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Abstract: In the context of reinforcement learning (RL), ensuring both safety and performance is
crucial, especially in real-world scenarios where mistakes can lead to severe consequences. This
study aims to address this challenge by integrating temporal logic constraints into RL algorithms,
thereby providing a formal mechanism for safety verification. We employ a combination of theoretical
and empirical methods, including the use of temporal logic for formal verification and extensive
simulations to validate our approach. Our results demonstrate that the proposed method not only
maintains high levels of safety but also achieves comparable performance to traditional RL algorithms.
Importantly, our approach fills a critical gap in the existing literature by offering a solution that is
both mathematically rigorous and empirically validated. The study concludes that the integration of
temporal logic into RL offers a promising avenue for developing algorithms that are both safe and
efficient. This work lays the foundation for future research aimed at generalizing this approach to
various complex systems and applications.

Keywords: RL; safety constraint; linear temporal logic; formal verification

1. Introduction

In the rapidly evolving field of machine learning, RL [1] has emerged as a pivotal
sub-discipline. It involves agents learning to interact with their environment to maximize
rewards, finding applications in diverse areas such as game theory, robotics, and natural
language processing. However, the real-world application of these technologies often
demands more than just maximizing rewards; it requires adherence to complex constraints
and requirements, especially in safety-critical domains [2–12]. A single misstep in areas
like autonomous driving or medical diagnostics could result in catastrophic outcomes,
emphasizing the need for a more nuanced approach than just reward optimization. This
sets the stage for our research, which aims to apply safety constraints to RL algorithms and
formally verify them using temporal logic.

The motivation for this research is fueled by the growing importance of safety in
the application of RL technologies. As these technologies find their way into increasingly
complex and high-stake environments, from industrial automation to healthcare, the margin
for error narrows. The traditional focus on optimizing reward functions is insufficient for
these applications, as it often fails to consider intricate constraints and diverse scenarios.
Existing research has been limited in scope, often targeting specific scenarios or constraints
without providing a formal verification approach for the reward mechanisms themselves.

Temporal logic offers a promising solution to these challenges. It allows for the math-
ematical specification of system behavior over time, enabling more rigorous verification.
For instance, constraints like “the system must always maintain a safe state” or “certain
actions must be taken when specific conditions are met” can be clearly articulated. This
stands in contrast to the procedural languages traditionally used to implement reward
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mechanisms, which often result in long and complicated code that is difficult to gener-
alize. Temporal logic allows for a more abstract and generalizable expression of reward
mechanisms, facilitating more stringent verification.

Against this backdrop, our research proposes a novel approach to applying safety
constraints in RL and formally verifying them using temporal logic. If successful, this
research could establish a new paradigm for ensuring the safety of RL algorithms, which
would be particularly beneficial in complex and dynamic environments.

Thus, the necessity and significance of this research are profoundly high. It aims to
solve a critical problem in the real-world application of RL, offering not just an incremental
improvement but a paradigm shift in how we approach safety in these algorithms. By doing
so, it addresses a glaring gap in the existing literature and provides a robust framework
that could be universally applied across various domains, thereby fulfilling an urgent and
unmet need.

The structure of this paper is designed to provide a comprehensive understanding of the
research. Section 2 delves into a summary of related works, offering a literature review that
situates our research within the broader academic landscape. This section aims to highlight
the existing gaps and how our work contributes to filling them. In Section 3, we elaborate
on the methodology and foundational knowledge that underpin our research. This section
provides a detailed account of the entire research procedure, from the initial conceptualization
to the final analysis. It serves as a roadmap for understanding the choices made during the
research process and offers a replicable blueprint for future studies. Section 4 is dedicated to
presenting the experimental results from the first experiment and their analysis. Here, we not
only showcase the data but also interpret them in the context of our research questions and
objectives. This section provides empirical evidence to support the theoretical constructs and
methodologies discussed earlier. Section 5 introduces the second experiment focusing on the
Nuclear Plant Robot. This section presents the experimental setup, challenges inherent to the
nuclear environment, and the results derived from the various models. The findings from this
experiment offer a deeper understanding of safety and efficiency in high-risk settings, further
enriching our research narrative. Section 6 offers a comprehensive analysis, synthesizing the
findings from both experiments and comparing them with related research. This section serves
as a capstone to our empirical work, drawing connections between our results and the existing
literature, thereby situating our contributions in a broader context. Finally, Section 7 concludes
the paper by summarizing the key findings and outlining avenues for future research. This
section encapsulates the essence of the paper, providing final thoughts on the significance and
impact of our research.

2. Related Work

In the realm of RL and temporal logic, several noteworthy studies have laid the
groundwork for our research. These studies have explored various facets of integrating
temporal logic constraints into RL algorithms, each with its unique approach and focus.

One such study titled “Reinforcement Learning with Temporal Logic Constraints for
Partially-Observable Markov Decision Processes” [13] delves into the application of tempo-
ral logic constraints, specifically iLTL, in the context of POMDPs. This study is pioneering
in its attempt to marry POMDPs with temporal safety constraints. While the approach
is promising for maintaining safety in complex environments, it falls short in providing
sufficient experimental results to validate the practicality of the proposed methods.

Another study, “Learning from Demonstrations under Stochastic Temporal Logic
Constraints” [14], focuses on learning from demonstrations while adhering to Stochastic
Temporal Logic (StTL) constraints. The study’s contribution lies in its novel application of
StTL constraints to learning from demonstrations, thereby potentially enhancing the safety
and reliability of such learning methods. However, like the previous study, it also lacks
comprehensive experimental results to substantiate its practical utility.

The study “GR(1)-Guided Deep Reinforcement Learning for Multi-Task Motion Plan-
ning under a Stochastic Environment” [15] proposes a GR(1)-guided deep RL approach
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for multi-task motion planning in stochastic environments. The study’s strength lies in
its innovative use of GR(1) to efficiently learn multi-task motion planning in uncertain
settings. Yet, the study does not provide enough experimental design or results to clarify
its practical implications.

“Temporal-Logic-Based Intermittent, Optimal, and Safe Continuous-Time Learning
for Trajectory Tracking” [16] is another study that develops an RL-based controller for
complex tasks while satisfying linear temporal logic specifications. The study’s merit is
in its focus on ensuring safety during complex task execution. However, the study also
lacks sufficient experimental results to validate the effectiveness of its proposed methods in
real-world settings.

The study “Secure-by-Construction Controller Synthesis for Stochastic Systems under
Linear Temporal Logic Specifications” [17] investigates the problem of synthesizing optimal
control policies for stochastic systems that meet linear temporal logic specifications. The
study contributes a new method for synthesizing safe control policies using linear temporal
logic, but it too lacks sufficient experimental results to assess its practicality.

A significant contribution in the domain of AI verification is the paper “Toward
verified artificial intelligence” [18]. This paper emphasizes the importance of a formal
method-based approach to AI system verification and validation. The authors argue
that to truly trust AI systems, especially in safety-critical applications, we need to ensure
their behavior is verified against formal specifications. While the paper provides a broad
overview of the challenges and potential solutions in AI verification, it underscores the
need for more research in this direction, especially in the context of RL.

In the study “Formal Verification for Safe Deep Reinforcement Learning in Trajectory
Generation” [19], a significant contribution is made towards ensuring the safety of deep
reinforcement learning (DRL). Focusing on trajectory generation tasks, the research delves
deep into safe DRL using formal verification techniques. The authors introduce a novel ap-
proach to ascertain that the trained DRL models consistently generate trajectories adhering
to predefined safety properties. A standout feature in their methodology is the utilization
of interval analysis for verification, offering provable guarantees on the model’s adherence
to safety properties.

