of τ unit of time as the column index. For instance, column
(index = 1) has the traffic workload on every set during the τ1 unit of time3. The second
constraint is the processing delay: DDDs should not exceed a certain QoS delay,DDDQoS.

DDDτ
s ≤ DDDQoS (3)

The delay issue commonly arises when the middleboxes are highly utilized, which was
our goal in solving this problem. Accordingly, the following binary LP model was formu-
lated to maximize the load on the subnets of middleboxes such that the involved constraints
are satisfied.

S∗ = max
i

M

∑
i=1

xi,j. (4)

s.t.
xi,j ∈ {0, 1}.

where M is the number of new sets. In this case, the model assigns as much traffic load
as it can to one of the sets Si, i ∈ M, until one of the QoS constraints is not satisfied. This
practice is a well-known technique in the literature to increase the utilization and reduce
the total power consumption. The essential weakness of this technique is the inevitability
of assigning the same load to more than one set. To overcome this issue, the following
constraint has been added.

N

∑
j=1

xi,j ≤ 1 (5)

This constraint is to enforce only one assignment for every traffic load.

4. SALMA Data-Plane

After promoting the idea of middlebox integration by presenting some of the short-
comings of middlebox deployment in current enterprise networks, we are now ready to
discuss how these shortcomings are addressed in our work. Our proposed solution has two
types of data-plane devices: the edge switches and the middlebox subnet switches. The

Systems 2022, 10, 165 8 of 23

incoming flows to any of the edge switches can be classified into in-scope and out-scope
flows. The former need to be forwarded to one of the subnet replicas of the middleboxes,
whereas the latter are not required to be forwarded to the middlebox subnet. Instead, these
flows should be forwarded directly to the destination. The edge data-plane devices must be
able to recognize which flow belongs to which class, and this is the duty of the middlebox
manager, as explained in detail in the next section. When an unknown flow is received
by an edge data-plane device, it sends a flow setup request to the middlebox manager,
which in turn installs a flow entry on the edge switch to decide whether this flow is an
in-scope or out-scope flow. In the case of in-scope flow, the data plane forwards the flow
packets to the middlebox subnet. Otherwise, the packets are forwarded to the destination.
In simple words, the middlebox manager classifies the unknown flows based on the policy
configuration that was installed by the network administrator into the policy sequence
module. The second type of data-plane device is the middleboxes’ subnet switch. When
the middlebox manager receives the flow-setup request from the edge switch and considers
it as in-scope flow, it configures the middleboxes’ subnet switch with multiple flow entries
to maintain the policy sequence. At the same time, it checks the collected statistics and the
number of assigned flows to each middlebox’s subnet replicas to balance the traffic load
among them.

5. Middlebox Manager

One of the key considerations in the design of our solution is to make it topology-
independent. The network traffic routing decisions and operator specific policies must
be set by a central entity, and the middleboxes must be plugged out from a traffic link.
The middlebox manager is the one responsible for the edge switches’ configuration. As
explained in the previous section, this special configuration enables edge switches to route
in-scope traffic to the subnet of the middleboxes. Furthermore, the middlebox manager is
responsible for balancing the traffic load between the available subnets of the middleboxes,
and configures their switch with the right flow entries to maintain the policy sequence.
Figure 4 shows the main modules that form the middlebox manager panel, including the
network topology database, load balancer, and policy sequence module. The figure also
shows how these modules interact with each other and how they interact with the other
data-plane devices. In the following paragraphs, we will describe some of these modules
in detail.

Topology Database Module: The middlebox manager collects the network topology
information from OpenFlow Discovery Protocol (OFDP) messages, which are similar to
Link Layer Discovery Protocol (LLDP) messages [19]. The data-plane devices in the network
exchange these messages to know more about the data-plane devices and the connected
hosts. Fortunately, non-OpenFlow switches can still forward OFDP messages without
reacting to them. In fact, the middlebox manager uses these messages to build the network
topology. Typically, the link-state routing protocol builds the network topology database in
production networks, which is used by the middlebox manager whenever it is needed.

Load Balancer Module: The edge switches and the middlebox manager communicate
through the OpenFlow protocol. The middlebox manager is involved in every flow-setup,
which provides it with a high degree of visibility in network activities. This visibility allows
the middlebox manager to do the load balancing efficiently between the replicated subnets
of the middleboxes. Actually, the motivation of load balancing goes beyond distributing the
load between available resources. For example, proper load balancing helps prevent denial
of service concerns, such as unacceptable delays in the order of milliseconds that could
easily disturb multimedia services. Since the service times of the middleboxes are almost
the same, we decided to use a random flow assignment method to spread the load among
available subnets of the middleboxes. When the middlebox manager receives a flow-setup
request of an in-scope flow, it randomly selects the middleboxes’ subnet and builds an
end-to-end tunnel between the edge switch and the selected subnet of the middleboxes.

Systems 2022, 10, 165 9 of 23

Policy Sequence Module: The network administrator is responsible for configuring the
middlebox manager with the network policy classes, similar to the ones shown in Figure 5.
This figure shows several examples of policy sequences. These sequences could easily be
classified into multiple classes where each class contains the list of middleboxes that must
be visited, and the order of these visits is by the flows that match this class.

Figure 4. The middlebox manager panel.

Figure 5. An example of variations in policy sequences.

6. Implementation

To have a scalable integrated design of middleboxes, we need to address several
challenges, namely, a policy challenge, a consolidation challenge, and a load-balancing
challenge. In the following lines, we describe how these challenges are tackled in our im-
plementation.

6.1. Policy Challenge

The proposed solution needs to maintain the policy sequence where the flow visits
the right middleboxes in the right sequence. In today’s network, when a flow needs to
be examined by a sequence of middleboxes (e.g., firewall→ IDS→ load balancer), these
middleboxes are installed in the flow path. In this section, we shed light on the policy
sequence algorithm implemented in our solution. The algorithm defines how the edge
switches will forward the in-scope traffic to the middleboxes’ subnet. It also explains how
the middleboxes’ subnet switch maintains the policy sequence. Furthermore, we show in
this section how the proposed algorithm handles both loop and loop-free scenarios. Let us

Systems 2022, 10, 165 10 of 23

assume the following sequence of middleboxes is installed physically between endpoints
to face their exchanged flows:

FW→ IDS→ Proxy.
When these middleboxes are moved from one location to another inside the enterprise

network, it is necessary to forward the exchanged bidirectional flows between the endpoints
to the right middleboxes. In addition, the bidirectional flows must visit the middleboxes
while following the right sequence.

