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Abstract: Background: Time series analyses on the relationship between nurse staffing and inpatient
care quality are rare due to inconsistent frequencies of data between common observations of nurse-
staffing (e.g., monthly) and inpatient care quality indicators (e.g., quarterly). Methods: In order to
deal with the issue of mixed frequency data, this research adopted the MF-VAR model to explore
causal relationships among nurse staffing, inpatient care quality, and hospital competition under
the global budget payment scheme of Taiwan’s healthcare system. Results: Our results identified
bi-directional causation between nurse staffing and patient outcomes and one-way Granger causality
running between nurse staffing and reimbursement payments for inpatient care services. Impulse-
response analyses found positive (negative) effects of the patient-to-nurse ratio on adverse patient
outcomes (reimbursement payments) in all types of hospitals and detrimental effects of adverse
patient outcomes on the patient-to-nurse ratio in medical centers and regional hospitals across a
12-month period. Conclusions: These findings suggest that nurse staffing is an essential determinant
of both patient outcomes and reimbursement payments. Strategic policies such as direct subsidy
and hospital accreditation for appropriate nurse staffing levels should be implemented for medical
centers and regional hospitals to mitigate the harmful effects of adverse patient outcomes on nurse
staffing.

Keywords: nurse staffing; inpatient care quality; hospital competition; Mixed Frequency VAR; global
budget payment scheme; National Health Insurance

1. Introduction

In their pioneering work on the relationship between hospital nurse staffing and pa-
tient outcomes and factors influencing nurse retention, Aiken and her colleagues identified
the patient-to-nurse ratio (PNR, hereafter) as an essential determinant of patient outcomes
and nurse retention [1]. A crucial conclusion of their study is that each additional patient
per nurse is associated with higher patient mortality in the US. Continuing this line of
research, one strand of studies provided evidence of the positive effect of hospital nurse
staffing levels on patient mortality worldwide, such as in Australia [2,3], Belgium [4],
Canada [5], Chile [6], England [7], Finland [8], Korea [9], Norway [10], Taiwan [11–13],
and a group of European and OECD countries [14–18]. Another strand of the literature
investigated the relationships between nurse staffing levels and various nursing-sensitive
patient outcomes such as fall, pressure ulcer, medication error, various infections, physical
restraint, missed observation, failure to respond to patients, length of stay, readmission to
hospitals, emergency department attendance, etc. [2,19–25].

It is important to address that hospital competition under a publicly financed health-
care system may create a vicious cycle. In general, the cycle starts with quantity competition
in inpatient care services leading to a high PNR and then further worsens patient outcomes
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or inpatient care quality (ICQ, hereafter). For example, Taiwan’s National Health Insurance
(NHI, hereafter) system is a publicly financed healthcare system delivering universal cov-
erage of healthcare services with moderate cost-sharing for all Taiwanese residents. The
beneficiaries of Taiwan’s NHI pay 5.17% of the payroll income for the regular insurance
premium rate and 2.11% of the non-payroll income (such as bonuses, part-time income,
professional service income, dividend income, interest income, and rental income) for a sup-
plementary premium rate [26]. Additionally, the covered benefits of Taiwan’s NHI system
include outpatient care, inpatient care, emergence department (ED, hereafter) care, dental
care, eye care, maternity delivery, physiotherapy and rehabilitation services, home health
care, chronic mental illness, prescription drugs, and traditional Chinese medicine [26].
Nevertheless, the copayment for the outpatient care (ED care) per visit varies from USD
1.67 (USD 5.00) to USD 14.00 (USD 18.33), and the co-insurance rate for inpatient care per
diem varied from 5% to 30% depending on various healthcare providers and the length of
stay, respectively [26].

As with other publicly financed healthcare systems such as the National Health
Services (NHS, hereafter) and Social Health Insurance systems (SHI, hereafter), it is ex-
pected that financial difficulty will be the most challenging issue under Taiwan’s NHI
system [26–29]. In order to constrain the upward trend in healthcare expenditure, the
Taiwan National Health Insurance Administration (NHIA, hereafter) applied the Global
Budget Payment Scheme (GBPS, hereafter) to reimburse for healthcare services in the
hospital sector since 2002 [26,30–32]. In general, the GBPS assigns a fixed total budget for
inpatient care services with hospitals being reimbursed on a fee-for-service basis, and it
follows that hospitals have strong incentives to compete with quantity rather than quality
of inpatient care services in order to obtain target revenues under a fixed total budget of
healthcare expenditure [26,30–32].

It is also important to point out that the hospital sector of Taiwan’s NHI system consists
of three different types of hospitals, these being district hospitals (delivering secondary
care), regional hospitals (providing tertiary care), and medical centers (handling the most
complicated illnesses and supporting teaching and research in clinical practices) [29,30]. In
order to prevent the negative effects of hospital (quantity) competition on patient outcomes
under the GBPS of Taiwan’s NHI system, Taiwan’s NHIA imposed a PNR mandate such
that the PNR of the day-shift should be below 7 for hospital wards in the three different
types of hospitals. Nonetheless, the mean PNR of the three shifts (i.e., day, afternoon, and
night shifts) within a daily cycle can legally vary from 9, 12, and 15 for hospital wards in
medical centers, regional hospitals, and district hospitals, respectively [33]. This mandated
PNR policy, in fact, is not restrictive, but flexible, for hospitals to adjust their nurse labor
force to cope with severe quantity competition of inpatient care services in the hospital
sector of Taiwan’s NHI system. Therefore, the most likely response of hospitals to market
(quantity) competition under the GBPS of Taiwan’s NHI system is to shift their PNRs
upward in order to maintain their own share of a fixed total budget [34]. It follows that a
heavier workload imposed on incumbent nurses would not only increase the likelihood
of nurses’ burnout but also worsen patient outcomes [1,35]. Therefore, a vicious cycle
originating from hospital (quantity) competition under the GBPS should be anticipated
which will deteriorate ICQ through inappropriate nurse staffing levels under Taiwan’s NHI
system.

From the perspective of preventing the vicious cycle triggered by hospital (quantity)
competition under the GBPS, the surveillance of PNR time series at hospital wards is an
important managerial strategy for the healthcare administration to use to maintain high
ICQ, better nursing work environments, and a reasonable inpatient care expenditure (ICE,
hereafter) to reimburse hospitals for their inpatient care services. Nevertheless, time series
analyses on the relationship between nurse staffing and patient outcomes are limited in the
literature. Some studies relating to the nurse staffing and patient outcomes nexus focused
on identifying potential structural changes in ICQ indicators due to initiating new nurse
staffing regulations [19,36], and other research applied conventional time series methodolo-
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gies (such as the trend and seasonality decomposition method and the latent growth model)
to investigate the determinant of patient outcomes and trajectory of ICQ indicators [37,38].
Although these time series studies provide some justification for nurse staffing as an im-
portant determinant of patient outcomes, these studies were not grounded in a time series
theoretical foundation with regards to three aspects: First, the causal linkage between nurse
staffing and patient outcomes cannot be established in these studies, especially for the
existence of bidirectional causality between these two variables. Second, these studies fail
to provide precautionary information in terms of the propagation mechanism of a nurse
staffing policy shock across a period of time. Third, a recent study proposed by Winter
and his colleagues cautioned against a potential data aggregation effect on estimations of
the nurse staffing and patient outcomes relationship [39]. Moreover, nurse staffing and
patient outcomes can be reported in different time frequencies. For example, variables for
nurse staffing and patient outcomes may be reported either monthly or quarterly. In order
to perform time series analyses with all variables being single frequency, these studies
aggregated high frequency data (e.g., monthly data) into low frequency data (e.g., quarterly
data). Such temporal aggregation was proven to have some adverse impacts on statistical
inferences of time series analyses [40,41].

In this study, we specifically investigate the interdependences between nurse staffing,
patient outcomes, and hospital competition under the GBPS of Taiwan’s NHI system. The
motivation of this study is three-fold: First, Taiwan has experienced a fast demographic
transition from an aging society to an aged society within 25 years (from the period of
1993~2018), and it is projected to become a hyper-aged country in 2025 [42]. The growth
of the aging population will burden Taiwan’s NHI system in terms of rising healthcare
expenditures. It can be expected that more stringent cost-containment policies will be
enforced to suppress an upward trend of healthcare expenditures, and it is predictable
that such policies would create an even more competitive market for hospitals. Second,
although Taiwan’s NHI system has been successful in providing comprehensive healthcare
services for all Taiwanese residents, the quality of healthcare services has been challenged
regarding various dimensions of the OECD Health Care Quality Indicator Project [43].
Third, the nurse labor participation rate (defined as the total number of incumbent nurses
divided by the total number of licensed nurses) has been around 60% since 2005, mean-
ing that approximately 40% of total licensed nurses are reluctant to engage in nursing
works [44]. It was reported that 89.76% of local hospitals had difficulty recruiting nurses in
Taiwan, and the shortage of nurses and the poor environment at nursing workplaces are
overwhelming problems negatively influencing the appropriate deployment of nursing
staffs in the hospital sector of Taiwan’s NHI system [34,45,46].