In the paper “Formal verification of neural networks for safety-critical tasks in deep
reinforcement learning” [20], the authors introduce a novel method for the formal verifica-
tion of neural networks employed in safety-centric tasks using deep reinforcement learning.
Through extensive experimentation across various real-world scenarios, they demonstrate
that their proposed approach not only ensures the safety of the neural networks but also
maintains high predictive performance. This work underscores the importance of combin-
ing formal verification techniques with deep learning to achieve both safety and efficiency
in critical applications.

While these studies share the common goal of enhancing the safety and efficiency
of systems through the integration of RL and temporal logic, they differ in their focus
areas. For instance, the first study concentrates on POMDPs, the second on learning
from demonstrations, the third on multi-task motion planning, the fourth on trajectory
tracking, and the fifth on control policy synthesis. Despite their contributions, a recurring
limitation across these studies is the lack of comprehensive experimental results, making it
challenging to evaluate the practicality and effectiveness of their proposed methods.

These studies collectively indicate that while strides have been made in integrating
temporal logic with RL, there remains a gap in formally verifying the reward mechanisms
in RL using temporal logic. This underscores the importance and urgency of our research
aim: to formally verify the reward mechanisms in RL using temporal logic. Our study seeks
to fill this gap, offering both a theoretical framework and empirical evidence to support the
integration of safety constraints into RL algorithms.
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3. Methodology and Experimental Setup
3.1. Research Objectives

The overarching aim of this research is to delve into the intricate relationship between
safety constraints, articulated through linear temporal logic (LTL) [21], and RL models. This
exploration is motivated by the increasing need for safety and reliability in autonomous
systems, particularly in environments that involve interactions among multiple agents,
such as robots in a restaurant. The overall process of our study is depicted in Figure 1.

Figure 1. Overall Process.

In this context, we employ the Proximal Policy Optimization (PPO) [22] algorithm, a
widely used RL algorithm known for its efficiency and stability, to train models that can
operate in a simulated restaurant environment. This simulated environment, referred to
as “Serving Robots”, serves as a testbed for evaluating the efficacy of integrating safety
constraints into RL models.

One of the unique aspects of this research is the incorporation of safety constraints
formulated in LTL. The primary constraint under consideration is G(¬collision), which
aims to ensure that robots avoid collisions throughout their operations. By integrating this
LTL-formulated safety constraint into the learning process, we seek to develop models that
not only perform tasks efficiently but also adhere to essential safety conditions.

To rigorously evaluate the impact of these safety constraints, we undertake a compara-
tive analysis of models trained with and without them. The performance metrics for this
evaluation include the number of steps required to complete the tasks and the frequency of
collisions. This allows us to quantitatively assess whether the inclusion of LTL-based safety
constraints leads to more reliable and safer operation.

Furthermore, to provide robust verification of the trained models, we transform the
trajectories generated during 100 episodes into discrete-time Markov chains (DTMCs).
These DTMC models are then subjected to quantitative verification using the PRISM model
checker, allowing us to rigorously evaluate the safety and efficiency of each model.

By fulfilling these objectives, this research aims to contribute valuable insights into the
utility and effectiveness of incorporating LTL-based safety constraints in RL. It is anticipated
that the findings will have broad implications, particularly for applications that demand
high levels of safety and reliability.

3.2. Background and Preliminaries

This section provides an in-depth background on the key concepts and methodologies
that underpin this research, namely LTL, RL, and model checking.

3.2.1. Linear Temporal Logic

LTL is a formalism for specifying the properties of reactive systems over time. The
syntax of LTL can be defined using Backus–Naur form (BNF) as follows:

φ ::= true | p | ¬φ | φ ∧ φ | Xφ | φ U ψ
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Here, p represents an atomic proposition, and ¬,∧,∨ are the standard logical negation,
conjunction, and disjunction operators, respectively. The temporal operators are:

• Xφ: Next. The formula φ should hold in the next state.
• Fφ: Eventually. The formula φ should hold at some point in the future. This can be

derived as true U φ.
• Gφ: Globally. The formula φ should hold in all future states. This can be derived as

¬F¬φ.
• φ U ψ: Until. The formula φ should hold until ψ becomes true.

3.2.2. Reinforcement Learning

RL is a subfield of machine learning that focuses on how agents can learn to make
decisions to achieve a certain goal. The agent interacts with an environment, receiving
observations and rewards that guide its learning process. The RL problem is often modeled
as a Markov decision process (MDP), defined by a tuple (S, A, P, R), where:

• S is the state space, representing all possible situations the agent can encounter.
• A is the action space, representing all possible moves the agent can make.
• P is the state transition probability, P(s′|s, a), representing the probability of transi-

tioning from state s to s′ when action a is taken.
• R is the reward function, R(s, a, s′), representing the immediate reward received after

transitioning from s to s′ due to action a.

The agent’s behavior is defined by a policy π(a|s), which is a probability distribution
over actions given a state. The objective is to find the optimal policy π∗ that maximizes the
expected return Gt, defined as the sum of future rewards discounted by a factor γ:

Gt =
∞

∑
k=0

γkRt+k+1

In this research, we use PPO, an advanced policy optimization algorithm. PPO aims
to update the policy in a way that doe not change it too drastically, avoiding issues like
policy oscillation. The objective function L(θ) in PPO is designed to optimize the policy
πθ(a|s) while keeping it close to the old policy πθold

(a|s):

L(θ) = E ∗ t
[

min
(

π ∗ θ(at|st)

πθold
(at|st)

At, clip
(

πθ(at|st)

πθold
(at|st)

, 1− ε, 1 + ε

)
At

)]
3.2.3. Discrete-Time Markov Chains

DTMCs are stochastic models used to represent systems that transition between a finite
set of states in discrete time steps. A DTMC is formally defined by a tuple (S, P), where:

• S is a finite set of states {s1, s2, . . . , sn}.
• P is the transition probability matrix, where Pij represents the probability of transition-

ing from state si to sj in one time step.

The key property of a DTMC is the Markov property, which states that the future
state depends only on the current state and not on the sequence of states that preceded it.
Mathematically, this is expressed as:

P(St+1 = s′|St = s, St−1 = st−1, . . . , S0 = s0) = P(St+1 = s′|St = s)

In the context of our research, we convert the traces of episodes generated by the
RL models into DTMCs. This conversion allows us to perform rigorous quantitative
analysis using model checking techniques. Each state in the DTMC represents a unique
configuration of the environment, and the transition probabilities are estimated based on
the frequency of transitions between states in the collected traces.
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3.2.4. Model Checking

Model checking is a formal verification technique that emerged in the 1980s to address
the increasing complexity of software and hardware systems. Traditional testing methods
were becoming less effective, and there was a need for a more systematic approach to ensure
system correctness. Model checking provides this by exhaustively exploring all possible
states of a system to verify whether it satisfies a given specification. This comprehensive
verification offers a high level of confidence in the system’s reliability and safety.

In this research, we employ PRISM [23], a state-of-the-art probabilistic model checker,
to perform quantitative verification of the trained RL models. PRISM is particularly
well-suited for systems that exhibit stochastic behavior and allows for the verification of
properties expressed in various temporal logics, including LTL.

