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Abstract: In energy supply chain management (ESCM), the supply chain members try to make
long-term contracts for supplying energy stably and reducing the cost. Currently, optimizing ESCM
is a complex problem with two social issues: environmental regulations and uncertainties. First,
environmental regulations have been tightened in countries around the world, leading to eco-friendly
management. As a result, it has become imperative for the energy buyer to consider not only the total
operating cost but also carbon emissions. Second, the uncertainties, such as pandemics and wars,
have had a serious impact on handling ESCM. Since the COVID-19 pandemic disrupted the supply
chain, the supply chain members adopted emergency procurement for sustainable operations. In
this study, we developed an optimization model using mixed-integer linear programming to solve
ESCM with supplier selection problems in emergency procurement. The model considers a single
thermal power plant and multiple fossil fuel suppliers. Because of uncertainties, energy demand
may suddenly change or may not be supplied on time. To better manage these uncertainties, we
developed a rolling horizon method (RHM), which is a well-known method for solving deterministic
problems in mathematical programming models. To test the model and the RHM, we conducted three
types of numerical experiments. First, we examined replenishment strategies and schedules under
uncertain demands. Second, we conducted a supplier selection experiment within a limited budget
and carbon emission regulations. Finally, we conducted a sensitivity analysis of carbon emission
limits. The results show that our RHM can handle ESCM under uncertain situations effectively.

Keywords: energy supply chain management; replenishment problem; emergency procurement;
carbon emissions; rolling horizon

1. Introduction

Energy supply chain management (ESCM) pursues long-term contracts for a stable
supply of energy. However, some kinds of uncertainties, such as pandemics, natural dis-
asters, and wars, break supply chains and change the demand for energy. In this case,
the buyer operates emergency procurement for energy through a short-term contract with
suppliers. Even though the short-term contract increases the total cost, the emergency pro-
curement is necessary for sustainable management under uncertainties [1,2]. Therefore, this
paper deals with the problem of selecting energy suppliers when uncertain situations occur.

Among the various types of energy supplies, fossil fuels have long been in the spotlight
as traditional energy sources that provide essential energy for generating electricity, which
is the basis of the industry [3]. Because the calorific value of fossil fuels from each supplier
is different, a contract should be made considering the price of fossil fuels, transport
distance, and calorific value. The traditional ESCM focuses on selecting a supplier that
supplies energy in a timely manner and at a reasonable price [4]. In addition, ESCM
attempts to respond to uncertainties to secure supply stability. Sudden events such as
pandemics, natural disasters, and financial crises lead to market uncertainty. During the
first two years of the COVID-19 pandemic, power consumption in 53 countries decreased
by approximately 7.6% each year. During the 2008 global financial crisis, global power
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consumption fell by approximately 7% each year [5]. Due to these types of uncertainties,
it is difficult to predict market conditions and manage energy consumption. Incorrect
predictions can cause significant economic costs, such as shortage and inventory costs [1,6].
Therefore, many governments that cannot produce fossil fuels are interested in ESCM
replenishing fossil fuels from suppliers around the world [7].

In addition, as carbon emission regulations have been strengthened in recent years,
carbon emissions should also be considered in ESCM [8]. It is well known that fossil fuels
emit carbon during production. When fossil fuels are transported by ships, a large amount
of carbon is emitted. Thus, the current ESCM should consider carbon emissions during the
production and transportation of fossil fuels by suppliers.

To solve the above issues, many ESCM studies focus on the long-term contract model
based on game theory and mathematical programming. However, those models cannot
handle uncertainties. Only a few studies dealt with the stochastic models for handling
uncertainty problems [1,9]. This paper developed an optimization model using mixed
integer linear programming (MILP) to solve the ESCM problem of supplier selection in
emergency procurement under uncertainties and carbon emission regulations. Even though
the advantage of MILP is that it can guarantee finding the optimal solution compared to
other methods, the weakness of MILP is the deterministic characteristics that cannot handle
uncertainty. Thus, the rolling horizon method (RHM) is applied to cope with uncertain
situations. This method is used to solve mathematical programming models by dividing the
planning horizon into smaller sub-horizons and repeatedly updating new information [10].
Due to this, RHM can solve emergency procurement situations.