The middlebox manager steers the in-scope traffic to one of the preconfigured tunnels
between edge switches and the subnets of the middleboxes, as shown in Figure 6. The
selection criteria of middleboxes’ subnets is based on the load-balancing algorithm and the
policy sequence. As illustrated in Figure 6, the physical arrangement of middleboxes in the
subnet cannot satisfy all the policy sequences. For instance, the incoming HTTP traffic must
follow the subsequent sequence: IDS→ FW→ Proxy, and the sequence of middleboxes
visited in the case of outgoing Internet is FW→ IDS. Thus, we can not physically reorder
the middleboxes in the subnet to satisfy all sequences. To solve this issue, we propose
to install the middleboxes in the subnet in any order. Since this order is known to the
middlebox manager, it will be responsible for installing the appropriate flow entries to
maintain the appropriate sequence. Unfortunately, there are only a few fields in the IP
and MAC headers that can be utilized for this purpose. Flags such as DSCP and ECN
are used by other solutions, such as the WAN optimizer and the QoS configuration in
routers. Furthermore, end-to-end flows and middleboxes, such as IDS, proxy, and firewall,
are sensitive to L4 fields (e.g., destination port number). Nevertheless, we propose two
alternatives to maintain the policy sequence.

Figure 6. A sample network topology of SALMA showing in-scope traffic steering between edge
switches and the subnets of the middleboxes.

6.1.1. SALMA v1

The idea here is to utilize the IP/MAC source and destination fields for policy sequenc-
ing by installing all the flow entries in the same flow-table. By using the multiple flow-table
features in the OpenFlow protocol and the TTL field in the IP header, flow entries in each
middlebox are assigned to a certain flow-table, (e.g., the middlebox in outport#2 is assigned
to table = 2). The TTL value is used to point out the port number of the next middlebox
or final exit. The incoming flow will be handled by table = 0, then resubmitted to the ap-
propriate table according to the intended policy sequence. This process will continue until
the flow exit from the last middlebox is in its sequence. The flow entries in the tables other
than table = 0 are used to reset the TTL value and forward the flow to the corresponding
middlebox. Moreover, we assigned a particular table for each middlebox to facilitate the
flow management and speedup of the flow entry’s lookup, since routing tables in large
networks might contain more than 100,000 entries [20].

Systems 2022, 10, 165 11 of 23

6.1.2. SALMA v2

In this version of the algorithm, we encode the policy sequence into the packet address,
such as a MAC or IP address. The packet address is replaced by the output ports of the
middlebox to be visited. To able to do that, the middlebox manager must configure the
middleboxes’ subnet switch to forward every incoming flow. This configuration needs to
precisely follow the service-chaining policy. This configuration introduces a new communi-
cation overhead. In order to optimize it, we exploit a correlation between the service policy
chaining and the address space in packet headers.

The service-chaining policy requires that each and every flow is examined by particular
middleboxes. Each middlebox is connected to the subnet switch via a specific network port.
The middleboxes in the chain are identified neither by their names, nor by their functions.
Instead, the subnet switch will identify them by their outgoing ports, which are encoded
into the packet headers. The most efficient method for performing the encoding task is
utilizing the IP/MAC rewriting feature. Accordingly, the proposed technique encodes the
service chaining into the MAC address.

The edge router performs the address rewriting task of the outgoing edge-to-middlebox
packets. On the other hand, the middleboxes’ subnet switch performs the decoding, i.e.,
returning back the original MAC address. For example, let us assume that the firewall is
connected to port number 20 and the IDS is connected to port number 21. As such, the
corresponding MAC address is 20:21:1:0:0. The port number 1 is the middleboxes’ subnet exit
port. The system is free to select either the source, the destination, or both MAC addresses for
encoding. However, the selection needs to be synchronized among all parties in the system.

We simplify the algorithm’s mechanics to make it easily adopted by in-production
networks. Upon the arrival of a new flow, the edge switch performs service-chain encoding,
as instructed by the middlebox manager. At the same time, the middlebox manager stores
the original address information of this flow. This information is used to configure the
middleboxes’ subnet switch to perform the decoding task for this flow precisely. Then,
the added rules are removed to free some space for new rules and avoid any unplanned
conflicts. The middlebox manager has the necessary information to efficiently select the
address, fulfilling the demand of the security policy.

Finally, we would like to clarify how the the middleboxes’ subnet switch performs
the decoding to return back the original MAC address. When an unknown flow arrives
at an OpenFlow switch, a packet-in message is sent to the controller. Additionally, the
OpenFlow protocol has a feature to enable data-plane devices to send a notification to the
controller upon the arrival of a particular flow(s). When a flow that must get examined by
the middleboxes arrives at a switch, which is usually a PoP switch, the controller is notified.
These notifications have enough information about the flows, including their IP and MAC
addresses. The controller reads its service chain database to learn which middleboxes
need to be visited by this flow and in which sequence. Accordingly, the MAC address is
structured, and a rewriting command is sent to the switch. Simultaneously, a rewriting
command is sent to the middleboxes’ subnet switch to modify the flow packets with their
original MAC addresses before forwarding them out of the middleboxes’ subnet. Moreover,
the controller, alongside the rewriting commands, configure the PoP switch to forward the
flow toward the selected middleboxes’ subnet.

6.2. Consolidation Challenge

We have concluded from the survey analysis in Section 2 that several copies of the
same middlebox type are installed in various locations in current enterprise networks.
Due to multiple reasons, the enterprises in our survey have several middleboxes of the
same type (i.e., firewall, IDS, and load balancer) installed in different places inside their
networks. In fact, this finding is in agreement with recent surveys [1,4]. This practice
causes middleboxes to be poorly utilized, as shown in detail in the previous sections.
Furthermore, service providers typically have thousands of rules in their firewalls. The
number of rules is huge due to the new proliferation of communication technologies and

Systems 2022, 10, 165 12 of 23

services and the notable increase in Internet users. Every account manager pushes the IT
team to provide the service for his/her client ASAP. This unhealthy practice forces the
firewall administrators to turn a blind eye on some quality steps and add new rules with
low credibility, which increases the likelihood of creating anomaly rules. As a response to
these unhealthy practices, researchers invent efficient tools to detect these rules and remove
them. We expect the administrators to add in their middleboxes a maintenance procedure
step to check for anomaly rules.

In this work, we propose to integrate middleboxes from the same type into a single
powerful device. In reality, the consolidation of multiple middleboxes’ functionality into
a single general-purpose hardware is not new in the literature. For instance, most of the
enterprises in our survey integrate both firewall and NAT functions into a single hardware
box. Similarly, the load balancer and IDS are usually integrated when dealing with web
traffic. However, the goal of this work is to integrate multiple middleboxes of the same type,
such as multiple firewalls. This integration is the cause of what we called the consolidation
challenge. In fact, the rules of similar devices can be manually examined. However, we
expect the middleboxes, particularly firewalls, as we mentioned above, have thousands of
rules, so the manual reading is not efficient even with a keen eye. We believe the market has
multiple efficient anomaly-rule-detection tools, such as ManageEngine, solarwinds, algosec,
Cisco CLI analyzer, and WallParse. Similar middleboxes (e.g., firewalls) are grouped in one
file and then examined by these tools to detect and remove anomaly rules. To the best of
our knowledge, the consolidation challenge has not been addressed in the literature. In this
section, we discuss the middlebox consolidation procedure and how the proposed solution
addresses its challenges.

