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Abstract: Reuse of design knowledge in systems engineering (SE) has been identified as a potential
way to decrease design cycle times and development costs of engineering projects. Design repositories
(DR) have been proposed and demonstrated as a way to store design knowledge in a reusable way.
Yet little attention has been devoted specifically to the search methods used to identifying useful
information within a DR, or how search method effectiveness can be measured or assessed. This
paper demonstrates a method for assessing the effectiveness of search approaches within DR. The use
of this method in assessing multiple search algorithms is demonstrated by example. The assessment
method presented herein can also be used to identify the characteristics of repository data or intended
reuse applications that affect the performance of search methods. These results can be used by
engineers to inform selection of search methods based on anticipated future DR use cases.
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1. Introduction

The engineering community is reaching, or has passed, a volume of available technolo-
gies so vast that human designers cannot be relied on to recognize or identify the entire
set of feasible and valuable system designs that are possible given existing component
and subsystem technologies. To deal with the increasing body of human knowledge and
the limited mental capacity of humans, the scientific and engineering communities have
self-organized into domains. Domain boundaries, while not insurmountable, split the total
body of knowledge into more manageable pieces. Most engineers focus within a single
or a few domains. Such focus has the effect of limiting the available source technologies
and systems that individual engineers are familiar with or aware of, and therefore readily
able to integrate in pursuit of new system designs. Systems engineering as a discipline
offers a cross-domain perspective. However, limits of the human mind prohibit systems
engineers from having the necessary depth of knowledge in every domain required to fully
understand the available technologies in the domains relevant to the system of interest in a
specific scenario.

Current SE practices and available tools offer a limited ability to reuse design knowl-
edge, leading to a disconnect between the amount of knowledge leveraged during SE
projects and the portion of the cumulative body of knowledge that may be applicable to
the system of interest. This may result in additional rework, unrecognized design alterna-
tives, or both. To recognize relevant system design information from past efforts, systems
engineers currently need to recall applicable designs for reuse, scour existing models or
documents that they have access to, or rely on basic search tools. To increase efficiency,
a centralized location with flexible search methods is needed. DR are one available tool
that can serve as a centralized store of knowledge in a form chosen to enable reuse, either
by humans or computers.

A practical obstacle to knowledge reuse (KR) in SE is the collection and storage of
design knowledge, including system context, from completed and partially completed
projects. Design processes and the subsequent design artifacts vary by organization, change
over time, and may not be well documented or easily retrieved. Model Based Systems
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Engineering (MBSE) has increased the adoption of formal methods for the documentation
of system designs. The SE community has turned to MBSE to manage complexity, maintain
consistency, and assure traceability during system development [1]. With the adoption of
MBSE within the SE community, digital system models created using MBSE tools create
artifacts representing system designs. The use of MBSE artifacts to populate DR offers a
potential way to leverage existing designs in support of reuse for future projects.

Research into DR, including their structure and functions, is active and ongoing. No
research was identified that included assessment techniques or developed metrics for
determining the efficacy of presented DR structures and functions. In order to determine
the adequacy of existing DR approaches, guide future research into DR and assess the
results of that research, such techniques and metrics are needed. This paper will provide
an overview of existing research related to DR and outline their desired functionality.
One required function, search (i.e., retrieval) is discussed, and a method is presented for
assessing search methodologies within DR. The proposed methodology is demonstrated
using three example search methods within an existing DR.

1.1. Background and Related Research

For the purpose of this article, there are three primary research areas that should
be understood. These research areas are: systems engineering, design information reuse,
and DR. Systems engineering includes the design and development of complex systems.
Design information reuse is the process of leveraging existing knowledge from previous
work to reduce the overall effort required to complete the design phase of a systems
engineering project, and may reduce overall project risk by using existing and proven
design solutions. DR are a means of capturing and storing design information to support
later use or reuse.

1.2. Systems Engineering

Systems engineering is generally concerned with the application of systems thinking
and systems theory in defining, exploring, and resolving problems. Utilization of defined
and documented systems engineering processes are integral to that approach. SE processes
are well established and supported by years of research and practice. This article will
not directly address a specific SE process, instead it addresses one fundamental stage of
the system life cycle: system design. The interdisciplinary nature of SE as a field often
causes system design artifacts to span multiple engineering domains and represent design
characteristics and information at different levels of maturity and fidelity. This article
focuses on the opportunity to structure design information from previous SE efforts for
reuse, the ways to search stored design information to return useful information for a
subsequent engineering problem, and contributes to the SE state-of-the-art by presenting a
method to assess the performance of search methods within a DR.

1.2.1. Model Based Systems Engineering

As SE evolved as a discipline in the latter half of the twentieth century, process and
method standards were established that generated and relied upon a large number of
physical documents. As part of the SE process, practitioners spent a large amount of
time writing, validating, and verifying conformity within and between documents and
artifacts, and the benefits of those efforts were considered self-evident [2]. In the 1990s and
2000s, the inefficiency of document-based engineering became apparent to the engineering
community. For large complex systems, requirements and specifications could exceed
thousands of pages, and requirement sets were often ambiguous, incomplete or even
contradictory. By relying upon humans to validate design documents, SE processes were
labor intensive and introduced opportunities for stakeholder misinterpretation of problem
and solution system characteristics. To improve the efficiency of SE and enable engineering
teams to tackle more complex engineering problems, MBSE was presented as an alternative
to document-based systems engineering.



Systems 2022, 10, 178 3 of 24

The use of MBSE is one way that the SE community can better manage complexity,
maintain consistency and assure traceability during all phases of the system life cycle [1,3].
A system model provides systems engineers and other stakeholders with a shared view
of a system that supports communication, coordination, analysis, and decision making,
and serves as the authoritative source of system information [4]. For readers interested in
expanding their understanding of MBSE, the motivation for and current state of MBSE are
described in [1,5], and INCOSE’s Vision 2035 [6]; early industry practices are described
using survey results in [7]; and core MBSE concepts are described in [8,9].

In the forward looking INCOSE Vision 2020 publication, MBSE is defined as “the
formalized application of modeling to support system requirements, design, analysis, veri-
fication and validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [10]. At the 2007 INCOSE Symposium,
the benefits of MBSE were presented as follows:

• Improved communications among the development stakeholders (e.g., the customer,
program management, systems engineers, hardware and software developers, testers,
and specialty engineering disciplines).