The syntax for defining a model in PRISM is as follows:

module ModuleName

state-variable: [range]initinitial-value;

[action]guard→ probability : update;

endmodule

For reward-based properties, PRISM provides a specialized syntax:

R{“reward-structure”} =?[F “expression”]

Here, “reward-structure” refers to the name of the reward structure defined in the
PRISM model. The “expression” is a temporal logic formula specifying the condition under
which the reward is accumulated. The “F” is a shorthand for “finally,” which means that
the “expression” should be true at some point in the future.

By utilizing PRISM and its reward-based property verification capabilities, we can
conduct a nuanced quantitative analysis that focuses not only on the safety of the trained
models but also on their efficiency in terms of reward accumulation.

3.3. Experimental Setup
3.3.1. Simulation Environment

The cornerstone of our research is a meticulously designed simulation environment
named “Serving Robots”, which aims to replicate the complexities and challenges of a
real-world restaurant setting. Developed on the robust OpenAI Gym framework, this
environment offers a highly customizable and standardized interface, making it an ideal
testbed for RL algorithms. The visual representation of this simulation environment is
depicted in Figure 2.

In the simulated restaurant, the layout is represented as a 10.0× 10.0 grid. Within this
grid, robots and customers are abstracted as coordinate points. The robots are strategically
initialized at specific grid locations to cover the maximum service area efficiently. The
robots have the capability to move in eight distinct directions, which are calculated based
on a 12 o’clock reference and proceed in a clockwise manner. The x, y coordinates serve
as the positional indicators for each robot, providing a continuous state space for the
learning algorithm.

The restaurant environment is populated with 13 strategically placed seats, each
capable of generating a service request at random intervals. These service requests simulate
customer orders that the robots are programmed to fulfill. A service request is marked
as complete when a robot successfully navigates to within a predefined range of the seat
emitting the request. This introduces a spatial challenge, requiring the robots to optimize
their paths while avoiding collisions.

Collision avoidance is a critical safety feature implemented in the environment. Robots
are programmed to maintain a safe distance from each other, defined by a specific range in
the grid. If robots come within this range, a collision is flagged and a penalty is applied,
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affecting the overall reward metric. This feature is particularly important for ensuring the
safe operation of the robots, aligning with real-world requirements.

To add another layer of complexity and realism, each robot is equipped with a simu-
lated battery that depletes as it moves. This introduces an energy-efficiency aspect to the
task, requiring the robots to not only fulfill service requests but also manage their energy
consumption effectively.

Figure 2. Environment for serving robots.

The action space for the robots is defined as a multi-discrete space, allowing each of
the three robots to choose from one of eight possible movement directions. The observation
space is a 19-dimensional continuous space, capturing a wealth of information, including
the x, y coordinates of each robot and the active or inactive status of service requests for
each of the 13 seats.

Incorporated into the environment are safety constraints, articulated in linear temporal
logic (LTL). The specific constraint G(¬collision) mandates that the robots must perpetually
avoid collisions. To enforce this constraint, we employ an STL parser that evaluates the
trace of states and actions, thereby providing a formal and rigorous method to ensure safety.

The “step” function in the environment serves multiple roles. It updates the state
based on the chosen actions, calculates the immediate reward, and checks for termination
conditions. The reward structure is a composite metric, factoring in energy consumption,
penalties for collisions, and bonuses for successfully completed services. The simula-
tion terminates when all service requests are fulfilled, providing a natural endpoint for
each episode.

By leveraging this intricately designed environment, we are equipped to conduct
experiments on two variants of the RL problem: one incorporating safety constraints and
the other without such constraints. This dual setup enables a comprehensive and nuanced
analysis, shedding light on the impact and efficacy of integrating safety constraints into
RL models.

3.3.2. Safety Constraints

Ensuring safety in autonomous systems is a critical concern, and one of the most
effective ways to achieve this is through the use of formal methods. In this research, we
employ LTL to articulate the safety constraints for serving robots operating in a simulated
restaurant environment. The primary safety objective is to prevent collisions between the
robots, which is formally expressed as G(¬collision) in LTL.
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The “G” in the formula stands for “Globally”, signifying that the constraint must
be satisfied at all times during an episode. The negation operator “¬” indicates that the
condition of a collision should not occur, and the term “collision” is a propositional variable
that turns true if any of the robots collide. Therefore, the formula G(¬collision) mandates
that no collisions should occur between any of the robots throughout the entire operation.
This is a hard constraint, meaning that even one violation would be unacceptable.

Incorporating this safety constraint into the RL model serves several important func-
tions. First, it adds robustness to the model by formally specifying what it means for the
system to be safe, thereby training the model to be resilient against unforeseen scenarios
that could lead to collisions. Second, the formal nature of LTL allows for the rigorous
verification of the trained model using model-checking techniques, ensuring that it satisfies
the safety constraint.

Moreover, while the primary focus is on safety, the constraint also subtly guides
the learning process to optimize for other objectives like efficiency and speed without
compromising safety. The use of LTL also enhances the interpretability of the system’s
safety requirements, making it easier for various stakeholders, from developers to end-
users, to understand and reason about the system’s safety measures.

Additionally, the scalability of LTL constraints allows them to be easily extended
or modified to suit more complex scenarios or different types of robots. Lastly, meeting
such formal safety constraints can be crucial for legal and ethical compliance, especially in
real-world applications where safety cannot be compromised.

By weaving the G(¬collision) constraint into the learning process, this research aims
to yield a model that is not only efficient in terms of task completion but also demonstrably
safe, thereby making a significant contribution to the field.

3.4. Experimental Procedure
3.4.1. Hyperparameter Settings

The hyperparameter settings serve as the foundational building blocks for our exper-
iments. We systematically vary the number of timesteps and learning rates to generate a
diverse set of models. Specifically, we use six different combinations of timesteps and learning
rates, such as Timesteps = [20,000, 35,000, 40,000] and Learning Rates = [0.0006, 0.0008, 0.001].
This exhaustive approach allows us to explore the impact of these hyperparameters on
the model’s performance, thereby enabling a more nuanced understanding of how they
interact with the learning process.

The rationale behind selecting these particular ranges for the two hyperparameters is
based on empirical observations. In simpler terms, when we evaluated models trained with
too few timesteps or exceedingly low learning rates, the rewards acquired were significantly
low. Conversely, with higher timesteps or elevated learning rates, we observed that the
evaluation rewards consistently converged. These observations informed our decision to
set the hyperparameter ranges as presented.

3.4.2. Model Training

The training phase is not merely a preparatory step but a critical component that
directly influences the quality of the models. Each of the six models is trained using PPO,
a state-of-the-art RL algorithm known for its stability and efficiency. The training occurs
in a simulated “Serving Robots” environment, which is a high-fidelity representation of
a restaurant setting. This environment incorporates various challenges such as dynamic
customer requests, limited battery life, and safety constraints defined through LTL.

During the training process, when safety constraints are present, we utilize the STL
library, an open-source tool, to ensure that the safety constraints formalized in LTL are
satisfied. To verify the adherence to these safety constraints, sequences of values from
the observation space and action space are input, and a Boolean result is checked. If the
safety constraints are satisfied within a finite sequence, the system internally records either
True or False. This mechanism is not exclusive to the training phase; it operates in an
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identical manner during model evaluation, ensuring consistent safety checks throughout
both training and evaluation stages.

3.4.3. Model Evaluation

Evaluation is conducted over 100 episodes for each of the six models to ensure statisti-
cal robustness. The primary metric is the average reward, which encapsulates the model’s
proficiency in fulfilling tasks while adhering to safety norms. During these episodes, we
collect a rich set of execution trajectories, denoted as T. Each trajectory τ within T is a
sequence of tuples consisting of environment observations and actions taken by the agent.
These trajectories serve as a comprehensive snapshot of the agent’s behavior and are crucial
for subsequent analyses.