This study has two main contributions. First, we formulated an optimization model
based on MILP for ESCM with carbon emissions. The model considers non-zero lead times,
uncertain demands, and limited resources such as ships and port capacity. The caloric value
is considered because the efficiency of the supplier’s fuel is different. Second, RHM was
developed as a solution methodology for handling uncertain demands. The thermal power
plant can update demand information and determine replenishment strategies during the
planning horizon.

The remainder of this paper is organized as follows: Section 2 presents the literature
review. The assumptions and problem definitions are presented in Section 3. The mathe-
matical model is described in Section 4. Numerical experiments are presented in Section 5.
Both academic and managerial insights are presented in Section 6. Finally, the conclusions
are presented in Section 7.

2. Literature Review

This study focused on three research areas: a basic study of ESCM with supplier
selection, SCM with emergency procurement, and carbon emissions in ESCM.

Most basic studies on ESCM consider markets, including demand forecasting and
contracts. An et al. [11] focused on a lignocellulosic biomass and biofuel supply chain
that considers multiple commodity flows, ranging from biomass suppliers to biofuel cus-
tomers. This model deals with a production and distribution system that determines
facility locations, capacities, technology, and material flows to maximize profits. Manenti
and Rovaglio [12] presented an optimization model for industrial gas supply chains un-
der binding contracts that place tight limits on suppliers. Akgul et al. [13] developed
a multi-objective programming model for biofuel supply chains considering economic
and environmental objectives. Balaman and Selim [14] presented a multi-objective mixed-
integer programming (MOMIP) model, which proposed both the design and management
of sustainability and cost effectivity under both seasonally variable resources and fluctua-
tions of the system parameters. Only a few researchers have considered supplier selection
in ESCM. You et al. [15] developed a multi-objective MIP model to optimize both the
design and planning of cellulosic ethanol supply chains under economic, environmental,
and social objectives. Some researchers have integrated economic objectives and carbon
emissions in various ways, such as the total annual cost, life cycle greenhouse gas emis-
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sions, and accrued local jobs. Osmani and Zhang [16] proposed a two-stage stochastic
MIP model to maximize the expected profit while minimizing the environmental impact
of a lignocellulosic bioethanol supply chain under biomass supply, bioethanol demand,
and biomass/bioethanol price uncertainties. Jauhari et al. [7] proposed an inventory
model for an electricity-supply chain. Most studies suggest a mathematical model for
designing or planning SCM based on long-term contracts, so it is difficult to apply it in
uncertain situations.

After COVID-19, some researchers focus on emergency procurement for SCM. One of
the key challenges in selecting suppliers determines which suppliers to contact and how
to distribute orders among them. In emergency procurement, it is important to carefully
select suppliers and allocate orders. Harland et al. [17] considered the healthcare product
with emergency procurement and supply management maturity during COVID-19. They
focused on the early stage of COVID-19 from 23 countries and suggested the awareness-
motivation-capability (A-M-C) framework in the healthcare SCM. Scala and Lindsay [18]
interviewed the public sector supply chain actors in healthcare during the pandemic
disruption. They discovered that the relationships with suppliers pre-pandemic did not
increase the visibility of tiers within the supply chain. Lin et al. [19] suggested that the
newsvendor model solve emergency procurement during the COVID-19 pandemic. Only
a few studies suggest that the mathematical model solve emergency procurement in the
pandemic. It was difficult to find studies related to emergency procedures in ESCM.

Due to growing concerns and an interest in environmental issues in recent years,
many studies have begun to consider carbon emissions in ESCM. Mishra et al. [20] de-
veloped a sustainable electricity supply chain mathematical model that assumes linear
price-dependent customer demand, where the price is a decision variable among setup
costs and carbon emissions. Niesseron et al. [21] developed a mathematical model that can
be extended to an entire supply chain network to address sustainability within the network
by comparing the environmental impact to cost optimization. Iqbal et al. [22] presented an
energy supply chain model to satisfy the dual objectives of zero waste and minimum energy
consumption to protect the environment and conserve energy resources. As most ESCM
studies consider carbon emission, this study also intends to consider carbon emission.

Based on the literature review, we focused on ESCM for buyers to select suppliers who
provide energy sources which include coal, oil, and gas. Through this, the buyer chooses
suppliers and orders energy while minimizing economic costs and carbon emissions under
uncertainties. Table 1 shows the comparison of the contributions of different studies.

Table 1. Comparison of the contributions of different studies.

