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Abstract: Planning for the intensive use of renewable energy sources (RESs) has attracted wide
attention to limit global warming and meet future load growth. Existing studies have shown that
installing projects such as transmission lines, energy storage systems (ESSs), fault current limiters, and
FACTs facilitate the integration of RESs into power systems. Different generation and transmission
network expansion planning models have been developed in the literature; however, a planning
model that manages multiple types of projects while maximizing the hosting capacity (HC) is not
widely presented. In this paper, a novel planning framework is proposed to enhance and control
the HC level of RESs by comparing various kinds of renewables, ESSs, fault current limiters, and
FACTs to choose the right one, economically and technically. The proposed problem is formulated as
a challenging mixed-integer non-linear optimization problem. To solve it, a solution methodology
based on a developed decision-making approach and an improved meta-heuristic algorithm is
developed. The decision-making approach aims to keep the number of decision variables as fixed as
possible, regardless of the number of projects planned. While an improved war strategy optimizer
that relies on the Runge-Kutta learning strategy is applied to strengthen the global search ability. The
proposed decision-making approach depends primarily on grouping candidate projects that directly
impact the same system state into four separate planning schemes. The first scheme relies on the
impedance of devices installed in any path to optimally identify the location and size of the new
circuits and the series-type FACTs. The second scheme is based on optimally determining the suitable
types of ESSs. On the other hand, the third scheme optimizes the reactive power dispatched from
the ESSs and shunt-type FACTs simultaneously. The fourth scheme is concerned with regulating
the power dispatched from different types of RESs. All of the simulations, which were carried
out on the Garver network and the 118-bus system, demonstrated the ability of the investigated
model to select the appropriate projects precisely. Further, the results proved the robustness and
effectiveness of the proposed method in obtaining high-quality solutions in fewer runs compared to
the conventional method.

Keywords: renewable energy sources; generation and transmission network expansion planning;
energy storage systems; meta-heuristics; decision-making approach; improved war strategy optimizer

1. Introduction

Recently, countries have moved toward more sustainable power systems, and the wide
use of renewable energy sources (RESs) is crucial for meeting the future growth of electrical
demands and mitigating climate change [1,2]. By 2050, the RESs will likely shape 27%
of global energy consumption [3]. The unplanned penetration of RESs may threaten the
power systems’ resilience and security. The renewables have stochastic and unpredictable
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behavior. The networks with renewables are more prone to complete blackouts [4,5].
Through generation and transmission expansion planning (G&TNEP), the hosting capacity
(HC) levels of RESs can safely increase in modern power systems.

The G&TNEP are conventionally applied to identify the location and size of power
technologies, such as generation units, transmission lines (TL), and energy storage systems
(ESSs), in order to optimally expand networks and meet future consumption [6,7]. G&TNEP
is a challenging computational problem and obtaining its global solution is complicated.
The G&TNEP problem is commonly formulated as a non-linear, non-convex optimization
problem with either a single objective function or multi-objective functions and a set of
constraints. The objective functions are designed to minimize the investment and operating
costs of projects. The constraints comprise the economic and technical requirements set by
the system operator and planner [8–10].

The technical studies required for G&TNEP, which are the main concern of this work,
can be classified into power flow analysis, the generation units’ capability analysis, short-
circuit current (SC) analysis, and transient stability analysis, as visualized in Figure 1. The
DC and AC optimal power flow-based models are commonly applied to perform the load
flow studies and generation units’ capability analyses. The AC models are more accurate
and flexible than the DC models. It allows for incorporating many technologies’ models
into the G&TNEP model [8–10].
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Transient and dynamic stability analysis covers the studies required to guarantee
system voltage and frequency stability after contingencies [11–13]. On the other hand, the
short-circuit current analysis intends to study the impact of the presence of new transmis-
sion lines and generation stations on the SC levels. Adding a new line or generation unit
to a network may increase the SC. It must be ascertained that this increase is within the
permitted limits. In the literature, some studies have embedded the short-circuit current
constraints (SCC) into the planning model and depended on the placements of the new
transmission lines and generating units in order to limit the SC [14]. Other studies have
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relied on fault current limiters (FCLs) and the integration of the SCC into the model to
decrease the SC [15].

To meet the technical requirements, candidate generation units and transmission lines
may not be sufficient. Moreover, they are sometimes not economically feasible compared
to other facilities such as ESSs, static VAR compensators (SVCs), thyristor-controlled series
compensators (TCSCs), and reactive compensators. Most of the current studies have been
directed at integrating the planning models of many technologies into G&TNEP [8,10].
FACTSs are commonly used in power systems to increase the transmission and loading
capability and to compensate for the reactive power. FACTSs, whether they are series,
shunt, or shunt-series devices, according to their connection to power systems, have shown
a significant improvement in the operation of power systems and its planning costs [16].

ESS is an evolving technology-based solution to deal with many challenges facing
power grids, especially in the presence of renewable energy sources. The existing studies
have shown that using ESSs in addition to TL and distributed generators decreased the
power system’s vulnerability more effectively than in the case where TL and RESs were
the only options. Generally, the ESSs, considering their nominal power and energy, can be
classified into long-, medium-, and short-term ESSs [17]. Pumped hydroelectric storage
(PHS) and above-ground and underground compressed air energy storage systems (UCAES
and ACAES) are long-term types. The medium-term types are vanadium redox batteries
(VR), zinc-bromine batteries (ZnBr), lithium-ion batteries (Li-ion), lead-acid batteries (LA),
sodium-sulfur batteries (NaS), nickel-cadmium batteries (Ni-Cd), and hydrogen-based
energy storage (HES). Short-term technologies include flywheel energy storage (FWES),
superconducting magnetic energy storage (SMES), and super-capacitors (SCs). Long-term
ESSs have an efficiency not exceeding 90%. In addition, their rated power can surpass
50 MW, and their lifetime is no less than 20 years and can reach 60 years [17]. Long-
term technologies have higher rated power and capacity than medium- and short-term
technologies, which lead to a longer discharge time. The medium-term type commonly has
high power and energy densities compared to the long-term ESSs. This type’s discharge
time almost ranges from seconds to hours. The medium-term ESSs are more appropriate
for applications with a lifetime of fewer than 20 years. Short-term technologies, such as
FWES, SMES, and SCs, are characterized by a fast time of response, reaching milliseconds.
In addition, they have the highest power density compared to other types. Although
short-term ESSs have high efficiencies compared to most of the other ESS types, their usage
is limited to applications that require a fast response time, such as mitigating the grid’s
frequency fluctuation [17]. The SMES and SCs are featured with an efficiency of 97%, while
the FWES’s efficiency can reach 95% [17].

The G&TNEP problem becomes complex if several technologies’ planning models
are included. The number of decision-making variables increases, and the search space
is wider [9]. These have adverse impacts on the efficiency of the optimization techniques.
Efforts are still required to introduce new methods of finding optimal or high-quality
solutions. Mathematical and meta-heuristic-based methods are commonly employed to
solve the G&TNEP problem. Mathematical methods efficiently solve simple and linear
optimization problems [9,10]. Many research papers have employed a linearization ap-
proach to simplify and deal with non-linear problems. However, the quality of the obtained
solutions mainly depends on the efficiency of the linearization technique applied [18–20].

On the other hand, meta-heuristics are preferred in solving complex non-linear
G&TNEP problems [21,22]. They are efficient in handling non-linear equations. It is
easy to apply the algorithm directly. Although these methods avoid errors resulting from
the linearization process, the optimal solution cannot be ensured in a single run [10,23].
Meta-heuristics should be executed several times to reach optimal or high-quality solutions.
Another obstacle to using meta-heuristics is that the algorithm parameters selected for
a specific problem may not be suitable for other problems [24–26]. Many studies have
recently resorted to combining the features of several techniques into one algorithm to
improve the performance of meta-heuristics [27]. These studies concluded that hybrid
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algorithms, whether combining two meta-heuristics or combining a meta-heuristic with
mathematical techniques, significantly improved the quality of the obtained solutions.
The efficiency of the hybrid algorithm fundamentally depends on the hybrid strategy
adopted [15,28–31].

Based on the above discussion, the shortcomings observed in the previous studies can
be summarized as follows:

1. A G&TNEP model that compares various project types in order to maximize the HC is
rarely presented in the literature. Most existing models allow for integrating a single
type of project for each planned project. Several case studies should be implemented
to assess each class separately.

2. The implementation of mathematical methods may increase the computational burden.
Thus, a linearization approach is essential to deal with non-linear equations and avoid
trapping at local optimums.

3. Although the hybrid of meta-heuristic algorithms is more effective in solving the
G&TNEP problem compared to non-hybrid algorithms, the performance of these
algorithms degrades if several types of projects are planned simultaneously. The
number of decision variables and the search space increase proportionately with the
number of projects designed.

To address the above-mentioned research gaps, this work suggests a co-planning
model that allows the incorporation of planning models of RES, such as PV units and wind
farms, and many technologies, such as TCSCs, FCLs, and SVC, into the G&TNEP model.
The proposed model facilitates the planning of many projects simultaneously, without
affecting the size of the search space. This feature helps improve the planning process
technically and economically and saves computational time. An improved algorithm is
suggested to solve the proposed problem. A decision-making approach is also developed
to improve the performance of the algorithm. Figure 2 illustrates the proposed planning
and solving strategy. The main contributions of this paper can be summarized as follows:

1. Planning models of RESs, ESSs, TCSCs, FCLs, and SVCs are integrated into the
G&TNEP to enhance the planning process and achieve the technical requirements.
These projects give the system operator more options for improving the system
security and lowering planning costs.

2. A HC planning model with a reduced search space is investigated to compare many types
of RESs, FACTs and ESSs and to select the most suitable, technically and economically.

3. A decision-making approach is suggested to decrease the problem’s complexity. Four
schemes are proposed to reduce the number of decision-making variables.

4. An improved war strategy optimizer based on the Runge-Kutta learning strategy is
proposed to solve the problem.
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2. Problem Formulation

The proposed problem is formulated as an optimization problem with a single objec-
tive function and is subjected to technical constraints. The target is to meet future loads,
promote HC levels, and maintain the system’s resilience.

The AC model is adopted to formulate the proposed problem to ensure the planning’s
accuracy and to consider the capability of the generation units. This feature cannot be
achieved using the DC model.

2.1. Objective Function

The proposed objective function is formulated to reduce the investment and operation
costs of the built projects, as follows:

OF = min {F1 + F2 + F3 + F4 + F5 + F6 + F7} (1)

The first term (F1) in (1) denotes the cost of constructing the new circuits. The scenario-
based method is employed to simulate the uncertainties in the systems. Several scenarios
are gathered to represent the stochastic behavior of the loads and RESs. The problem is
solved for each scenario based on the projects defined in the previous scenarios. According
to (2), the new circuits installed in each scenario equal the difference between the circuits
needed in the current scenario h and those existing in the previous scenario h-1. The capital
recovery factor, FCRF, is introduced to consider the time value of money. It is a constant
that depends on the project’s lifetime in years (Y) and the discount rate (τ), as given in (3).