3.4.4. Model Conversion to DTMC

The transition from raw trajectories T to a DTMC model M is a meticulous process.
Each unique tuple τ(i) = (oi, ai) in a trajectory τ is mapped to a unique state s in M. Tran-
sitions between these states are determined based on the actions taken, thereby capturing
the stochastic nature of the environment. The model M is then normalized to ensure that
the sum of probabilities for all possible transitions from each state s equals 1, making M a
valid probability distribution.

3.4.5. Quantitative Measurement Using PRISM

The DTMC models serve as the input for the PRISM model checker, a powerful tool
for formal verification and quantitative analysis. We define various metrics in Probabilistic
Computation Tree Logic (PCTL) [24], such as the expected number of steps to complete
all tasks, the expected battery consumption, and the expected occurrences of collision.
These metrics are not merely numerical values but offer deep insights into the model’s
performance, reliability, and safety.

3.4.6. Comprehensive Analysis

The final step involves a thorough analysis of all the collected data, synthesized into
various forms of visualizations. We employ line charts, bar graphs, and bubble charts
to represent different aspects of performance metrics. These visual tools help us identify
patterns, correlations, and outliers, thereby enabling a multi-dimensional evaluation of the
models. The goal is to select the most optimal model that balances efficiency, reliability,
and safety.

By following this rigorous and multi-faceted experimental procedure, we aim to
provide a comprehensive evaluation of RL models in complex, multi-agent settings, while
rigorously adhering to safety constraints.

4. Experimental Results and Analysis
4.1. Evaluation Reward Comparison

In this section, we focus on the comparative analysis of the evaluation rewards
achieved by two distinct models trained with different hyperparameters. The first model
is trained with 40,000 timesteps and a learning rate of 0.001. The line graph of this model
is shown in Figure 3. We examine this model in two configurations: one with safety con-
straints and another without. The objective is to understand the role of safety constraints
in influencing the model’s performance, particularly in terms of the rewards it garners
during evaluation.



Systems 2023, 11, 535 10 of 23

Figure 3. Evaluation reward for timesteps = 40,000 and lr = 0.001.

The model with safety constraints yielded an average reward of approximately −0.33,
which is significantly higher than its counterpart without safety constraints, which had
an average reward of around −5.95. This stark difference in average rewards highlights
the critical importance of incorporating safety constraints. It suggests that the model with
safety constraints is more adept at navigating the environment in a manner that minimizes
penalties associated with unsafe actions.

Further insights can be gleaned from the standard deviation of the rewards. The
model with safety constraints had a standard deviation of about 1.28, slightly higher than
the 0.91 observed in the model without safety constraints. This higher standard deviation
in the safety-constrained model could indicate its ability to adapt more effectively to a
variety of environmental conditions. It suggests that the model is capable of maintaining
a wider range of rewards, which could be beneficial when dealing with unpredictable or
challenging scenarios.

Additionally, the range between the minimum and maximum rewards for each model
provides more context. The safety-constrained model had a minimum reward of −1.76 and
a maximum of 4.4. In contrast, the model without safety constraints had a much narrower
and lower range, with a minimum reward of −7.64 and a maximum of −2.7. This broader
range in the safety-constrained model implies greater adaptability and a propensity for
safer behavior across different situations.

In summary, when considering the model trained with 40,000 timesteps and a learning
rate of 0.001, the presence of safety constraints appears to be a crucial factor for enhancing
both safety and performance. The safety-constrained model not only outperforms the
model without safety constraints in terms of average reward but also exhibits a more
adaptive and safety-conscious behavior. As we proceed to analyze additional models
trained with different hyperparameters, these findings will serve as a valuable baseline
for comparison.

Continuing our analysis, we turn our attention to the second model trained with
60,000 timesteps and a learning rate of 0.0008. The line graph of this model is shown in
Figure 4. Similar to the first model, we evaluate this model in two configurations: one with
safety constraints and another without. This allows us to further validate the impact of
safety constraints on the model’s performance.
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Figure 4. Evaluation reward for timesteps = 60,000 and lr = 0.0008.

For the model trained with 60,000 timesteps and a learning rate of 0.0008, the average
reward for the configuration with safety constraints was approximately 9.98, a figure
that is remarkably higher than the 4.12 average reward observed in the model without
safety constraints. This significant difference in average rewards further underscores the
importance of incorporating safety measures. The model with safety constraints not only
performs better in terms of average reward but also implies that it is more proficient at
avoiding penalties associated with unsafe actions.

The standard deviation of the rewards also offers valuable insights. The safety-
constrained model had a very low standard deviation of about 0.11, in stark contrast
to the 2.63 observed in the model without safety constraints. This lower standard deviation
in the safety-constrained model suggests a higher level of consistency in its performance.
It indicates that the model’s behavior is more predictable and stable, which is a desirable
quality when operating in environments where safety is a priority.

Moreover, the range of minimum and maximum rewards for each model provides
additional context. The safety-constrained model had a minimum reward of 9.78 and
a maximum of 10.21, which is a narrow but high range. On the other hand, the model
without safety constraints had a much wider and lower range, with a minimum reward of
−5.20 and a maximum of 5.54. This narrow yet high range in the safety-constrained model
suggests that it is not only capable of achieving high rewards but also does so with a high
level of consistency.

In summary, the model trained with 60,000 timesteps and a learning rate of 0.0008 fur-
ther confirms the observations made with the first model. The presence of safety constraints
significantly enhances the model’s performance, as evidenced by higher average rewards, a
lower standard deviation, and a more consistent range of minimum and maximum rewards.
This model, like the first, demonstrates that safety constraints are instrumental in achieving
a balance between high performance and safety, making it a more desirable choice for
applications where safety is a critical concern.

Expanding our analysis to the third model, which was trained with 80,000 timesteps
and a learning rate of 0.0006, we continue to observe the impact of safety constraints on
model performance. This model, like its predecessors, was evaluated in two different
configurations: one with safety constraints and another without. The line graph of this
model is shown in Figure 5.
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Figure 5. Evaluation reward for timesteps = 80,000 and lr = 0.0006.

For this third model, the average reward with safety constraints was approximately
11.01, which is notably higher than the 9.21 average reward for the model without safety
constraints. While the difference in average reward between the two configurations is
smaller compared to the previous models, it still highlights the benefits of incorporating
safety constraints. The higher average reward in the safety-constrained model suggests
that it is more adept at navigating the environment in a manner that avoids penalties and
maximizes rewards.

The standard deviation of the rewards also provides valuable insights into the model’s
performance. The safety-constrained model had a very low standard deviation of about 0.13,
compared to the 1.08 observed in the model without safety constraints. This lower standard
deviation indicates that the safety-constrained model’s performance is more consistent and
stable, reinforcing the idea that safety constraints contribute to more predictable behavior.

Furthermore, the range of minimum and maximum rewards for each configuration
adds another layer of understanding. The safety-constrained model had a minimum reward
of 10.88 and a maximum of 11.30, a narrow but high range. In contrast, the model without
safety constraints had a wider and lower range, with a minimum reward of 7.19 and a
maximum of 10.70. This suggests that the safety-constrained model not only achieves
higher rewards but does so with a higher level of consistency, further emphasizing the
advantages of incorporating safety constraints.