Author Contract Energy Period Method

An et al. [11] Long-term Biofuel Multi MIP
Osmani and Zhang [16] Long-term Bio ethanol Multi Stochastic

Mishra et al. [20] Long-term Electricity Single NLP
Jauhari et al. [7] Long-term Fossil fuel Single NLP

Niesseron et al. [21] Long-term Formal energy Single NLP
Iqbal et al. [22] Long-term Formal energy Single NLP

Present paper Short-term Fossil fuel Multi MILP
MIP: mixed-integer programming; NLP: Nonlinear programming.

3. Assumptions and Problem Definition

A full list of all notations is presented in Appendix A. The following assumptions
were made for this system:

1. The system consists of a single thermal power plant and multiple suppliers with
one type of fossil fuel such as coal, fuel, and natural gas. In terms of ESCM, the
thermal power plant attempts to select suppliers that minimize both the total cost and
carbon emissions.
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2. Each supplier produces different qualities of fossil fuel; therefore, there are different
calorific values for the fossil fuel produced.

3. To handle the calorific value level, the thermal power plant applies an order-up-to
level policy.

4. The thermal power plant transports fossil fuels via ships. In addition, the thermal
power plant has various classes of ships, which are limited in number.

5. The transportation time is the round-trip time, and the system considers a non-zero
lead time.

6. Based on the caloric value demand, the thermal power plant orders the fossil fuel from
each supplier at the beginning of the period. Then, the ordered fuel is replenished
after the lead time from each supplier.

7. Regarding the lead time, the preordered fuel should arrive at the beginning of the
planning horizon.

8. The thermal power plant has a safety stock in terms of its calorific value to provide
good service.

9. The thermal power plant has a limited budget.
10. The thermal power plant has a limited port capacity, and only a certain number of

ships can come to the port at the same time.

Problem Definition

This system considers ESCM of supplier selection in emergency procurement under
the uncertain situations, such as pandemics or wars. In emergency procurement, the buyer
makes a short-term contract with the supplier according to market demand changes. This
ESCM system consists of a thermal power plant and multiple suppliers that produce one
type of fossil fuel such as coal, natural gas, or oil. Fossil fuels have different qualities
because of the suppliers’ locations and production systems, and, therefore, the energy from
each supplier has different calorific values. A thermal power plant uses various types of
ships to transport fossil fuels. In addition, the thermal power plant, a buyer, has limited
port capacity, limited budget, and carbon emission limitations. In terms of environmental
sustainability, the thermal power plant considers carbon emissions during production and
transportation from suppliers. Based on the above conditions, the thermal power plant
must consider both the economic and environmental impact when ordering fossil fuels. In
short, the thermal power plant attempts to select suppliers who supply high-quality fossil
fuels with low carbon emissions. Figure 1 illustrates the study environment.
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4. Mathematical Model

This chapter presents a MILP model to minimize the total cost of energy supply chains
consisting of a single thermal power plant and multiple suppliers. A thermal power plant
orders fossil fuels from one or more suppliers based on the demand for energy and the
number of ships. The thermal power plant also considers the carbon emissions resulting
from production and transportation from the supplier. In terms of optimizing ESCM,
the thermal power plant makes decisions to minimize the total cost while considering
carbon emission limits and resources. The objective function, which measures the total cost
of operating the ESCM, consists of the ordering, transportation, and holding costs. The
ordering cost is incurred when fossil fuel is ordered from supplier i in period t. Thus, the
ordering cost of supplier i in period t is calculated as follows:

I

∑
i=1

T

∑
t=1

Aiαit (1)

After ordering, the thermal power plant transports fossil fuels using ships from
supplier i in period t. Transportation cost is related to the distance between supplier i and
ship class j.

I

∑
i=1

J

∑
j=1

T

∑
t=1

RijYijt (2)

The expected calorific value capacity of a thermal power plant for period t was
approximated as the average of the start and end periods of the on-hand calorific value
capacity. Thus, the holding cost of the calorific value capacity of the thermal power plant
for period t is denoted as follows:

T

∑
t=1

ht(St + lt)
2

(3)

Using the above-calculated costs, the objective function(Z) is computed as shown below.