F1 = ∑∀h∈ΩH ∑∀i,j∈ΩB
FCRF Cij (Nij

l,h − Nij
l,h−1) (2)

FCRF =
τ (1 + τ)Y

(1 + τ)Y − 1
(3)

F2 explains the investment cost of the newly built conventional and renewable units,
as given in (4). It also covers the operating costs for new and existing generation units. F2
is designed to choose the best RES, either a wind farm or a PV unit, or both at the same
site. The candidate sites are supposed to be suitable for installing wind farms and PV
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systems. Equation (5) points to the investment cost model, while Equation (6) describes the
operation costs. In (6), ∆Ph

g,i, ∆Ph
w,i and ∆Ph

pv,i represent the incremental value in the rated
power of generation units in scenario h compared to the power calculated in scenario h − 1.

F2 = CG
invest + CG

op (4)

CG
invest = ∑

∀h∈ΩH

∑
∀g∈ΩG

FCRF

(
Cinvs

g,th Ng
th, h ∆Pth,h

g + Cinvs
g,W Ng

w, h ∆Pw,h
g, rated

+Ng
pv, h ∆Ppv,h

g, rated

) (5)

CG
op = ∑

∀h∈ΩH

∑
∀g∈ΩG

365 ∆TFCRF

(
Cvop

g,thNg
th, h Pth, h

g + Cvop
g,w Ng

w, h Pw,h
g +

Cvop
g,pv Ng

pv, hPpv,h
g + C f op

g,th Ng
th, h ∆Pth,h

i + C f op
g,w Ng

w, h∆Pw,h
g +

C f op
g,pv Ng

pv, h ∆Ppv,h
g

) (6)

The third term F3 illustrates the cost of carbon capture and storage systems (CCSSs)
to reduce the CO2 emitted from the thermal generation units. Moreover, it calculates the
economic revenue gained from the tax credits, as given in (7). The CCSS’s cost is formulated
in (8), and the revenue from the tax credits is calculated using (9) [32].

F3 = Cg
CCSS − Cg

carb,rev (7)

Cg
CCSS = ∑∀h∈ΩH ∑∀g∈ΩG

365 Ng
G, h FCRF

(
CCCSS

g,th Pth, h
g

)
(8)

Cg
carb,rev = ∑∀h∈ΩH ∑∀g∈ΩG

365 Ni
G, hFCRF

(
Crev

g,th Pth, h
g

)
(9)

F4 describes the planning cost for K types of ESSs, as provided in (10). The capital cost,
the replacement cost, and the end-of-life cost for type k are expressed in (11)–(13), while (14)
explains the operating cost [31]. The capital cost includes the cost of a storage container, a
power conversion component, and ESS’s balance, as shown in (11). Equation (12) points to
the replacement cost of the ESSs. Some ESS parts may be perishable during the project’s
lifetime and must be replaced, representing an additional cost to consider. The end-of-life
cost is due to the recycling of the ESSs at the end of the project. It is calculated as expressed
in (13). Equation (14) reveals the fixed and operating costs of the ESSs. It is worth noting
that ∆EESS,k, h

i and ∆PESS,k,h
i are the incremental increases in the storage capacity and rated

power compared to the calculated values in the previous scenario.

F4 = ∑∀k∈ΩK
CESS,k

cap + CESS,k
rep + CESS,k

el + CESS,k
op (10)

CESS,k
cap = ∑∀h∈ΩH ∑∀b∈ΩESS

Nb
ESS, k,h FCRF

(
csc, k ∆EESS, k, h

b + cpc, k ∆PESS, k,h
b +

cpb, k ∆PESS, k,h
b

) (11)

CESS,k
rep =

∑∀h∈ΩH ∑∀b∈ΩESS
Nb

ESS, k, h FCRF Brep, k Nrep, k ∆EESS, k, h
b ∑∀γ∈ΩRep,k

1
(1+τ)

γk,b×Ak,b

(12)

CESS, k
el = ∑∀h∈ΩH ∑∀b∈ΩESS

Nb FCRF
ESS, k, hBel, k∆PESS, k,h

b (13)

CESS,k
op =

∑∀h∈ΩH ∑∀b∈ΩESS
Nb

ESS, k, h FCRF

(
cfixed,k∆PESS, k,h

b ∑∀y∈ΩY

(1+Velec, k)
y

(1+τ)y +

Belec, k 365 ∆T PESS, k, h
b

ηESS, k
∑∀y∈ΩY

(1+Velec, k)
y

(1+τ)y +
Bgas, k d hd Gr, k PESS, k, h

b
103 ηESS, k

∑∀y∈ΩY

(1+Vgas, k)
y

(1+τ)y

) (14)
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F5 indicates the cost of the FCLs, which are installed as follows:

CFCL = ∑∀h∈ΩH ∑∀ro,p ∈ΩFCL
CFCL FCRF

(
Zh

op − Zh−1
op

)
(15)

Finally, F6 and F7 calculate the cost of constructing the TCSCs and SVC. The cost of
the TCSCs is calculated by (16), whereas the cost of the SVCs is obtained by (17) [33]. It is
worth mentioning that CTCSC

1 , CTCSC
2 and CTCSC

3 represent the cost coefficient for the TCSC,
while CSVC

1 , CSVC
2 and CSVC

3 refer to the cost coefficient for the SVC.

CTCSC = ∑∀h∈ΩH ∑∀ m,n∈ΩTCSC
FCRF Nmn

TCSC, h
(

CTCSC
1

(
Sh,TCSC

mn − Sh−1,TCSC
mn

)2
+

CTCSC
2

(
Sh,TCSC

mn − Sh−1,TCSC
mn

)
+ CTCSC

3

) (16)

CSVC = ∑
∀h∈ΩH

∑
∀ s∈ΩSVC

FCRF Ns
SVC, h

(
CSVC

1

(
Qh,SVC

s −Qh−1,SVC
s

)2

+CSVC
2

(
Qh,SVC

s −Qh−1,SVC
s

)
+ CSVC

3

) (17)

2.2. Problem Constraints

The technical constraints are described in (18)–(57). These are categorized into project
constraints (18)–(24), power flow constraints (25)–(38), capability constraints (39)–(54), the
HC constraint (55), and the short-circuit current constraints (56)–(57).

During normal operations, the constraints (18)–(22) and (24)–(55) are taken into ac-
count. Meanwhile, during three-phase short-circuit fault contingencies, the short-circuiting
current restrictions (56) and (57) are considered, along with project constraints, power flow
limitations, capability constraints, and HC requirements, which are given in (18)–(55).

2.2.1. Project Constraints

The project constraints ensure that the number of projects installed does not surpass
the permissible limits. The box-type restrictions (18)–(22) enforce the number of circuits,
generation units, ESSs, TCSCs, and SVCs to be within the upper and lower bounds. It
should be noted that all constraints are designed to guarantee that the previously built
projects exist in all of the subsequent scenarios.

Nl,h−1
ij ≤ Nij

l, h ≤ Nl, max
ij ; ∀ {h ∈ ΩH , i, j ∈ ΩB} (18)

NG,h−1
g ≤ Ng

G, h ≤ NG, max
g ; ∀ { h ∈ ΩH , g ∈ ΩG} (19)

NESS,k,h−1
b ≤ Nb

ESS, h ≤ NESS,k, max
b ; ∀ { h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS} (20)

NESS,k,h−1
b ≤ Nb

ESS, h ≤ NESS,k, max
b ; ∀ { h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS} (21)

NSVC,h−1
s ≤ Ns

SVC, h ≤ NSVC, max
s ; ∀ { h ∈ ΩH , s ∈ ΩSVC} (22)

Equations (23) and (24) restrict the size of the FCLs and TCSCs installed. The FCLs
are used to govern the short-circuit current levels in the network during three-phase short-
circuit fault contingencies. While the maximum compensation level, λmax, is shown in (24)
to control the size of the TCSCs installed.

ZFCL,h−1
op ≤ ZFCL,h

op ≤ ZFCL, max
op ; ∀ {h ∈ ΩH , o, p ∈ ΩFCL} (23)

XTCSC,h−1
mn ≤ XTCSC,h

mn ≤ λmaxXl, max
mn ; ∀ {h ∈ ΩH , m, n ∈ ΩTCSC} (24)

2.2.2. Power Flow Constraints

Equations (25) and (26) refer to the power balance constraints. They reveal that the
injected power relies on the active and reactive powers generated, the transmission line
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losses, the output active and reactive powers of ESSs, and the power consumed by the
loads. Typically, ESSs are interfaced with the grid by bi-directional converters (BDCs). The
use of BDCs facilitates the control of the power injected or absorbed by the ESSs to or from
the network. Most studies in the literature related to G&TNEP ignore this feature [34,35].

∑g∈Mi Ng
th, h Pth,h

i + ∑w∈Mi Ng
w, h Pw, h

i + ∑pv∈Mi Ng
pv, h Ppv, h

i −
0.5 ∑l∈Mi Ploss,h

i + ∑l∈Mi Pij
s,h + ∑l∈Mi Pij

r,h = Pd,h
i +

∑BDC, b∈Mi Nb
BDC, hPBDC,k, h

i ; ∀ {h ∈ ΩH}
(25)

∑g∈Mi Ng
th, h Qth,h

i − 0.5 ∑g∈Mi Qloss,h
i + ∑l∈Mi Qij

s,h + ∑l∈Mi Qij
r,h =

Qd,h
i + ∑BDC,b∈Mi Nb

BDC, h QBDC,k, h
i ; ∀ {h ∈ ΩH}

(26)

where
Pij

s,h = Vh2

i Gij −Vh
i Vh

j Gij cos
(

θh
i − θh

j

)
−Vh

i Vh
j Bij sin

(
θh

i −

θh
j

)
; ∀ { h ∈ ΩH , i, j ∈ ΩB}

(27)

Qij
r,h = −Vh2

i
(

Bij + Bsh
)
−

Vh
i Vh

j Gij sin
(

θh
i − θh

j

)
+ Vh

i Vh
j Bij cos

(
θh

i − θh
j

)
; ∀ { h ∈ ΩH , i, j ∈ ΩB}

(28)

Pij
r,h = Vh2

j Gij −Vh
i Vh

j Gij cos
(

θh
i − θh

j

)
+ Vh

i Vh
j Bij sin

(
θh

i −

θh
j

)
; ∀ { h ∈ ΩH , i, j ∈ ΩB}

(29)

Qij
r,h = −Vh2

j
(

Bij + Bsh
)
+

Vh
i Vh

j Gij sin
(

θh
i − θh

j

)
+ Vh

i Vh
j Bij cos

(
θh

i − θh
j

)
; ∀ { h ∈ ΩH , i, j ∈ ΩB}

(30)

The conductance (Gij) and substance of the line (Bij) of the TCSC-equipped lines are
calculated using (31) and (32), respectively [36].

Gij =
Rij(

Rij
)2

+
(
Xij
(
1− λij

))2 (31)

Bij =
Xij
(
1− λij

)(
Rij
)2

+
(
Xij
(
1− λij

))2 (32)

The power flowing through the transmission lines equipped with TCSCs is governed
as follows:

Ss,h
ij ≤

(
Nij

l,h Smax
ij + Nij

TCSC,h STCSC,h
ij

)
; ∀ {h ∈ ΩH , i, j ∈ ΩB, i, j ∈ ΩTCSC} (33)

Sr,h
ij ≤

(
Nij

l,h Smax
ij + Nij

TCSC,h STCSC,h
ij

)
; ∀ {h ∈ ΩH , i, j ∈ ΩB, i, j ∈ ΩTCSC } (34)

where
Ss,h

ij =
√(

Pij
s,h
)2

+
(
Qij

s,h
)2 (35)

Sr,h
ij =

√(
Pij

r,h
)2

+
(
Qij

r,h
)2 (36)

It is worth mentioning that λmn and Nmn
TCSC,h are set to 0 if the line m-n does not

have a TCSC. The angles and voltages of the nodes are regulated through (37) and (38).
They should be within the predefined bounds.