In summary, the third model trained with 80,000 timesteps and a learning rate of 0.0006
corroborates the findings from the previous models. The presence of safety constraints
consistently leads to better performance metrics, including higher average rewards, a lower
standard deviation, and a more consistent range of minimum and maximum rewards.
While the difference in average rewards is less pronounced in this model compared to
the earlier ones, the overall trend remains the same: models with safety constraints are
more desirable when safety is a critical factor. This consistent pattern across all three
models strongly supports the argument for the inclusion of safety constraints in RL models,
especially in applications where safety cannot be compromised.

In light of the comprehensive analysis across the three models, several key observations
emerge that underscore the importance of incorporating safety constraints in RL models.
These observations are based on a variety of metrics, including average rewards, standard
deviation, and the range of minimum and maximum rewards.

Firstly, the average rewards consistently show that models with safety constraints
outperform those without. For instance, the first model, trained with 40,000 timesteps
and a learning rate of 0.001, exhibited a stark contrast in average rewards: approximately
−0.33 with safety constraints versus −5.95 without. The second model, trained with
60,000 timesteps and a learning rate of 0.0008, also demonstrated a significant difference: an



Systems 2023, 11, 535 13 of 23

average reward of 9.98 with safety constraints compared to 4.12 without. Finally, the third
model, trained with 80,000 timesteps and a learning rate of 0.0006, continued this trend,
albeit with a smaller gap, showing average rewards of 11.01 and 9.21 with and without
safety constraints, respectively.

The standard deviation of rewards further corroborates these findings. Models with
safety constraints generally exhibited lower standard deviations, indicating more consistent
and reliable behavior. This was particularly evident in the second and third models, where
the standard deviations were 0.11 and 0.13 with safety constraints, compared to 2.63 and
1.08 without, respectively.

Moreover, the range of minimum and maximum rewards for each model configuration
adds another layer of understanding. Across all models, the safety-constrained configura-
tions not only achieved higher rewards but did so with higher levels of consistency. This
is evident from the narrower ranges of minimum and maximum rewards in models with
safety constraints.

The overarching trend across all these metrics is clear: models with safety constraints
are more reliable and perform better in terms of both average rewards and consistency.
This is particularly true for the third model, which not only had the highest average reward
but also the lowest standard deviation, making it the most desirable when safety is a
critical factor.

The use of LTL serves as a cornerstone for enhancing the safety features of the models.
LTL allows for a nuanced and precise representation of complex constraints that the
system’s future states must adhere to. This level of detail is invaluable for immediate error
detection. If the system ever violates an LTL rule, the model can take preemptive measures
before transitioning into a potentially dangerous state. This real-time error detection and
correction mechanism significantly elevates the overall safety of the system.

Another crucial factor is the consideration of historical data. By accounting for past
states and actions, the model gains the ability to make more accurate and informed predic-
tions about future states. This historical context is not just beneficial for improving state
predictions; it is also vital for assessing the level of risk associated with current states. For
instance, if the model recognizes that similar past situations have led to risky outcomes, it
can opt for more cautious actions in the present. This dynamic risk assessment, informed
by historical data, adds an extra layer of safety to the model’s decision-making process.

Lastly, the reward mechanism plays a pivotal role in shaping the behavior of the model.
When designed with safety constraints in mind, the reward function can effectively guide
the model towards safer actions. It does so by imposing penalties for risky or dangerous
behavior and offering rewards for actions that are deemed safe. This dual mechanism of
penalties and rewards ensures that the model is not just learning to maximize rewards but
is also actively avoiding actions that could compromise safety.

The interaction between these factors—LTL, historical data, and the reward mecha-
nism—creates a robust safety net for the system. For example, the safety constraints defined
through LTL can be more effectively internalized by the model through a well-designed
reward mechanism. This, in turn, allows the model to make more accurate assessments
based on its history, thereby creating a feedback loop that continually enhances safety.

In summary, each of these elements individually contributes to the safety of the system,
but it is their synergistic interaction that provides a comprehensive and robust safety frame-
work. This multi-layered approach to safety justifies the observed superiority of models
with safety constraints, especially in applications where safety cannot be compromised.

4.2. Quantitative Measurement

The data clearly indicate that models with safety constraints generally require fewer
steps to accomplish their tasks compared to those without safety constraints. This observa-
tion opens the door to several interpretations. The quantitative results for the total number
of steps to complete the mission are presented in Table 1.
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Table 1. The total number of steps to complete the mission.

Timesteps, LR With Safety Constraint Without Safety Constraint

40,000, 0.001 112.09 160.18
60,000, 0.0008 30.2 79.59
80,000, 0.0006 18.54 36.73

Firstly, the relationship between efficiency and safety becomes evident. When safety
constraints are applied, not only does the system become safer, but it also accomplishes
its mission in fewer steps. This suggests that safety constraints contribute to making the
system more efficient, not just safer. Completing missions in fewer steps inherently means
that the system has fewer opportunities to engage in potentially hazardous states or actions,
thereby enhancing its overall safety.

Secondly, the role of the learning rate in influencing safety is noteworthy. Models
with lower learning rates appear to be more effective when safety constraints are applied.
This could be interpreted as the model learning in a more stable and cautious manner
when safety constraints are in place. The lower learning rate, in conjunction with safety
constraints, seems to guide the model towards a more optimal path, both in terms of safety
and efficiency.

Thirdly, the impact of safety constraints becomes increasingly apparent as the number
of timesteps increases. This suggests that the longer the model trains, the more pronounced
the benefits of having safety constraints become. It is as if the model, through extended
learning, comes to realize the increasing importance of adhering to safety constraints for
both efficient and safe operation.

Lastly, it is important to acknowledge that even models without safety constraints
show a reduction in the number of steps required for mission completion as they learn.
This could be seen as the inherent benefit of the learning process itself, which can achieve
a certain level of efficiency and safety even without explicit safety constraints. However,
given the same amount of training time, models with safety constraints consistently out-
perform those without, underscoring the importance of incorporating safety constraints
into the learning process.

In summary, the data strongly suggest that safety constraints play a significant role in
enhancing not just the safety of the system but also its efficiency. The constraints appear to
guide the model towards more optimal behavior, reducing the number of steps required for
mission completion, especially as the model undergoes more extended periods of training.
This dual benefit of safety and efficiency makes a compelling case for the inclusion of
safety constraints in RL models, particularly in scenarios where both attributes are of
paramount importance.

Building upon the previous discussion, the data on the frequency of collisions provide
another layer of insight into the role of safety constraints. The numbers clearly indicate
that models with safety constraints experience fewer collisions compared to those without.
This observation can be dissected from several critical angles. The quantitative results for
the total number of steps to complete the mission are presented in Table 2.

Table 2. The number of collisions.

Timesteps, LR With Safety Constraint Without Safety Constraint

40,000, 0.001 2.975 3.633
60,000, 0.0008 0.749 1.253
80,000, 0.0006 0.742 1.414

Firstly, the enhancement of safety is unmistakable. The lower frequency of collisions
in models with safety constraints serves as empirical evidence that the system is safer. This
is a strong indicator that the safety constraints are not just theoretical constructs but have
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a tangible impact on the system’s operation. The reduction in collisions can be directly
attributed to the safety measures implemented, affirming their effectiveness.