Z =
I

∑
i=1

T

∑
t=1

Aiαit +
I

∑
i=1

J

∑
j=1

T

∑
t=1

RijYijt +
T

∑
t=1

ht(St + lt)
2

+
I

∑
i=1

T

∑
t=1

pxitXit (4)

Then, the following MILP model Z can be developed.

Min Z (5)

subject to

St − dt = lt t = 1, 2, · · · , T (6)

lt−1 + ∑I
i=1|t−Li≤0 γitX̃it−Li + ∑I

i=1|t−Li>0 γitXit−Li = St t = 1, 2, · · · , T (7)

Xit ≤ Pit i = 1, 2, · · · , I, t = 1, 2, · · · , T (8)

Xit ≤∑J
j=1 CjYijt i = 1, 2, · · · , I, t = 1, 2, · · · , T (9)

b ≤ lt t = 1, 2, · · · , T (10)

∑I
i=1 COPiXit + ∑I

i=1 ∑J
j=1 COTjDISiYijt ≤ CEt t = 1, 2, · · · , T (11)

∑I
i=1 ∑J

j=1 Yijt ≤ N t = 1, 2, · · · , T (12)
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∑I
i=1 Yijt ≤ Ujt j = 1, 2, · · · , J, t = 1, 2, · · · , T (13)

Xit ≤ Mαit i = 1, 2, · · · , I, t = 1, 2, · · · , T (14)

∑I
i=1 pciXit ≤ B t = 1, 2, · · · , T (15)

Xit ≥ 0, real variable i = 1, 2, · · · , I, t = 1, 2, · · · , T (16)

St, lt ≥ 0, real variable t = 1, 2, · · · , T (17)

Yijt ≥ 0, integer variable i = 1, 2, · · · , I, t = 1, 2, · · · , T,j = 1, 2, . . . , J (18)

αit, binary variablei = 1, 2, · · · , I, t = 1, 2, · · · , T (19)

Equation (5) shows the MILP problem to minimize Z. Equation (6) shows the relation-
ship between calorific value capacity and energy demand. The calorific value capacity at
the end of period t is the replenishment level at the start of period t subtracted from the
demand for calorific value in period t. In Equation (7), the first term denotes the initial
calorific value at period t. The second part presents the calorific value of the pre-order quan-
tity that the thermal power plant orders from each supplier before starting the planning
horizon. The third part denotes the calorific value of the order quantity of each supplier
after the start of the planning horizon. Finally, the replenishment level is satisfied by the
sum of the three parts. In Equation (8), the order quantities from supplier i cannot exceed
the supply of supplier i. Equation (9) ensures that the order quantities from supplier i
do not exceed the capacity of the ships. According to Equation (10), the calorific value
capacity must exceed the safety stock at all times. Equation (11) states that carbon emissions
during production and transportation cannot be greater than the thermal power plant’s
maximum limit of carbon emissions because of carbon emission regulations. Equation (12)
indicates that the number of ships cannot exceed the port capacity of a thermal power plant.
Equation (13) ensures that the thermal power plant has a limited number of ship classes j.
Equation (14) controls the ordering cost when an order is issued. Equation (15) shows the
budget limitation of the thermal power plant.

5. Rolling Horizon Method

To handle the uncertainty of energy consumption, the information on market condi-
tions has to be updated iteratively. The RHM solves mathematical programming models by
dividing the entire time into smaller scheduling sub-horizons and repeatedly updating new
information. The method is more efficient at planning and scheduling problems because it
reduces the calculation time and, at the same time, updates information each period time
rather than solving for the entire horizon. Yu and Yang [23] used the RHM to solve the
crane scheduling problem of MILP in a hybrid storage container terminal. Li and Ierapetri-
tou [24] proposed an RHM to address the integrated production planning and scheduling
optimization problem. Silvente et al. [25] used an RHM that periodically updates input
data information to solve MILP problems in ESCM for demand planning in microgrids.
Even though the RHM does not guarantee an optimal solution, many researchers addressed
the RHM for handling uncertainties.

The time flow of the RHM is divided into the planning horizon and two detailed
horizons: the prediction horizon and the control horizon. The prediction period enhances
schedule management by forecasting demand for future periods at the beginning of the
control horizon. Figure 2 shows the concept of RHM.
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RHM

Step 1. Set input parameter

Step 1.1. Input the planning horizon T, the control horizon CT and the prediction horizon PT

Step 1.2. PS, set the planning stage as 1

Step 2. Solve MILP

Step 2.1. SSPS ← Measure the ESCM system at the start of period t

Step 2.2. Input the data of SSPS

Step 2.3. Calculate the optimal solution

Step 3. Set

Step 3.1. FSPS ← Record the difference between the initial replenishment level of inventory
and actual demand at the end of the control time horizon.