Most of the middleboxes are configured with a sequence of policies, such as the access
control list (ACL) in the case of firewalls, which must be examined for every incoming
packet. For example, the firewall policies are designed to examine certain fields of a packet
header, and subsequently either forward the packet when it has a “permit” action or drop
the packet when it has a “deny” action. To consolidate multiple peers of middleboxes,
we need to integrate their policy rules. However, the policy rules after integration should
be validated and verified against duplication and conflict incidents using a well-known
procedure and tool [21]. Additionally, on some occasions, the middlebox must not be
integrated with its peers for performance or security reasons, which is defined here as the
non-integrable middlebox challenge. Additionally, the middlebox needs to keep its config-
uration context, such as an ACL of a classified customer, away from other middleboxes.

When we integrated the policies of multiple middleboxes of the same type, we found
some of the examined middleboxes already having repeated rules that perform the same
action. As a result, we followed a verification procedure to eliminate these duplicates. The
implemented verification procedure included the following:

1. Middlebox equivalence checking: to examine the new integrated policy rules that
are installed into the unified middlebox having all the previous individual middle-
box rules.

2. Middlebox rule redundancy checking: to eliminate redundant rules after integration.
3. Middlebox rule conflict checking: to detect and eliminate conflict rules after integration.

To solve the non-integrable middlebox challenge, we used both hardware and software
features of middleboxes. From our investigation, we found that most firewalls are supported
by several configuration management features that facilitate the partitioning of a single large
ACL list into multiple small lists. These lists are installed into different tables. A configurable
classifier in the first table is responsible for classifying incoming traffic and resubmitting it
to the right list. This feature is similar to the multiple tables feature in OpenFlow switches,
where the first table, table = 0, is the classifier, and the other tables contain the ACL lists.
In this work, we utilized this feature to configure each table with the needed context. For
example, when the ACLs of firewall-1 and firewall-2 cannot be integrated with each other,
the ACLs of these two firewalls are configured in table = 1 and table = 2, respectively. The
lists of other firewalls can then be integrated in table = 3. Additionally, the integrated ACL

Systems 2022, 10, 165 13 of 23

lists need to pass the validation and verification test.This feature has an additional advantage:
the reading of the ACL list is faster in cases of small lists.

6.3. Classifier-Shim Layer

In case the configurable classifier feature is not supported by the middlebox, we have
two alternatives. First, if the middlebox is an application software, then we can integrate
that middlebox with its peer in general purpose hardware. The incoming packets to this
hardware need to be forwarded to the right middlebox platform. We introduce a classifier-
shim layer (cshim) that is responsible for classifying the incoming traffic and forwarding
it to the right middlebox platform. This shim layer is similar to the policy shim layer in
CoMb [4]. In reality, they designed this layer to maintain the middleboxes’ policy sequence,
and we designed it to classify and forward the traffic. For example, let us assume having
a load-balancer platform that cannot to be integrated with other middleboxes. We can
simply install the integrable load balancers and the non-integrable load balancer in general
purpose hardware where the cshim classifies and forwards the incoming traffic to the right
load balancer, as displayed in Figure 7. The second solution is to utilize the availability of
network ports in the middleboxes’ subnet switch to plug out the non-integrable middlebox
and plug it into any available port in the switch. In this case, the middlebox manager is
responsible for classifying the incoming traffic and configuring the middleboxes’ switch on
the fly to forward the incoming traffic to the right middlebox.

Figure 7. Consolidating integrable and non-integrable (LB = load balancers). This is an example that
can be generalized to other middleboxes.

The cshim layer can be implemented by using IP-Table service of the Linux kernel or in
more sophisticated manner by coding a kernel module. In this work, we go for the latter case.
A kernel module has been written to enable our solution with a wide spectrum of features.
The flow can be classified according to legacy features (e.g., source and destination MAC/IP
addresses, and transport layer ports) or advance features (e.g., flow size: elephant or mouse).
The legacy classifications can easily be done in both the kernel module and IP-Table. The
advanced classification needs deep inspection of forwarded packets, where the IP-Table has
no leverage.

In this work, we used the NetFilter Linux feature to write the cshim layer kernel
module. Moreover, the kernel module can be uploaded into either the host kernel or the
kernel of the Openvswitch/hypervisor. We tested the uploading of the cshim layer into the
Mininet host and the OvS; the switch in Mininet is an Openvswitch. However, the results
were collected from the former case. The kernel of these two systems provide a degree of
control for exchanging packets and full access to their headers and unencrypted payload.
The cshim layer has a hashtable to store the flow information and statistics. When the flow
size exceeds a certain threshold value, 1MB, it is considered elephant flow [11–17]. We used
the aggregated topology. The size of mouse flows is randomly selected from 10 KB to 1 MB,
whereas the elephant flows range is 10–128 MB.

Systems 2022, 10, 165 14 of 23

In our cshim layer, we tested our module using this feature, and tested its speed
and accuracy when implementing this feature. We generated flows of mouse-size-only,
elephant-size-only, and a mix of mouse and elephant flows. The number of flows in every
test is 600. During the mix scenario, the percent of elephant flow was 10%. The cshim layer
achieved 100% accuracy in all of the tested scenarios. This accuracy is due to its privileged
location where it resides in the face of the transmitted flows, which facilitates its goal in
measuring the flow size. The speed of detection on average is 14 ms.

6.4. Load-Balancing Challenge

The motivations of load balancing are not bonded by spreading the traffic load among
available resources. In addition, the value of middleboxes’ resources and denial of service
concerns include unacceptable delays that could reach milliseconds for multimedia services.
In this work, we used an optimal flow assignment method to spread the load among the
available subnets of the middleboxes. When the middlebox manager receives a flow-setup
request of in-scope flow, it selects the middleboxes’ subnet based on the optimization model
that is explained in Section 3, and builds an end-to-end tunnel between the edge switch
and the selected middleboxes’ subnet.

7. Evaluation

In this section, we evaluate our proposed solution through various sets of experiments.
Before starting our extensive evaluation, we built a proof of concept for the SALMA; the
topology is depicted in Figure 6 and the policies in Figure 5. After that, we evaluated
SALMA using larger, more realistic topologies, such as Internet2, Geant, and the abstracted
enterprises network, as shown in Figure 8, to be able to evaluate the performance on various
topologies. Moreover, we evaluated the overhead of SALMA on the abstracted enterprise
network using various scenarios.