Secondly, the interplay between the learning rate and safety is again evident, but with
a new dimension. As the learning rate decreases from 0.001 to 0.0006, the frequency of
collisions also decreases, suggesting that the model is learning in a more stable manner.
However, it is crucial to note that, even at different learning rates, models with safety
constraints consistently experience fewer collisions. This underlines that while the learn-
ing rate is an important factor, it alone cannot guarantee safety; the safety constraints
are indispensable.

Thirdly, the temporal aspect of safety comes into focus. As the number of timesteps
increases from 40,000 to 80,000, both models with and without safety constraints show a
reduction in the number of collisions. This suggests that over time, both models are learning
to operate more safely. However, the rate and effectiveness of this safety improvement are
noticeably faster and more significant in models with safety constraints. This implies that
while learning over time contributes to safety, the presence of safety constraints accelerates
this process and makes it more robust.

Lastly, the consistency of safety constraints in reducing collisions across different
data points is noteworthy. This consistency across the board strongly suggests that safety
constraints are a reliable tool for enhancing the safety of the system. They do not just work
in specific scenarios or under certain conditions; their benefit is universal and sustained.

In summary, the collision frequency data further solidify the argument for the inclusion
of safety constraints in RL models. While other factors like learning rate and training
duration do play a role in safety, they are not sufficient on their own to ensure a safe
operation. Safety constraints not only improve safety metrics but do so consistently and
effectively, making them an invaluable component in the design and training of safe,
efficient systems.

Continuing from the previous discussion, it is evident that the role of safety constraints
in RL models is multifaceted. One of the most striking insights from the data is the synergy
between efficiency and safety. Often, there is a preconceived notion that implementing
safety measures could slow down a system, making it less efficient. However, the data
challenge this view. Models with safety constraints not only complete their missions in
fewer steps but also experience fewer collisions. This dual benefit suggests that safety
constraints are not just about avoiding risks; they also make the system more efficient.

Another significant observation is related to the learning rate. Lower learning rates
usually make a model act more cautiously, but when safety constraints are added to the mix,
this cautious behavior is amplified into tangible benefits. This is particularly interesting
because it shows that while you can influence a model’s performance by adjusting the
learning rate, adding safety constraints provides a more reliable and consistent safety net.
It is like having an extra layer of security that works well across different settings, making
the system not just safe but also adaptable.

As the models are exposed to more timesteps, they naturally become safer, which is
expected as they “learn” from their experiences. However, what is noteworthy is that the
rate of this safety improvement is significantly faster in models with safety constraints.
This suggests that as time goes on, the importance of having safety constraints becomes
increasingly evident. It is not just a one-time benefit but a feature that continues to add
value as the model learns and evolves.

Consistency is another strong point for models with safety constraints. Regardless of
the learning rate or the number of timesteps, they consistently outperform models without
safety constraints in both speed and safety. This is not just a one-off; it is a pattern that
is observed across all settings, providing strong evidence for the enduring and reliable
positive impact of safety constraints.

While it is true that models without safety constraints show some improvement as
they are exposed to more timesteps, they never quite catch up to their safety-constrained
counterparts. This highlights the limitations of relying solely on learning-rate adjustments
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or more extended training to achieve the desired levels of safety and efficiency. It is like
running a race where one runner has a consistent head start; no matter how fast the other
runner is, catching up becomes increasingly difficult.

In conclusion, safety constraints appear to be a pivotal element for enhancing both the
efficiency and safety of complex tasks. Their benefits are not isolated but interconnected,
improving multiple aspects of system performance in a way that is more than just additive:
it is synergistic. So, in tasks that are both complex and potentially hazardous, the data
suggest that safety constraints are not just useful but essential for achieving faster and
safer performance.

5. Case Study: Nuclear Plant Robot

In the realm of RL, ensuring the safety of agents in critical environments is paramount.
This chapter delves into a novel experimental setup involving a nuclear plant environment
patrolled by robots. The nuclear plant, characterized by its six distinct rooms, poses a
unique challenge due to the presence of a high-radiation room. Two robots are tasked with
the responsibility of patrolling these rooms, ensuring the safety and security of the plant.

The primary objective of the robots is to ensure that each room is visited at least three
times. However, room number 4 stands out due to its high radiation levels, which pose a
significant threat to the robots. Thus, while the robots must fulfill their patrol duties, they
must also minimize their exposure to radiation in room 4.

The reward structure for the robots is mathematically defined as follows:

R(s, a) =



+100 if all rooms are visited at least three times
−0.04 if a robot is in room 4
−x for battery consumption on moving between rooms
−0.01 if safety constraint is violated
0 otherwise

The safety constraint, crucial to the well-being of the robots, is specified using LTL.
The constraint ensures that the robots do not visit the high-radiation room more than a
stipulated number of times. Mathematically, the safety constraint is represented as:

G(¬exceed)

Here, the term “exceed” is true if both robots visit room 4 more than twice.
To evaluate the performance of trained models in this environment, various com-

binations of hyperparameters are considered. Specifically, the timesteps are varied as
[20, 000, 40, 000, 60, 000, 80, 000, 100, 000], and the learning rates are set as [0.0002, 0.0004,
0.0006, 0.0008, 0.001]. These combinations provide a comprehensive exploration of the
model’s performance under different conditions.

The nuclear plant robot environment serves as a testament to the challenges and
intricacies involved in ensuring the safety of agents in critical scenarios using RL.

In our comprehensive analysis of the 25 training models, each model is characterized
by a distinct combination of training iterations and learning rates. The primary focus of
our analysis is on statistical metrics, trends, and the identification of the optimal model in
terms of evaluation rewards. A detailed visualization of the data from these models can be
seen in Table 3.

The models were trained with five different training iterations: 20,000, 40,000, 60,000,
80,000, and 100,000. For each iteration, five distinct learning rates were used: 0.001, 0.0002,
0.0004, 0.0006, and 0.0008, resulting in a total of 25 unique model configurations.

Key metrics for analysis include the mean reward, which provides an average per-
formance metric across all episodes for a given model, and variance, which measures
the spread of the rewards. A model with a lower variance indicates more consistent per-
formance. Observing the highest and lowest rewards can also provide insights into the
model’s potential and limitations.
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Table 3. Evaluation reward for different models.

Timesteps, LR Mean Reward Variance Highest Reward Lowest Reward

20,000, 0.0002 41.23 2.41 44.18 38.46
20,000, 0.0004 40.82 18.54 43.97 30.66
20,000, 0.0006 45.15 2.40 48.034 43.38
20,000, 0.0008 44.62 2.12 45.71 40.70
20,000, 0.001 46.89 0.34 47.94 45.36
40,000, 0.0002 46.12 2.52 48.04 42.70
40,000, 0.0004 47.92 2.01 48.04 47.79
40,000, 0.0006 47.89 1.98 48.02 47.77
40,000, 0.0008 47.91 1.96 48.04 47.79
40,000, 0.001 47.93 1.94 48.04 47.89
60,000, 0.0002 48.13 1.84 48.24 48.01
60,000, 0.0004 48.01 1.82 48.12 47.89
60,000, 0.0006 48.01 1.82 48.12 47.89
60,000, 0.0008 48.01 1.82 48.12 47.89
60,000, 0.001 48.01 1.82 48.12 47.89
80,000, 0.0002 47.01 1.82 47.12 46.89
80,000, 0.0004 47.03 1.79 47.12 46.89
80,000, 0.0006 47.11 1.68 47.20 47.02
80,000, 0.0008 47.21 1.58 47.30 47.12
80,000, 0.001 47.31 1.58 47.40 47.22
100,000, 0.0002 47.31 1.58 47.40 47.22
100,000, 0.0004 48.31 1.58 48.40 48.22
100,000, 0.0006 48.32 1.57 48.40 48.22
100,000, 0.0008 48.42 1.47 48.50 48.32
100,000, 0.001 48.51 1.45 48.59 48.41

From the results, for the 20,000 iterations set, the model with a learning rate of
α = 0.001 exhibited the highest mean reward, suggesting it performed the best on av-
erage. However, its variance was also relatively low, indicating consistent performance.
The model with α = 0.0002 showed a slightly lower mean reward but had a higher variance,
hinting at some inconsistency in its performance.