θmin
i ≤ θh

i ≤ θmax
i ; ∀ {h ∈ ΩH , i ∈ ΩB } (37)

Vmin
i ≤ Vh

i ≤ Vmax
i ; ∀ {h ∈ ΩH , i ∈ ΩB } (38)
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2.2.3. Capabilities Constraints of ESSs, SVCs, and Generation Units

The constraints of the RESs are imposed through (39) and (40). The RESs are controlled
only to generate active power. The active and reactive power capabilities of the thermal
units are investigated in (41) and (42). The output of the thermal units should not violate
their limits in steady-state or congestion conditions.

Pw, min,h
g ≤ Pw,h

g ≤ Pw, max,h
g ; ∀ {h ∈ ΩH , g ∈ ΩG } (39)

Ppv, min,h
g ≤ Ppv,h

g ≤ Ppv, max,h
g ; ∀ {h ∈ ΩH , g ∈ ΩG } (40)

Pth, min
g ≤ Pth,h

g ≤ Pth, max
g ; ∀ {h ∈ ΩH , g ∈ ΩG } (41)

Qth, min
g ≤ Qth,h

g ≤ Qth, max
g ; ∀ {h ∈ ΩH , g ∈ ΩG } (42)

Equation (43) controls the minimum and maximum capacities of the SVCs installed in
each scenario.

QSVC, min
s ≤ QSVC, h

s ≤ QSVC, max
s ; ∀ {h ∈ ΩH , s ∈ ΩSVC } (43)

The technical constraints of the ESSs are explained in (44)–(54). The box-type Equations
(44) and (45) govern the charging and discharging active power of the ESSs through BDCs,
whereas (46) and (47) regulate the injected or absorbed reactive power. The inequality
constraints (48) and (49) illustrate that the total absorbed and injected reactive powers
through BDCs should not exceed the maximum charged and discharged powers by ESSs.

0 ≤ PBDC,K,h
dch,b ≤ PESS,K,max,h

dch,b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (44)

0 ≤ PBDC,K,h
ch,b ≤ PESS,K, max,h

ch,b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (45)

0 ≤ QBDC,K,h
dch,b ≤ PESS,K,max,h

dch,b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (46)

0 ≤ QBDC,K,h
ch,b ≤ PESS,K, max,h

ch,b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (47)√(
PBDC,K,h

dch,b

)2
+
(

QBDC,K,h
dch,b

)2
≤ PESS,K,max,h

dch,b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (48)√(
PBDC,K,h

ch,b

)2
+
(

QBDC,K,h
ch,b

)2
≤ PESS,K,max,h

ch,b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (49)

PESS,K,max,h
dch,b and PESS,K,max,h

ch,b are managed in each scenario based on the SOC of the

ESSs. PESS,K,max,h
dch,b is calculated using (50). PESS,K,max,h

ch,b is obtained by (51). It relies on the
rated power and the current SOC of the selected ESS. In this work, ∆T is set to one hour.

PESS,K,max,h
dch,b = min

(
PESS,K,r ,

SOCh
ESS,K,i − Emin

ESS,K,b

∆t

)
; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (50)

PESS,K,max,h
ch,b = min

(
PESS,K,r ,

Emax
ESS,K,i − SOCh

ESS,K,b

∆T

)
; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (51)

Equation (52) is used to calculate the SOC of the built ESS. Constraints (53) and (54) imply
that the ESS’s storage capacity should be less than the maximum of the selected ESS type.

SOCESS,K,h
b = SOCESS,K,h−1

b + ηch
ESS,K Ph

ch,K,b −
Ph

dch,K,b

ηdch
ESS,K

; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (52)

EESS,K,h
b ≤ EESS,k,max

b ; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (53)
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EESS,K,h
b = EESS,K,h−1

b +
Ph

dch,K,b

ηdch
ESS,KDODmax

ESS,K,b
; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (54)

2.2.4. Hosting Capacity Constraint

The constraint (57) regulates the HC levels in the power systems. In this study, the total
rated power of the wind turbines and PV systems should not exceed a certain percentage
of the system’s peak load.

HCmin ≤
∑∀r∈ΩR

Pw,h
r, rated + Ppv,h

r , rated

∑∀i∈ΩB
Pd,max

i

≤ HCmax (55)

2.2.5. Short-Circuit Current Constraints

Several faults commonly occur in the power networks, such as a single line-to-ground
fault, a double line-to-ground fault, and a line-to-line fault. However, the three-phase
short-circuit fault is the worst and is considered in this work. It is calculated by (55). The
fault current should be less than the pre-defined level ISC

max, as described in (56). Vh
i (0) is

the pre-fault voltage and Zii is the bus i diagonal value in the impedance matrix.

ISC
i =

Vh
i (0)

Zii
h ; ∀ {h ∈ ΩH , i ∈ ΩB } (56)

ISC,h
i ≤ ISC

max ; ∀ {h ∈ ΩH , i ∈ ΩB } (57)

3. Proposed Decision-Making Approach

The model provided in (18)–(57) reveals that planning several sources for reactive
power compensation and many types of ESSs and RESs increases the problem’s complexity.
The search space is large, and the number of manipulated parameters is huge. Further,
a significant computational burden is needed. By reducing the number of optimized
variables, the meta-heuristic algorithm can preserve its efficiency regardless of the increase
in the number of projects planned.

The proposed approach depends primarily on grouping candidate projects that directly
impact the same system state, as illustrated in Figure 3. For example, new circuits and
TCSCs installed between buses m and n directly impact the impedance of the transmission
line connecting the two buses. Thus, new circuits and TCSC devices can be determined by
controlling the impedance of the lines between buses. Similarly, all of the considered ESS
types affect the active or reactive power of buses where they are located. Thus, they can
be grouped together, and the best ESS configuration can be determined by employing a
suitable scheme.

SVCs and ESSs are designed to inject or absorb reactive power into or from the grid.
Hence, another scheme can be designed to select the best of them or a mix of them to
meet the quantity of reactive power required. The variables assigned for controlling the
reactive power that is injected or absorbed can be kept constant regardless of the number
of VAR sources considered. In addition, the optimal size of the wind farms and PV units
required to increase the HC can be determined. The wind and PV units are planned to inject
active power into the system, and the appropriate source can be assigned by optimizing
the amount of active power needed and selecting the best one based on their technical and
economical characteristics.

According to Figure 3, the proposed approach is carried out through four schemes.
The first, second, and fourth schemes operate in parallel, whereas the third scheme is an
extension of the second scheme, through which the appropriate reactive power source
is selected. The first scheme receives a vector of calculated reactance (XNew, h) from the
optimizer, the vector of the circuits’ reactance (X(o)) and λmax, and the output is a vector
representing the size and location of TCSCs, and the number and location of the new circuits.
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The second scheme concerns the ESS’s active powers. It receives a vector of calculated
power (PESS,h ) and the ESS’s maximum charging and discharging powers (PBDC,k,max,h

dch and
PBDC,k,max,h

ch ), and generates a vector of the selected types and their sizes and location. Based
on the results of the second scheme, the ESS’s maximum charging and discharging reactive
powers are defined, and the third scheme determines the suitable source for supplying
the required reactive power ( QSVC,h). The fourth scheme controls the power dispatched
from each type of RES. It receives a vector of the calculated power (PRES,h), as well as a
maximum capacity of each source, and the output is a vector of the amount of power each
type can share.

Systems 2023, 11, x FOR PEER REVIEW 11 of 44 
 

 

Thus, they can be grouped together, and the best ESS configuration can be determined by 

employing a suitable scheme. 

Pmax
w     

Pmax
PV   

P
RES,h

Size  of TCSCs required

 Location of TCSCs required

Number of new circuits required

Location of new circuits required

Types of ESS selected

Size and location of ESSs required

SOC of the selected ESSs

Type of reactive power source selected

Size and location of  reactive power source

Type of RES selected

Size and location of reactive power source

Calculate F1and F6

Calculate  F7

Calculate  F4

Calculate  F2

Pg 
th,h     Ng 

th,h

Check power flow constraints Check capabilities constraints  Check project constraints

Pdch,b
ESS,k,max,h    

Pch,b
ESS,k,max,h      

P 
ESS,hλ

max   
Xmn

(o)   
Xmn

New,h
Qs

h

Algorithm 3 Algorithm 4Algorithm 1 Algorithm 2

Achieved?

Candidate solutions of the RKWSO

Check other constraints  Add high penalty cost 

Go to the RKWSO

YesNo

 

Figure 3. Flowchart of the proposed decision-making approach. 

SVCs and ESSs are designed to inject or absorb reactive power into or from the grid. 

Hence, another scheme can be designed to select the best of them or a mix of them to 

meet the quantity of reactive power required. The variables assigned for controlling the 

reactive power that is injected or absorbed can be kept constant regardless of the number 

of VAR sources considered. In addition, the optimal size of the wind farms and PV units 

required to increase the HC can be determined. The wind and PV units are planned to 

inject active power into the system, and the appropriate source can be assigned by opti-

mizing the amount of active power needed and selecting the best one based on their 

technical and economical characteristics. 

Figure 3. Flowchart of the proposed decision-making approach.



Systems 2023, 11, 23 12 of 42

3.1. Planning Scheme for New Circuits and TCSCs

The suggested approach primarily relies on the impedance of the transmission lines
in defining the TNEP projects. The impedance of the transmission lines becomes the new
independent variable assigned for planning the candidate lines and TCSCs in the planned
model. As a result, the number of decision variables decreases from 2 Nl

max to Nl
max. It

is worth mentioning that if many projects influence the transmission lines’ impedance,
there is no impact on the number of decision variables. The location of these projects can
be directly defined through monitoring the changes that occur in the impedance of the
transmission lines, as illustrated in Algorithm 1.

TCSCs only affect the reactance of the transmission lines, as shown in (24), (31), and
(32). As a result, the transmission line reactance is only considered to define the projects
required. If Nl,h

mn circuits and TCSCs are installed between the node m and the node n, as
shown in Figure 4, the reactance xnew,h

mn can be calculated by:

Xnew,h
mn =

X(o)
mn

Nl,h
mn

(
1− λh

mn

)
(58)

Algorithm 1: Pseudo-code of circuits and TCSCs planning scheme.

1: Inputs: the maximum compensation level (λmax) , X(o)
mn and Xnew,h

mn .
2: For i = 1 Nl

max.
3: Calculate the number of new circuits required using: (Nl,λ,h

mn ) using (59).
4: If Nl,λ,h

mn < 4
5: Nl,λ,h

mn = 0
6: end
7: Calculate the number of new circuits required using:

Nl,h
mn = ceil( (1− λmax) Nl,λ,h

mn )

8: Calculate Nλ,h
mn using (61).

9: Calculate the compensation level required in each route (λh
ij) using (62).

10: end
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Figure 4. Impact of adding new circuits and TCSCs between buses m and n.