7.1. Proof of Concept

We built a topology similar to the one shown in Figure 6 by using Mininet [22]. We
modified POX [23] to act as the middlebox manager. In this experiment, the hosts and the
destination server were installed in the same subnet. However, the traffic was steered to
the middleboxes’ subnet to be examined by the intended middleboxes based on the policy
sequences explained in Figure 5. The results of average TCP throughput for both SALMAv1
and SALMAv2, with and without the load balancer, are shown in Figure 9. In this scenario,
the iperf [24] communication is sequential from h1 to h2, then h3, and then h4. For this
reason, the impact of the load-balancing solution is demonstrated in h3 and h4 results,
where the network got enough load.

Figure 8. The enterprise topology after abstraction.

Systems 2022, 10, 165 15 of 23

7.2. SALMA Evaluation

In this section, we evaluate the effectiveness of our proposed solution in terms of
throughput and utilization. The network was composed of 10 subnets. Every subnet had
7 middleboxes, and the arrival-rate followed an exponential distribution with a mean
of 20 milliseconds, with the number of flows being 60 for every subnet. The individual
flow randomly visited between 3 and 7 middleboxes. After the aggregation, we had
only a single subnet with 7 middleboxes, and the arrival-rate followed an exponential
distribution with a mean of 2 milliseconds; the number of flows was 625. Every individual
flow randomly visited between 3 and 7 middleboxes. Evaluations were conducted using
Mininet emulator [22] and the POX [23] controller on a machine with 4× (2.5 GHz Intel i7
CPU) processors and 8 GiB memory. Each switch in the above-mentioned topologies had
7 hosts, unless stated otherwise. Iperf was used to generate flows whose arrival followed
an exponential distribution. The Iperf permits specifying the flow size and communicating
units. The hosts in Mininet were divided into two separate sets (clients and servers),
and Iperf was configured to loop these two sets till all the members were visited and the
launched flows were completed. The clients and the servers were always selected from
different subnets. The flow IDs were directly collected from the Mininet and stored in
another file for comparison purposes. Our evaluation was based on network instances (i.e.,
one-shot). A new instance was run after ensuring that all flows of the ongoing instance
had arrived. Linux monitoring features were used to monitor the processing of evaluation
components such as Iperf PID of every running flow.

Figure 9. The average TCP throughput. LB = load balancer.

We start by evaluating the throughput gained by our algorithm before and after the
aggregation of the middleboxes in one subnet. Figure 10 shows the average throughput
of SALMA overtime compared to the normal approach of distributed middleboxes. On
average, SALMA achieved 100.5 Mbps compared to only 4.1 Mbps for the case of the
distributed middleboxes approach. To understand the throughput behavior, we analyzed
the TCP statistics, including the congestion window (CWND) and the round trip time (RTT)
of the TCP flows for the two scenarios. On average, the TCP congestion window in the case
of SALMA was 22.85 bytes. The higher CWND value in the case of SALMA, as shown in
Figure 11, is directly related to the higher throughput that we saw in Figure 10. We also
did a comparison of RTT between SALMA and the distributed middleboxes approach, as
shown in Figure 12. The mean RTT of SALMA is almost half of the mean RTT in the case
of distributed middleboxes. Moreover, the latter have a higher maximum RTT of 370 ms
compared to only 220 ms in the case of SALMA. We also compare the average CPU load of
the middleboxes after and before the aggregation to prove that SALMA is going to increase
the overall utilization. It is clear from Figure 13 that SALMA indeed increases the overall
utilization. Table 2 lists average throughput, congestion window, and round trip time for
SALMA, compared to the conventional method.

Systems 2022, 10, 165 16 of 23

Figure 10. Throughput of both SALMA and the distributed middleboxes approach.

Figure 11. TCP statistics for SALMA and the distributed middleboxes approach.

Figure 12. Comparison of round trip time (RTT) between SALMA and the distributed middle-
boxes approach.

Systems 2022, 10, 165 17 of 23

Figure 13. Percentage of CPU load for both SALMA and the distributed middleboxes approach.

Table 2. Average throughput, congestion window, and round trip time for SALMA compared to the
conventional method.

Metric SALMA Distributed Middleboxes

Throughput 100.5 Mbps 4.1 Mbps
Congestion Window 22.85 bytes 22.47 bytes

Round Trip Time (RTT) 8.9 ms 15.7 ms

7.3. Overhead Analysis

In this experiment, we focused on three key benchmark metrics: the time to setup the
network with proactive flow entries, the southbound communication overhead between
the controller and the switches, and the flow setup delay of every new flow. We used
Mininet to build large topologies, including Internet2/Abilene, Geant, and an abstracted
enterprise network for one of the large enterprises that participated in our survey, as shown
in Figure 8. We built the topology using Mininet where end nodes were connected via 1
Gbps links. In all the topologies, we gathered all the middleboxes into two subnets for
redundancy and load balancing. The network setup details are shown in Table 3.

Table 3. The network setup overhead in terms of time to install proactive flow entries and southbound
communication overhead.

Topology Switches Hosts MBs R_v1 R_v2 Setup (s) Overhead (KB)

Internet2 13 39 10 152 202 ≈0.043 ≈15, 20
Geant 26 96 10 268 318 ≈0.048 ≈26, 31

Enterprise 9 130 10 88 138 ≈0.038 ≈8, 13

Network setup time: In reactive mode, we needed to install proactive flow entries to
build a tunnel between every switch and the two middleboxes’ subnets. The reactive flow
entries were also used to dynamically balance the traffic load among the two subnets of
middleboxes. Furthermore, we proactively used the installed flow entries to maintain the
policy sequence of the flows that exit from the proxy. Since SALMA needs only a few flow
entries, the setup time was in the range of 30 ms, as shown in Table 3.

The southbound communication overhead: Since the sizes of the OpenFlow messages
are small and since only a few of them are needed to setup the network, the communication
overhead between the switches and the middlebox manager is small. Table 3 shows that
the communication overhead is in the range of few kilobytes.

Flow setup delay: In order to dynamically assign the new flows to one of the middle-
boxes’ subnets, the middlebox manager is involved in the flow setup process. We built a

Systems 2022, 10, 165 18 of 23

simple topology in Mininet to test the flow-setup process’s delay and compare it with the
proactive mode. The network was composed of only a single switch, a controller, five hosts
(h1–h5), and one server (h6). We tested the effect of the flow-setup process on round-trip
time; where the flow entry expiration time was 55 s. The flow-setup delay was zero in the
proactive mode, since the flow entries were already installed, and there was no need to
communicate with the controller to set up a flow. The comparison is shown in Figure 14.
The average flow-setup delay for the reactive scenario was 3.3 ms.

Figure 14. The effect of flow-setup on round trip time.

8. Related Work

In the literature, middleboxes attracted a remarkable amount of research. These
research works span over three main categories: function-level integration, traffic detouring,
and resource optimization. We also briefly discuss middlebox integration tools towards the
end of this section.