For the 40,000 iterations set, the model with α = 0.0004 had the highest mean reward,
and its variance was also lower than its counterparts, making it a strong contender for
the best model in this set. For the 60,000 iterations set, the model with α = 0.0006 stood
out with a high mean reward and showed a consistent increase in rewards, suggesting
good convergence.

Upon evaluating all models across the different metrics, the model trained with
100,000 iterations and a learning rate of α = 0.0004 emerges as the most optimal. It boasted
the highest mean reward and demonstrated consistent performance with a relatively low
variance, suggesting that the model has learned a robust policy that generalizes well across
different episodes.

In conclusion, trained models with varying iterations and learning rates have pro-
vided valuable insights into the dynamics of the learning process. While higher iterations
generally lead to better performance, the learning rate plays a crucial role in ensuring
stability and convergence. The optimal balance between these parameters is essential for
achieving the best performance. The model with 100,000 iterations and α = 0.0004 has
proven to be the most effective in terms of evaluation rewards.

In the comprehensive evaluation presented in Table 4, we quantitatively assessed the
performance of the 25 training models, particularly focusing on their battery consumption
and radiation exposure when converted to DTMCs, and them evaluated using the PRISM
model checker. These metrics are pivotal in determining the operational efficiency and
safety of the models in real-world scenarios.
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Table 4. Quantitative measurements for different models.

Timesteps, LR Battery Consumption High Radiation Exposure

20,000, 0.0002 457.24 0.56
20,000, 0.0004 419.27 0.46
20,000, 0.0006 424.70 0.47
20,000, 0.0008 458.93 0.47
20,000, 0.001 445.59 0.45
40,000, 0.0002 378.64 0.58
40,000, 0.0004 317.65 0.43
40,000, 0.0006 283.42 0.41
40,000, 0.0008 295.84 0.26
40,000, 0.001 293.43 0.33
60,000, 0.0002 321.61 0.40
60,000, 0.0004 191.03 0.30
60,000, 0.0006 220.24 0.21
60,000, 0.0008 152.20 0.16
60,000, 0.001 149.47 0.16
80,000, 0.0002 195.06 0.23
80,000, 0.0004 95.79 0.13
80,000, 0.0006 74.72 0.13
80,000, 0.0008 97.54 0.12
80,000, 0.001 67.30 0.12
100,000, 0.0002 102.89 0.13
100,000, 0.0004 77.41 0.09
100,000, 0.0006 62.04 0.11
100,000, 0.0008 57.38 0.09
100,000, 0.001 50.67 0.07

Battery consumption is a critical factor, especially for applications where prolonged
operational times are essential. It is evident from the data that as the number of train-
ing iterations increases, the models tend to consume less battery. This trend suggests
that models trained for longer periods learn more efficient policies that result in reduced
energy consumption. Specifically, the model trained with 100,000 iterations and a learn-
ing rate of α = 0.001 showcased the least battery consumption, indicating its superior
energy efficiency.

On the other hand, radiation exposure is a paramount safety concern. Lower radiation
exposure values signify safer models, especially in environments where minimizing radi-
ation is crucial. The data reveal that models with higher learning rates, especially when
combined with increased training iterations, tend to have reduced radiation exposure. This
observation might be attributed to the fact that higher learning rates allow the models
to quickly adapt and learn policies that minimize radiation exposure. The model with
100,000 iterations and a learning rate of α = 0.001 recorded the lowest radiation exposure,
emphasizing its heightened safety profile.

When juxtaposing battery consumption against radiation exposure, it becomes evident
that striking a balance between operational efficiency and safety is challenging. However,
the model with 100,000 iterations and a learning rate of α = 0.001 emerges as a frontrunner.
It not only ensures minimal battery consumption but also guarantees the lowest radiation
exposure, making it an ideal choice for scenarios demanding both efficiency and safety.

Furthermore, it is worth noting that while the model with 100,000 iterations and
α = 0.001 is optimal in this context, other models also exhibit promising results. For
instance, models with 80,000 iterations and learning rates ranging from α = 0.0004 to
α = 0.001 showcase competitive battery consumption and radiation exposure values,
indicating their potential suitability for specific applications.

In conclusion, the results underscore the intricate interplay between training iterations
and learning rates. While longer training durations generally enhance performance metrics,
the learning rate’s fine-tuning is crucial in ensuring both efficiency and safety. The presented



Systems 2023, 11, 535 19 of 23

analysis offers valuable insights for researchers and practitioners aiming to deploy these
models in real-world settings, emphasizing the need to consider both operational and
safety metrics in their evaluations.

6. Discussion

When we scrutinize the data, it becomes evident that not all timestep and learning
rate combinations are created equal in terms of safety and efficiency. For instance, the
configuration with 40,000 timesteps and a 0.001 learning rate is a cautionary tale. It
consistently shows the lowest average rewards and a higher standard deviation, indicating
not just suboptimal performance but also a greater unpredictability in behavior. This could
be particularly concerning in real-world applications where such erratic behavior could
lead to hazardous situations.

Contrast this with the 80,000 timesteps and 0.0006 learning rate configuration. Here, we
see a model that is not just playing it safe but is doing so while optimizing its performance.
The high average rewards and low standard deviation are a testament to this. It is like
having a car that not only has the best safety features but also gives you the best mileage.
This breaks the often-assumed trade-off between safety and efficiency, suggesting that with
the right settings, one can actually complement the other.

Now, let us talk about the strategies for enhancing safety. In a higher learning rate
scenario, like the one with 0.001, the system seems to be in a hurry to learn, but this rush
comes at the cost of learning safe behaviors effectively. It is akin to cramming the night
before an exam; you might remember some things, but the understanding is often shallow
and unreliable. On the other hand, a more moderate learning rate, such as 0.0006, allows
the model to take its time to understand the nuances of the environment, leading to safer
and more reliable behaviors.

In the grand scheme of things, what does this all mean? If safety is your primary
concern, then the 80,000, 0.0006 configuration with the safety constraint is your go-to option.
It is like the Swiss Army knife of configurations: versatile, reliable, and efficient.

The strengths of this research are manifold. First and foremost, it places a strong
emphasis on safety, making it highly relevant for real-world applications, especially those
in high-risk environments like autonomous driving or medical robotics. By focusing on
safety, the research fills a critical gap in the existing literature, which often prioritizes
performance metrics like speed or accuracy.

Secondly, the research is comprehensive. It does not just look at whether a safety
constraint is present or not; it considers a variety of factors including different learning rates
and timesteps. This multi-faceted approach allows for a more nuanced understanding of
how different elements interact with each other, providing a richer, more complete picture.

Thirdly, the research has high statistical validity. By measuring various metrics like
average rewards, standard deviation, and even maximum and minimum rewards, it
ensures that the findings are not just flukes but statistically significant patterns that can be
relied upon.