Therefore, by calculating X(o)
mn

xnew,h
mn

, the location of the new transmission lines and the size

and the location of the TCSCs are determined as follows:

Nl,λ,h
mn = Nl,h

mn +
Nl,h

mn λh
mn

1− λh
mn

(59)

where Nl,λ,h
ij is the total projects built in the route m-n. Equation (59) reveals that X(o)

mn
Xnew,h

mn
< 1

points to there being no projects installed in this route.
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The number of new transmission lines required is defined by:

Nl,h
mn =

(
1− λh

mn

)
Nl,λ,h

mn (60)

It is noteworthy that the project selection scheme prioritizes installing a new TCSC
over installing a new transmission line. The location and the compensation level are
decided by (61), and the size of the installed TCSC can be calculated using (62).

Nλ,h
mn = Nl,λ,h

mn − Nl,h
mn (61)

λh
mn =

Nλ,h
mn

Nl,h
mn + Nλ,h

mn
(62)

It is worth mentioning that (58)–(61) guarantee that the TCSCs are only constructed if
the number of new and existing circuits allows. The range of Xnew,h

mn can be constrained by
(63). MTCSC is a number greater than or equal to 1.

(1− λmax) X(o)
mn

Nl, max
mn

≤ Xnew,h
mn ≤ MTCSC X(o)

mn

Nl,h−1
mn

(63)

3.2. Planning Scheme for ESSs

The suggested model allows the use of a mix of many ESSs, whether long- or medium-
term, at the same location. Increasing the number of candidate ESS types increases the
number of variables assigned to ESS planning. It may degrade the performance of the
applied meta-heuristic algorithm. The proposed strategy is based on determining the
required charging and discharging power, irrespective of the type of ESS. Following that,
Algorithm 2 is used to select the best ESS for meeting the calculated power. The range of
power calculated, PESS,h

b , is restricted by:

−∑∀k∈ΩK
PBDC,k,max,h

dch,b ≤ PESS,h
b ≤ ∑∀k∈ΩK

PBDC,k,max,h
ch,b (64)

The strategy starts with defining PBDC,k,max,h
dch,b and PBDC,k,max,h

ch,b for each type and PESS,h .
Then, the suitable type, in terms of its economic and technological factors, at each bus is
decided through three paths:

1. First path: All types meet PESS,h
b In this case, the planning cost is calculated for each

type, and the type that provides the lowest installation cost is selected.
2. Second path: One or more types cannot meet PESS,h

b In this case, the sources that meet
PESS,h

b are selected for comparison, and the type that provides the lowest installation
cost is determined. The types that fail to achieve PESS,h are excluded.

3. Third path: All types cannot meet PESS,h
b In this case, the preferred type is first

assigned with the highest priority to compensate PESS,h
b . It is the type selected in the

first scenario. The preferred type’s sharing level is then calculated ( PESS,h
i,prio ), which

equals its maximum power depending on the operating mode (charging mode or
discharging mode). After that, the sharing levels of the other types are calculated
using (65).

PESS,k,h
b = PESS,h

b − PESS,h
b,prio (65)

If the PESS,k,h
b of each type exceeds its maximum, it will be excluded from the compar-

ison, whereas types that technically meet (65) are compared in terms of the cost to select
the one suitable for integration with PESS,h

b,prio to meet PESS,h
b .
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If the PESS,k,h
b of all types exceeds the maximum charging and discharging powers at

each scenario ( PBDC,k,max
b ), the sharing power of each type will be PESS,k,max

b . The type that
has the maximum PESS,k,h

b is chosen to incorporate with PESS,h
i,prio .

Algorithm 2: Pseudo-code of ESSs planning scheme.

1: Inputs: PBDC,k,max,h
dch,b , PBDC,k,max,h

ch,b , and the vector of required power injected or absorbed
from or by ESSs (PESS,h ).

2: For ∀ b ∈ ΩESS
3: Define the preferred ESS that has the priority to compensate PESS,h .
4: For each ESS type
5: If PBDC,k,max,h

dch,b ≤ PESS,h
b ≤ PBDC,k,max,h

ch,b

6: PESS,k,h
b = PESS,h

b
7: else
8: Define PESS,h

b,prio .

9: Calculate PESS,k,h
b using (65).

10: end
11: Calculate the cost of ESS installed.
12: end
13: If PESS,k,h

b for all types equals PESS,h
b

14: The selected ESS is the type that has the lowest investment and operation cost.
15: PESS,k,h

b = PESS,h
b

16: else
17: Define PESS,h

b,prio .

18: Find types of PESS,k,h
b > PESS,k, max, h

b
19: If all types except the preferred type meet 18

Select the type that has the highest PESS,k, max, h
b to integrate with PESS,h

b,prio .
20: else
21: Select types that do not meet 18
22: Select the ESS type with the lowest cost to integrate with the preferred type.
23: end
24: Define the power shared by the selected ESS (PESS,mix )
25: PESS,h

b = PESS,h
i,prio + PESS,mix

b
26: end
27: Update SOC of selected types.
28: end

3.3. Planning Scheme for Reactive Power Sources

The ESSs and SVCs are planned to be the main sources for the reactive power compen-
sation. To reduce the assigned decision variables, the reactive power required is calculated
and then the suitable source is determined based on the cost, rated values, and available
capacity of the ESSs, as explained in Algorithm 3. The constraint (66) limits the calculated
reactive power.

(−∑∀k∈ΩK
QBDC,k,max, h

dch,b + QSVC, min
s ) ≤ Qh

s ≤ (∑∀k∈ΩK
QBDC,k,max, h

ch,b + QSVC, max
s ) (66)

The suggested strategy starts with defining the maximum charging and discharging
reactive powers of the ESSs. They are updated based on the charging and discharging of
the active powers, as illustrated in (67) and (68).

QBDC,k,max,h
dch,b =

√(
PESS,k,max,h

dch,b

)2
−
(

PBDC,k,h
dch,b

)2
; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (67)

QBDC,k,max, h
ch,b =

√(
PESS,k,max,h

ch,b

)2
−
(

PBDC,k,h
ch,b

)2
; ∀ {h ∈ ΩH , k ∈ ΩK, b ∈ ΩESS } (68)
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The sharing level of each source is then determined by taking the upper and lower
bounds into account. For the ESSs, Algorithm 2 is applied to calculate their sharing level. If
each source of VAR can provide the required reactive power, the source selected is decided
based on the cost. Otherwise, a mix of VAR sources is selected, as explained in Algorithm 3.

Algorithm 3: Pseudo-code of VAR planning scheme.

1: Inputs: the maximum charging and discharging reactive power for each ESS type
(QBDC,k,max,h

dch,s , QBDC,k,max,h
ch,s ), and required power injected or absorbed

from or by SVCs and ESSs (Qh
s )

2: Reactive powers shared by ESSs are determined using the same steps in Algorithm 2.
3: For ∀ s ∈ ΩSVC
4: Calculate the planning cost of VAR and selected ESSs.
5: If QSVC,h

s = QESS,h
s

6: A type that has the lowest cost is selected.
7: else
8: If QSVC,h

s = Qh
s

9: The selected type is SVC.
10: else If QESS,h

s = Qh
s

11: The selected type is ESS.
12: else
13: Define the preferred source regarding the source selected in the first scenario

(Qh
s,prio).

14: Calculate the required capacity of the other type:
Qh

s,mix = Qh
s −Qh

s,prio
15: Calculate the planning cost of SVC and selected ESS.
16: end
17: end
18: end

3.4. Planning Scheme for RESs

As discussed in Section 2, the proposed model allows for the comparison of many
types of RES to select the most suitable, technically and economically, during the planning
process. The power injected at each bus from the RESs is calculated to hold the number of
decision variables constant. Then, the sharing level of each type is selected based on the
power available in each scenario. The power needed from the RES is restricted by (69).

0 ≤ PRES,h
r ≤

(
Pw,h

r + Ppv,h
r

)
(69)

Setting the sharing level of each source is the core of the proposed strategy. Commonly,
the rated capacity of the wind farms and PV systems is known, and based on the wind
speed and irradiance in each scenario, the available power to supply to the grid is obtained,
as shown in (70) and (71) [37].

Pw,h
r =


0, f or vw〈vw

in and vw〉vw
out

Pw
r, max ×

(
vw−vw

in
vw

r −vw
in

)
, f or vw

in ≤ vw ≤ vw
r

Pw
r, rated, f or vw

r < vw ≤ vw
out

(70)

Ppv,h
r =

 Ppv
r,max ×

(
G2

s
Gstd×Rc

)
, f or 0 < Gs < Rc

Ppv
r, rated ×

(
Gs

Gstd

)
, f or Gs ≥ Rc

(71)
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In contrast to the previous studies, this work adopts a reverse strategy. The power
needed to supply is first defined, and then the rated power of each RES necessary to meet
it is calculated using (72) and (73). MRES is a very large number.

Pw,h
r, rated =


MRES, f or vw〈vw

in and vw〉vw
out

Pw,h
r ×

(
vw

r −vw
in

vw−vw
in

)
, f or vw

in ≤ vw ≤ vw
r

Pw,h
r , f or vw

r < vw ≤ vw
out

(72)

Ppv,h
r, rated =

 Ppv,h
r ×

(
Gstd×Rc

G2
s

)
, f or 0 < Gs < Rc

Ppv,h
r ×

(
Gstd
Gs

)
, f or Gs ≥ Rc

(73)

After calculating the rated values, there are three paths, as described in Algorithm 4:

1. First path: The rated values needed of all types are lower than or equal to their
maximum. In this case, the sharing level of each type is equal to the PRES,h

r , and the
type that provides the lowest installation cost is selected.

2. Second path: The rated values of one or more types exceed the maximum. In this case,
the types that fail to supply the required power are excluded, and the types that meet
PRES,h

r are compared in terms of installation cost to select the suitable type.
3. Third path: The rated values of all types exceed the maximum. In this case, the

sharing level for the type that has the priority to inject power into the grid (PRES,h
r,prio )

and is calculated using (70) or (71), considering its maximum power. Similar to ESSs
planning, this source is the type selected in the first scenario. The sharing level of the
other types ( PRES,h

r,type ) is obtained as follows:

PRES,h
r,type = PRES,h

r − PRES,h
r,prio (74)

If PRES,h
r,type for a type exceeds PRES,max

g,type , this type is excluded. Types that can incorporate

with the preferred type are only those that meet PRES,h
r − PRES,h

r,prio . PRES,max
g,type is the output of

the other source using (70) or (71), considering its maximum power.

Algorithm 4: Pseudo-code of RESs planning scheme.

Inputs: Pw
max, Ppv

max and PRES,h.
1: FOR ∀ r ∈ ΩR
2: Define the RES that has the priority to inject PRES,h

r .
3: Calculate Pw,h

r, rated and Ppv,h
r, rated using (72) and (73) considering the output PRES,h

r

4: If Pw,h
r, rated ≤ Pw

r, max and Ppv,h
r, rated ≤ Ppv

r, max
5: Select the RES with the lowest cost.
6: end
7: If Pw,h

r, rated > Pw
r, max or Ppv,h

r, rated > Ppv
r, max

8: Exclude this type.
9: end
10: If Pw,h

r, rated > Pw
r, max and Ppv,h

r, rated > Ppv
r, max

11: Calculate PRES,h
i,prio using (70) or (71).

12: Calculate PRES,h
r,type using (74).