• Increased ability to manage system complexity by enabling a system model to be
viewed from multiple perspectives, and to analyze the impact of changes.

• Improved product quality by providing an unambiguous and precise model of the
system that can be evaluated for consistency, correctness, and completeness.

• Enhanced knowledge capture and reuse of the information by capturing information
in more standardized ways and leveraging built in abstraction mechanisms inherent
in model driven approaches. This in-turn can result in reduced cycle time and lower
maintenance costs to modify the design.

• Improved ability to teach and learn systems engineering fundamentals by providing a
clear and unambiguous representation of the concepts.

Many of the envisioned MBSE capabilities found in the INCOSE Vision 2020 remain
beyond the state-of-the-art. While much progress has been made in the field of MBSE,
further maturation is necessary to realize the full benefits. In the fourteen years between
the release of INCOSE Vision 2020 and today, MBSE has grown from being a new initiative
to being viewed as imperative to the entire SE discipline. According to INCOSE’s Vision
2035, “the future of SE is model based, enabled by a major digital transformation” [6].

At the core of MBSE is the concept of a model. In SE, a model is a representation
of a system—an abstraction that suppresses certain details of the system. Models of a
system can be used to communicate within an engineering team or stakeholder community
and to predict properties or behaviors of modeled systems [11]. Models are a necessary
tool for representing complex subjects because the human mind has a limited capacity for
comprehension that is easily overwhelmed by the intricacies of complex systems [12,13].
Simplified models can be used to answer questions about the system under study in place
of the actual system [14,15]. Practicality demands that a model is easier to use than the
system under study, which leads to the abstraction of system detail out of the resulting
model [13].

As a method of communication, models require the user community to apply con-
sistent semantics and syntax to ensure alignment of shared understanding. The intended
meaning of the basic concepts of a model are referred to as the semantics of that model.
For complex concepts, or concepts that readily map to multiple semantics, a formal notation
of semantics is necessary to ensure that the understood meaning of a model is consistent
across stakeholders. This formal specification of a modeling approach, that explains the
base concepts of a model and how they relate to each other, is called a metamodel. Bézivin
and Gerbé [13] provide a succinct explanation of metamodels and how they relate to mod-
els and systems. In MBSE, systems are represented by models, which are expressed in a
modeling language that aligns to a defined metamodel and domain ontology [1].
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A modeling language serves as the formal basis for modeling tools and enables the
development of system models [3]. A modeling language is based on a metamodel [16].
To enable effective MBSE, a modeling language must be able to express the fundamental
concepts of SE. These concepts include system physical and conceptual hierarchies, con-
nections and interfaces within the system and between the system and its environment,
system functionality and resultant behavior, measurable system characteristics, and the
relationships among and between system requirements, design characteristics, analysis,
and verification [4].

The SE community has not reached consensus regarding a standard modeling lan-
guage underpinning MBSE efforts, and a number of modeling languages are used in widely
available system modeling tools. Models developed in one language may not transfer
between tools and can be misunderstood by stakeholders unfamiliar with the source mod-
eling language and extensions used by the model creators [1]. As the SE community
moves towards a standard modeling language for MBSE, the chosen modeling language
or languages will need to meet the requirements laid out by [4]. A number of modeling
languages have been used as the formal basis of commonly used MBSE tools, including
Unified Modeling Language (UML), Systems Modeling Language (SysML), Lifecycle Mod-
eling Language (LML), System Definition Language (SDL), and Object-Process Language
(OPL), among others.

Ontologies help to enable knowledge management by establishing domain concepts
in the form of terminologies, definitions, and relationships. Gruber [17] defines conceptual-
ization as “an abstract, simplified view of the world that we wish to represent for some
purpose”—in line with our definition of a model—and defines an ontology as the “explicit
specification of a conceptualization”. An ontology is then the explicit specification of a
model. Along with formally defined model semantics, ontologies support the distribution
and reuse of models by explicitly defining the information in the model [18]. Roussey [19]
provides an introduction and overview of ontologies and ontology engineering. Yang,
Cormican, and Yu [18] present a review of previous literature in the field of ontology
engineering relevant to SE.

Formal ontologies can provide a shared understanding of modeled concepts, and have
been proven as a means of improving consistency of modeling standards and model
interpretations [20]. By providing a consistent vocabulary that is absent of ambiguity,
ontologies can support interoperability between humans as well as between humans and
machines [19,21]. The interoperability enabled by a common terminology is central to
engineering knowledge reuse [22].

The value that ontologies provide, as compiled by [18], extends beyond the SE dis-
cipline. Ontologies provide a schema for knowledge graphs, which use a graph-based
data model to store large sets of data extracted and integrated from diverse sources of
data [23]. The state-of-the-art for knowledge graph concepts and processes are are described
in [24–27]. Smajevic and Bork [28] developed and demonstrated a platform to transform
models created using modern metamodeling platforms into knowledge graphs, and utilized
a set of 5000 UML models to detect model characteristics that may indicate weaknesses in
design known as “code smells”. Their demonstration of the use of knowledge graphs to
analyze UML models is relevant to SE because the most widely used modeling language in
SE, SysML, is an extension of UML.

The Web Ontology Language (OWL) is a knowledge representation language pub-
lished and maintained by the World Wide Web Consortium (W3C) [29]. OWL was devel-
oped to support machine processing of documented knowledge by allowing for the explicit
representation of terms and the relationships between terms in the form of an ontology.
The development and specification of OWL was heavily influenced by the DARPA Agent
Markup Language, DAML [30]. W3C maintains OWL specifications within the domain of
the “semantic web”, an effort with the goal of making internet data machine-readable. OWL
allows for individual users to define and share their own ontologies. The meta-metamodel
for OWL is the Resource Description Framework (RDF). RDF information is structured
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as statements about resources in the form of triples expressed as subject-predicate-object,
resulting in a “graph based data format which is schema-less and self-describing” [31].