Step 4. Check iteration condition

Step 4.1. If PS < T, move to Step 4.2. Otherwise, calculate the total cost and move to Step 5

Step 4.2. Calculate the total cost, set SSPS+1 = FSPS and move to Step 2 by applying
PS← PS + 1 .

Step 5. End RHM and organize the recorded historical costs at each PS

6. Numerical Experiment

In this section, we describe three types of numerical experiments conducted to verify
the performance of the proposed MILP model and RHM. In the first experiment, we tested
the effectiveness of the RHM compared with a deterministic method (DM) under various
demand patterns. In the second experiment, a sensitivity analysis of the maximum limit of
carbon emissions was performed. The proposed MILP and RHM models were coded using
Python 3.6.0. The three experiments were performed using CPELEX 12.0.0 on a computer
with an Intel i7-3770 CPU at 3.4 GHz and 16 GB RAM.

For both experiments, we focused on the case of a coal supply chain with five suppliers
and considered one type of demand pattern, such as seasonal demand. We set M to a
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large value (1,000,000). The percent deviation, 100 ∗ (TCRHM − TCDM)/TCDM, is used for
measuring efficiency. The randomly selected data are shown in Tables 2–4. Tables 2 and 3
list the input parameters for each supplier and a thermal power plant, respectively. Table 4
presents the data on the ship classes.

Table 2. The input parameters for each supplier.

Supplier (i) 1 2 3 4 5

Ai 75 78 93 70 105
Pit 100 100 500 500 100
γit 0.3 0.2 0.6 0.5 0.6

COPi 27 33 35 38 48
DISi 10,000 4000 17,000 12,000 19,000

Li 1 1 1 1 1

Ship class (j)

Rij
1 3726 8326 8061 4577 8326
2 3244 7429 6681 4250 7429

Table 3. The input parameters for the thermal power plant.

l1 ht b N CEt

100 21 100 8 200,000

Table 4. The input parameters for the ship classes.

Ship Class Cj Ujt COTj

1 60 10 2.8
2 40 8 3.1

6.1. Effectiveness Test of the RHM

The purpose of this experiment was to test the effectiveness of the RHM by comparing
its results with those of the DM under various demand patterns. As explained in the
previous section, the RHM iteratively updates the information on the energy demand and
inventory level in a MILP model so that it can handle uncertain information. In contrast,
the DM is a traditional approach that solves the MILP model once at the beginning of the
planning horizon, and the obtained result of the DM is used throughout the entire horizon.
The time horizon is 12 months, and the rolling period was set to values of 2–12 months.
Table 5 presents the results of the comparative experiment.

Table 5. The results of the comparative experiment.

Rolling Period
Total Cost of RHM (TCRHM)

Total Cost of DM (TCDM)
Percent Deviation

2 149,772.07 1.66

147,327.07

3 148,609.07 0.87
4 144,662.07 −1.81
5 146,605.06 −0.49
6 143,917.06 −2.31
7 144,746.07 −1.75
8 141,093.06 −4.23
9 141,681.06 −3.83

10 142,642.06 −3.18
11 148,959.06 1.11
12 147,327.07 0.00
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As shown in Table 5, most RHM has lower costs than DM. Rolling period 8 resulted in
an optimal solution, which obtains a percent deviation of −4.23. However, it is noted that
several cases of RHM, rolling periods 2, 3, and 11, obtain lower efficiency than the DM. If
the decision maker cannot set the optimal rolling period for updating market information,
the efficiency of RHM is less than DM. Although the value obtained in rolling period 8 is the
optimal value in the current problem situation, it may not be the best in other experimental
situations [25].

6.2. Experiment of Supplier Selection According to Budget

To handle the realistic problem, we check which suppliers are selected according to the
buyer’s budget. In general, when a supplier produces energy, there is a trade-off between
carbon emissions and costs. If a supplier invests a lot of money in facility investments to
reduce carbon emissions, energy sales costs increase to recover the investment. Therefore,
in this experiment, when the buyer’s total budget is limited, we examine which supplier
is selected considering the trade-off between carbon emissions and sales costs. The lead
time of the supplier is 1. The time horizon is 4 months, and the rolling period is fixed 3.
Additionally, we set that suppliers with low sales prices have low energy efficiency. The
input parameters of each supplier were assumed by random numbers from the probability
distributions noted in Table 6. The randomly selected data for suppliers are shown in
Table 7.