In order to incorporate mixed frequency data into the investigation of the causal
relationship between nurse staffing and patient outcomes under the GBPS of Taiwan’s NHI
system, we first adopted the Mixed Frequency Vector Auto-regressive (MF-VAR, hereafter)
model proposed by Ghysel and his colleagues [47,48] to test the causal linkages among
nurse staffing (measured by monthly PNR), patient outcomes (measured by two quarterly
ICQ indicators defined in the next section), and hospital (quantity) competition (measured
by quarterly real ICE per admission) based on three pairs of causal relationships: (1) PNR
leading ICQ versus ICQ leading PNR, (2) PNR leading ICE versus ICE leading PNR, and
(3) ICQ leading ICE versus ICE leading ICQ. The identification of these three pairs of causal
relationships allows us to establish potential mechanisms triggering the vicious cycle of
hospital competition under the GBPS of Taiwan’s NHI system.

In this study, the conventional VAR model based on the temporal aggregation of
mixed frequency data into single frequency data is referred to as the Low Frequency Vector
Auto-regressive (LF-VAR, hereafter) model. The MF-VAR model has several advantages
against the LF-VAR model from four aspects. First, the MF-VAR model incorporates a
high-frequency nurse staffing variable (i.e., monthly PNR used in this study) into the time
series analyses. This allows us to demonstrate heterogeneous effects on low frequency
variables reflecting patient outcomes (i.e., quarterly ICQ indicators) across the high fre-
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quency timescale (three months) within each low frequency time-span (say, one quarter
timespan) [40,47–49]. Second, the impulse-response functions (IRFs, hereafter) for the
mixed frequency data were estimated in order to capture the propagation mechanism of a
nurse-staffing policy (or patient outcomes) shock across a period of time, which can then
be used to evaluate the responses of ICQ indicators (PNR) on the change in PNR (ICQ
indicators). Third, forecast error variance decomposition analyses for the mixed frequency
data were conducted to show that an aggregation of monthly nurse staffing data into
quarterly data is likely to underestimate the influence of nurse staffing on patient outcomes.
Fourth, all statistical inferences from the MF-VAR model are based on the bootstrap method,
which is capable of accommodating the small sample size of data used in this study [40,49].
Therefore, the results obtained from the MF-VAR model provide new insights into the
linkages among nurse staffing, patient outcomes, and hospital competition under the GBPS
of Taiwan’s NHI system.

2. Materials and Methods
2.1. Data and Variables

The main purpose of this study is to explore the interdependences between nurse
staffing, patient outcomes, and hospital competition under the GBPS of Taiwan’s NHI
system. The average PNR of the three shifts (i.e., day, afternoon, and night shifts) of
the daily cycle at hospital wards was used to indicate the nurse staffing level. Taiwan’s
NHIA reports PNR monthly for the three different types of hospitals (i.e., medical centers,
regional hospitals, and district hospitals). The re-emergency-department-visit rate in the
same hospital within 3 days after discharge (hereafter, 3-day EDV rate) and the unplanned
readmission rate within 14 days after discharge (hereafter, 14-day readmission rate) were
suggested by Taiwan’s NHIA to measure ICQ under the GBPS of Taiwan’s NHI system [50].
In order to avoid inconsistencies in monetary values across different periods of time, the
real ICE per admission (adjusted by the medical price index based on the 2016 price level)
was used to measure reimbursement payments for inpatient care services provided by
the three different types of hospitals. Since the GBPS was applied to reimburse inpatient
care services, the real ICE per admission also serves as a measure of hospital (quantity)
competition in the hospital sector of Taiwan’s NHI system. Note that Taiwan’s NHIA
reported the two ICQ indicators and reimbursed healthcare services quarterly for the three
different types of hospitals. Hence, the quarterly data of ICQ indicators and the real ICE
per admission and monthly data of PNR were used for our empirical analyses.

Since all data used in this study belong to time series data, we need to deal with the
unit root property involved in time-series data in order to avoid spurious correlations
among nurse staffing, patient outcomes, and hospital (quantity) competition [27,30]. Pre-
vious studies utilized cyclical components extracted from time series data to obtain the
stationarity of time series [27]. Accordingly, we extracted the cyclic components of these
time series data through the Hodrick and Prescott filter method to assure the stationarity
of the time series [51]. Note that cyclic components of these time series data have two
important features: First, the long-run trend of times series was removed, so cyclic compo-
nents of these time series data have a zero mean without a time trend. Second, these cyclic
components are interpreted as the percentage deviating from the long-run trend of the
original time series. The aggregate cyclic component of PNR (used to estimate the LF-VAR
model) was computed as an average of the three individual cyclic components of PNR
across a 3-month cycle of a quarter timespan. All the data used in this study were obtained
from the Open Database of National Health Insurance administrated by Taiwan’s NHIA.
The data collection process was approved by the Research Ethics Committee of Taichung
Tzu Chi Hospital with the Certificate of Exempt Review ID: REC REC110-23. The quarterly
and monthly sample periods start from 2015: Q1 to 2021: Q4 and 2015: M1 to 2021: M12,
resulting in a total of 28 and 84 quarterly and monthly observations, respectively.
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2.2. VAR Models

The relationship between nurse staffing and patient outcomes can be represented by
the hospital production function below:

Qt = f (Lt, Kt, Et) (1)

where the ICQ indicator (Qt) is the output of a hospital production function. Lt and
Kt represent labor and capital inputs of a hospital production function, respectively. Et
measures the environmental factors such as hospital competition under the GBPS. The
labor (Lt) and capital (Kt) inputs of a hospital production function were measured by PNR,
and three different types of hospitals (such as district hospitals for secondary care, regional
hospitals for tertiary care, and medical centers for the most complicated sicknesses and
research and development for clinic practices) were used to control different levels of capital
inputs in a hospital production function. Hospital competition is signified by the real ICE
per admission under the GBPS of Taiwan’s NHI system. The same specification of hospital
production was used in previous studies on the association between nurse staffing and
patient outcomes [11–13]. Since the output and inputs of a hospital production function
are all endogenous in clinical practices, Equation (1) could be established as the MF-VAR
model as follows:

L1t
L2t
L3t
Qt
Et

 =
`

∑
k=1


a11,k a12,k a13,k a14,k a15,k
a21,k a22,k a23,k a24,k a25,k
a31,k a32,k a33,k a34,k a35,k
a41,k a42,k a43,k a44,k a45,k
a51,k a52,k a53,k a54,k a55,k




L1t−1
L2t−1
L3t−1
Qt−1
Et−1

+


ε1t
ε2t
ε3t
ε4t
ε5t

 (2)

where, given a fixed capital input of hospital production (e.g., medical centers, regional
hospitals, or district hospitals), Lit(i = 1,2,3) represents the PNR in the ith month of a quarter
timespan. Qt and Et signify the ICQ indicator and real ICE per admission, respectively.
t ∈ {1, 2, . . . , T} denotes each quarter during our study period. The lag length (`) was
selected based on the method proposed by Newey and West with the maximal lag set at 3
in order to capture the potential seasonal (or monthly) effect [52]. aij,k(i, j ∈ {1, 2, 3, 4, 5}
and k ∈ {1, 2, 3}) are the elements of the parameter matrix in the VAR system.εit(i = 1,2,..,5)
denote error terms. Since the cyclic components of these time series data were used for
the estimation of the MF-VAR model, the estimated parameters of constant terms in the
parameter matrix were skipped due to the zero mean property of the Hodrick and Prescott
filter method. The way we established our model specification in Equation (2) is the same as
for prior studies applying the MF-VAR model for time series analyses in the field of social
sciences [40,49]. The technical details of the notations in the parsimonious specification of
the MF-VAR model can be found in Ghysel’s study [47].