The concept of knowledge graphs is an area of active research within SE. Blackburn
and Denno [32] demonstrate the use of semantic web technologies (OWL and RDF) to
develop interoperability between domain specific modeling tools and analysis tools [32,33].
Nassar and Austin [34] explored the use of RDF to structure requirements and component
properties as a graph and demonstrate component selection and tradespace analysis for a
home theater design problem using sequence inference analyses on the resulting graph.
Jenkins and Rouquette [35] demonstrate a technique for representing UML and SysML
in OWL, creating axioms within the resulting ontologies, and testing these axioms using
available OWL tools—a form of model validation. Shani [36] investigates reuse in MBSE,
and finds that MBSE projects create design representations that can be managed and queried
through the use of RDF and OWL for semantic mediation. Recent research into knowledge
graph applications within industry [37–39], recommendation systems [40], digital resource
discovery [41], and the population of knowledge graphs with information from patent
systems [42] are relevant to SE.

1.2.2. Model Based Systems Engineering Tools

As the state-of-the-practice of SE is transitioning from a document-based paradigm
to MBSE, many software solutions have become available in both the commercial space
and as free and open source software (FOSS). The capabilities, underlying data structure,
and interoperability of these programs varies across a wide spectrum. Development of
DR that can support and use data from multiple MBSE tools is currently in progress by
the authors.

A review of recent SE literature did not return an authoritative listing of the available
MBSE tools. Such a list would become obsolete without constant revision due to ongoing
development activities and the introduction of new tools. The information in this section
is not intended to offer a complete list of available MBSE tools at the time of authoring,
and is instead intended to provide the reader with the understanding that a large number
of MBSE tools are available to the SE community. A list of MBSE tools was compiled based
the work of [7,43], the Systems Engineering Tools Database managed by INCOSE and
Project Performance International [44], and the software marketplace and review website
G2 [45]. Tools which appeared in two or more of the source tool listings were further
reviewed, and pertinent information regarding the modeling language, ontology, and
and meta-metamodel of each tool is shown in Table 1.

A set of system models can be expressed in the form of a knowledge graph. A DR in the
form of a knowledge graph may store multiple system models as instances of one or more
ontologies expressed in one or more modeling languages and incorporating knowledge
from one or more domains. The myriad MBSE tools available for the SE community
leads to a knowledge graph composed of diverse ontologies and modeling languages.
The lack of underlying consistency in system model ontologies and modeling languages is
an obstacle to efficient aggregation, management, and utilization of knowledge created in a
heterogeneous set of MBSE tools.
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Table 1. Subset of available MBSE tools. Adapted from [43–45].

Defined Ontology Meta-metamodelProduct Name Vendor Modeling Language (Metamodel) Structure
SysML

Astah Change Vision, Inc. UML2 MOF2

SysML
Cameo Systems Modeler 3DS

UML2
MOF2

Capella Eclipse Foundation DSL Ecore

CORE Vitech SDL YES ERA

SysML
Cradle 3SL

UML2
MOF2

SysML

UML2Enterprise Architect Sparx Systems
BPMN

MOF2

GENESYS Vitech SDL YES ERA

Innoslate SPEC Innovations LML YES ERA

SysML

UML2Modelio Modeliosoft
BPMN

MOF2

SysML

UML2Papyrus Eclipse Foundation
BPMN

Ecore

SysML
Rhapsody Architect for SE IBM

UML2
Ecore

1.3. Design Reuse

Knowledge reuse, in the context of SE, refers to the reuse of design knowledge cap-
tured in previous efforts in support of a system design solution for another engineering
problem [46,47], and has the potential to improve the quality, cost, and schedule of engi-
neering projects. KR is the way that engineers avoid the colloquialism of ‘reinventing the
wheel.’ Reuse of knowledge and experience reduces the effort associated with design by
allowing engineers to avoid the mental and physical costs associated with initial invention
of constituent pieces of their system of interest. Reuse can range from the reuse of simple
tools and processes to the reuse of significant pieces of software or even entire systems
within a system of systems.

All modern engineering efforts involve some degree of KR. The degree to which
existing knowledge can be reused is determined by the applicability of information to the
problem of interest, the availability of that knowledge to the engineering team, the ability
of engineers to find the applicable knowledge, and their ability to make sense of it in
the context of their own work. KR can be applied across the system design process,
including decomposition of requirements, alignment of requirements to functions, mapping
of functions to components, and identification of potentially unrecognized relationships
among system components and attributes. Through KR, the quality of system design can
be improved by increasing the quantity of potential design solutions in design tradespaces.
The use of demonstrated design solutions and partial solutions can reduce design costs
and timelines provided the proper tool sets are in place to efficiently search, understand,
and repurpose data from a robust source of design knowledge.

One challenge with reusing SE knowledge is that much of this knowledge is stored
in engineers’ minds [48]. Demian [49] performed a series of interviews of professionals in
the architecture, engineering, and construction industries to support a study of knowledge
reuse. The survey results found that a substantial portion of reuse occurs through social
knowledge networks, e.g., recollection of previous projects and mentor-mentee relation-
ships. Internal knowledge reuse (i.e., reuse of knowledge from an engineers previous
experiences) is the most prevalent form of reuse due to the ease with which engineers
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can recall both items to reuse and the context of those items in their initial design en-
vironment [48]. The importance of context in the reuse of design knowledge is present
throughout previous works. To transform this knowledge into a form that can be applied
to appropriate problems in the future, knowledge must be made explicit and properly
documented [50].

As system complexity grows, the benefits of capturing, managing, and leveraging
information from previous experience grows. Accumulated information within SE can be
grouped into Knowledge and Know-How (K&KH). Knowledge represents information
that can provide a solution to problems and questions, while Know-How provides both
solutions and a manner in which to develop solutions [51]. Within SE, K&KH align roughly
to knowledge about a domain or system of interest and knowledge of systems engineering
activities, respectively, [52].

Regardless of the documentation method used to capture SE K&KH, the viability of
different reuse methods is affected by the source of information. Wu et al. [52] identify
three types of SE K&KH reuse, differentiated by attributes of the source of the informa-
tion: opportunistic reuse, when the source project for the information was not developed
with consideration for reusability; planned reuse, when the source project for the infor-
mation was developed with reuse in mind; and variance, when multiple projects share a
core knowledge base or model. Design repositories can support all three forms of reuse,
but primarily improves opportunistic reuse.