Table 6. Input data for second experiment.

Ai Pit COPi Rij dt Real dt

[5, 15] [100, 300] [2, 5] [0.2, 0.6] [270] [250, 290]

Table 7. Supplier’s carbon emissions during production and purchase costs.

Supplier (i) 1 2 3 4 5

γit 0.75 0.6 0.7 0.4 0.55
pci 14 11 12 9 10

DISi 12,528 12,358 13,467 6078 9101

Table 8 shows which suppliers are selected during four iterations, according to a
limited budget. In all cases, no order is placed in the fourth iteration, because the lead
time is non-zero. A buyer with less budget selects an energy-efficient supplier even if the
transportation cost increases due to the distance. On the other hand, a buyer with large
budget orders energy from a supplier who has low-energy efficiency and is located close
to the buyer. It was confirmed that there is a difference in the total cost minimization and
purchase efficiency depending on the buyer’s available budget.

Table 8. Output of the comparison experiment.

Budget Limit ($) Iteration
Supplier Selection

Total Cost of RHM ($)
1 2 3 4 5

4400 - - - - - - Infeasible

4600

1 √ - - - -

53,412.62 √ √ √ - √

3 √ √ √ √ -
4 - - - - -
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Table 8. Cont.

Budget Limit ($) Iteration
Supplier Selection

Total Cost of RHM ($)
1 2 3 4 5

4800

1 √ - - - -

52,480.52 √ √ √ √ -
3 √ √ √ √ -
4 - - - - -

5000

1 √ - - - -

50,800.72 √ - √ √ -
3 √ √ √ √ -
4 - - - - -

5200

1 √ - - - -

50,800.72 √ - √ √ -
3 √ √ √ √ -
4 - - - - -

6.3. Effect of the Maximum Limit of Carbon Emissions

In this experiment, we evaluated how the total cost of RHM would change depending
on the maximum limit of carbon emissions during production and transportation from the
supplier. The maximum limit of carbon emissions varied from 200,000 to 225,000. Based on
the results of the first experiment, the rolling period 8 was also used in this section as it
resulted in the lowest cost.

Table 9 shows how the total cost changed as the maximum limit of carbon emissions
varied. When the maximum limit of carbon emissions was lowered to 175,000, the total cost
appeared to be higher than the previous cost. However, from the time when the limit was
increased to 200,000, the total cost was fixed. Even if regulations on carbon emissions are
tightened, the minimum cost can be maintained under constraints. This result reveals the
trade-off between carbon emissions and economic cost. If more money is spent, a thermal
power plant can reduce carbon emissions and vice versa.

Table 9. The results of the sensitivity analysis of the maximum limit of carbon emissions.

Maximum Limit of Carbon Emissions (CEt) Total Cost ($)

125,000 212,533.08
150,000 161,070.07
175,000 154,999.06
200,000 141,093.06
225,000 141,093.06

7. Academic and Managerial Insights
7.1. Academic Insights

This paper presents a basic study on emergency procedures arising from uncertainties
(pandemic, natural disaster, war, etc.) in the ESCM field, which has not been studied
much before. In the event of a pandemic or other situation, the existing SCM collapses,
so buyers make short-term contracts based on market demand and supplier’s situation
every period. Due to this, this study develops a MILP model that considers ESCM of
supplier selection in emergency procurement. In addition, RHM, an algorithm that updates
demand and supplier situations every period, was applied. The RHM is a well-known
method used to solve deterministic problems of mathematical programming models. This
study is the first to consider supplier selection and replenishment planning for ESCM in
emergency procurement.
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7.2. Managerial Insights

For decision-makers, uncertainty causes the existing SCM to collapse, so our finding
suggests a short-term contract with a new supplier until the market stabilizes. The RHM
can be used to determine the appropriate periods to apply in short-term decisions for
thermal power plants. The decision-makers can adjust the prediction horizon according to
their judgment to determine planning. Under emergency procurement, a thermal power
plant can enter into a contract with a supplier based on either the carbon emissions during
production and transportation or the quality of fossil fuel. If the carbon emission exceeds a
specific amount, it does not affect the total cost of ESCM. In this case, the thermal power
plant could sell carbon emission rights to other thermal power plants through the carbon
cap-and-trade program. Consequently, this study makes it possible to realize eco-friendly
management in terms of carbon emissions.