Function-level Integration:
The idea of function-level integration was invented by the authors of CoMb [4]. From

a practical survey on a very large enterprise, they found that the enterprise network
presents low utilization of middleboxes’ hardware resources. To increase the utilization,
they proposed a scheme to integrate more than one middlebox type into a single general-
purpose hardware device. For instance, the proxy server, WAN optimizer, VPN server,
firewall, and IDS can be combined into a single hardware box to share their resources. A
spatial load-balancing mechanism was proposed, along with a shim layer to maintain the
policy sequence. A similar solution to CoMb is xOMB [25], an eXtensible Open MiddleBox
software framework, which focuses on middleboxes’ programmability and flexibility on
commodity servers.

Similarly, a new extension of Click [26] named ClickOS [27] is a virtualized middlebox
platform that is able to run hundreds of parallel middleboxes’ functions without introducing
significant delay. On top of KVM and Intel DPDK library, Hwang et al. introduced a
high performance network virtualization platform to enable seamless integration of data
plane functions with virtual machines [28]. Li et al. introduced Rubik [29], which is a
domain-specific language similar to P4 [30], made to enable efficient programming and
easy customization of middleboxes’ functions. It is very clear that integrating different
functions of middleboxes into a single machine causes multiple challenges, including
security, availability, and integrity. Precisely, this type of integration results in having the
super middlebox as a single point of failure due to misconfiguration, software bugs, or
malicious breaches. This is what SALMA avoided.

Middleboxes in their current state need top-down development, including their place-
ment in the network [31] and their stack code [4,25,27–29]. The middleboxes’ replacement
enforces integration either physically, as in SALMA, or functionally, as in CoMb [4]. The
integration at the function level requires tackling the issues of packet latency [31], secu-
rity [32], and compatibility [11]. The researchers mitigated these challenges by improving
the packet processing speed [11,33,34] or migrating some functions out of the middle-
boxes hardware [35]. Moreover, the adoption of network virtualization technologies and

Systems 2022, 10, 165 19 of 23

programmable appliances enabled network developers to invent new protocols and ser-
vices [29]. On the contrary, the middleboxes need to parse and read the packets of these
protocols without redesigning them from scratch [29,36,37].

Traffic Detouring: In traffic detouring schemes, there are two approaches. The first
approach keeps the middleboxes in their locations and migrates the traffic. In the other
approach, the middleboxes are migrated to the cloud, and the internal traffic is detoured
through the Internet. The authors of pLayer [7] proposed the Layer-2 mechanism to route
traffic through a sequence of middleboxes connected to a policy-based switch. In their
solution, they plugged out the middleboxes in the flow path and plugged them into the
policy-based switch, where they were re-programmed to maintain the sequence policy.
Even though this solution addresses several middlebox challenges, it did not tackle the
following: load-balancing, utilization, and cost challenges. SIMPLE [10] is a middlebox
control-plane layer that enables network administrators to enter the middleboxes’ policy
chain in a friendly manner; the underlying modules (ResMgr, DynHandler, and RuleGen)
convert these policies into OpenFlow forwarding rules after taking into consideration the
network topology, switch TCAM capacity, and middlebox processing limitations. StEER-
ING [3], on the other hand, exploits SDN features to provide the network operators the
flexibility to route the traffic between middleboxes while they are in their places. The
authors of FlowTags [5] proposed a solution to provide the network with a flow-tracking
mechanism to secure coherent policy enforcement with the existence of dynamic traffic mod-
ifications. We followed the same context of these solutions as we utilized the decoupling of
control and data planes in our solution.

Other solutions took a more radical direction by moving middleboxes from inside the
enterprise network to the cloud and directing the internal traffic through the Internet to the
middleboxes located in the service provider’s network [8,9]. Additionally, they proposed
several solutions to mitigate the extra delay of routing the internal traffic to the cloud. Given
the current and forecast size of the middlebox market [2], the hard-to-modify dedicated
hardware middleboxes, the growing rigorous security practices, and the severe resistance to
deploying radical solutions, the valuable solutions above will likely face serious hindrances
in terms of resilience and security concerns, to being adopted. As an alternative, we
propose a more practical solution that can make use of the resources available. In most
cases, the available resources of switch hardware are enough to install the OpenFlow
protocol. Additionally, the powerful hardware resources of available middleboxes can be
utilized to integrate other middleboxes of the same type. In the worst case, the proposed
solution can have more than one middlebox of the same type in the same subnet, and the
middlebox manager will classify and steer the traffic of each type.

Resource Optimization: The invention of NFV and middlebox function virtualization
enabled researchers to reduce the end-to-end delay by optimizing the middleboxes’ policy-
chain assignments [12]. This vital dimension of research started by tackling the keystone
challenge, which is the modeling of the policy chain [38–43]. Mehraghdam et al. [38]
formulated the policy chain by utilizing a context-free language. Zhang et al. [44] modeled
the placement of virtual functions as a variant of the famous discrete optimization problem
(i.e., bin-packing problem). The researchers found that there is a constant relation between
optimizing policy-chain assignment and middleboxes’ placement. Liu et al. [45] modeled
the middlebox placement problem as a binary programming problem which is NP-hard.
The authors proposed two heuristic solutions: greedy algorithm and simulated annealing.
Pei et al. [46] benefited from deep reinforcement learning in finding the optimal solution
for the middlebox placement problem. Ma et al. [47] introduced a new optimization model
for the middlebox placement problem that takes into account the effects of traffic variability.
Their main objective was augmenting the link utilization. Further details could be found
in [31].

As an alternative, we propose a more practical solution that aims to meet the goals men-
tioned earlier (high utilization and cost reduction) through minimal adoption constraints.
SALMA re-employs the resources available in a more efficient manner. Enterprise networks

Systems 2022, 10, 165 20 of 23

have several sizes of middleboxes scattered all over the network. These middleboxes are
gathered in multiple subnets and deliberately integrated to serve all expected flows.

Middlebox Integration Tools: The firewall rules verification procedure is employed to
verify that the existing firewall rules permit all packets that need to be permitted and deny
all packets that need to be denied. In cases of redundancy, the firewall rules are examined
to verify that no rule in a firewall is redundant. In this research field, there is much research
on integrating the rules of firewalls and verifying their validity [48–50]. The authors of [48]
proposed a firewall compressor by using dynamic programming techniques. In the same
context, the authors of [49] formulated the firewall rules as a quantified Boolean formula
(QBF) optimization problem, and introduced a new solution that can discover redundant
rules in a given ACL. The authors of [50] proved that the firewall verification procedure
and redundancy checking are in fact equivalent and give the same results. In this work, we
followed the same procedure when we integrated the firewalls’ ACLs.