For the sake of model specification comparison between the MF-VAR and LF-VAR
models, it should be noted that the individual monthly PNRs (L1t, L2t, and L3t) are stacked
in a vector, and one of the possible relationships among PNR, ICQ, and real ICE per
admission can be expressed as the 4th low of Equation (2) as follows:

Qt =
`

∑
k=1

[
3

∑
j=1

a4j,kLj,t−k + a44,kQt−k + a45,kEt−k

]
+ ε4t (3)

As indicated in Equation (3), nurse staffing from each month (Lit, i = 1,2,3) has het-
erogeneous effects (a4j,k, j = 1,2,3) on ICQ. In contrast to the MF-VAR model, the model
specification of the LF-VAR model is given by Equation (4):Lt

Qt
Et

 =
3

∑
k=1

a11,k a12,k a13,k
a21,k a22,k a23,k
a31,k a32,k a33,k

Lt−k
Qt−k
Et−k

+

ε1t
ε2t
ε3t

 (4)
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where, Lt represents the quarterly PNR calculated as the average of monthly PNR (i.e.,
Lt = (L1t + L2t + L3t)/3). Other notations used in Equation (4) share the same definitions
as those used in Equations (2) and (3). Analogous to Equations (2) and (3), one of the
possible linkages among PNR, ICQ, and real ICE per admission can be written as the 2nd
low of Equation (4) as follows:

Qt =
3

∑
k=1

[
a21,k

(
1
3

3

∑
i=1

Li,t−k

)
+ a22,kEt−k + a23,kLt−k

]
+ ε2t (5)

The specification in Equation (5) implies that L1t, L2t, and L3t have a homogeneous
impact (a21,k/3) on ICQ (Qt), and, in turn, the possibilities of monthly effects and lagged
information transmission within each quarter are excluded from the LF-VAR model. Finally,
the MF-VAR model can be estimated in the same way as the LF-VAR model because these
two models share the same asymptotic theory. Nevertheless, the p values for testing the
causal (lead-lag) relationships among PNR, ICQ, and real ICE per admission and confidence
intervals of IRFs were generated by the bootstrap method due to a small size of samples
used in this study.

2.3. Granger Causality Tests

Since all variables establishing a hospital production function are endogenous in
clinical practices, the assumption of the interdependence of variables is fulfilled to specify
our MF-VAR model and apply the mixed frequency Granger causality tests to investigate
the lead-lag relationships among nurse staffing, patient outcomes, and hospital competition.
In order to introduce mixed frequency Granger causality tests, we rewrote Equation (2) in
the following matrix form:

Xt =
`

∑
k=1

AkXt−k + εt (6)

where, Xt = (L1t, L2t, L3t, Qt, Et)
′, εt = (ε1t, ε2t, ε3t, ε4t, ε5t)

′, and At is the parameter matrix
comprised of elements aij,k = Ak(i, j),i, j ∈ {1, 2, 3, 4, 5}, and k ∈ {1, 2, 3}. The joint zero
hypothesis specified by Ak(i, j) = 0,i 6= j postulates a non-causal linkage running from
variable j to variable i. The Wald test statistic derived from Ghysel and his colleagues [48]
was used to test for this hypothesis. Nonetheless, previous studies [48,49] indicated that the
asymptotic distribution of the Wald statistic under the null hypothesis of non-causality from
the MF-VAR model suffers from a severe size distortion with a small sample size. Therefore,
the heteroscedasticity-robust parametric bootstrap method with 10,000 repetitions proposed
by Gonçalves and Kilian [53] was used for calculating p values in order to accommodate
size distortion and potential heteroscedasticity under the MF-VAR model, as suggested
by Ghysel and his colleagues [48]. Six causal linkages among PNR, ICQ, and real ICE
per admission (these being PNR leading ICQ, ICQ leading PNR, PNR leading ICE, ICE
leading PNR, ICQ leading ICE, and ICE leading ICQ) were examined using the Granger
causality tests. The investigation of these six causal relationships allows us to understand
potential mechanisms activating the vicious cycle of hospital competition under the GBPS
of Taiwan’s NHI system.

2.4. Impulse-Response and Variance Decomposition

Once the causal relationships among nurse staffing, patient outcomes, and hospital
competition were justified using the Granger causality tests, then the impulse response
effect of a standard error shock in the jth element of Xt at time t on Xt+h could be expressed
as follows:

IRF(h) = σ−0.5
jj AhΩej for h = 1, 2, 3, . . . , 12 (7)

where Ω is the variance-covariance matrix in the MF-VAR system, and σjj is the variance
elements in the Ω matrix. ej is an indicator vector where its jth element equals one. We
plotted the impulse-response relationships among PNR, ICQ, and real ICE per admission
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based on the Granger causality tests, and the 90% confidence intervals of the IRFs were
constructed using the Monte Carlo simulation method with 10,000 repetitions in order
to investigate whether or not the estimated impulses are statistically significant at the
10% significance level. The forecast error variance decompositions for both LF-VAR and
MF-VAR models were conducted following the estimation of the IRFs in Equation (6).
Note that the estimation of Equation (7) involves a selection of the Cholesky order. The
Cholesky orders for the LF-VAR and MF-VAR models were established as Lt → Qt → Et
and L1t → L2t → L3t → Qt → Et , respectively. These settings comply with the process of
reimbursement paid for inpatient care services in the hospital sector under the GPBS of
Taiwan’s NHI system.

3. Results
3.1. Descriptive Statistics

Table 1 summarizes the descriptive statistics for the monthly PNR and quarterly real
ICE per admission, 3-day EDV rate, and 14-day readmission rate for medical centers,
regional hospitals, and district hospitals over the period of 2015:Q1–2021:Q4. As indicated
in Table 1, means of the 3-day EDV rate (14-day readmission rate) for medical centers,
regional hospitals, and district hospitals were 2.489% (6.428%), 2.814% (7.259%), and 2.599%
(7.460%), respectively. The real ICE per admission on average varied from USD 2629.971,
USD 1826.339, and USD 1679.079, corresponding to payments reimbursed for inpatient
care services per admission for medical centers, regional hospitals, and district hospitals,
respectively. In addition, the average PNR at hospital wards ranging from the lowest
to highest were 7.436 at medical centers, 7.573 at district hospitals, and 9.261 at regional
hospitals, and variations of average PNR at hospital wards were found within a quarter
timescale. The highest (lowest) average PNR at hospital wards in the three different types
of hospitals appeared in the first (second) month within a quarter timescale. In addition,
the Jarque-Bera statistics were used to test the null hypothesis of normality of time series
data, and some time series such as real ICE per admission at medical centers and district
hospitals, and PNR at acute care wards of regional and district hospitals, were identified to
be inconsistent with the normality assumption. These findings validated the application of
bootstrap methods to estimate our empirical models. The trends of all variables used in
this study can be found in Appendix A, and the median and interquartile range (IQR) are
also reported in Table 1.

Table 1. Descriptive Statistics
1
.

Panel A: Quarterly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Re-emergency-department-visit rate
in the same hospital within 3 days after

discharge at medical centers
(

EDVMC : %
) 2.489 0.139 2.483 0.149 2.807 2.208 0.077

Re-emergency-department-visit rate
in the same hospital within 3 days after

discharge at regional hospitals
(

EDVRH : %
) 2.814 0.170 2.832 0.202 3.199 2.504 0.396

Re-emergency-department-visit rate
in the same hospital within 3 days after

discharge at district hospitals
(

EDVDH : %
) 2.559 0.175 2.539 0.246 2.918 2.241 0.723
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Table 1. Cont.

Panel A: Quarterly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Unplanned re-admission rate
within 14 days after

discharge at medical centers
(

RADMC : %
) 6.428 0.241 6.467 0.411 6.871 6.103 1.860

Unplanned re-admission rate
within 14 days after

discharge at regional hospitals
(

RADRH : %
) 7.259 0.228 7.239 0.413 7.675 6.947 2.198

Unplanned re-admission rate
within 14 days after

discharge at district hospitals
(

RADDH : %
) 7.460 0.256 7.473 0.303 7.983 6.772 0.705

Inpatient care expenditure per admission

at medical centers
(

ICEMC :USD, Constant

at 2016 price level, USD 1 = TWD 30 )

2629.971 179.855 2589.845 200.537 3078.093 2401.06 6.270 *

Inpatient care expenditure per admission at

regional hospitals
(

ICERH :USD, Constant

at 2016 price level, USD 1 = TWD 30 )

1826.339 139.494 1795.955 182.638 2146.892 1649.037 4.762

Inpatient care expenditure per admission at

district hospitals
(

ICEDH :USD, Constant

at 2016 price level, USD 1 = NTD 30 )

1679.079 97.236 1645.423 99.390 1943.214 1587.140 13.179 **

Panel B: Monthly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Patient-to-nurse ratio at acute care
wards of medical centers

(
PNRMC )

7.436 0.256 7.434 0.388 7.880 6.706 0.809

Patient-to-nurse ratio at acute care wards
of medical centers in the 1st month
of the observed quarter

(
PNRMC

1 )
7.474 0.251 7.478 0.347 7.866 7.018 1.309

Patient-to-nurse ratio at acute care wards
of medical centers in the 2nd month
of observed quarter

(
PNRMC

2 )
7.394 0.242 7.375 0.329 7.798 6.788 0.245

Patient-to-nurse ratio at acute care wards
of medical centers in the 3rd month
of observed quarter

(
PNRMC

3 )
7.439 0.275 7.466 0.386 7.880 6.706 0.930

Patient-to-nurse ratio at acute care wards
of regional hospitals

(
PNRRH )

9.261 0.365 9.365 0.393 10.007 7.649 75.585 **

Patient-to-nurse ratio at acute care wards
of regional hospitals in the 1st

month of observed quarter
(

PNRRH
1 )

9.292 0.349 9.420 0.387 9.906 8.201 10.223 **

Patient-to-nurse ratio at acute care wards
of regional hospitals in the 2nd month

of observed quarter
(

PNRRH
2 )

9.205 0.325 9.202 0.507 9.928 8.568 0.288

Patient-to-nurse ratio at acute care wards
of regional hospitals in the 3rd month

of observed quarter
(

PNRRH
3 )

9.286 0.421 9.372 0.315 10.007 7.649 68.002 **
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Table 1. Cont.