Cloutier and Verma [50] describe six methods of K&KH reuse, covering a range of
problem specificities. Heuristics offer general guidance across a range of applications [53].
Based on previous experience, heuristics provide guidance for situations with reasonable
but not absolute certainty of outcome when followed, and are sometimes called “rules
of thumb”. A trade-off of the ambiguity of heuristics is that they are fallible, sometimes
provided incorrect guidance when used in practice [54]. In addition to heuristics, templates
offer a basic starting point for a particular application, providing format but no guidance
regarding other design decisions. Templates have more specific applications than heuristics,
but do not provide significant direction aside from format. Processes offer a third a
form of reuse, defined as a “set of interacting activities, which transform inputs into
outputs” [50]. Processes are better specified than templates, as they describe part of
the applicable context (inputs and outputs), as well as a high-level structure. Fourth,
frameworks offer a reusable, “logical, organizing structure used to classify information,
concepts, data, etc.” [50]. Frameworks are an example of formalized and documented
engineering Know-How. Fifth, the authors discuss patterns in engineering, which is
expanded below. A collection of different patterns grouped by similarity of application,
called a pattern language, is the last method described.

Christopher Alexander [55] introduced a “pattern language” as a set of patterns that
helped to express design in terms of relationships between the parts of a building, and the
rules for applying those relationships in other contexts. Numerous works have asserted the
value of patterns in engineering and systems engineering [50,52,56,57]. Patterns, defined in
the context of System Architecture, are “a high-level structure, appropriate for the major
components of a system. [Patterns] express the relationship between the context, a problem,
and a solution, documenting attributes and usage guidance. Patterns are time-proven in
solving problems similar in nature to the problem under consideration” [50]. Patterns
support reuse by specifying a problem-solution pair with enough rigor to allow the same
solution to be applied with a degree of confidence to an identified set of applicable problems.
Patterns, while more specific in their application, are still a form of heuristic [58], and their
successful application is not guaranteed, and still requires good engineering judgement.

Wu et al. provide a summary of previous research into the application of patterns
for reuse in a MBSE environment [52]. The INCOSE MBSE Patterns working group,
co-chaired by Bill Schindel and Troy Peterson, has introduced and socialized Pattern
Based Systems Engineering, which seeks to improve working speed, expertise leverage,
and systems knowledge within the SE by orders of magnitude through the reuse of general
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system patterns [59]. Their work presents a methodology for development teams to take
generalized system-level models and customize and tailor these model patterns to meet
the needs of their specific system of interest. The working group envisions that this
effort will transition applicable MBSE projects from “learning to model” to “learning the
model”–reducing the technical barrier of new modeling tools and passing expertise between
teams and projects as patterns are improved. Kristin Giammarco presented an method for
identifying reoccuring architecture design aspects and documenting the identified aspects
as abstract patterns that can then be used as design rules by which design maturity can
be assessed [60]. The Object Management Group’s (OMG) Reusable Asset Specification
(RAS) provides a “set of guidelines and recommendations about the structure, content,
and descriptions of reusable software assets” [61]. The RAS addresses the elements of
reuse that apply to engineering and endeavors to support reuse by providing a standard
packaging for design knowledge storage and transfer. RAS meets the criteria outlined
by Alexandrian Patterns by including a problem and solution pair, as well as the context
for application of the solution to a similar problem, guidance for usage, and documented
attributes, which are stored as artifacts. Phister et al. have proposed a method to formalize
the capture of SE knowledge relying on a systems conceptual foundations and a SE pattern
catalogue [62].

The value of design reuse is evident [63] not only for SE in general, but for specialized
fields, such as MBSE, as they progress in maturity. To aid in that progression, engineers
have developed multiple supporting tools and techniques. One tool that is particularly
relevant to SE design knowledge reuse is DR.

1.4. Design Repositories

DR offer a centralized store of design knowledge in a form chosen to enable reuse,
either by humans or computers [64]. DR can be populated with design knowledge and
artifacts from completed or ongoing engineering efforts. DR are knowledge-based design
artifact modeling and storage systems that are used to aid in the collection, representation,
distribution, and reuse of design knowledge [64]. As with design libraries, DR increase the
amount of design knowledge readily available to individual engineers and designers or
design teams.

1.4.1. Design Repository Precursors

Early DR research extended the concepts of a design catalogue and a design prototype.
Design catalogues, introduced by Roth [65], support engineers in the design process by
providing a collection of solutions to fundamental design problems [66]. A design prototype
“provides [the basis for the start and continuation of a design] by bringing all the requisite
knowledge appropriate to the design situation together in one schema” [67]. Research
related to design catalogues published since the 1990s has focused on the use of early
design catalogue concepts to structure knowledge accumulated during research into other
topics or the use of existing catalogues, with no research into the advancement of design
catalogue generation methods [68].

The Defense Advanced Research Projects Agency (DARPA) funded a series of re-
search projects in the late 1990s that set the academic foundation for DR within SE. These
efforts evolved into Active Catalog [69–71], the National Institute of Standards and Tech-
nology Design Repository Project (NIST-DRP) [72], and the Collaborative Device Modeling
Environment (CDME) [73].

The desire to reduce engineering time spent on communication of design knowledge
through improved design knowledge reuse led to the development of design libraries to
support the selection and design of components [72]. The NIST-DRP perceived the value of
DR as providing a clear data source for information presented to human designers. Initially,
the objective for the NIST-DRP was a set of case studies with formal presentations of system
form and function , from which engineers could abstract information for application to other
design efforts. However, the primary contribution of the initial NIST-DRP effort was the
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creation and demonstration of a data language for modeling design knowledge. The effort
chose to sacrifice language features that enabled efficient and effective computational
processing in order to provide rapid and easy human comprehension. Later NIST-DRP
efforts recognized the importance of effective computational processing in support of
computer based design generation [64].

Concurrently with the NIST-DRP effort, [69] developed and presented a prototype
design library called ‘Active Catalog’. Active Catalog is a direct progenitor of SE DR, devel-
oped to support the engineering of components by improving the capacity of designers
to reuse detailed design knowledge. The prototype system stored physical attributes of
components, as well as function and behavior data for each part. By combining component
data with structured domain knowledge, the prototype allows for more effective search
than traditional queries or keyword matching. The intent of the Active Catalog prototype
work was to support a “try-before-you-buy” methodology for engineering design .

Design libraries, as demonstrated by Active Catalog, offered an improvement over
alternative data sources, namely general internet queries, dedicated parts referral services
(which connected engineers to parts companies based on keywords, but did not store
component level information), and centralized parts catalogs, which worked as a central
clearing house and provided part level data from suppliers that were enrolled [69]. Each of
these alternatives offered limited data for identified components, and search coverage was
limited by keyword association and published part data.