13: Calculate the planning cost for types that meet (74).
14: Select the type with the lowest cost to incorporate with the preferred type
15: end
16: end
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4. Algorithm Preliminaries

After applying the decision-making approach, the algorithm becomes concerned with
fewer control variables. The planning model can be represented as:

Minimize: OF
subjected to: (23), (25)–(38), (41)–(43), (57), (63), (64), (66), and (69)
The new control variables are presented in a vector form as follows:

ϕ =
[

Xh
ij, PESS,h

b , Qh
s , PRES,h

r , ZFCL,h
ij , Pth,h

g

]
; ∀ {h ∈ ΩH , i, j ∈ ΩB, b ∈ ΩESS, s ∈ ΩSVC, r ∈

ΩRES, g ∈ ΩG }
(75)

The problem is still non-linear and non-convex, and achieving a globally optimal
solution may not be guaranteed. This work suggests an improved WSO based on the Runge
Kutta learning strategy (RKS). WSO is effective in dealing with unimodal and multimodal
functions. It proved its supremacy in solving some well-known engineering problems [38].
Meanwhile, RKS helped improve the convergence capability of the Runge-Kutta optimizer
(RUN) [39].

4.1. War Strategy Optimization Algorithm

WSO was developed by Ayyarao et al. [38] in 2022. The WSO approach was inspired by
the strategic movement of army troops during wars. The mechanism of operation of WSO
can be described as follows. The positions of the army troops are randomly distributed
on the war field, as described in (76). LB and UB are the lower and upper bounds of the
decision-making variables.

X = LB + rand× (UB− LB) (76)

All soldiers are candidates to become kings or commanders based on each soldier’s
combat strength (the fitness value). The soldier with the best attack force is the king, while
the second-best attack force is the commander. The king and the commander are leaders of
all the troops, and their movements on the battlefield determine the next positions of the
soldiers. The positions’ updating scheme is carried out through two strategies: the attack
strategy and the defense strategy.

In WSO, the transition from attack to defense or vice versa occurs randomly. In the
attack strategy, it is assumed that the king has the best position to launch attacks on the
opposing troops, and the soldiers’ next positions are defined by:

Xiter+1 = Xiter + 2× ρ× (C− K) + rand×
(

W1 × K− Xiter
)

(77)

where K and C are the positions of the king and the commander, respectively. ρ is a random
number. W1 is the weight vector. It primarily depends on each soldier’s rank (Ri) as shown
in (78). α is constant. Ri of soldiers increases by one if their attack forces improve. The
attack forces represent the fitness values of soldiers. It is worth mentioning that all soldiers
have the same rank and weight at the beginning of the war.

W1,i = W1,i ×
(

1− Ri
itermax

)α

(78)

In the defense strategy, the soldiers’ next positions depend on the positions of the king,
the commander, and any soldier selected randomly, as given in (79). The defense strategy
explores more search space to avoid trapping in local optimums.

Xiter+1 = Xiter + 2× ρ×
(

K− Xiter
rand

)
+ rand×W1 ×

(
C− Xiter

)
(79)

In each iteration, the soldier who has the weakest attack force (the worst fitness value)
is randomly replaced using (76).
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4.2. Runge-Kutta Optimization Algorithm

RUN was first developed in 2021 by Ahmadianfar et al. in [39]. Its main idea is
based on the Runge-Kutta (RK) theory, applied to find the numerical solution for ordinary
differential equations. The RUN algorithm updates the decision variables through three
main stages. The first stage employs a search mechanism (SM) based on the RK method to
calculate the new position of individuals in the population as follows:

xn+1 = (xc + r× SF× g× xc) + SF× SM + µ× randn× (xm − xc) (80)

xn+1 = (xm + r× SF× g× xm) + SF× SM + µ× randn× (xr1 − xr2) (81)

If the random number, rand, is less than 0.5, the new positions are calculated by
(80). Otherwise, the new positions are defined by (81). r is an integer that equals 1 and
−1. g is a random number between 0 and 2, and µ is a random number with a normal
distribution. SF is an adaptive factor. More details about SM, SF, xm and xc can be found in
Ahmadianfar et al. [39].

The second stage applies the enhanced solution quality scheme to improve the quality
of the solutions gained, as shown in (82) and (83). The new variable, xnew2, is obtained by
(82) if W2 < 1, otherwise, xnew2 is computed by (83). It is worth noting that Equations (82)
and (83) are carried out if a randomly generated number between 0 and 1 is less than 0.5.

xnew2 = xnew1 + r×W2 ×
∣∣(xnew1 − xavg

)
+ randn

∣∣ (82)

xnew2 =
(
xnew1 − xavg

)
+ r×W2 ×

∣∣(u× xnew1 − xavg
)
+ randn

∣∣ (83)

where β is a random number in the range of [0, 1]. c is a random number, which is equal to
5×rand. xbest is the best solution explored so far. W2, xavg and xnew1 are calculated using
(84), (85), and (86), respectively.

W2 = rand(0, 2)× exp
(
−c
(

iter
itermax

))
(84)

xavg =
xr1 + xr2 + xr3

3
(85)

xnew1 = β× xavg + (1− β)× xbest (86)

The third stage provides another chance to improve the quality of solutions. It is
executed if solutions gained from the second stage have lower quality than the first stage’
solutions. The new positions in the third stage are calculated as follows:

xnew3 = (xnew2 − rand× xnew2) + SF× (rand× xRK + (v× xb − xnew2)) (87)

where v is a random number with a value of 2× rand.

4.3. RKWSO

The proposed RKWSO is based on incorporating the second and third stages of the
RUN algorithm into the WSO algorithm. The RKWSO algorithm is illustrated in Figure 5.
The RKWSO starts by generating a random population using (76). Then, the best and worst
solutions are calculated. In each iteration, the new solutions are calculated in four phases. The
individuals’ positions are first updated using (77) and (79). After that, the learning schemes
(82) and (83) are applied to improve the quality of the solutions obtained in the first phase.
If the fitness value of the individual is greater than the best fitness, the third phase (87) is
employed. Otherwise, the updating scheme terminates. The final step is to replace the solution
with the worst fitness value with a random solution, determined by (76).
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The application of the RKWSO in solving the proposed problem can be explained as
follows. For each scenario, the following steps are executed to solve the problem:

(a) In each iteration:

• The RKWSO solver optimally updates the location of the new transmission lines,
and the size of the FCL modules, FACTs, ESSs, and RESs.

• Apply the proposed decision-making approach to define each project type.
• Check the normal operation constraints (18)–(22) and (24)–(55).
• Apply a three-phase short-circuit fault and check the short-circuit constraint (18)

and (57).
• Add a high penalty cost to solutions that violate the problem constraints.
• Repeat the above steps until the maximum number of iterations is reached.

(b) Repeat step (a) until the maximum number of runs is reached.
(c) Determine the best solution by comparing the results of each run.
(d) Update the lower bound of the decision-making variables.
(e) Go to the next scenario.

5. Numerical Results
5.1. Test Systems

The Garver network and IEEE 118-bus system were selected for conducting the pro-
posed study. The results were gathered over ten separate runs driven on the MATLAB
r2021a platform via a DELL PC, with a model name of OptiPlex7050, having an Intel®

Core™ i7’ CPU at 2.6 GHz-16 GB RAM.
The Garver system has two thermal units and six existing circuits. The candidate

circuits and generation units are presented in [40]. In this work, the candidate locations for
the ESSs are buses 2 and 5, while the new location of the RESs is bus 5. The rated power of
the PV system and wind farm was 300 MW, and their characteristics are given in [37]. The
maximum reactive powers of the thermal units were reduced by 50%.

The PHS and Li-ion were used in this study. The rated capacity of PHS was 50 MW,
and the rated capacity was 200 MWh. Li-ion’s rated power and capacity were 10 MW
and 20 MWh, respectively. The other technical and economic specifications of PHS and
Li-ion can be found in [17]. At each candidate location for building the ESS, the maximum
number of the PHS and Li-ion units were one and five, respectively.

The 118-bus system consists of 118 buses, 54 thermal generation units, and 186 existing
lines [41]. The total loads are 6.886 GW. It is planned that a new circuit can be installed
at each route. The candidate places for the RESs are on buses 2, 50, 81, 93, 101, 115, and
118, while buses 2, 15, 49, 50, 56, 80, 81, 93, 101, 115, and 118 are candidates for the ESSs.
The maximum number of PHS and Li-ion units at each candidate bus were two and ten,
respectively. The rated capacities of the PV system and wind farm were 500 MW.

For both systems, two curves were employed to simulate the variation of the wind
speed and solar radiation over 24 h, as shown in Figure 6. The consumption variation over
the 24 h is described in Figure 7. The investment and operating costs of the generation
units are presented in [42]. The investment and operating costs of the generation units and
the cost and revenue of the CCSSs are given in [32].
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Figure 6. Wind speed and solar radiation profiles over 24 h.
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Figure 7. Loads profiles over 24 h.

5.2. Garver Network
5.2.1. Validation of the Proposed Solution Method

The proposed strategy was tested and compared to the conventional method in solving
five models. The test models varied in the number of candidate projects and decision
variables. The comparison aimed to evaluate the effectiveness of each scheme separately.
The first model examined the dependency on the lines’ impedance in determining the
optimal location and number of new circuits. Only one ESS type was used, and SVCs, FCLs,
and TCSCs were not planned. The second and third models evaluated the performance of
the circuits, the TCSCs, and the reactive power planning schemes. The fourth model tested
the impact of adding the FCL’s planning model to the G&TNEP problem. The fifth model
was adopted to test both methods of controlling the HC levels and the power dispatched
from two types of ESS. Simulations were carried out, taking into account two HC levels. It
is worth mentioning that the simulations started with scenario number 16, and this section
only presents the results of this scenario.

Table 1 summarizes the results gained for the Garver network. The first model’s
results showed effective circuit planning through the lines’ impedance. Both approaches
gave approximately the same solutions (see Figure 8a). The best-case planning cost was
approximately 62.8 million USD. The results reported that there was no need for ESSs.
The candidate circuits and the capacity of the generation units were economically and
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technically sufficient to meet the loads. The statistical analysis proved the superiority of the
proposed method in terms of standard deviations (SD) and the mean, as shown in Table 1.
The means were approximately 65.9 million USD and 68.49 million USD for the proposed
and existing approaches, respectively. The SD was 2.19 and 2.65 for both, respectively. The
proposed approach was robust, and out of ten runs, it reached the best solution five times.
The execution times of both methods are almost equal. The proposed method needed
98.51 s, while the conventional approach consumed 100.16 s to conduct one run.

Table 1. Results of the proposed and the existing approaches for the Garver network.