Panel B: Quarterly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Patient-to-nurse ratio at acute care wards
of district hospitals

(
PNRDH )

7.573 0.399 7.602 0.314 8.314 5.943 51.089 **

Patient-to-nurse ratio at acute care wards
of district hospitals in the 1st month

of observed quarter
(

PNRDH
1 )

7.605 0.392 7.614 0.337 8.314 6.333 13.500 **

Patient-to-nurse ratio at acute care wards
of district hospitals in the 2nd month

of observed quarter
(

PNRDH
2 )

7.524 0.356 7.541 0.410 8.309 6.733 0.259

Patient-to-nurse ratio at acute care wards
of district hospitals in the 3rd month

of observed quarter
(

PNRDH
3 )

7.589 0.453 7.669 0.314 8.295 5.943 38.238 **

3.2. Unit Root Tests

It is worth addressing that the PNR, ICQ, and real ICE per admission are time series
data that are likely to have the unit root property. As shown in Table 2, the ADF tests with
constant and with constant plus trend specifications identified non-stationary time series
of real ICE per admission at the three different types of hospitals. In addition, the ADF
tests with constant plus trend specification suggest that the time series of the two ICQ
indicators were non-stationary except for the 14-day readmission rate at district hospitals.
The presence of the unit roots of the 3-day EDV rate (14-day readmission rate) at regional
hospitals (medical centers and regional hospitals) was found using the ADF tests with
constant specification. Contrarily, the ADF tests with constant and with constant plus
trend specifications identified stationary time series of PNR at the three different types of
hospitals. These findings suggest that the order of time series data on PNR, the two ICQ
indicators, and real ICE per admission is likely to be different at the three different types of
hospitals. Since the cyclic components of these time series removed the long-run tendency
of time series with zero means, the ADF tests without constant and trend specification were
used to test for the unit root property of cyclic components of time series. As we expected,
the stationarity of cyclic components of time series for the three different types of hospitals
was confirmed. These findings eliminate spurious correlations among all variables used in
this research from the unit root property of time series. Therefore, we were able to proceed
with the Granger Causality tests with the cyclic components of these variables.

3.3. Granger Causality Tests

Table 3 presents the results of the Granger causality tests under the MF-VAR model
for the six causal relationships among ICQ, PNR, and real ICE per admission at the three
different types of hospitals during our study period. Mixed frequency data were used for
the Granger causality tests. As such, it is vital to understand that the causality running from
the low frequency variable to the high frequency variable means causality running from a
quarterly variable to a group of three individual monthly variables [40,48,49]. In addition,
the asymptotic distribution of the Wald statistic under the null hypothesis of non-causality
in the MF-VAR model has a severe size distortion due to a small sample size [40,48,49].
Because of this, p values were generated using the heteroscedasticity-robust parametric
bootstrap method introduced by Gonçalves and Kilian [53] with 10,000 replications.
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Table 2. ADF Unit Root Tests
2
.

Panel A: Quarterly Data
Levels Cyclical Components

Mean Standard
Deviation

Constant
(C)

Constant+
Trend (T) Mean Standard

Deviation
Without

C+T

ln
(

EDVMC
)

0.911 0.056 −3.473 * −3.405 0.000 0.052 −3.952 **

ln
(

EDVRH
)

1.033 0.060 −2.329 −3.330 0.000 0.050 −3.874 **

ln
(

EDVDH
)

0.937 0.068 −3.247 * −3.341 0.000 0.060 −3.917 **

ln
(

RADMC
)

1.860 0.038 −2.518 −2.455 0.000 0.033 −2.904 **

ln
(

RADRH
)

1.982 0.031 −2.698 −3.462 0.000 0.025 −3.719 **

ln
(

RADDH
)

2.009 0.035 −3.370 * −4.306 * 0.000 0.031 −4.250 **

ln
(

ICEMC
)

7.873 0.066 0.036 −2.412 0.000 0.025 −4.347 **

ln
(

ICERH
)

7.507 0.074 1.087 −1.824 0.000 0.025 −3.164 **

ln
(

ICEDH
)

7.424 0.056 0.676 −1.303 0.000 0.024 −2.221 *

Panel B: Monthly Data
Levels Cyclical Components

Mean Standard
Deviation

Constant
(C)

Constant+
Trend (T) Mean Standard

Deviation
Without

C+T

ln
(

PNRMC
)

2.006 0.035 −4.253 ** −4.611 ** 0.000 0.027 −5.740 **

ln
(

PNRRH
)

2.225 0.041 −4.434 ** −4.596 ** 0.000 0.035 −5.397 **

ln
(

PNRDH
)

2.023 0.055 −3.434 * −5.079 ** 0.000 0.037 −5.515 **

Panel C: Aggregate Monthly Data
Levels Cyclical Components

Mean Standard
Deviation

Constant
(C)

Constant+
Trend (T) Mean Standard

Deviation
Without

C+T

∑3
t=1 C_ ln(PNR MC

t )/3 ——– ——– ——– ——– 0.000 0.057 −5.383 **
∑3

t=1 C_ ln(PNR RH
t )/3 ——– ——– ——– ——– 0.000 0.071 −6.482 **

∑3
t=1 C_ ln(PNR DH

t )/3 ——– ——– ——– ——– 0.000 0.073 −2.231 *

Table 3. Granger Causality Tests
3
.

Panel A: Re-Emergency-Department-Visit Rate in the Same Hospital within 3 Days after Discharge as the Quality of Care Indicator

Types of MF-VAR Model LF-VAR Model
Hospitals Null Hypothesis χ2 p Value Null Hypothesis χ2 p Value

EDV 6=> PNR 10.935 0.090 * EDV 6=> PNRA 1.977 0.372
ICE 6=> PNR 3.213 0.782 ICE 6=> PNRA 2.346 0.309

Medical PNR 6=> EDV 16.029 0.014 ** PNRA 6=> EDV 3.075 0.215
Centers ICE 6=> EDV 3.254 0.776 ICE 6=> EDV 2.841 0.242

PNR 6=> ICE 14.095 0.029 ** PNRA 6=> ICE 1.291 0.524
EDV 6=> ICE 14.635 0.023 ** EDV 6=> ICE 7.013 0.030 **
EDV 6=> PNR 12.035 0.061 * EDV 6=> PNRA 0.520 0.771
ICE 6=> PNR 4.706 0.582 ICE 6=> PNRA 5.716 0.057 *

Regional PNR 6=> EDV 13.365 0.038 ** PNRA 6=> EDV 3.121 0.210
Hospitals ICE 6=> EDV 6.021 0.421 ICE 6=> EDV 3.564 0.168

PNR 6=> ICE 18.311 0.005 *** PNRA 6=> ICE 1.871 0.392
EDV 6=> ICE 4.700 0.583 EDV 6=> ICE 0.366 0.833
RER 6=> PNR 8.592 0.198 EDV 6=> PNRA 0.557 0.757
ICE 6=> PNR 4.797 0.570 ICE 6=> PNRA 4.162 0.125

District PNR 6=> EDV 12.614 0.049 ** PNRA 6=> EDV 5.049 0.080 *
Hospitals ICE 6=> EDV 2.749 0.840 ICE 6=> EDV 0.540 0.763

PNR 6=> ICE 13.519 0.035 ** PNRA 6=> ICE 1.438 0.487
RER 6=> ICE 7.127 0.309 EDV 6=> ICE 5.761 0.056 *
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Table 3. Cont.