The Active Catalog research team identified several high-level requirements for the
Active Catalog prototype’s approach to knowledge management. For the prototype to
meets its intended purpose, it needed to meet the following design requirements [70,71]:

1. Active and Dynamic Data. Information in the Active Catalog supports usability by
humans and computers. In addition to being used for human understanding, the in-
formation is to be used as inputs and building blocks during application development.
The Active Catalog program supports dynamic data through the processing of data in
user environments to meet needs of a specific user.

2. Composable and Integrated Data. Active Catalog was built as a standalone application
but assumes that data will be shared and used cooperatively. The envisioned system
architecture would hold information on a set of trusted-sites, which would provide
reusable modules and ontologies to support integration.

3. Multi-dimensional Data, Sharable in Multiple Domains. Active Catalog information
represents physical parts in addition to software components. The objects represented
in the Active Catalog have multiple views and interact with other objects across
multiple domains, which is represented in the Active Catalog.

4. Syntactically and Semantically Accessible Data. Active Catalog makes use of both
traditional search techniques, leveraging keyword search and statistical correlation
techniques, and semantic search capability leveraging ontologies and mappings be-
tween components and functions.

5. Interoperable Information, Executable in Distributed Environments. Active Catalog
information was intended to be used in a distributed fashion, and the system archi-
tecture needs to account for the transmission and use of data in multiple pieces of
software.

Active Catalog included a set of simulations that could be populated with inputs
from selected components and ran to generate predicted performance of components
acting as a subsystem. Simulations were feasible due to the component set included in
the library belonging to a small set of part types, with understood physical properties
and interactions. The prototype DR did not provide any generalized methods for the
construction of ontologies or flexible simulations. At the time of publication, the Active
Catalog included 300 classes of pumps, 3000 pump attributes, 72 classes of motors, and
66 attributes for motors [74], while these required attributes were generated to support
a DR intended mostly to be used for human component selection in support of design,
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they were suitable to serve as a DR for computer-based design synthesis for more complex
pump systems.

Active Catalog allowed for search based on product class and product attribute ontolo-
gies organized in a graphical hierarchy (a hierarchy in which each node can have multiple
parents), which allows users to narrow search criteria as they browse. Product, application,
and functional relationships and specific component attributes could be leveraged as search
criteria. Combinations of any of the above search criteria could be used to narrow the
search. Flexibility in search criteria increases the effectiveness of search within Active Cata-
log by allowing the user multiple ways to screen out unwanted results. The structure of
information in the Active Catalog into ontologies increased search coverage by leveraging
domain knowledge to bridge differences between the level of abstraction present in search
criteria and the design data stored in the repository [70].

Ling et al. [71] provide a demonstration of the use of Active Catalog in support of the
electro-mechanical design of pump and rotor systems. Active Catalog included simple
taxonomies for types of pumps and their attributes, and a semantic network for pump
knowledge, shown in Figure 1. The authors demonstrate that these connected layers
of knowledge allow the system to deduce materials from function, such as if a pump
will be used to transfer corrosive fluid, then the pump needs to be corrosive resistant.
This lets users describe the application of a component they are searching for without
having to know all of the technical terms or implied requirements associated with meeting
those specifications.

Figure 1. Pump semantic network. Adapted from [71].

In a submission to the 1998 American Society of Mechanical Engineers (ASME) De-
sign Engineering Technical Conference, a group of researchers described the capabilities
provided by Active Catalog as follows [74]:

• creating queries for parts based on their intended use rather than merely parametric
specifications;

• refining those queries to take account of constraints imposed by other components;
• providing multi-modal information to help designers assess and compare candidate

parts; and
• generating simulation models of candidate parts and integrating them to provide

simulation models of candidate systems.
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Active catalog provided a theoretical and demonstration foundation for more com-
prehensive efforts in the development of tools for reuse of design information systems
engineering, including DRs.

Research performed in support of the NIST-DRP, led by Simon Szykman, distinguishes
DR from traditional design databases across several characteristics:

• Traditional design databases contain only a limited representation of an artifact (such
as drawings or CAD models), while design repositories attempt to capture a more
complete design representation, and may include function, behavior, design rules,
simulations, and models.

• Traditional design databases contain a limited set of data types and tend to be static
sources. Design repositories may include formal data and information models, mathe-
matical simulation models, and more.

• Design repositories support retrieval and reuse of design knowledge, the representa-
tion of physical and functional hierarchies, behavior and performance simulations,
and some degree of design reasoning automation.

The primary benefits of a design repository relate to supporting distributed design
teams, increasing the amount of available design information, and providing engineers
with the ability to retrieve and reuse design knowledge [64].

Further research in DR built upon the initial efforts of Active Catalog, NIST-DRP,
and CDME. Szykman [64] described interfaces that were developed to support the creation
and navigation of design knowledge models in DR and their role in DR software architec-
tures. Bohm and Stone [75] identified shortcomings in computer generated designs from
DR due to physical relationships between components not being captured in repositories if
two components were not functionally related. Their work described and implemented the
addition of “supporting functions” to DR, which capture the physical functions of compo-
nents, such as how a screw couples two physical components together. Bohm and Stone
hosted their repository system on the internet, supporting design knowledge exchange
between researchers in academia and industry [76]. Bohm et al. [77] present the necessary
data schema required to capture the fundamental design knowledge necessary for a robust
DR, expanding upon earlier works.

Bohm, Vucovich, and Stone [78] demonstrate the application of function-component
analysis leveraging morphological matrix techniques and chi-matrix techniques to generate
design concepts from a DR. Wilson et al. [79] built a DR for information from the biological
and engineering domains and leveraged information modeling to allow retrieval of po-
tential opportunities for biomimicry based on search terms from the engineering domain.
Their effort demonstrated cross-domain applications of DR, and applications of logic across
a functional hierarchy. Bohm et al. [80] used DR to generate concept designs in support
of assessing environmental impacts of potential design solutions during the conceptual
design phase. Ferrero et al. [81] generated a sustainability DR to support life cycle analysis
of a set of 47 consumer products, ranging in complexity from a soda can to a 3D printer.
They leveraged the DR as data source for multiple assessments of environmental impact.