Traffic Management and SDN: Researchers proposed utilizing SDN to achieve cen-
tralized and efficient control of the traffic of data centers, enterprises, and wide area
networks [51]. Since the users have different needs, their traffic presents unequal charac-
teristics. SDN services showed remarkable performance figures in identifying the flow
classes and managing them accordingly [52,53]. On the other hand, the network designers
expect the traffic to show a uniform workload between subnets/racks. However, Google,
Facebook, and Microsoft researchers discovered a biased traffic workload, and the uniform
structure of a wired cloud network is not efficient in dealing with it [54]. As a remedy,
wireless networks (mmWave [55] and FSO [56,57]) were used to offer high-speed yet elastic
topology. The topology reconfiguration needs to supply rapid responses and deliberate
routing decisions to optimally utilize the available resources. Consequently, SDN is used to
collect network statistics and offer fine-grained topology management. Moreover, wireless
networks are used for non-data traffic, such as network management traffic [58,59].

9. Conclusions and Future Directions

Middleboxes are considered an essential part of current network infrastructure, since
they provide critical services, such as security, performance enhancement, and traffic
shaping. We found that the cost of middleboxes in today’s networks is close to the cost
of L3 routers. Furthermore, middleboxes are topology-dependent, as they usually reside
between trusted and untrusted networks. Hence, their availability is a serious concern and
has a severe impact on network operation. Given the rapid growth of SDN solutions and the
recent advances in middlebox configuration management, the consolidation of middleboxes
is becoming easier than before. In this work, we introduced a new practical solution, called
SALMA, that addresses several challenges associated with middleboxes, including cost, low
utilization, load balancing and topology-dependent deployment. Middleboxes of the same
type are consolidated into a single middlebox, and the policy sequence is encoded in the
packet address and into the separated tables of the middleboxes’ subnet switch. Various
types of middleboxes are aggregated into multiple subnets, and the middlebox manager is
responsible for forwarding the traffic to the right middleboxes’ subnet, and balancing the
traffic load among them.

In the future, we are planning on studying the optimal placement of the middleboxes’
subnets and the optimal members in every subnet. Additionally, it is interesting to look at
the possibility of integrating SALMA with the emerging network security solutions, such
as the intelligent security operations center (iSOC).

Author Contributions: Conceptualization, A.A. and A.S.; methodology, A.A.; software, A.A.; valida-
tion, A.A. and A.S.; formal analysis, A.A.; data curation, A.S.; writing—original draft preparation,
A.A.; writing—review and editing, A.S.; visualization, A.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Systems 2022, 10, 165 21 of 23

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 On the contrary, out-scope flows are the ones that the security policies do not require to be examined by any of the middleboxes.
2 The administrator can use power management applications to optimize the middleboxes’ power consumption.
3 The value of τ depends on the workload time resolution, which appears on the system logs, as shown in previous figures.

References
1. Sherry, J.; Hasan, S.; Scott, C.; Krishnamurthy, A.; Ratnasamy, S.; Sekar, V. Making Middleboxes Someone else’s Problem:

Network Processing As a Cloud Service. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, 2012, SIGCOMM ’12, Helsinki, Finland, 13–17 August 2012;
pp. 13–24.

2. Cloud Security Market to Be Worth $12 Billion by 2022, Here’s Why. Available online: https://www.techrepublic.com/article/
cloud-security-market-to-be-worth-12-billion-by-2022-heres-why/ (accessed on 3 August 2022).

3. Zhang, Y.; Beheshti, N.; Beliveau, L.; Lefebvre, G.; Manghirmalani, R.; Mishra, R.; Patneyt, R.; Shirazipour, M.; Subrahmaniam, R.;
Truchan, C.; et al. StEERING: A software-defined networking for inline service chaining. In Proceedings of the 2013 21st IEEE
International Conference on Network Protocols (ICNP), Goettingen, Germany, 7–10 October 2013; pp. 1–10.

4. Sekar, V.; Egi, N.; Ratnasamy, S.; Reiter, M.K.; Shi, G. Design and Implementation of a Consolidated Middlebox Architecture. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI’12, San Jose, CA, USA,
25–27 April 2012; p. 24.

5. Fayazbakhsh, S.K.; Chiang, L.; Sekar, V.; Yu, M.; Mogul, J.C. Enforcing Network-wide Policies in the Presence of Dynamic
Middlebox Actions Using Flowtags. In Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, NSDI’14, Seattle, WA, USA, 2–4 April 2014; pp. 533–546.

6. Patel, P.; Bansal, D.; Yuan, L.; Murthy, A.; Greenberg, A.; Maltz, D.A.; Kern, R.; Kumar, H.; Zikos, M.; Wu, H.; et al. Ananta: Cloud
Scale Load Balancing. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, Hong Kong,
China, 12–16 August 2013; pp. 207–218.

7. Joseph, D.A.; Tavakoli, A.; Stoica, I. A Policy-aware Switching Layer for Data Centers. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM ’08, Seattle, WA, USA, 17–21 August 2018; pp. 51–62.

8. Son, J.; Buyya, R. A Taxonomy of Software-Defined Networking (SDN)-Enabled Cloud Computing. ACM Comput. Surv. 2018,
51, 59. [CrossRef]

9. Nobach, L.; Hohlfeld, O.; Hausheer, D. New Kid on the Block: Network Functions Visualization: From Big Boxes to Carrier
Clouds. SIGCOMM Comput. Commun. Rev. 2018, 46, 7. [CrossRef]

10. Qazi, Z.A.; Tu, C.C.; Chiang, L.; Miao, R.; Sekar, V.; Yu, M. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, Hong Kong, China, 12–16 August 2013;
pp. 27–38.

11. Fei, X.; Liu, F.; Zhang, Q.; Jin, H.; Hu, H. Paving the Way for NFV Acceleration: A Taxonomy, Survey and Future Directions.
ACM Comput. Surv. 2020, 53, 73. [CrossRef]

12. Fulber-Garcia, V.; Duarte, E.P.; Huff, A.; dos Santos, C.R. Network Service Topology: Formalization, Taxonomy and the CUSTOM
Specification Model. Comput. Netw. 2020, 178, 107337. [CrossRef]

13. Savi, M.; Tornatore, M.; Verticale, G. Impact of processing costs on service chain placement in network functions virtualization.
In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), San
Francisco, CA, USA, 18–21 November 2015; pp. 191–197. [CrossRef]

14. Cerović, D.; Del Piccolo, V.; Amamou, A.; Haddadou, K.; Pujolle, G. Fast Packet Processing: A Survey. IEEE Commun. Surv. Tutor.
2018, 20, 3645–3676. [CrossRef]

15. Li, P.; Wu, X.; Ran, Y.; Luo, Y. Designing Virtual Network Functions for 100 GbE Network Using Multicore Processors. In
Proceedings of the 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Beijing,
China, 18–19 May 2017; pp. 49–59. [CrossRef]

16. Li, Y.; Miao, R.; Kim, C.; Yu, M. FlowRadar: A Better NetFlow for Data Centers. In Proceedings of the 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), Santa Clara, CA, USA, 16–18 March 2016; pp. 311–324.