Panel B: Unplanned Re-Admission Rate within 14 Days after Discharge as the Quality of Care Indicator

Types of MF-VAR Model LF-VAR Model
Hospitals Null Hypothesis χ2 p Value Null Hypothesis χ2 p Value

RAD 6=> PNR 8.933 0.177 RAD 6=> PNRA 5.054 0.080 *
ICE 6=> PNR 6.004 0.423 ICE 6=> PNRA 4.763 0.092 *

Medical PNR 6=> RAD 7.822 0.251 PNRA 6=> RAD 6.941 0.031 **
Centers ICE 6=> RAD 8.972 0.175 ICE 6=> RAD 7.418 0.024 **

PNR 6=> ICE 13.079 0.042 ** PNRA 6=> ICE 2.848 0.241
RAD 6=> ICE 4.386 0.625 RAD 6=> ICE 1.159 0.560
RAD 6=> PNR 9.952 0.127 RER 6=> PNRA 0.281 0.869
ICE 6=> PNR 5.990 0.424 ICE 6=> PNRA 3.839 0.147

Regional PNR 6=> RAD 8.200 0.224 PNRA 6=> RAD 6.799 0.033 **
Hospitals ICE 6=> RAD 8.635 0.195 ICE 6=> RAD 4.140 0.126

PNR 6=> ICE 13.674 0.033 ** PNRA 6=> ICE 3.684 0.158
RAD 6=> ICE 3.943 0.684 RER 6=> ICE 2.161 0.339
RAD 6=> PNR 13.511 0.036 ** RER 6=> PNRA 1.753 0.416
ICE 6=> PNR 8.614 0.196 ICE 6=> PNRA 4.366 0.113

District PNR 6=> RAD 4.441 0.617 PNRA 6=> RAD 2.971 0.226
Hospitals ICE 6=> RAD 5.582 0.472 ICE 6=> RAD 1.988 0.370

PNR 6=> ICE 12.169 0.058 * PNRA 6=> ICE 1.653 0.438
RAD 6=> ICE 2.303 0.890 RER 6=> ICE 0.765 0.682

Panel A of Table 3 displays the Granger causality tests for the six causal relationships
among the 3-day EDV rate, PNR, and real ICE per admission at the three different types
of hospitals. In contrast to little significance in the causal relationships identified by the
LF-VAR model, the MF-VAR model identified bidirectional causation between PNR and the
3-day EDV rate at medical centers and regional hospitals, and one-way causality running
from PNR to the 3-day EDV rate at district hospitals at the 10% (or stricter) significance
level. In addition, a causal relationship running from PNR to real ICE per admission was
identified for the three different types of hospitals, and another unidirectional causality
running from the 3-day EDV rate to real ICE per admission was also detected for medical
centers. In addition, Panel B of Table 3 reports results of the Granger causality tests
for the six causal relationships among the 14-day readmission rate, PNR, and real ICE
per admission at the three different types of hospitals. Although the LF-VAR model
identified several causal relationships among the 14-day readmission rate, PNR, and real
ICE per admission, previous studies addressed a potential aggregation bias in the statistical
inferences of the LF-VAR model [40,47–49]. Therefore, we focused on the results of the
Granger causality tests under the MF-VAR model. As indicated in Panel B of Table 3,
the MF-VAR model identified one-way causal relationships running PNR to real ICE per
admission at the three different types of hospitals. These findings are consistent with the
causal linkage running from PNR to real ICE per admission as reported in Panel A of Table 3.
Additionally, unidirectional Granger causality running from the 14-day readmission rate to
PNR was also identified at district hospitals only.

3.4. Impulse-Response Analyses

Since the causal relationships among PNR, ICQ, and real ICE per admission were
verified by the Granger causality tests under the MF-VAR model for Taiwan’s NHI system
over the period of 2015:Q1–2021:Q4, we further plotted the mixed frequency IRFs to
illustrate the propagation mechanism of interdependences between PNR, ICQ, and real
ICE per admission across a 12-month period. As indicated in Figure 1, significantly positive
(negative) responses of the 3-day EDV rate to a positive PNR shock in the first month of
a quarter timespan were identified at the first and eighth (second) month horizons over
a 12-month period for regional hospitals (see Figure 1(b1), and a significantly positive
impulse-response relationship between the 3-day EDV rate and PNR in the first month of a
quarter timespan was found at the first month horizon over a 12-month period for district
hospitals (see Figure 1(c1)).
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The significantly positive effect of PNR in the second month of a quarter timespan
on the 3-day EDV rate was found at the first month horizon over a 12-month period for
medical centers (see Figure 1(a2)). Nonetheless, the impulse-response relationship between
the 3-day EDV rate and PNR in the second month of a quarter timespan was identified as
significantly positive at the first month horizon but negative at the sixth month horizon
over a 12-month period for regional hospitals (see Figure 1(b2)). Additionally, the responses
of the 3-day EDV rate to a positive PNR shock in the third month within a quarter timespan
were significantly negative (positive) at the first and sixth (seventh) month horizon over
a 12-month period for district hospitals (see Figure 1(b3)). Despite asymmetric impulse-
response effects of PNR on the 3-day EDV rate being found, the positive effects of PNR
on the 3-day EDV rate dominated the negative effects across a 3-month cycle of a quarter
timespan for all three types of hospitals.

As shown in Figure 1(d1,e1), the responses of PNR in the first month of a quarter
timespan to a positive shock in the 3-day EDV rate were significantly negative (positive) at
the second (eighth) month horizon over a 12-month period for medical centers (regional
hospitals). The significantly positive responses of PNR in the second month of a quarter
timespan to a positive shock in the 3-day EDV rate were found at the third and fourth
month horizons over a 12-month period for medical centers (see Figure 1(d2)). The impulse-
response relationship between the 3-day EDV rate and PNR in the third month of a quarter
timespan was negative at the second, third, and seventh month horizons, but it was
identified to be positive at the fourth and eighth month horizons over a 12-month period
for regional hospitals (see Figure 1(e3)). Although a changing impulse-response relationship
between the 3-day EDV rate and PNR was identified, as shown in Figure 1(d1,d2,e1,e3),
the negative effects of the 3-day EDV rate on PNR were dominated by the positive effect
across a 3-month cycle of a quarter timespan for medical centers and regional hospitals.
Nevertheless, the impulse-response relationship between 14-day readmission and PNR
across a 3-month cycle of a quarter timespan did not generate any significant results for
district hospitals.

The impulse-response relationships between PNR and real ICE per admission for the
three different types of hospitals are illustrated in Figure 2 in Panels A and B, which, respec-
tively, correspond to the 3-day EDV rate and 14-day readmission rate used to measure ICQ
in the estimation of the MF-VAR model. No matter which ICQ indicator was selected, the
responses of real ICE per admission to PNR in the second month of a quarter timespan were
identified as significantly negative around the third, fourth, and fifth month horizons over
a 12-month period for regional hospitals and district hospitals (see Figure 2(b2,c2,e2,f2)).
The effects of PNR in the second month of a quarter timespan on real ICE per admission
were determined to be significantly negative at the third month horizon and positive at the
sixth month horizon over a 12-month period for medical centers (see Figure 2(d2)).
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The impulse-response relationship between real ICE per admission and PNR in the
first month of a quarter timespan was found to be significantly positive around the first
and second month horizons and negative around the fourth and fifth month horizons over
a 12-month period for regional hospitals (Figure 2(b1,e1)). Figure 2(b3,e3) illustrates a
significantly negative impulse-response relationship between real ICE per admission and
PNR in the third month of a quarter timespan around the third and fourth month horizons
over a 12-month period for regional hospitals. The responses of real ICE per admission
on PNR in the first (third) month of a quarter timespan were found to be significantly
negative at the fourth (ninth) month horizon and positive at the first and seventh (sixth)
month horizons over a 12-month period for district hospitals (Figure 2(f1,f3)). Despite an
asymmetric relationship between real ICE per admission and PNR across a 3-month cycle
of a quarter timespan being found, the negative effects of PNR on real ICE per admission
across a 3-month cycle of a quarter timespan dominated the positive effects for all three
types of hospitals.

3.5. Variance Decomposition

Table 4 presents two sets of the forecast error variance decompositions based on
whether the 3-day EDV rate or 14-day readmission rate were used to serve as the ICQ
indicator in the estimation of the LF-VAR and MF-VAR models. As indicated in Table 4, the
proportions of forecast error variance of the ICQ indicator attributed to the PNR within a
3-month cycle of a quarter timespan (i.e., PNR = ΣPNRi) in the MF-VAR model for medical
centers are 1.61~4.58 (=21.70/13.46~37.20/8.13), 1.55~3.81(=45.87/29.53~44.06/11.56), and
1.62~3.77 (=46.45/27.73~46.80/12.40) times higher than those attributed to an aggregation
of PNR (i.e., PNRA) in the LF-VAR model in the short-run (h = 2), medium-run (h = 7),
and long-run (h = 12), respectively, based on whether the 3-day EDV rate or 14-day
readmission rate was chosen to measure ICQ. In addition, the proportions of forecast
error variance of the real ICE per admission attributed to the PNR within a 3-month cycle
of a quarter timespan (i.e., PNR = ΣPNRi) in the MF-VAR model for medical centers are
1.24~1.36 (=74.07/59.63~73.87/54.34), 1.50~1.65 (=70.93/47.18~71.88/43.48), and 1.60~1.69
(=73.91/46.16~74.71/44.12) times higher than those attributed to the aggregation of PNR
(i.e., PNRA) in the LF-VAR model in the short-run (h = 2), medium-run (h = 7), and long-run
(h = 12), respectively, based on whether the 3-day re-EDV rate or 14-day readmission rate
was chosen to measure ICQ. Similar results, wherein the MF-VAR model generated a higher
explanatory power than the LF-VAR model, could also be found for the relationships
among PNR, ICQ, and real ICE per admission for regional hospitals and district hospitals.
Therefore, the findings of the forecast error variance decompositions shown in Table 4
indicate that the MF-VAR model has a greater explanatory power than the LF-VAR model
in the investigation of interdependences between PNR, ICQ, and real ICE per admission
for the three different types of hospitals.
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Table 4. Forecast Error Variance Decomposition (%)
6
.