The utility of DR, particularly for computer based or computer enabled design, re-
quires consistency. Standard modeling languages used in the field of Systems Engineer-
ing—including UML, SysML, LML, SDL, and OPL—are used to improve consistency across
models. The use of system design information captured during MBSE efforts to populate
a DR with a set of system models using a heterogeneous set of modeling languages is
currently being researched by the authors as a tool to support the reuse of MBSE design
information generated by modern SE practices.

1.4.2. Design Repository Takeaways

DR have been introduced, extended beyond their initial instantiations, and use cases
have been demonstrated in existing research. To date, the area of DR functional assessment
remains mostly unresearched. Assessing the ability of DR to meet their intended purposes
is necessary to evaluate available and emerging DR technologies and identify areas for
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functional improvement. Consistent with the goals of DR as defined by Szykman [64] and
Bohm and Stone [75], DR should be assessed on their ability to perform the following tasks:

1. Capture
2. Store
3. Search / Retrieve
4. Present
5. Distribute
6. Export
7. Synthesize

This paper provides a novel approach to assessing DR search functionality. The method
may be applied to compare competing search algorithms within a single DR, compare
search method effectiveness across multiple DR, or compare effectiveness of multiple search
methods for subsets of designs within a single DR.

2. Materials and Methods

As shown in the previous section, reuse of knowledge compiled and generated during
the design phase of systems engineering efforts requires a search and retrieval method.
For subsets of the knowledge stored in a DR to be presented, distributed, or exported,
users need a way to identify what information in the DR is relevant to their specific
problem. These search functions place constraints on the information in the DR in order
to remove extraneous information and reduce the returned information to a manageable
subset. Search functions are designed to return results that best fit user defined input
criteria. Within a SE DR, these inputs may be system characteristics from a system of
interest, with the goal of finding similar existing systems, or data from an unknown system,
with the goal of identifying a system that meets the provided criteria.

The Active Catalog prototype efforts included work to maximize the effectiveness
of search functions within the application [70]. The measures used to assess search ef-
fectiveness were hit ratio, the proportion of items returned in a search which are useful,
and coverage, the proportion of useful items in the total search domain that were returned
in the search result. The authors found that an ideal search method, whether it is support-
ing a human user or computer application, maximizes both hit ratio and coverage while
consuming as little processing power as possible .

For the purposes of this article, system design information will be treated as a di-
rectionless graph, with system entities represented by nodes (or vertices), connected by
edges, representing relationships of any type, with attributes associated with both nodes
and edges. Applications of graph theory to systems engineering are well described in
Harrison [82]. As an example, LML defines entities as “something that can exist by itself
and is uniquely identifiable,” and includes the following 12 entity types: Action, Artifact,
Asset, Characteristic, Connection, Cost, Decision, Input/Output, Location, Risk, Statement,
and Time, as well as multiple children entities. In addition to entities, LML includes rela-
tionships and attributes. LML modifies the standard entity, relationship, attribute approach
slightly by including attributes on relationships, providing the adverb (relationship at-
tribute), as well as the noun (entity), relationship (verb), and attribute (adjective) language
elements needed to describe a system in detail [83].

A system design, as stored in the DR, is defined by the set of nodes, edges, and at-
tributes associated with any of the constituent nodes and edges. Through this paper,
the notation for System S, made of the set of nodes (N) and edges (E) will be denoted as
S = (NS, ES). Search criteria, defined as a non-empty set of nodes, will be denoted as (NC).
The following sections describe the context of DR search methods, to include potential
challenges that must be overcome, proposed metrics for measuring search methodology
performance, and a novel approach for assessing search performance.
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2.1. Criteria Robustness

Within a DR, search methods need to identify systems that meet search criteria regard-
less of the portion of the returned system that is specified in the search criteria. Though it is
a trivial matter to identify a system in a DR when presented the entire system specification,
where (NC) = (NS), search criteria cannot be expected to fully match a system in the
repository. Criteria robustness defines the proportion of system information met as search
criteria, defined as R(NC, NS) = (NC ∩ NS)/NS. High criteria robustness requirements
limit the utility of search methodologies.

2.2. Criteria Accuracy

Not all applications of search methodologies require an exact and complete match
between search criteria and solution systems. The ability to provide partial solutions when
complete solutions are not readily available may offer utility to users of DR. To account for
the possibility of imperfect matches, search algorithms must be capable of providing results
when the provided search criteria are not perfectly reflective of designs within the repository.
Examples of sources for incorrect data include completely incorrect criteria (intentional or
accidental, such as a false recollection of a system detail), instances where search criteria are
related but not the same as information within the DR (e.g., two different parts within the
same part family), or due to different specification of search criteria (e.g., “electric motor”
vs. “electric motor unit”). Domain specific ontologies can be used to supplement design
details stored in a repository to improve coverage by providing information regarding the
relationships between similar concepts [71].

2.3. Assessment Measures

In order to assess and compare search methodologies, multiple metrics are useful
depending upon the application. For the purposes of this paper, success is treated as binary,
with the score of a search methodology defined as the likelihood of success over a large
set of trials with varied criteria robustness and accuracy. A search success is defined as
when the search algorithm returns the expected system design, which is known a priori,
for a given criteria set. Search effectiveness will vary by search method, DR structure,
and the constituent systems that are included in the DR. The bounds of search robustness
and search criteria accuracy used for assessment can be tailored to reflect the expected use
environment for the DR.

ScoreMethod =
∑b

a ∑d
c ∑n

1 TS(
b−a

k + 1
)
(d− c + 1)(n)

where:

a, b are the bounds of the number of search criteria
c, d are the bounds of search criteria accuracy
k is the size of search criteria accuracy levels
TS is the search iteration success (binary 1 or 0)
n is the number of search iterations per robustness and accuracy level

2.4. Search Method Assessment Procedure

The proposed process for generating the search method score is iterative. For each
search iteration, a target system from the DR is identified. Search criteria are selected
based on the search robustness and search criteria accuracy parameters. Search criteria
are generated for each search iteration by selecting system characteristics associated with
the target system (i.e., a subset of connected nodes comprising a system) at random,
with quantity equal to the robustness level. When criteria accuracy is less than 100%,
a random number between 0 and 1 is compared to the search accuracy parameter for each
criteria node. When the random number exceeds the search accuracy, a random node from
the entire DR is selected, otherwise a node connected to the target system is selected. This
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step serves to generate inaccurate data for a portion of search criteria. Upon generating
the criteria for each search iteration, the criteria are provided to the search methodology.
The results of the search method are compared to the target system, with a match resulting
in success (i.e., TS = 1). This process is depicted in Figure 2.