17. Palkar, S.; Lan, C.; Han, S.; Jang, K.; Panda, A.; Ratnasamy, S.; Rizzo, L.; Shenker, S. E2: A Framework for NFV Applications. In
Proceedings of the 25th Symposium on Operating Systems Principles; Association for Computing Machinery: New York, NY, USA,
2015; pp. 121–136. [CrossRef]

18. Kancherla, M.; Jayant, J.; Sengupta, A. Bypassing a Load Balancer in a Return Path of Network Traffic. US Patent 10,212,071,
19 February 2019.

https://www.techrepublic.com/article/cloud-security-market-to-be-worth-12-billion-by-2022-heres-why/
https://www.techrepublic.com/article/cloud-security-market-to-be-worth-12-billion-by-2022-heres-why/
http://doi.org/10.1145/3190617
http://dx.doi.org/10.1145/3243157.3243164
http://dx.doi.org/10.1145/3397022
http://dx.doi.org/10.1016/j.comnet.2020.107337
http://dx.doi.org/10.1109/NFV-SDN.2015.7387426
http://dx.doi.org/10.1109/COMST.2018.2851072
http://dx.doi.org/10.1109/ANCS.2017.15
http://dx.doi.org/10.1145/2815400.2815423

Systems 2022, 10, 165 22 of 23

19. OpenFlow Discovery Protocol and Link Layer Discovery Protocol. Figshare. Available online: https://groups.geni.net/geni/
wiki/OpenFlowDiscoveryProtocol#WhatisLLDP (accessed on 3 August 2022).

20. Mahajan, R.; Wetherall, D.; Anderson, T. Understanding BGP Misconfiguration. SIGCOMM Comput. Commun. Rev. 2002, 32, 3–16.
[CrossRef]

21. Network Firewall Security Management Software. Available online: https://www.solarwinds.com/security-event-manager/
use-cases/firewall-security-management (accessed on 3 August 2022).

22. Handigol, N.; Heller, B.; Jeyakumar, V.; Lantz, B.; McKeown, N. Reproducible Network Experiments Using Container-based
Emulation. In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’12, Nice, France, 10–13 December 2012; pp. 253–264.

23. POX. Available online: https://github.com/noxrepo/pox (accessed on 3 August 2022).
24. iPerf. Available online: https://iperf.fr/ (accessed on 3 August 2022).
25. Anderson, J.W.; Braud, R.; Kapoor, R.; Porter, G.; Vahdat, A. xOMB: Extensible Open Middleboxes with Commodity Servers. In

Proceedings of the Eighth ACM/IEEE Symposium on Architectures for Networking and Communications Systems, ANCS ’12,
Austin, TX, USA, 29–30 October 2012; pp. 49–60.

26. Kohler, E.; Morris, R.; Chen, B.; Jannotti, J.; Kaashoek, M.F. The Click Modular Router. ACM Trans. Comput. Syst. 2000, 18, 263–297.
[CrossRef]

27. Martins, J.; Ahmed, M.; Raiciu, C.; Olteanu, V.; Honda, M.; Bifulco, R.; Huici, F. ClickOS and the Art of Network Function
Virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, NSDI’14,
Seattle, WA, USA, 2–4 April 2014; pp. 459–473.

28. Hwang, J.; Ramakrishnan, K.K.; Wood, T. NetVM: High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. IEEE Trans. Netw. Serv. Manag. 2015, 12, 34–47. [CrossRef]

29. Li, H.; Wu, C.; Sun, G.; Zhang, P.; Shan, D.; Pan, T.; Hu, C. Programming Network Stack for Middleboxes with Rubik. In
Proceedings of the 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), online, 12–14 April
2021; pp. 551–570.

30. language, P. Available online: https://p4.org/ (accessed on 3 August 2022). .
31. Kaur, K.; Mangat, V.; Kumar, K. A comprehensive survey of service function chain provisioning approaches in SDN and NFV

architecture. Comput. Sci. Rev. 2020, 38, 100298. [CrossRef]
32. Poh, G.S.; Divakaran, D.M.; Lim, H.W.; Ning, J.; Desai, A. A Survey of Privacy-Preserving Techniques for Encrypted Traffic

Inspection over Network Middleboxes. arXiv 2021, arXiv:2101.04338.
33. Liu, G.; Ren, Y.; Yurchenko, M.; Ramakrishnan, K.K.; Wood, T. Microboxes: High Performance NFV with Customizable,

Asynchronous TCP Stacks and Dynamic Subscriptions. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, Budapest, Hungary, 20–15 August 2018; pp. 504–517. [CrossRef]

34. Tootoonchian, A.; Panda, A.; Lan, C.; Walls, M.; Argyraki, K.; Ratnasamy, S.; Shenker, S. ResQ: Enabling SLOs in Network
Function Virtualization. In Proceedings of the 15th USENIX Conference on Networked Systems Design and Implementation,
NSDI’18, Renton, WA, USA, 9–11 April 2018; pp. 283–297.

35. Li, Y.; Chen, M. Software-Defined Network Function Virtualization: A Survey. IEEE Access 2015, 3, 2542–2553. [CrossRef]
36. Jamshed, M.; Moon, Y.; Kim, D.; Han, D.; Park, K. MOS: A Reusable Networking Stack for Flow Monitoring Middleboxes. In

Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation, NSDI’17, Boston, MA, USA,
27–29 March 2017; pp. 113–129.

37. Khalid, J.; Gember-Jacobson, A.; Michael, R.; Abhashkumar, A.; Akella, A. Paving the Way for NFV: Simplifying Middlebox
Modifications Using StateAlyzr. In Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, Santa Clara, CA, USA, 16–18 March 2016; pp. 239–253.