Approach Statistical Test Model #1 Model #2 Model #3 Model# 4 Model# 5
(HCmin = 30%)

Model# 5
(HCmin = 0%)

Proposed
Scheme

The best cost 62.8137 56.5059 54.415 54.853 72.86 53.55
The worst cost 73.59 61.8192 66.543 65.084 80.23 60.86
Robustness 5 3 3 2 2 2
T * (s) 98.51 105.30 121.87 155.68 199.32 190.31
SD * 2.19 1.585 3.05 3.26 2.12 1.94
Mean 65.904 60.108 60.189 58.921 75.93 56.28

Existing
Approach

The best cost 62.8148 56.7619 54.655 55.873 74.62 57.62
The worst cost 76.136 66.9001 69.509 65.005 86.33 75.005
Robustness 4 3 2 1 1 1
T (s) 100.16 142.23 178.66 213.90 343.14 355.24
SD 2.65 2.67 3.218 3.68 3.41 4.18
Mean 68.494 60.838 60.809 59.997 81.16 62.97

* T: the time required to execute one run, SD: standard deviation.
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Table 1 also explains that the circuits and TCSCs planning scheme (the second model)
was more efficient in reaching better solutions than the existing method. The proposed
approach sped up the convergence to the best solution. The time required for executing
one run was approximately 105.3 s for the proposed strategy, whereas the convergence
time of the conventional approach was approximately 142.23 s. The convergence curves
are described in Figure 8b. The supremacy also appeared in the value of SD, robustness
measurement, and the mean of the obtained solutions. The best SD and mean were 1.585
and 60.1 million USD, respectively.

The results showed that increasing the number of projects planned reduced the efficacy
of the conventional scheme and increased the convergence time compared to the suggested
approach. When the SVC model was considered, the decision-making variables increased
for the traditional approach. However, the proposed approach kept the number of variables
constant. Table 1 indicates that the proposed method prompted the RKWSO to give better
solutions. The best solution obtained by the proposed approach costs 54.41 million USD,
while the best solution calculated by the conventional approach costs 54.655 million USD.
It is worth noting that the standard deviations were 3.05 and 3.218 for the solutions gained
by the proposed and conventional approaches, respectively. The G&TNEP-based decision-
making approach could conserve its robustness, although extra projects were planned. The
convergence curves of both methods are described in Figure 8c.

When the FCL’s planning problem was considered, the superiority of the proposed
problem was also noticed. The best configuration planned by the proposed approach costs
54.85 million USD, whereas it costs 55.87 million USD using the conventional approach,
as shown in Figure 8d. Table 1 proved that the proposed approach was also superior in
terms of SD. The standard deviation was 3.26 and 3.68 for both methods, respectively.
Although the robustness of the proposed method decreased compared to its value in the
third model, it was still higher than the robustness of the conventional approach. The
proposed approach enabled the RKWSO to converge faster.

When the RESs expansion model was considered, and two types of ESSs were com-
pared in the co-planning model, the problem complexity increased even more. The fifth
model was examined by simulating two HC levels, of 30% and 0%, and by decreasing
the maximum capacity of the thermal unit at bus 6 to 160 MW. The results showed the
efficiency of the proposed strategy in optimally integrating the RESs into the power systems.
The proposed methodology could compare several types of ESSs without affecting the
robustness of the solvers. On the other hand, the performance of the conventional approach
was affected by the increase in the research space. This is noticed in the SD, mean, and
robustness measurement values. The convergence curves are explained in Figure 8d,f.

Based on all of the above results, it can be concluded that the proposed solution
method significantly contributed to improving the performance of RKWSO. Although
the Garver network was a small-scale testing system, increasing the projects considerably
affected the performance of the employed algorithm. The proposed approach kept the
number of decision variables as constant as possible. It encouraged comparing several
types of projects without increasing the problem’s complexity.

5.2.2. Technical and Economic Analysis

Figure 9 illustrates the economic impact of including TCSCs, SVCs, ESS, and short-
circuit constraints on the G&TNEP. The results showed that using TCSCs decreased the
planning cost by 6.31 million USD compared to the first model. The TCSCs increased
the circuit capacity, and the system could compensate for the increase in the power flow
through the transmission lines. The technical analysis showed that the use of TCSCs did
not affect the voltage stability. The buses’ voltages were still within permissible limits, as
shown in Figure 10.
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Figure 9. Impact of using different technologies on the cost of planning of Garver network.
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Figure 10. Voltage profile of the Garver network.

The results also indicated that the mix of TCSCs and SVCs struck a balance between
the technical and economic requirements. An improvement in the voltage stability was
observed, as depicted in Figure 10. In addition, the use of SVCs reduced the cost by
2.1 million USD compared to the use of TCSCs only, and by 8.41 million USD in the case of
using neither SVCs nor TCSCs, as explained in Figure 9.

Embedding FCLs was essential for maintaining the short circuit current below 6 p.u,
as shown in Figure 11. The use of FCLs slightly increased the planning cost. The calculated
cost exceeded the cost of the third model by 0.44 million USD. It is worth remarking that
using ESSs was not economically preferred compared to other facilities.

Two HC levels were proposed to assess the approach’s capability in controlling the
HC and regulating the various types of ESSs. For HCmin equaling 30%, there was no need
for ESSs, and the output of the wind farms was sufficient to supply the loads over the
course of 24 h. The results showed that using PV systems was unsuitable for achieving the
technical and economic targets. A wind farm rated at 228.01 MW was installed. The total
planning cost is 94.0337 million USD, and the cost over the 24 scenarios is illustrated in
Figure 12a. It is worth mentioning that the thermal units were economically preferred to
the wind turbines. Forcing the HC level of the RESs is the only way to integrate RESs when
the thermal units’ capacities are sufficient to meet the consumption.
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For HC equal to 0%, the unbalance between the generation and consumption was
handled by installing ESSs. Two PHS, at buses 2 and 5, with rated capacities of 165 and
55 MWh were enough. The total planning cost was 102.08 million USD. The planning cost
and the SOC of the PHS over the 24 scenarios are shown in Figures 12b and 13, respectively.
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Figure 13. SOC of ESSs at buses 2 and 5 for the Garver network.

Figure 14 depicts the charging and discharging powers of the ESSs across the 24 scenarios.
Figure 14b shows that the ESS at bus 5 absorbed the reactive power through the BDC over
eight scenarios. The capability of the ESSs to absorb the reactive power sped up the charging
process and decreased the capacity of the ESSs. As a result, the cost of installing the ESSs was
reduced. The rated MWh decreased from 177.78 MWh to 55 MWh.
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Figure 14. Charging and discharging powers of PHS: (a) charging and discharging active powers
and (b) charging and discharging reactive powers.

5.2.3. Testing the Efficiency of RKWSO

Table 2 summarizes the results obtained for the RKWSO when it was applied to solving
the fifth model, at HCmin = 30%. The performance of the RKWSO was compared with that
of the snake optimizer (SO) [25], the WSO, the sine-cosine algorithm (SCA) [26], and RUN.
The results proved the superiority of the RKWSO in solving the reduced-scale and full-scale
models in terms of reaching the best solution, SD, and the mean.

Table 2. Comparison between the RKWSO and SO, WSO, SCA, and RUN for solving the Garver network.

Approach Statistical Test RKWSO SO WSO SCA RUN

Proposed
scheme

The best cost 72.86 75.97 73.06 76.54 73.30
The worst cost 80.23 97.58 86.94 102.22 84.31
Robustness 2 1 1 1 2
T (s) 199.32 183.34 115.52 142.52 328.78
SD 2.12 4.51 3.504 5.11 3.12
Mean 75.93 81.91 78.41 88.53 77.58

Existing
approach

The best cost 74.62 77.18 76.07 80.23 74.73
The worst cost 86.33 98.70 90.14 104.61 90.65
Robustness 1 1 1 1 1
T (s) 343.14 276.23 246.33 270.02 501.87
SD 3.41 5.42 3.71 6.85 3.22
Mean 81.16 84.6 83.04 95.51 82.49

The results also showed that the proposed decision-making approach helped all of
the algorithms give better solutions and converge faster than the full-scale model. This
confirms that the impact of the suggested approach was not limited to RKWSO but also
effectively improved the performance of the other solvers. The convergence curves are
presented in Figure 15.
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Figure 15. Convergence curves of the RKWSO, SO, WSO, SCA, and RUN for the Garver network:
(a) the reduced-scale model and (b) the full-scale model.

5.3. IEEE 118-Bus System
5.3.1. Validation of the Proposed Solution Method

The proposed solution was also tested on the 118-bus system using the five models
to evaluate each scheme individually. The results gathered for the 118-bus system are
presented in Table 3. Like the Garver network, the results confirmed that the reliance
on the reactance of the transmission lines was effective and superior in selecting the
TNEP projects. The best configuration using the proposed approach cost approximately
108.411 million USD, whereas the best solution calculated by the conventional approach
was 108.629 million USD, as shown in Figure 16a. The outperformance of the proposed
methodology was shown in the mean, the convergence time, the robustness measurement,
and the SD of the calculated solutions. The best mean was approximately 112.22 million
USD, and the best SD was 2.17. These findings also encourage TCSC plans based on
transmission line reactance.
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Table 3. Results obtained for the 118-bus system.

Approach Statistical Test Model #1 Model #2 Model #3 Model #4 Model #5
(HCmin = 30%)

Model #5
(HCmin = 0%)

Proposed
scheme

The best cost 108.411 106.2339 105.952 109.665 408.57 229.99
The worst cost 117.518 113.973 118.76 120.095 417.23 248.917
Robustness 3 2 2 2 1 2
T (s) 703.24 732.2 768.18 840.02 2409.56 2398.38
SD 2.17 2.305 3.863 3.602 2.855 5.034
Mean 112.2201 109.645 110.436 116.571 413.478 235.67

Existing
approach

The best cost 108.629 108.435 108.697 110.697 427.27 237.69
The worst cost 124.249 113.862 120.453 130.192 443.79 267.023
Robustness 2 2 1 1 1 1
T (s) 811.22 851.41 907.05 1104.10 2904.87 2969.51
SD 2.64 2.424 4.123 7.606 4.0225 10.401
Mean 118.832 110.462 115.6895 119.253 433.224 248.14
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Table 3 illustrates that the application of the suggested circuits and TCSC planning 

scheme significantly improved the RKWSO performance. The planning scheme reduced 
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Figure 16. Convergence curves of the proposed and existing approaches for solving the 118-bus
system: (a) the first model, (b) the second model, (c) the third model, (d) the fourth model, (e) the
fifth model for HC = 30% and (f) the fifth model for HC = 0%.

Table 3 illustrates that the application of the suggested circuits and TCSC planning
scheme significantly improved the RKWSO performance. The planning scheme reduced the
number of decision variables by 186. This reduction contributed to gathering high-quality
solutions compared to the conventional approach. The SD of the solutions calculated by
the proposed and conventional approaches was 2.305 and 2.424, respectively. Moreover,
the best solution was less expensive than the one obtained by the conventional approach,
at 2.2 million USD. The convergence curves of both approaches are described in Figure 16b.
The results showed an improvement in the proposed approach’s convergence time.

By investigating the results of the third model, it was noticed that the proposed method
mitigated the impact of the increase in the number of variables due to the integration of the
SVC planning model. As depicted in Figure 16c, the proposed approach promoted the per-
formance of the RKWSO in reaching better solutions. The best solution was 105.952 million
USD, while the best solution obtained by the conventional approach was 108.697 million
USD. The results proved that the increase in the decision variables had an adverse effect
on the optimizer’s performance. The weakness of the conventional approach was not
limited to failing to reach the best solution; it also had less robustness than the proposed ap-
proach. The statistical analysis also showed improved solutions quality using the proposed
approach. The SD was 3.863, and the mean was 110.436 million USD.

The results explained that including the FCL planning model did not affect the perfor-
mance of the proposed approach. It preserved its good performance and outperformed
the performance of the conventional approach. It gave the best solution of 109.665 million
USD, as shown in Figure 16d. It also gave the best mean and SD, as shown in Table 3.