Figure 2. Search assessment method.

When feasible, this methodology should include multiple iterations over each system
in the DR at each robustness and accuracy level. The random selection of search criteria
introduces variability into the methodology scores returned, which can be reduced by
collecting a larger sample. Upon completion of all iterations, the search method scores of
all candidate methods can be compared to identify the best performing method for the DR
in question for the range of informational accuracy and search criteria robustness assessed.

2.5. Case Study

The authors applied the search assessment methodology presented above to a graph-
based design repository (GBDR) populated with data from the Oregon State University
Design Repository (OSU-DR). A description of the GBDR structure, content, and existing
search methodologies are described below, followed by the results of the search assess-
ment methodology.

2.6. Case Study Design Repository

A locally hosted GBDR was constructed using a Neo4j graph database. The GBDR
was populated with data from the OSU-DR, which was extracted from the public OSU-DR
using Python web-scraping techniques. The OSU-DR project, originally funded by the
National Science Foundation, involved researchers from the University of Missouri–Rolla,
The University of Texas at Austin, and the National Institute of Standards and Technology.
At the time data was extracted for the purposes of this paper, the OSU-DR contained product
design knowledge for 182 systems, stored across multiple database tables, as shown in
Figure 3 [77]. Artifact and function data were imported into the GBDR. Artifacts include
entire systems, sub-assemblies, and single components, as well as the relationships between
these entities.



Systems 2022, 10, 178 15 of 24

Figure 3. Graphical view of repository database tables. Adapted from [77].

The populated GBDR contains 3961 nodes, representing each system as well as the
related artifacts and functions, and 16,656 edges, representing the relationships between
nodes. As an example, the GBDR information for the system “digital scale” is shown
in Figure 4. The top-level system node is shown in blue, with artifacts (representing the
hierarchy of physical subsystems and individual parts) in brown and functions in green.
The total number of nodes in the GBDR is lower than the combined total number of rows in
the OSU-DR artifact and function tables because artifacts repeated across multiple systems
in the OSU-DR are represented by a single node in the GBDR.

Figure 4. Neo4j visualization of ‘digital scale’ system information.
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2.7. Assessed Search Methodologies

The goal of search methodologies in the GBDR presented above is to identify and
return systems that best meet provided search criteria, defined as a system including
nodes that best match the provided input criteria. Three search methodologies have been
implemented in the GBDR and are described below.

2.7.1. Complete Input Criteria Coverage

The first search methodology uses simple query logic to identify the list of systems
in the GBDR that meet all search criteria provided. In cases where multiple systems meet
all search criteria, a single system is selected randomly and returned as the search result.
When no system in the DR is found that meets all the search criteria, no result is returned.

2.7.2. Frequency Weighted Set Comparison

Among the systems in the GBDR, many artifacts and functions are found within
multiple systems. Of the 5928 total artifacts, 2802, or 47%, appear in multiple systems. There
are 3703 distinct artifacts, with each distinct artifact appearing in an average of 1.6 systems.
Functional reuse is much more common within the GBDR, with a total of 1909 appearances
of 47 distinct functions, making the average number of system occurrences for each function
40.7 systems.

Artifact and function overlap between systems causes nodes that are shared by mul-
tiple systems to appear more frequently when system information is randomly selected.
This has the effect of reducing the predictive value of an artifact that appears in a signif-
icant number of systems, as it is associated with a larger portion of the DR population.
An example from the OSU-DR is the artifact “screw”, which appears in 20 systems, making
the “screw” artifact less of a distinguishing characteristic than the artifact “scanner belt
tensioner” that is uniquely aligned with a single system.

Systems with shared nodes have a higher likelihood of meeting randomly selected
search criteria than if the systems constituent nodes did not appear in other systems. To ac-
count for this fact, as well as the effect of node frequency on appearance likelihood, a search
method was developed that provided additional weight to less frequently appearing nodes
and increased the selection standard for systems with many nodes or nodes that occur
across multiple systems in the DR. The search methodology relies on calculating node
frequency and system scores prior to running the search algorithm, which may not be
feasible in large or continuously changing DR. This search methodology is described below.

Prior to Search Procedure
Steps 1 and 2 occur before the search methodology can be conducted and must be

updated when changes to the DR are made.

1. Each node is assigned a score equal to the inverse of the node frequency across all
systems in the DR. node_scorei =

1
count(i)

2. Each system is assigned a score equal to the sum of the node scores for all nodes
associated with that system. system_scorej = ∑ node_scoreji

Search Methodology

3. The search algorithm generates a fit score for each system in the DR equal to the sum
of the node score for the intersect of nodes provided as search parameters and the
nodes associated with the system. ReturnMax

(
∑ node_scorei
system_scorej

)
|NS ∪ NC

2.7.3. Jaccard Similarity

A third search method, based on the work of Paul Jaccard [84], calculates the Jaccard
similarity index for the search criteria and each system in the repository, defined as the ratio
of the quantity of nodes included in their intersection to the quantity of nodes included in
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their union. The system with the highest Jaccard similarity index is returned by the search
methodology as the result.

ReturnMax
(
|NS ∩ NC|
|NS ∪ NC|

)
3. Results

The methodology introduced in Section 2 was applied to the three search methods
available in the example GBDR. Search criteria input bounds {a,b} were set at {1,7}, search
accuracy bounds of {0,1} were used for {c,d}, with search accuracy level size of of k = 0.05.
Iterations per robustness and accuracy level was set at 10 for each system in the GBDR,
resulting in a total n = 1470 search iterations for each system model in the DR. For each of
the three search algorithms, 267,540 searches were performed. The resulting search method
scores are presented in Table 2.

Table 2. Case study assessment results.

Search Methodology Search Method Score

Best Complete Match 22%
Frequency Weighted Set Comparison 52%
Jaccard Similarity 65%

Search method scores were generated for each robustness and accuracy level to allow
for further investigation of performance. This detailed output was used to further investi-
gate the suitability of each search method, and to identify changes in performance across
the assessed input ranges. Figures 5–7 show these scores graphically with a series for each
criteria robustness level, using data criteria accuracy and search method score along the
horizontal and vertical axes, respectively.

Figure 5. Results for search using best complete match.
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Figure 6. Results for search using frequency rated set comparison.