Quality Model Medical Centers (%) Regional Hospitals (%) District Hospitals (%)

Variable Horizon h = 2 h = 7 h = 12 Variable Horizon h = 2 h = 7 h = 12 Variable Horizon h = 2 h = 7 h = 12

Panel A:
RER as
Quality

Indicator

EDV
EDV
ICE

PNRA

86.320.22
13.46

63.67
6.80
29.53

61.75
9.52

28.73
EDV

EDV
ICE

PNRA

82.96
7.04
10.0

64.87
16.37
18.76

58.74
15.33
25.93

EDV
EDV
ICE

PNRA

88.71
1.79
9.49

45.95
9.40

44.65

33.08
20.12
46.79

LF-VAR ICE
EDV
ICE

PNRA

0.38
45.28
54.34

30.38
26.15
43.48

30.51
25.37
44.12 ICE

EDV
ICE

PNRA

0.81
57.91
41.28

4.79
55.43
39.78

7.17
53.07
39.75 ICE

EDV
ICE

PNRA

0.58
53.66
45.76

19.57
33.91
46.53

19.38
35.37
45.25

PNRA

EDV
ICE

PNRA

8.13
0.69

91.19

8.87
11.78
79.35

10.57
12.15
77.27 PNRA

EDV
ICE

PNRA

0.01
7.32
92.67

9.94
27.75
62.32

11.55
27.13
61.31 PNRA

EDV
ICE

PNRA

0.06
3.86
96.08

1.19
23.89
74.92

4.89
25.31
69.80

EDV
EDV
ICE

PNR=ΣPNRi

78.28
0.03

21.70

53.24
0.88
45.87

51.96
1.59
46.45 EDV

EDV
ICE

PNR=ΣPNRi

91.76
1.80
6.45

62.08
4.82

33.11

45.48
8.05
46.47 EDV

EDV
ICE

PNR=ΣPNRi

74.44
0.37

25.20

42.62
1.18
56.19

36.38
2.41

61.21

ICE
EDV
ICE

PNR=ΣPNRi

0.40
25.72
73.87

16.42
11.71
71.88

15.23
10.05
74.71 ICE

EDV
ICE

PNR=ΣPNRi

2.22
47.92
49.88

6.22
40.84
52.94

7.69
31.27
61.03 ICE

EDV
ICE

PNR=ΣPNRi

0.60
25.28
74.12

6.57
14.65
78.77

5.97
13.03
80.99

MF-VAR PNR1

EDV
ICE

PNR=ΣPNRi

0.88
0.29

98.84

1.44
1.02
97.53

2.23
1.39
96.38 PNR1

EDV
ICE

PNR=ΣPNRi

9.88
3.16
86.97

8.52
8.00

83.49

15.74
6.56
77.71 PNR1

EDV
ICE

PNR=ΣPNRi

4.76
0.72
94.52

3.91
2.68

93.40

3.60
3.64

92.77

PNR2

EDV
ICE

PNR=ΣPNRi

32.33
0.00

67.66

27.31
2.83
69.85

29.15
2.67

68.18 PNR2

EDV
ICE

PNR=ΣPNRi

11.67
0.30
88.03

11.67
18.31
70.01

9.69
14.84
75.47 PNR2

EDV
ICE

PNR=ΣPNRi

2.62
0.00

97.38

3.80
4.32

91.88

4.10
4.09

91.80

PNR3

EDV
ICE

PNR=ΣPNRi

0.13
0.00

99.88

2.29
1.29
96.43

2.29
1.62
96.09 PNR3

EDV
ICE

PNR=ΣPNRi

5.23
0.70
94.08

13.00
7.94

79.07

16.19
4.86
78.95 PNR3

EDV
ICE

PNR=ΣPNRi

0.67
0.00

99.32

3.88
2.96

93.16

3.29
3.34
93.36

Quality Model Variable Horizon h = 2 h = 7 h = 12 Variable Horizon h = 2 h = 7 h = 12 Variable Horizon h = 2 h = 7 h = 12

Panel B:
URR as
Quality

Indicator

RAD
RAD
ICE

PNRA

83.73
8.14
8.13

73.30
15.14
11.56

71.73
15.87
12.40

RAD
RAD
ICE

PNRA

75.56
12.24
12.20

51.37
24.29
24.34

46.51
27.97
25.51

RAD
RAD
ICE

PNRA

89.73
9.58
0.69

56.37
20.43
23.21

43.57
27.87
28.56

LF-VAR ICE
RAD
ICE

PNRA

2.55
37.82
59.63

19.93
32.89
47.18

19.43
34.41
46.16 ICE

RAD
ICE

PNRA

2.08
66.07
31.84

3.13
58.67
38.21

3.39
58.37
38.23 ICE

RAD
ICE

PNRA

0.50
59.39
40.10

4.00
53.57
42.43

4.08
53.93
41.99

PNRA

RAD
ICE

PNRA

14.55
0.17

85.28

14.89
29.15
55.96

14.69
29.28
56.04 PNRA

RAD
ICE

PNRA

1.62
3.33
95.05

1.55
28.30
70.15

2.18
32.03
65.78 PNRA

RAD
ICE

PNRA

0.21
7.04
92.75

2.76
32.36
64.87

3.72
35.16
61.12

RAD
RAD
ICE

PNR=ΣPNRi

60.54
2.27

37.20

50.90
5.03
44.06

47.97
5.24

46.80 RAD
RAD
ICE

PNR=ΣPNRi

73.70
4.72
21.57

45.46
8.05

46.49

38.00
12.14
49.87 RAD

RAD
ICE

PNR=ΣPNRi

81.99
6.11

11.89

56.39
15.33
28.29

48.59
20.14
31.27

ICE
RAD
ICE

PNR=ΣPNRi

2.99
22.94
74.07

16.21
12.87
70.93

14.00
12.08
73.91 ICE

RAD
ICE

PNR=ΣPNRi

7.23
56.11
36.65

8.59
35.53
55.87

8.50
30.44
61.06 ICE

RAD
ICE

PNR=ΣPNRi

0.67
49.48
49.86

7.19
32.90
59.90

10.06
30.98
58.95

MF-VAR PNR1

RAD
ICE

PNR=ΣPNRi

0.59
0.05

99.37

6.37
5.54
88.09

6.66
8.03

85.31 PNR1

RAD
ICE

PNR=ΣPNRi

16.34
1.25
82.42

11.66
9.88

78.46

9.22
9.43
81.35 PNR1

RAD
ICE

PNR=ΣPNRi

16.46
2.33
81.21

15.23
9.89

74.88

13.06
15.41
71.52

PNR2

RAD
ICE

PNR=ΣPNRi

16.47
0.65

82.87

15.16
14.33
70.51

12.61
9.87

77.53 PNR2

RAD
ICE

PNR=ΣPNRi

0.02
3.62
96.37

12.73
15.16
72.11

10.13
13.02
76.85 PNR2

RAD
ICE

PNR=ΣPNRi

2.50
2.23
95.27

22.17
11.29
66.54

21.45
10.76
67.79

PNR3

RAD
ICE

PNR=ΣPNRi

0.17
0.56

99.27

6.98
4.28
88.74

7.79
4.85

87.35 PNR3

RAD
ICE

PNR=ΣPNRi

0.91
0.07

99.02

8.61
6.45

84.93

9.49
5.81

84.70 PNR3

RAD
ICE

PNR=ΣPNRi

0.48
0.26
99.25

16.06
5.07

78.87

15.53
7.37

77.09
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4. Discussion

Two unidirectional causal propositions can be justified by looking at the causal rela-
tionships among PNR, the two ICQ indicators (i.e., 3-day EDV rate and 14-day readmission
rate), and real ICE per admission identified by the Granger causality tests under the MF-
VAR model. The PNR leading ICE proposition postulates that PNR leads real ICE per
admission, and the EDV leading ICE proposition claims that the 3-day EDV rate leads real
ICE per admission. The former proposition was substantiated by data from the three differ-
ent types of hospitals, and the latter proposition was only verified by data from medical
centers. In addition, the Granger causality tests also confirmed a feedback proposition
for PNR and ICQ claiming bidirectional causation between PNR and the 3-day EDV rate
in medical centers and regional hospitals. Additionally, the PNR leading 3-day EDV rate
proposition (stating that PNR leads the 3-day EDV rate) and the 14-day readmission rate
leading PNR proposition (asserting that the 14-day readmission rate leads PNR) were
corroborated for district hospitals.