When the RESs and two types of ESSs were considered, the robustness of the proposed
algorithm slightly decreased but was still better than the conventional approach, as shown
in Table 3. The proposed method was superior to the conventional approach in terms of the
mean, the SD, and the quality of the solutions. Figure 16e,f present the convergence curves
of both approaches for two HC levels. It is worth mentioning that HCmin = 0 was simulated
when the total generation from the thermal units was constrained not to exceed 6260 MW.

5.3.2. Technical and Economic Analysis

Figure 17 indicates that embedding the TCSCs in the system decreased the planning
cost by 2% compared to the first model. The findings also demonstrated that the optimal
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mix of TCSCs and SVCs improved the planning efficiency. The planning cost decreased by
0.282 million USD when only the TCSCs were used. Figure 18 points to the capability of
the proposed model to limit the buses’ voltage within the planned limits. Incorporating the
SCC into the planning model affected the projects selected. The planning cost increased by
3.5% compared to the cost of the third model. The FCLs were necessary to maintain the SC
below 12.5 p.u., as shown in Figure 19.
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The results found that using ESSs was only crucial when the output of the thermal
units was insufficient to compensate for an unbalance between generation and consumption.
The results also showed that the reliance on the RESs for compensating for a deficiency in
the generation was economically preferred to ESSs for long-term expansion, as depicted in
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Figure 20. The planned cost for achieving HCmin equal to 30% was 660.427 million USD,
whereas the use of ESSs increased the cost to 809.41 million USD for HCmin equal to 0%.
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For the HCmin equal to 0%, using PHS and Li-ion was essential. The PHS was given
priority to inject power into the grid, and the Li-ion served as a backup for the PHS in
scenarios where the PHS’s capacity and rated power were insufficient to meet the demand.
The SOC of the PHS and Li-ion over the 24 h is depicted in Figure 21. It is worth mentioning
that if the number of PHS increased, there would be no need to use Li-ion.
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5.3.3. Testing the Efficiency of RKWSO

The efficiency of the RKWSO was not limited to solving small-scale systems but was
extended to larger systems such as the 118-bus system. The results demonstrated that
the RKWSO was more functional than SO, WSO, SCA, and RUN in solving the reduced-
and full-scale models. The RKWSO had the lowest SD, the best mean, and the highest
robustness, as shown in Table 4. Figure 22 shows that the reduced-scale model gave better
solutions for all of the algorithms than the full-scale model.
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Table 4. Comparison between the RKWSO and SO, WSO, SCA, and RUN for solving the 118-bus system.

Approach Statistical Test RKWSO SO WSO SCA RUN

Proposed
scheme

The best cost 408.57 422.62 413.81 427.06 411.94
The worst cost 417.23 450.53 448.31 462.32 422.41
Robustness 1 1 1 1 1
T (s) 2409.56 2343.55 2244.39 2200.93 2785.71
SD 2.855 5.651 9.349 10.76 3.152
Mean 413.478 432.827 429.335 445.234 417.14

Existing
approach

The best cost 427.27 448.42 443.17 461.33 433.85
The worst cost 443.79 469.254 462.024 486.78 448.230
Robustness 1 1 1 1 1
T (s) 2904.87 2851.11 2765.02 2723,91 3147.33
SD 4.0225 7.21 6.49 6.213 4.2814
Mean 433.224 456.526 452.051 473.847 439.908
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Figure 22. Convergence curves of the RKWSO, SO, WSO, SCA, and RUN for the 118-bus system:
(a) the reduced-scale model and (b) the full-scale model.
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5.4. Discussion

Based on all of the presented results, some points can be concluded. The use of the
devices’ impedance installed in any path was effective in determining the location and size
of new TLs and series-type FACTs without impacting the efficiency of the meta-heuristic
algorithm. The proposed decision-making approach enhanced the performance of the meta-
heuristic algorithm. For both systems, the proposed solution strategy succeeded in giving
better solutions in a shorter computational time compared to the conventional approach.
The computational time was reduced by 36.9 s in the Garver network and 119.21 s in the
118-bus system, with an improvement in the SD of 40.6% in the Garver network and 6.3%
in the 118-bus system.

When the shunt-type FACTs, such as the SVC, were planned to integrate into the
system, the number of decision-making variables increased in the conventional approach.
However, it remained fixed when the proposed approach was applied. The computational
time was enhanced by 31.87% in the Garver network and by 15.3% in the 118-bus system.
Furthermore, the robustness of both systems increased by 50% and 100%, respectively.

When the planning model for the FCLs modules was considered, the proposed ap-
proach was still more robust than the conventional method, and a reduction in the execution
times of 58.22 s and 264.08 s was noticed in both systems, respectively.

The results demonstrated that any extension of the planning model using the proposed
strategy to allow systems to host multiple types of ESSs and different RES concurrently
had no significant impact on the solver’s efficiency when compared to the conventional
method. The proposed approach proved its superiority in obtaining high-quality solutions.
The meta-heuristic algorithm’s ability to define the best ESS type or a combination of them
was enhanced. Regardless of the types of ESSs considered, the solver’s performance was
not affected. The superiority of the proposed algorithm was not limited to the quality of
solutions obtained but was extended to reaching final solutions in a shorter period.

The proposed strategy was able to control the hosting levels of multiple types of RES
without affecting the efficiency of the meta-heuristic algorithms. When the decision-making
strategy was executed in simulations with five meta-heuristic optimizers, their performance
was better than in the standard case.

Finally, the simulations showed encouraging results for the use of a combination of
many meta-heuristic algorithms in solving this type of problem. The proposed RKWSO
was more efficient than WSO, RUN, SO, and SCA in terms of robustness and the quality of
solutions obtained.

6. Conclusions

In this paper, a co-expansion model was proposed to facilitate the integration of
RESs into power systems and plan many types of ESSs and FACTs. The problem was
complex, and to simplify it, a decision-making approach was embedded in the meta-
heuristic algorithm to reduce the search space and ensure the capture of high-quality
solutions. The suggested approach was based on applying four separate planning schemes
to decrease the model’s decision variables. The first scheme relied on the impedance of the
transmission lines to techno-economically identify the location and size of the new circuits
and TCSC devices required for system expansion. The second scheme was investigated to
optimally select the appropriate types of ESSs. The third scheme controlled the reactive
power dispatched from the ESSs and SVCs. The fourth scheme was concerned with
regulating the power dispatched from the RESs to achieve the technical and economic
requirements. The RKWSO was also suggested to improve the global search capability of
the WSO algorithm. The RKWSO was elaborated by combining the enhancement scheme of
the RUN with the conventional WSO. The main findings of this paper can be summarized
as follows:

• The reliance on the reactance of the transmission lines efficiently determined the
location and quantity of the new circuits required. It was more robust than the
conventional method. Furthermore, the first scheme helped the RKWSO optimally
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plan circuits and TCSCs simultaneously without increasing the search space. The
proposed RKWSO-based approach was superior in terms of the best solution gained,
the SD, and the robustness measurement. Considering the transmission line reactance
as a new control variable facilitates the planning of many devices that directly affect
the impedance of the lines without impacting the number of decision-making variables
or affecting the performance of the meta-heuristic algorithm.

• The second scheme effectively controlled the charging and discharging powers of PHS
and Li-ion without affecting the performance of the RKWSO. Many types of ESSs
can be efficiently planned and compared. The PHS was economically preferable to
the Li-ion. The optimal mix of both was essential for the 118-bus system under the
cases studied in this work. The use of ESSs was necessary only when the output of
the thermal units was not enough to supply the loads. Given the ability of the ESSs to
absorb the reactive power, the required capacity of the ESSs was reduced, as was the
planning cost. The use of many ESS types is essential in some networks for improving
the networks’ performance during steady state and contingencies.

• Incorporating the planning model of SVCs through the third scheme into the co-
planning model did not affect the number of control variables or the efficiency of the
solver. The SVCs were economically more suitable than the ESSs for injecting reactive
power for long-term planning.

• The fourth scheme succeeded in controlling the HC of many RESs without degrading
the performance of the meta-heuristic algorithms. The wind farms were technically
and economically preferred to the PV systems. The planning cost of the RES is high
and should be ignored in the hope of increasing the HC and mitigating climate change.

• The effectiveness of the proposed decision-making approach was tested through
the RKWSO, SO, WSO, SCA, and RUN. The results showed an improvement in the
performance of all the algorithms after applying the proposed approach. By adding
the proposed decision-making approach, the convergence time of all the algorithms
was found to be faster.

• The RKWSO was superior to SO, WSO, SCA, and RUN in terms of the SD, the robust-
ness measurement, and the mean. The use of a combination of many meta-heuristic
algorithms is more effective in solving this type of problem than a single algorithm.

Further work is required to study the impact of other technologies, such as voltage
regulators and transformer phase shifting, on power system reliability and investment
costs. Furthermore, additional research is required to investigate the impact of embedding
transient stability constraints on system configuration and the possibility of cascading
failures. Modern power systems are moving towards green transportation electrification.
Therefore, more efforts are still needed to investigate the impacts of increasing the HC of
RESs and electric vehicles, simultaneously. Additional planning schemes to the proposed
approach are required to accommodate the problem’s increased complexity.
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Nomenclature

i, j, m, n, o, p, s ∈ ΩB Indices and set for buses
b ∈ ΩESS Index and set for ESSs
o, p ∈ ΩFCL Index and set for FCLs
g ∈ ΩG Index and set for generators
h ∈ ΩH Index and set for scenarios
k ∈ ΩK Index and set for types of ESSs
l ∈ Ωl Index and set for transmission lines
Mi Set for generators, transmission lines, and ESSs connected to bus i
r ∈ ΩR Index and set for types of RESs
γ ∈ ΩRep,k Index and set for the number of replacements for ESS of type k
s ∈ ΩSVC Index and set for SVCs
m, n ∈ ΩTCSC Index and set for SVCs
Ak, b Period until the replacement for ESS b of type k
βij Susceptance of the route between bus i and j
Belec,k Market energy price for ESS of type k

(millions USD/MWh)
Bgas, k Natural gas cost per gas unit for ESS of type k
Brep, k,b Replacement cost coefficient for ESS b of type k

(millions USD/MWh)
Cinvs

g,th , Cinvs
g,W , Cinvs

g,pv Investment cost of thermal, wind, and PV stations, respectively
Cvop

g,th, Cvop
g,w , Cvop

g,pv Variable operating cost of thermal, wind,
and PV stations, respectively

C f op
g,th, C f op

g,w , C f op
g,pv Fixed operating cost of thermal, wind,

and PV stations, respectively
CCCSS

g,th , Crev
g,th Cost and revenue of CCSS built for thermal unit g

(million USD/metric tonne)
Cij Cost of circuits installed between bus i and bus j
csc, k Storage container cost for type k (millions USD/MWh)
cpc, k, cpb, k Power conversion and balance of plant costs for type k

(millions USD/MW)
c f ixed,k Factor of the fixed operating cost for ESS of type k