Figure 7. Results for search using Jaccard similarity.

4. Discussion

Jaccard Similarity was found to be the best performing search method across the range
of inputs, followed by Frequency Weighted Set Comparison, with the Best Complete Match
methodology performing the worst. These results would not necessarily hold for a DR
with a different structure or a different set of data.

Counter to intuition, the Best Complete Match search method performed worse as
additional search criteria are added, unless data accuracy is greater than 90%. As shown in
Figure 5, when search accuracy is below 90%, every additional input criteria beyond the
second reduces the search success rate further. The intended application of the GBDR in
supporting early design work through the identification of potential reuse sources suggests
that users are unlikely to know exactly what they are searching for, resulting in data
accuracy below 100%. We concluded that the Best Complete Match search method was
not ideally suited for the GBDR, regardless of the high search success rate seen when data
accuracy is 100%.

The Frequency Rated Set Comparison search method performed slightly better than
the Best Complete Match search method when a single search criterion was provided.
As additional search criteria were included, the search success rate for this search method
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increased at all levels of data accuracy. Improvements are visually detectable in Figure 6,
with decreasing marginal benefit seen for each added search criteria. When applied to
the GBDR data set, the maximum search method score received was 91%, relative to
100% for Jaccard Similarity and 96% for Best Complete Match. Despite a lower maximum
specific performance than the Best Complete Match search method, the Frequency Rated Set
Comparison search method was deemed a better search method for a GBDR due to higher
performance when multiple search criteria were provided and more resilient performance
across a range of data accuracy levels.

Reviewing the detailed data generated for the Jaccard Similarity search method,
the most readily apparent result is that success rates converge on 100% for every number of
search criteria provided. Benefits from additional search criteria are seen for the range of
data accuracy between 5% and 95%—any value between complete accuracy and completely
random inputs—with reducing marginal benefits of additional search criteria throughout
this range. The Jaccard Similarity search method was superior to both evaluated alternative
search methodologies for all inputs where data accuracy was greater than 0%.

To demonstrate the superiority of the Jaccard Similarity search method, a comparison
of search methods with consistent input criteria is shown in Figure 8 and summarized in
Table 3. The effect of changes in data accuracy on performance of the three search methods
can be seen. With five search criteria, the Jaccard Similarity search method is best across all
levels of search criteria data accuracy, maintaining roughly 15% higher success rates than
the Frequency Weighted Set Comparison search method where search criteria accuracy is
greater than 30%. The Best Complete Match search method has worse performance than
either of the other search methods when input criteria accuracy is below 100%.

Figure 8. Results by search method and input criteria data accuracy using five input criteria.

Table 3. Search method scores for various criteria data accuracy (DA) ranges.

Search Method 1 0 ≤ DA ≤ 100 50 ≤ DA ≤ 100 DA = 100

Best Complete Match 22% 39% 90%
Frequency Weighted Set Com-
parison 52% 73% 87%

Jaccard Similarity 65% 88% 100%
1 For each search method and data accuracy pair, a total of n = 1820 searches were performed with five search
criteria for search robustness level between 1 and 7 (inclusive).
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If user search habits were known for the GBDR used as a case study, a subset of
robustness and data accuracy level inputs could be used to generate the method scores
used to compare performance. Since the GBDR used does not have an active user base, this
was not possible at the time results were generated. Table 3 provides three potential data
accuracy ranges, and the resulting method scores for the three GBDR search methodologies
examined, while Jaccard Similarity is consistently the best search method, the ranking
of the remaining search methodologies is not consistent across the evaluated subsets.
These results show the importance of evaluating performance of search methodologies in
operationally representative conditions, which may provide different results than when
performance is measured for the entire set of conditions within theoretical boundaries.

5. Conclusions

As MBSE tool adoption continues to expand, the available engineering design knowl-
edge that can feasibly be captured and reused will similarly grow. Reuse tools, such as DR,
will be necessary if the SE community wishes to efficiently reuse this knowledge. This paper
presents and demonstrates a methodology for assessing search algorithm performance
within DR. If DR continue to be built as tools for the SE community, instantiations should
be built with multiple search methodologies to support different applications. Assessment
procedures, such as the one introduced in this paper, should be included in DR tools,
to provide users with effectiveness metrics reflective of their use habits and DR contents.

5.1. Future Work

This article has demonstrated the alignment between systems engineering, knowledge
reuse, DR, and DR assessment methodologies. There are a variety of potential research
subjects with direct applicability to DR development and utilization. The areas of GBDR,
design knowledge synthesis, and context-based search all offer potential new ways to reuse
design knowledge. The following research areas will further increase the value of existing
knowledge in solving future engineering problems.

5.1.1. Graph Based Design Repositories

DR in existing research have required a consistent ontology or informational model
for the systems which are included. As MBSE tools are introduced, it is unlikely that this
requirement can be met because of the myriad informational structures and schema used
in different tools. GBDR offer an opportunity to store data from systems that do not have a
consistent defined structure or ontology. Machine learning and big data techniques may be
able to glean useful information from these irregular data sets, allowing for consumption
of a larger portion of existing data sets comprised of MBSE artifacts with heterogeneous
ontologies or modeling languages. The adaptation and application knowledge-based
engineering and design automation techniques within MBSE would expand the state-of-
the-art for both MBSE and knowledge-based engineering [85].

5.1.2. Context-Based Search

DR presented in existing literature have stored limited system design information and
have not demonstrated search methods that consider system context. The importance of
context in the reuse of design knowledge is present throughout previous works. The pre-
sented search methodologies, and the assessment approach introduced are only concerned
with system entities – future work could expand these methods to include relationships
and attributes as well. Context-sensitive search, with search criteria (Nc,Ec), representing
both system entities and relationships, will be examined in future works.

5.1.3. Design Knowledge Synthesis

By using algorithms to identify and/or suggest matches between nodes in multiple
system models, synthesis of information from multiple source models will become possible,
which will benefit systems engineers by identifying potential system design solutions that
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cannot be feasibly identified using DR as currently described in the literature. Search
methods that return synthetic results including data from multiple MBSE tool data sources
is a promising area for further research. This example of applying knowledge-based
engineering and design automation techniques from the engineering design discipline
to SE problems aligns with the Digital Engineering Roadmap developed by the Systems
Engineering Research Center [86].
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