38. Mehraghdam, S.; Keller, M.; Karl, H. Specifying and placing chains of virtual network functions. In Proceedings of the 2014 IEEE
3rd International Conference on Cloud Networking (CloudNet), Luxembourg, 8–10 October 2014; pp. 7–13. [CrossRef]

39. Moens, H.; Turck, F.D. VNF-P: A model for efficient placement of virtualized network functions. In Proceedings of the 10th
International Conference on Network and Service Management (CNSM) and Workshop, Rio de Janeiro, Brazil, 17–21 November
2014; pp. 418–423. [CrossRef]

40. Sahhaf, S.; Tavernier, W.; Rost, M.; Schmid, S.; Colle, D.; Pickavet, M.; Demeester, P. Network service chaining with optimized net-
work function embedding supporting service decompositions. Comput. Netw. 2015, 93, 492–505. doi: 10.1016/j.comnet.2015.09.035.
[CrossRef]

41. Moens, H.; De Turck, F. Customizable Function Chains: Managing Service Chain Variability in Hybrid NFV Networks. IEEE
Trans. Netw. Serv. Manag. 2016, 13, 711–724. [CrossRef]

42. Li, Y.; Xuan Phan, L.T.; Loo, B.T. Network functions virtualization with soft real-time guarantees. In Proceedings of the IEEE
INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA,
10–14 April 2016; pp. 1–9. [CrossRef]

43. Eramo, V.; Miucci, E.; Ammar, M.; Lavacca, F.G. An Approach for Service Function Chain Routing and Virtual Function Network
Instance Migration in Network Function Virtualization Architectures. IEEE/ACM Trans. Netw. 2017, 25, 2008–2025. [CrossRef]

https://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol#WhatisLLDP
https://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol#WhatisLLDP
http://dx.doi.org/10.1145/964725.633027
https://www.solarwinds.com/security-event-manager/use-cases/firewall-security-management
https://www.solarwinds.com/security-event-manager/use-cases/firewall-security-management
https://github.com/noxrepo/pox
https://iperf.fr/
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1109/TNSM.2015.2401568
https://p4.org/
http://dx.doi.org/10.1016/j.cosrev.2020.100298
http://dx.doi.org/10.1145/3230543.3230563
http://dx.doi.org/10.1109/ACCESS.2015.2499271
http://dx.doi.org/10.1109/CloudNet.2014.6968961
http://dx.doi.org/10.1109/CNSM.2014.7014205
http://dx.doi.org/10.1016/j.comnet.2015.09.035
http://dx.doi.org/10.1109/TNSM.2016.2580668
http://dx.doi.org/10.1109/INFOCOM.2016.7524563
http://dx.doi.org/10.1109/TNET.2017.2668470

Systems 2022, 10, 165 23 of 23

44. Zhang, Q.; Xiao, Y.; Liu, F.; Lui, J.C.; Guo, J.; Wang, T. Joint Optimization of Chain Placement and Request Scheduling for Network
Function Virtualization. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 731–741. [CrossRef]

45. Liu, J.; Li, Y.; Zhang, Y.; Su, L.; Jin, D. Improve Service Chaining Performance with Optimized Middlebox Placement. IEEE Trans.
Serv. Comput. 2017, 10, 560–573. [CrossRef]

46. Pei, J.; Hong, P.; Pan, M.; Liu, J.; Zhou, J. Optimal VNF Placement via Deep Reinforcement Learning in SDN/NFV-Enabled
Networks. IEEE J. Sel. Areas Commun. 2020, 38, 263–278. [CrossRef]

47. Ma, W.; Beltran, J.; Pan, D.; Pissinou, N. Placing Traffic-Changing and Partially-Ordered NFV Middleboxes via SDN. IEEE Trans.
Netw. Serv. Manag. 2019, 16, 1303–1317. [CrossRef]

48. Liu, A.X.; Torng, E.; Meiners, C.R. Firewall Compressor: An Algorithm for Minimizing Firewall Policies. In Proceedings of the
INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008.

49. Zhang, S.; Mahmoud, A.; Malik, S.; Narain, S. Verification and synthesis of firewalls using SAT and QBF. In Proceedings of the
2012 20th IEEE International Conference on Network Protocols (ICNP), Austin, TX, USA, 30 October–2 November 2012; pp. 1–6.

50. Acharya, H.B.; Gouda, M.G. Firewall verification and redundancy checking are equivalent. In Proceedings of the INFOCOM,
Shanghai, China, 10–15 April 2011; pp. 2123–2128.

51. Benzekki, K.; El Fergougui, A.; Elbelrhiti Elalaoui, A. Software-defined networking (SDN): A survey. Secur. Commun. Netw. 2016,
9, 5803–5833. [CrossRef]

52. AlGhadhban, A.; Shihada, B. FLight: A Fast and Lightweight Elephant-Flow Detection Mechanism. In Proceedings of the 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 1537–1538.
[CrossRef]

53. Bouacida, N.; Alghadhban, A.; Alalmaei, S.; Mohammed, H.; Shihada, B. Failure mitigation in software defined networking
employing load type prediction. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris,
France, 21–25 May 2017; pp. 1–7. [CrossRef]

54. Roy, A.; Zeng, H.; Bagga, J.; Porter, G.; Snoeren, A.C. Inside the Social Network’s (Datacenter) Network. SIGCOMM Comput.
Commun. Rev. 2015, 45, 123–137. [CrossRef]

55. Terzi, C.; Korpeoglu, I. 60 GHz wireless data center networks: A survey. Comput. Netw. 2021, 185, 107730. [CrossRef]
56. Celik, A.; AlGhadhban, A.; Shihada, B.; Alouini, M.S. Design and Provision of Traffic Grooming for Optical Wireless Data Center

Networks. IEEE Trans. Commun. 2019, 67, 2245–2259. [CrossRef]
57. AlGhadhban, A.; Celik, A.; Shihada, B.; Alouini, M.S. LightFDG: An Integrated Approach to Flow Detection and Grooming in

Optical Wireless DCNs. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1153–1166. [CrossRef]
58. AlGhadhban, A. F4Tele: FSO for data center network management and packet telemetry. Comput. Netw. 2021, 186, 107711.

[CrossRef]
59. AlGhadhban, A. FSO Clusters for Data Center Network Management and Packet Telemetry. In Proceedings of the SIGCOMM ’20

Poster and Demo Sessions; Association for Computing Machinery: New York, NY, USA, 2020; pp. 9–11.

http://dx.doi.org/10.1109/ICDCS.2017.232
http://dx.doi.org/10.1109/TSC.2015.2502252
http://dx.doi.org/10.1109/JSAC.2019.2959181
http://dx.doi.org/10.1109/TNSM.2019.2946347
http://dx.doi.org/10.1002/sec.1737
http://dx.doi.org/10.1109/ICDCS.2018.00161
http://dx.doi.org/10.1109/ICC.2017.7997295
http://dx.doi.org/10.1145/2829988.2787472
http://dx.doi.org/10.1016/j.comnet.2020.107730
http://dx.doi.org/10.1109/TCOMM.2018.2885808
http://dx.doi.org/10.1109/TNSM.2019.2959740
http://dx.doi.org/10.1016/j.comnet.2020.107711

	Introduction
	Motivation
	Survey Details
	Middleboxes Cost
	Utilization of Middleboxes
	Middleboxes' Placement

	Problem Statement
	SALMA Data-Plane
	Middlebox Manager
	Implementation
	Policy Challenge
	SALMA v1
	SALMA v2

	Consolidation Challenge
	Classifier-Shim Layer
	Load-Balancing Challenge

	Evaluation
	Proof of Concept
	SALMA Evaluation
	Overhead Analysis

	Related Work
	Conclusions and Future Directions
	References