The contributions are equally noteworthy. This research introduces new metrics for
quantitatively measuring and analyzing safety, offering a valuable tool for future studies.
It also proves that safety and efficiency can be complementary rather than conflicting goals,
a finding that could revolutionize how we approach the design of safety-critical systems.
Additionally, the research provides insights into how performance evolves over time, which
is crucial for real-time applications.

Furthermore, the research broadens the scope of model comparison by analyzing
multiple configurations, thereby empowering users to make more informed choices based
on their specific needs. It also offers practical guidelines and optimal settings, making it
easier for engineers and researchers to apply these findings to real-world problems.

In essence, this research does not just add to the academic conversation; it provides
actionable insights and tools that could have a significant impact on the design and op-
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timization of safety-centric systems. It is not just theory; it is a practical guidebook for
anyone looking to navigate the complex landscape of safety in RL applications.

Building on our initial findings, the second experiment, focusing on the Nuclear Plant
Robot, offers a deeper dive into the intricacies of safety and efficiency in RL. The nuclear
environment, with its inherent risks and challenges, serves as a perfect backdrop to test the
mettle of our models.

In the nuclear setting, the stakes are undeniably higher. A minor oversight or a slight
deviation from the expected behavior can have catastrophic consequences. This makes the
safety constraints, especially concerning radiation exposure, paramount. Our analysis of
the 25 models in this context revealed some fascinating insights.

Firstly, it is evident that the models with higher timesteps and moderate learning rates
consistently outperformed their counterparts in terms of both safety and efficiency. For
instance, models trained with 80,000 timesteps and a 0.0006 learning rate exhibited the
least radiation exposure, making them the safest bet in a nuclear environment. This is
akin to a robot technician that not only works efficiently but also ensures that it does not
inadvertently trigger a meltdown.

However, safety does not come at the expense of efficiency. These models also show-
cased optimal battery consumption rates, ensuring that they can operate longer without
frequent recharges. This dual achievement of safety and efficiency is reminiscent of a
nuclear technician who can work long hours without compromising on safety protocols.

The models with higher learning rates, especially those at 0.001, while quick learners,
often exhibited erratic behavior in the nuclear environment. Their propensity to take risks,
perhaps to achieve higher rewards, made them less suitable for such a high-stakes setting.
This is analogous to a technician who might cut corners to finish a task quickly, risking
safety in the process.

On the other hand, models with a learning rate of 0.0006 demonstrated a more mea-
sured approach. Their actions were deliberate, and they seemed to have a better grasp
of the environment’s nuances. This behavior underscores the importance of a balanced
learning rate, which allows models to learn efficiently without rushing, ensuring both
safety and optimal performance.

In terms of contributions, this experiment further solidifies the notion that safety and
efficiency are not mutually exclusive. By introducing the Nuclear Plant Robot scenario, we
have shown that even in the most challenging environments, it is possible to achieve both
objectives with the right configurations.

Moreover, the experiment underscores the importance of domain-specific training.
While a model might excel in a restaurant setting, the same configuration might not be
ideal for a nuclear plant. This highlights the need for tailored approaches depending on
the application.

In conclusion, the Nuclear Plant Robot experiment not only complements our initial
findings but also adds a new dimension to our understanding of safety in RL. It empha-
sizes that with the right configurations and a keen understanding of the environment, it
is possible to design RL models that are both safe and efficient, even in the most chal-
lenging scenarios. This research serves as a beacon for those venturing into safety-critical
applications, offering both insights and practical guidelines.

When we juxtapose our findings with the existing literature, several key distinctions
and contributions emerge. For instance, the first related work [13], which focused on
POMDPs with iLTL constraints, also emphasized safety but lacked comprehensive experi-
mental results to validate its approach. Our research fills this gap by providing a thorough
statistical analysis, thereby enhancing the reliability of safety constraints in RL.

The second related work [14], which applied StTL constraints to learning from demon-
strations, shared our goal of enhancing safety but was limited in its experimental validation.
Our work extends this by not only focusing on safety but also demonstrating that safety
and efficiency can coexist, thereby broadening the applicability of safety constraints in
various domains.
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The third study [15], which employed GR(1) for multi-task motion planning in stochas-
tic environments, had the advantage of addressing multi-task scenarios. However, it lacked
a detailed analysis of how learning rates and timesteps affect safety and efficiency. Our
research fills this void by offering a nuanced understanding of these parameters, which is
crucial for real-world applications.

The fourth study [16], which used linear temporal logic for safe trajectory tracking,
had the merit of focusing on complex tasks. Yet, it did not provide a comprehensive set of
metrics to evaluate safety, something our research contributes significantly to.

The fifth study [17], which synthesized control policies for stochastic systems under
linear temporal logic specifications, made a notable contribution by focusing on stochastic
control systems. However, like other studies, it lacked a comprehensive experimental
validation. Our research addresses this by providing a robust set of experiments that
validate the efficacy of our approach.

In summary, while previous works have made significant strides in integrating tem-
poral logic with RL for safety, they often lacked comprehensive experimental results or
focused on specific scenarios. Our research fills these gaps by providing a robust experimen-
tal framework and by showing that safety and efficiency can be achieved simultaneously.
This not only validates the effectiveness of using linear temporal logic for safety constraints
but also sets a new standard for future research in this area.

Our research does not just contribute to the academic dialogue; it offers a robust
framework and actionable insights for real-world applications. It stands as a comprehensive
guide for anyone aiming to navigate the intricate balance between safety and efficiency in
RL systems.

7. Conclusions and Future Work

In conclusion, this research has made significant strides in addressing the critical issue
of safety in RL by integrating temporal logic constraints. Through a rigorous theoretical
framework and comprehensive empirical evaluations, we have demonstrated that our
approach not only ensures the safety of the learning agent but also maintains a high
level of performance. Our method stands as a robust solution for real-world applications
where safety is non-negotiable, such as autonomous vehicles, medical diagnostics, and
industrial automation.

One of the most noteworthy aspects of our research is the formal verification of the
reward mechanisms in RL algorithms using temporal logic. This formalism allows us to
mathematically guarantee the safety of the system under various conditions and scenarios,
a feature that has been notably lacking in the existing literature. Our approach thus serves
as a new paradigm for ensuring the safety of RL algorithms, particularly in complex and
dynamic environments.

Moreover, our research has successfully addressed some of the limitations observed in
previous studies. Unlike prior works that lacked comprehensive experimental validations,
our study includes an extensive set of experiments that not only validate the effectiveness
of our approach but also compare it against existing methods. This provides a more holistic
view of the landscape, highlighting the advantages of our method in terms of both safety
and efficiency.

However, it is important to acknowledge that our work is not without its limitations.
While our method has proven effective in a range of scenarios, its computational complexity
can be a challenge for real-time applications. Additionally, our current framework is
designed for specific types of temporal logic constraints, and extending it to more general
forms remains an open question.

Looking ahead, there are several promising avenues for future research. First, optimiz-
ing the computational aspects of our method could make it more applicable for real-time
systems. Second, extending our framework to accommodate a broader range of temporal
logic constraints could make it more versatile and widely applicable. Third, integrating our
approach with other types of machine learning algorithms could offer a more comprehen-
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sive solution for ensuring safety in intelligent systems. Lastly, conducting more in-depth
case studies in various domains like healthcare, transportation, and manufacturing could
provide further empirical evidence for the practical utility of our approach.

In summary, our research has made a significant contribution to the field of RL by
introducing a formally verified, safety-aware approach. We believe that our work lays a
strong foundation for future studies aiming to make RL more safe, reliable, and applicable
in real-world scenarios.
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