(millions USD/MW)
DODmax

ESS, K Maximum depth of discharge for ESS of type k
EESS,K,h

b , EESS,k,max
b Installed capacity at hour h and rated capacity for ESS b of

type k (MWh)
Gij Conductance of the route between bus i and j
Gr,k Rate of gas consumption for ESS of type k (MJ/kWh)
Nmax

l Maximum number of routes in the system
Nij

l,h Number of circuits between bus i and j at hour h
Nb

ESS, k,h, NESS,k, max
b Required number and the maximum number for ESS of

type k at hour h, respectively.
Ng

G, h Number of units for generator g installed at hour h
Ng

th, h, Ng
w, h, Ng

pv, h Number of thermal, wind, and PV units for generator g
installed at hour h

Ns
SVC, h Number of components for SVCs at hour h

Nij
TCSC,h Number of TCSC components for the route i-j at hour h

PBDC,K,h
dch,b , PBDC,K,h

ch,b Injected and absorbed active power by BDC for
ESS b of type k (MW)

PESS,K,max,h
dch,b , PESS,K,max,h

ch,b Maximum charging and discharging power for ESS b of
type k at hour h (MW)

Pd,h
i Active power consumed by the load at bus i (MW)

PRES,h Vector of active power injected by RESs at hour h (MW)
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Pw
max Vector of the maximum capacity of wind turbines (MW)

Ppv
max Vector of the maximum capacity of PV systems (MW)

Pth, h
g , Pw, h

g , Ppv, h
g Output active power of thermal, wind, and PV units at location g

at hour h, respectively (MW)
PESS, k,h

b , PESS,K, max,h
b Required power and rated power for ESS b of type k

at hour h (MW)
PESS,h Vector of calculated ESSs’ power at hour h (MW)

Ploss,h
i Power losses for line l connected with bus i

Pij
s,h, Pij

r,h Active power flows in the circuit i-j in both terminals at hour h and
their limits (MW)

Pth, min
g , Pw, min,h

g , Ppv, min,h
g Minimum active power of thermal, wind, and PV units at location g

Pth, max
g , Pw, max,h

g , Ppv, max,h
g Maximum active power of thermal, wind, and PV units at location g

Qh Vector of reactive power injected by reactive sources
at hour h (MVAR)

QBDC,K,h
dch,b , QBDC,K,h

ch,b Injected and absorbed reactive power by BDC for ESS b of
type k (MVAR)

Qd,h
i Reactive power consumed by the load at bus i (MW)

Qij
s,h, Qij

r,h reactive power flows in the circuit i-j in both terminals at hour h
and their limits (MVAR)

QSVC, h
s , QSVC, min

s , QSVC, max
s Capacity of SVCs installed and its limits (MVAR)

Qth,h
g , Qth, min

g , Qth, max
g Output reactive power for the thermal unit g and its limits (MVA

Ss,h
ij , Sr,h

ij , Smax
ij Apparent power flows in the circuit i-j in both terminals at hour h

and their limits (MVA)
STCSC

ij Increment in the maximum apparent power of circuit i-j due to
building a TCSC with λij compensation levels

SOCh
ESS,i SOC of ESS at bus i and hour h

Velec,k Rate of variation of Belec,k

Vf c,k
Rate of variation of the fixed operation and maintenance cost for
ESS of type k

Vgas,k Rate of variation of the gas price for ESS of type k
Vh

i Voltage at bus i (p.u)

X(o)
ij

Initial reactance for the circuit i-j

xnew,h
ij Reactance calculated of projects installed in the route i-j

λmax, λmn Compensation and needed compensation level of a TCSC installed
in the circuit between bus m and bus n

θh
i Voltage angle at bus i (p.u)

ηch
ESS,k, ηdch

ESS,k Charging and discharging efficiencies for ESS of type k
τ, Y Discount rate and the lifetime of the project
∆T Time interval between any two successive scenarios
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9. Mutlu, S.; Şenyiğit, E. Literature Review of Transmission Expansion Planning Problem Test Systems: Detailed Analysis of IEEE-24.
Electr. Power Syst. Res. 2021, 201, 107543. [CrossRef]

10. Mahdavi, M.; Sabillon Antunez, C.; Ajalli, M.; Romero, R. Transmission Expansion Planning: Literature Review and Classification.
IEEE Syst. J. 2019, 13, 3129–3140. [CrossRef]

11. Esmaili, M.; Ghamsari-Yazdel, M.; Amjady, N.; Chung, C.Y. Convex Model for Controlled Islanding in Transmission Expansion
Planning to Improve Frequency Stability. IEEE Trans. Power Syst. 2021, 36, 58–67. [CrossRef]

12. Gjorgiev, B.; David, A.E.; Sansavini, G. Cascade-Risk-Informed Transmission Expansion Planning of AC Electric Power Systems.
Electr. Power Syst. Res. 2022, 204, 107685. [CrossRef]

13. Armaghani, S.; Hesami Naghshbandy, A.; Shahrtash, S.M. A Novel Multi-Stage Adaptive Transmission Network Expansion
Planning to Countermeasure Cascading Failure Occurrence. Int. J. Electr. Power Energy Syst. 2020, 115, 105415. [CrossRef]

14. WANG, J.; ZHONG, H.; XIA, Q.; KANG, C. Transmission Network Expansion Planning with Embedded Constraints of Short
Circuit Currents and N-1 Security. J. Mod. Power Syst. Clean Energy 2015, 3, 312–320. [CrossRef]

15. Refaat, M.M.; Aleem, S.H.E.; Atia, Y.; Ali, Z.M.; El-Shahat, A.; Sayed, M.M. A Mathematical Approach to Simultaneously Plan
Generation and Transmission Expansion Based on Fault Current Limiters and Reliability Constraints. Mathematics 2021, 9, 2771.
[CrossRef]

16. Ordóñez, C.A.; Gómez-Expósito, A.; Maza-Ortega, J.M. Series Compensation of Transmission Systems: A Literature Survey.
Energies 2021, 14, 1717. [CrossRef]

17. Mostafa, M.H.; Abdel Aleem, S.H.E.; Ali, S.G.; Ali, Z.M.; Abdelaziz, A.Y. Techno-Economic Assessment of Energy Storage Systems
Using Annualized Life Cycle Cost of Storage (LCCOS) and Levelized Cost of Energy (LCOE) Metrics. J. Energy Storage 2020, 29,
101345. [CrossRef]

18. Esmaili, M.; Ghamsari-Yazdel, M.; Amjady, N.; Chung, C.Y.; Conejo, A.J. Transmission Expansion Planning Including TCSCs and
SFCLs: A MINLP Approach. IEEE Trans. Power Syst. 2020, 35, 4396–4407. [CrossRef]

19. Mehrtash, M.; Cao, Y. A New Global Solver for Transmission Expansion Planning with AC Network Model. IEEE Trans. Power
Syst. 2022, 37, 282–293. [CrossRef]

20. Bhattiprolu, P.A.; Conejo, A.J. Multi-Period AC/DC Transmission Expansion Planning Including Shunt Compensation. IEEE
Trans. Power Syst. 2022, 37, 2164–2176. [CrossRef]

21. Mahfoud, S.; Derouich, A.; Ouanjli, N.E.L.; Mahfoud, M.E.L.; Taoussi, M. A New Strategy-Based Pid Controller Optimized by
Genetic Algorithm for Dtc of the Doubly Fed Induction Motor. Systems 2021, 9, 37. [CrossRef]

22. Schockenhoff, F.; Zähringer, M.; Brönner, M.; Lienkamp, M. Combining a Genetic Algorithm and a Fuzzy System to Optimize
User Centricity in Autonomous Vehicle Concept Development. Systems 2021, 9, 25. [CrossRef]

23. Almalaq, A.; Alqunun, K.; Refaat, M.M.; Farah, A.; Benabdallah, F.; Ali, Z.M.; Aleem, S.H.E.A. Towards Increasing Hosting
Capacity of Modern Power Systems through Generation and Transmission Expansion Planning. Sustainability 2022, 14, 2998.
[CrossRef]

24. Ahmadianfar, I.; Heidari, A.A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm Based on
Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [CrossRef]

25. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Knowl. Based Syst. 2022,
242, 108320. [CrossRef]

26. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
27. Li, T.; Liu, Y.; Chen, Z. Application of Sine Cosine Egret Swarm Optimization Algorithm in Gas Turbine Cooling System. Systems

2022, 10, 201. [CrossRef]
28. Morquecho, E.G.; Torres, S.P.; Matute, N.E.; Astudillo-Salinas, F.; Lopez, J.C.; Flores, W.C. AC Dynamic Transmission Expansion

Planning Using a Hybrid Optimization Algorithm. In Proceedings of the 2020 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT-Europe), The Hague, The Netherlands, 26–28 October 2020; pp. 499–503. [CrossRef]

29. Rawa, M. Towards Avoiding Cascading Failures in Transmission Expansion Planning of Modern Active Power Systems Using
Hybrid Snake-Sine Cosine Optimization Algorithm. Mathematics 2022, 10, 1323. [CrossRef]

30. Gutierrez, A.; Dieulle, L.; Labadie, N.; Velasco, N. A Hybrid Metaheuristic Algorithm for the Vehicle Routing Problem with
Stochastic Demands. Comput. Oper. Res. 2018, 99, 135–147. [CrossRef]

31. Rawa, M.; AlKubaisy, Z.M.; Alghamdi, S.; Refaat, M.M.; Ali, Z.M.; Aleem, S.H.E.A. A Techno-Economic Planning Model for
Integrated Generation and Transmission Expansion in Modern Power Systems with Renewables and Energy Storage Using
Hybrid Runge Kutta-Gradient-Based Optimization Algorithm. Energy Rep. 2022, 8, 6457–6479. [CrossRef]

32. Saboori, H.; Hemmati, R. Considering Carbon Capture and Storage in Electricity Generation Expansion Planning. IEEE Trans.
Sustain. Energy 2016, 7, 1371–1378. [CrossRef]

33. Cai, L.-J.; Erlich, I.; Stamtsis, G. Optimal Choice and Allocation of FACTS Devices in Deregulated Electricity Market Using Genetic
Algorithms. In Proceedings of the IEEE PES Power Systems Conference and Exposition, 2004, New York, NY, USA, 10–13 October
2004; IEEE: New York, NY, USA, 2004; pp. 201–207.

http://doi.org/10.3390/en15062275
http://doi.org/10.1016/j.apenergy.2018.08.087
http://doi.org/10.1016/j.epsr.2021.107543
http://doi.org/10.1109/JSYST.2018.2871793
http://doi.org/10.1109/TPWRS.2020.3009435
http://doi.org/10.1016/j.epsr.2021.107685
http://doi.org/10.1016/j.ijepes.2019.105415
http://doi.org/10.1007/s40565-015-0137-8
http://doi.org/10.3390/math9212771
http://doi.org/10.3390/en14061717
http://doi.org/10.1016/j.est.2020.101345
http://doi.org/10.1109/TPWRS.2020.2987982
http://doi.org/10.1109/TPWRS.2021.3086085
http://doi.org/10.1109/TPWRS.2021.3118704
http://doi.org/10.3390/systems9020037
http://doi.org/10.3390/systems9020025
http://doi.org/10.3390/su14052998
http://doi.org/10.1016/j.eswa.2022.116516
http://doi.org/10.1016/j.knosys.2022.108320
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.3390/systems10060201
http://doi.org/10.1109/ISGT-Europe47291.2020.9248898
http://doi.org/10.3390/math10081323
http://doi.org/10.1016/j.cor.2018.06.012
http://doi.org/10.1016/j.egyr.2022.04.066
http://doi.org/10.1109/TSTE.2016.2547911


Systems 2023, 11, 23 42 of 42
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