In general, four mechanisms activating the vicious cycle of hospital competition are
implied by these propositions. First, the PNR origin mechanism suggests that a high PNR
(i.e., a poor nurse staffing level) not only worsens the 3-day EDV rate but also reduces real
ICE per admission (see Figure 3(a1)). Second, the EDV origin mechanism indicates that a
higher 3-day EDV rate influences both real ICE per admission and PNR (see Figure 3(a2)).
Third, the EDV rebound mechanism alludes that the 3-day EDV rate results in a higher PNR
leading to decreased real ICE per admission (see Figure 3(a3)). Fourth, the readmission
rebound mechanism points to the 14-day readmission rate causing a higher PNR which
leads to a reduction in real ICE per admission (see Figure 3(a4)). The statistical significances
of the signs and paths connecting PNR, the two ICQ indicators (i.e., 3-day EDV rate and
14-day readmission rate), and real ICE per admission (underpinning the four mechanisms
described above) were determined based on the impulse-response analyses illustrated in
Figures 1 and 2. Several policy implications emerging from this work have merit and are
worth being discussed as follows:
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First, as indicated in Figure 3(a1), the PNR origin mechanism was observed in all
three different types of hospitals, but the EDV origin mechanism is suitable for medical
centers only. The EDV (readmission) rebound mechanism was found in medical centers
and regional hospitals (district hospitals). Therefore, the PNR not only qualifies as an
important determinant of patient outcomes, but it also serves as both a key factor and
mediator influencing real ICE per admission for the three different types of hospitals. In
general, a positive impact on PNR increases the 3-day EDV rate but decreases real ICE
per admission in all types of hospitals based on the impulse-response analyses over a
12-month period (see Figure 1, Figure 2, and Figure 3(a1)). These findings were consistent
with results from previous studies on the relationship between nurse staffing and patient
outcomes [1–25,35].

Second, it is important to note that the impulse-response relationship between the
3-day EDV rate and real ICE per admission was not significant based on the impulse-
response analyses over a 12-month period. (see Figure 2(a4) and Figure 3(a2)). Therefore, we
focus on the two rebound mechanisms for our discussion. As illustrated in Figure 3(a3,a4),
we found that the rebound effects running from ICQ to PNR were essentially different
between large hospitals (such as medical centers and regional hospitals) and small hospitals
(i.e., district hospitals) in terms of the significance of the relationship between ICQ indicators
and PNR. As shown in Figure 3(a3,a4), the 3-day EDV rate was found to be a trigger
impacting PNR and then influencing real ICE per admission at medical centers and regional
hospitals, but the readmission rebound mechanism was not significant in district hospitals
based on the impulse-response analyses over a 12-month period (see Figure 1(f1,f3) and
3(a4)). These findings reflect the facts that district hospitals play a minor part in ED care
services and that nighttime ED closures (or down-grading to the so-called urgent outpatient
centers) are frequently observed in district hospitals due to a lack of sufficient nurses. Such
shortages of nurses also lead to hospital bed closures in district hospitals where inpatient
care resources are then shifted towards treating chronic rather than acute conditions. Hence,
it was reported that the average length of stay ranged from 13~16 days in district hospitals,
much higher than that for medical centers (7~9 days), but the mean PNR in district hospitals
was very close to that in medical centers (7.572 versus 7.436; see Table 1) during our study
period [54].

Third, although the EDV rebound effect was expected to be negative as hospital
ad-ministration managerial actions were taken to influence ICQ for the sake of quality-
of-care control, a positive rebound effect of the 3-day EDV rate on PNR was identified
in medical centers and regional hospitals based on the impulse-response analyses over a
12-month period (see Figures 1 and 3(a3)). According to annual statistics of the medical care
institution and hospital utilization reported by Taiwan’s Ministry of Health and Welfare,
the total number of hospitals decreased from 556 to 478 (of these, the number of medical
centers remained stable at around 21~23, while the number of regional hospitals increased
from 65 to 74, with a contrasting significant reduction in the number of district hospitals)
during our study period of 2015:Q1–2021:Q4 [55]. Moreover, Taiwan’s NHIA reported
that district hospitals represent over 80% of total hospitals, while approximately 76%~81%
of total hospital admissions were contributed by medical centers and regional hospitals
under the GBPS of Taiwan’s NHI system [55,56]. These statistics suggest that quantity
competition for medical centers and regional hospitals is much higher than that for district
hospitals, so managerial actions taken for the sake of quality-of-care control in medical
centers and regional hospitals are highly likely to be offset by severe quantity competition
in the hospital sector of Taiwan’s NHI system.

Fourth, the rebound effects of ICQ on PNR from medical centers and regional hospitals
will mostly likely counter the adverse effect of hospital competition (see Figure 3(a1,a3)).
Considering this along with substantial evidence identifying PNR as one of the crucial
determinants of ICQ and real ICE per admission, as indicated in Figure 1, Figure 2, and
Figure 3(a1), quality of care maintenance policies (such as directly subsidizing for a lower
PNR and the inclusion of a reasonable PNR as a key standard for hospital accreditation)
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should be enforced in order to reduce adverse effects of higher nurse staffing levels on
patient outcomes and quantity competition under the GBPS of Taiwan’s NHI system.
Special attention should be concentrated on reducing the rebound effects of the 3-day
EDV rate on PNR from medical centers and regional hospitals through imposing more
substantial quality-of-care control plans and more stringent regulation of seasonal inpatient
care volume for medical centers and regional hospitals.

This study makes contributions beyond those of the existing literature on the relation-
ship between nurse staffing and patient outcomes in three respects: First, although the
aggregation and omitted variable biases (due to aggregating different frequencies data into
single frequency data) have attracted lots of attention regarding the estimation of the nurse
staffing and patient outcomes relationship in the healthcare services research field [39],
this study, for the first time, adopted the MF-VAR model proposed by Ghysel and his
colleagues [47,48] to incorporate different frequencies data into the investigation of the
relationships among PNR, ICQ, and real ICE per admission under the GBPS of Taiwan’s
NHI system over the period of 2015:Q1–2021:Q4. We illustrated that the MF-VAR model
is superior to the LF-VAR (i.e., conventional VAR) model in terms of higher explanatory
power (See Table 4). Second, this study contrasts with the previous time series research
exploring the association between nurse staffing and patient outcomes, in which the causal
responses of patient outcomes (nurse staffing) to a nurse staffing (patient outcomes) shock
across a period of time were not available. In this study, we not only tested for six causal
relationships among PNR, ICQ, and real ICE per admission through the MF-VAR-Granger
Causality tests proposed by Ghysel and his colleagues [47,48], but we also estimated the
IRFs based on the MF-VAR model. In this way, we were able to capture the dynamic impact
of nurse staffing on patient outcomes and on healthcare expenditure for inpatient care
service reimbursement across a high frequency timescale (a 3-month cycle of a quarter
timespan in this study) over a 12-month period, and four mechanisms potentially trigging
the vicious cycle of hospital competition were discussed accordingly.

Third, it is essential to address that the healthcare systems worldwide have been
toward public-private mixed (or more private-like) financing systems due to an aging
population, diffusion of new technologies, and growth of income [28]. It follows that we
observed a common privatization trend in healthcare provision, and, in turn, it created
a severer market competition in many publicly financed healthcare systems such as the
NHS (e.g., Australia, Belgium, Finland, Iceland, Ireland, Norway, Spain, and United King-
dom) and SHI systems (e.g., Austria, Canada, Korea, and Japan) [26,28]. Although the
harmful effects of PNR on patient outcomes were confirmed from previous studies in the
NHS [2–4,7,8,10,14–18] and SHI systems [5,9,14–18], most of these studies belonged to the
cross-sectional or static-type studies. It follows that these studies failed to identify causality
between nurse staffing and patient outcomes, evaluate the propagation mechanism of
nurse staffing on patient outcomes, and avoid the potential aggregation biases [2–10,14–18].
Therefore, the methodologies (such as the MF-VAR model, Granger causality test, and
impulse-response analyses) used in this study not only generated results echoing the
evidence obtained from previous studies [2–10,14–18], but they also amended the disad-
vantages of the cross-sectional or static-type studies. The methodologies used in this study
could be easily performed through inputting publicly reported time series data in cases
when individual data are difficult to be collected (e.g., the COVID-19 outbreak period).
The empirical results obtained through our empirical models could serve as important
information for the surveillance of ICQ under the hospital competition in the publicly
financed healthcare system.