8. Conclusions and Suggestions for Future Research

Recently, COVID-19 has caused the collapse of SCM based on long-term contracts, and
many supply chain members have conducted emergency procurement through short-term
contracts in response to demand. Short-term contracts are more expensive than long-term
contracts, but they are essential in situations where SCM has collapsed or demand increases.
In addition, buyers can have different suppliers for each contract depending on the market
and supplier situation [2]. Thus, the objective of this paper is to focus on an optimization
model for ESCM of supplier selection in emergency procurement.

The proposed MILP model in which a thermal power plant (buyer) selects a fossil fuel
supplier considering carbon emissions and the thermal power plant’s limited resources.
Each supplier produces different qualities of fossil fuels based on its location and pro-
duction system. This study considered two types of carbon emissions: production and
transportation. Fossil fuels can be transported by various types of ships. A thermal power
plant can have limited port capacity and carbon emissions. In addition, the system consid-
ers market uncertainties. To solve the MILP model under uncertain situations, such as a
pandemic, natural disaster, and wars, the RHM was developed.

To check the performance of the proposed MILP model and RHM, we conducted
(1) a comparative experiment using RHM and DM, (2) supplier selection under a limited
budget, and (3) an effect of the maximum limit of carbon emissions. In the comparative
experiment, RHM with rolling period 8 dominates DM. The second experiment confirmed
that there is an optimal budget under limited carbon emissions. It was found that if there
was more than a certain budget, the total cost could no longer be minimized. The third
experiment’s results showed that the RHM did not increase when the maximum limit of
carbon emissions was between 200,000 and 225,000. Therefore, the RHM resulted in lower
costs than the DM, and we showed that even if regulations on carbon emissions become
more stringent, the minimum cost of the RHM can be maintained under constraints.

The limitations of this study and considerations for follow-up studies are as follows:
first, we did not consider the trade-off relationship between transportation costs and carbon
emission costs. Further analyses should be conducted in follow-up studies to consider
this relationship. Second, we considered the transportation of fuel only via sea and not
ground. A follow-up study is needed to develop a model that considers the supply of fuel
via land and rail. Third, this study considered only carbon emissions from a single energy
source. Follow-up studies should consider multiple energy sources. Fourth, additional
business restrictions and costs, such as unloading and demurrage, should be identified
and reflected in the repair model. This research model is expected to provide management
decision support regarding the supply and demand of raw energy materials in the actual
power industry through scientific management methods.
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Appendix A

The following notations are used in the study:
Indices

i supplier number, i = 1, . . . , I
j ship class, j = 1, . . . , J
t time period, t = 1, . . . , T

Parameters
Ai ordering cost from supplier i
Rij transportation cost by a ship class j from supplier i
dt demand of energy in period t
Pit fossil fuel production of supplier i at period t
Cj size of a ship class j
ht thermal power plant’s holding cost in period t
l1 thermal power plant’s initial capacity in terms of calorific value
ss safety stock in terms of calorific value
B budget of thermal power plant

pci purchase cost from supplier i
N thermal power plant’s port capacity

Ujt thermal power plant’s total number of a ship class j for period t
γit fossil fuel conversion rate factor from supplier i for period t

COPi carbon emissions of fossil fuel during production from supplier i
COTj carbon emissions of fossil fuel during transportation from supplier i
CEt thermal power plant’s maximum limit of carbon emissions for period t
DISi distance from supplier i to a thermal power plant

Li lead time from supplier i
X̃it−Li

pre-ordered amount of fossil fuel from supplier i at the start of period t
Decision variables

St replenishment level of the calorific value capacity at the start of period t
lt inventory level of the calorific value capacity at the end of period t

Xit order amount of fossil fuel from supplier i at the start of period t

Yijt
number of a ship class j for transporting energy from supplier i to a
thermal power plant’s port at period t

αit
if fossil fuel is ordered from supplier i at period
t, then αi,t = 1, otherwise αi,t = 0
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