This study, nonetheless, has several limitations. First, the potential size distortion due
to a small sample size used in this study (i.e., a total of 28 and 84 quarterly and monthly
observations) would create invalid inferences, so all results generated from the MF-VAR
model were based on the bootstrap method in order to adjust for the size distortion. Second,
the cyclical components of time series were used for our MF-VAR model, so inferences
obtained from this study are limited regarding the short-run relationships among nurse
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staffing, patient outcomes, and hospital competition under the GBPS of Taiwan’s NHI
system. Third, this study belongs to the ecological type of time series analyses. Thus, in
order to prevent the ecological fallacy of study [57], our empirical results neither refer
to individual patients’ decisions in seeking care (such as ED care or inpatient care) after
discharge from a hospital nor the hospitals’ managerial actions (such as nurse deployment)
in response to changes in patient outcomes. We recommend that future studies collect the
individual data needed to explore the interactions among hospitals’ managerial actions
impacting quality of care, the patients’ decisions in seeking care, and patient outcomes in
response to hospital competition under the GBPS of Taiwan’s NHI system.

5. Conclusions

Hospital administrators and healthcare practitioners have long been concerned about
the adverse effect of poor nurse staffing on patient outcomes [1–25,35]. The critical force
driving inappropriate deployment of nursing staffs at hospitals is hospital (quantity)
competition under the GBPS. In this study, we applied the MF-VAR model to investigate
the interdependences between nurse staffing, patient outcomes, and hospital competition
under the GBPS of Taiwan’s NHI system for the first time. Our empirical results from
the forecast error variance decomposition yielded higher explanatory power from the
MF-VAR model in contrast to the conventional VAR model with single frequency data.
The mixed frequency Granger causality tests identified bi-directional causation between
nurse staffing and patient outcomes and one-way Granger causality running from nurse
staffing to reimbursement to inpatient care services. The impulse-response analyses found
positive (negative) effects of PNR on adverse patient outcomes (reimbursement payments
for inpatient care services) in all types of hospitals but detrimental effects of adverse
patient outcomes on PNR in medical centers (regional and district hospitals) across a
12-month period.

These findings generated from the aforementioned models suggest that nurse staffing
is an essential determinant of both patient outcomes and reimbursement payments under
the GBPS of Taiwan’s NHI system. Therefore, the vicious cycle triggered by hospital
(quantity) competition under the GBPS of Taiwan’s NHI system works differently in
different types of hospitals. Strategic policies (such as directly subsidizing for appropriate
nurse staffing levels and the inclusion of the nurse staffing level as a vital standard for
hospital accreditation) should be implemented for all hospitals in order to preserve the
quality of inpatient care services, and more comprehensive interventions aimed towards
switching hospital competition from quantity to quality competition should focus on
the harmful effect of adverse patient outcomes on nurse staffing in medical centers and
regional hospitals.
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Appendix A

In order to present these data better, we exhibit the trends of all variables used in
this study in Figure A1. Note that Taiwan’s NHIA implemented the first stage of the post-
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acute care intervention program during the period of July 1st 2017~April 10th 2020 [58].
Attributable to this intervention program, we found significant structural changes in the two
ICQ indicators and PNR at medical centers and district hospitals during the intervention
period. In addition, we also found a sudden drop in PNRs in the three different types of
hospitals during the periods of three COVID-19 strike waves (see grey shading area in
Figure A1) in Taiwan, corresponding to a sharp fall in the two ICQ indicators and rise in
real ICE per admission. These results reflect the fact that inpatient care utilization was
largely reduced due to public fear of COVID-19 infection and the promotion of policies
discouraging non-urgent healthcare services, and, in turn, a reduction in hospital (quantity)
competition and lower PNRs were found. These findings have implications regarding
the interdependences between PNR, ICQ, and real ICE per admission under the GBPS of
Taiwan’s NHI system.

In order to obtain stationary time series of these variables, the cyclic components
of these time series were extracted through the Hodrick and Prescott filter method [51].
The cyclic components of all variables with the logarithm transformation in level terms
were both de-mean and de-trend time series, which enabled us to accommodate structural
changes of those variables discussed in the aforementioned pargagaph. The plots of the
cyclic components of all variables are displayed in Figure A2.
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Notes
1 Inpatient care expenditure per admission was calculated using total inpatient care expenditure divided by total admissions in a

specific type of hospital, and it was measured using the 2016 price level (constant 2016 USD). The patient-to-nurse ratio was
defined as the mean of number of patients divided by the nurse staffing number within three shifts per day in a specific type of
hospital. The quarterly and monthly sample periods start from 2015: Q1 to 2021: Q4 and 2015: M1 to 2021: M12, resulting in a
total of 28 and 84 quarterly and monthly observations, respectively. The IQR and JB statistics represent the interquartile range
and Jarque-Bera statistics, respectively. ”**”, ”*” denote 1% and 5% significance levels for the rejection of null hypothesis of the
normality of time series, respectively.

2 All variables are defined in the same way as for Table 1. The lag length is selected based on Bayesian Information Criterion (BIC)

with the maximal lag as eight. ”**” and “*” represent 1% and 5% significance levels, respectively.
3
∑

t=1
C_ ln

(
PNRk

i

)
, , k = MC, RH,

and DH define cyclic components of aggregate monthly PNR.
3 Quarterly data on cyclical components of quality of care indicators (such as the 3-day EDV rate and 14-day readmission rate),

inpatient care expenditure per admission, and monthly data on cyclical components of the patient-to-nurse ratio were used
to estimate the MF-VAR model. The monthly data on cyclical components of the patient-to-nurse ratio were aggregated into
quarterly data (PNRA) when the LF-VAR model was estimated. The lag length is selected based on Newey and West’s automatic
lag selection with the maximal lag as 3 [52]. “PNRA 6=> EDV”, for example, represents the null hypothesis of non-causality from
PNRA to RER. The bold font of PNR denotes the vector of cyclical components of PNR symbolized by [C_lnPNR1, C_lnPNR2,
C_lnPNR3]’. “PNR 6=> EDV”, for example, represents the null hypothesis of joint non-causality from the vector of cyclical
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components of PNR to the cyclical component of EDV. The p values were calculated using the heteroscedasticity-robust parametric
bootstrap of Gonçalves and Kilian [53] with 10,000 replications. “***”,”**”,”*” represent 1%, 5%, and 10% significance levels,
respectively.

4 Figure 1 plots the impulse response functions (IRFs) for monthly horizons h = 0, 1, 2, . . . , 12 based on the MF-VAR model
of quarterly data on cyclical components of quality of care indicators (such as the 3-day EDV rate and 14-day readmission
rate), inpatient care expenditure per admission, and three individual monthly cyclical components of the patient-to-nurse ratio
symbolized by C_lnPNR1, C_lnPNR2, and C_lnPNR3 in a quarter timespan. The Cholesky decomposition with order PNR1,
PNR2, PNR3, EDV (or RAD), and ICE is selected. The sample period covers 2015:Q1–2021:Q4. The responses of variable Y (say,
EDV) to 1σ shock in X (say, PNR1) at monthly horizon h is written as “PNR1=>RER”. MC, RH, and DH represent medical centers,
regional hospitals, and district hospitals, respectively. Blue shaded areas denote 90% confidence intervals of IRFs based on the
Monte Carlo simulation method with 10,000 replications.

5 Figure 2 plots the impulse response functions (IRFs) for monthly horizons h = 0, 1, 2, . . . , 12 based on the MF-VAR model
of quarterly data on cyclical components of quality of care indicators (such as the 3-day EDV rate and 14-day readmission
rate), inpatient care expenditure per admission, and three individual monthly cyclical components of the patient-to-nurse ratio
symbolized by C_lnPNR1, C_lnPNR2, and C_lnPNR3 in a quarter timespan. The Cholesky decomposition with order PNR1,
PNR2, PNR3, EDV (or RAD), and ICE is selected. The sample period covers 2015:Q1~2021:Q4. The responses of variable Y (say,
EDV) to 1σ shock in X (say, ICE) at monthly horizon h is written as “ICE =>EDV”. Blue shaded areas denote 90% confidence
intervals of IRFs based on the Monte Carlo simulation method with 10,000 replications. MC, RH, and DH denote medical centers,
regional hospitals, and district hospitals, respectively.

6 Notations presented in this table are the same as those used in Table 3. The sum of variance decomposition may not equal 100
due to rounding.

7 The directions of arrows were drawn based on the Granger causality tests. The arrows with bold (dot) lines represent significant
(insignificant) paths connecting two target variables based on 90% confidence intervals of the impulse-response effects accumu-
lated across a 3-month cycle of a quarter timespan over a 12-month period. MC, RH, and DH denote medical centers, regional
hospitals, and district hospitals, respectively.

8 EDV and RAD represent the 3-day EDV rate and 14-day readmission rate, respectively. ICE is real inpatient care expenditure per
admission at the 2016 price level (USD). PNR symbolizes the patient-to-nurse ratio. MC, RH, and DH represent medical centers,
regional hospitals, and district hospitals, respectively. Light blue and grey shaded areas show the post-acute care intervention
period and COVID-19 strike waves, respectively.

9 All notations used in this figure are the same as for Figure 1. ln(·) represents the natural logarithm transformation.
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