
Citation: Ozkaya, M.; Kardas, G.;

Kose, M.A. An Analysis of the

Features of Requirements

Engineering Tools. Systems 2023, 11,

576. https://doi.org/10.3390/

systems11120576

Academic Editor: William

T. Scherer

Received: 7 October 2023

Revised: 7 December 2023

Accepted: 11 December 2023

Published: 15 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

An Analysis of the Features of Requirements Engineering Tools
Mert Ozkaya 1,* , Geylani Kardas 2 and Mehmet Alp Kose 3

1 Computer Engineering Department, Yeditepe University, Istanbul 34755, Turkey
2 International Computer Institute, Ege University, Izmir 35100, Turkey; geylani.kardas@ege.edu.tr
3 Independent Researcher, Istanbul 34710, Turkey; malpkose@gmail.com
* Correspondence: mozkaya@cse.yeditepe.edu.tr

Abstract: Many requirements engineering tools have been developed for gathering, documenting,
and tracing requirements that can even be further processed for such purposes as analysis and trans-
formation. In this study, we analysed 56 different requirements engineering tools for a comprehensive
set of features that are categorised into multiple viewpoints (i.e., project management, specification,
collaboration, customisation, interoperability, methodology, and user-support). The analysis results
led to many interesting findings. Some of them are as follows: (i) the project planning and execution
activities are rarely supported, (ii) multi-user access and versioning are highly supported, (iii) the
most popular specification technique is natural languages, while precise specification via model-
ing languages is rarely supported, (iv) requirements analysis is rarely supported, (v) requirements
transformation is considered for generating documents only, (vi) tool customisation via the tool
integration and API support is highly popular, while customising the notation set is rarely supported,
(vii) exchanging requirements is popular in such standards as ReqIF and Excel/CSV, while no single
standard is accepted by all the tools, (viii) agile development is very common, while other methodolo-
gies (e.g., MDE and SPLE) are rarely supported, and (ix) user-guides, telephone, e-mail, and videos
are the most preferred methods for user-support. The analysis results will be useful for different
stakeholders including practitioners, tool vendors, and researchers.

Keywords: requirements engineering; tools; survey; viewpoints

1. Introduction

A requirement is considered as a statement that needs to be agreed to by all the stake-
holders and contributes to solving customers’ problems [1–3]. Each requirement describes
either what the system to be developed is expected to perform or any constraints on the
system design and development (e.g., quality and platform constraints). Requirements
engineering has been proposed as a branch of software engineering that promotes the
application of well-known techniques, practices and methods for eliciting, documenting,
and analysing requirements [4–7]. With requirements engineering, the goal is to maximise
the quality of requirements that will affect the subsequent stages of software develop-
ment. This involves such activities as understanding the customers’ needs completely
and correctly, specifying requirements precisely in a verifiable way to avoid any issues
(e.g., incomplete and inconsistent requirements), and associating requirements with other
artefacts (e.g., test-cases and system architectural components). It should be noted that
failing to apply the activities of requirements engineering may lead to wrong systems being
developed. Indeed, many software projects fail because of the ill-defined application of the
requirements engineering practices [8–10].

To perform the requirements engineering activities effectively, several tools are avail-
able on the market through which the requirements for any systems can easily be specified
and managed collaboratively throughout the project’s lifecycle. Requirements engineering
tools offer diverse features, including project management facilities, requirements trace-
ability, automated analysis, document generation, test-scenario generation, multi-user

Systems 2023, 11, 576. https://doi.org/10.3390/systems11120576 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11120576
https://doi.org/10.3390/systems11120576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-2329-9925
https://orcid.org/0000-0001-6975-305X
https://doi.org/10.3390/systems11120576
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11120576?type=check_update&version=2

Systems 2023, 11, 576 2 of 32

collaboration, and importing/exporting using the ReqIF standard [11], an API support for
customising the tool.

While tens of different requirements engineering tools are available, the literature
lacks any resources that can be used for determining the existing requirements engineering
tools, understanding the tools’ support for a number of important features, and comparing
the tools with each other. As discussed in Section 5, the existing studies that attempt to
compare the requirements engineering tools either ignore many of the existing tools, focus
on a small set of features, or consider just the tools in particular domains (e.g., tools for
natural language processing).

Therefore, in this paper, we aim to discuss the results of our literature review on the
analysis of 56 different requirements management tools with the considerations of a com-
prehensive set of tool features. We categorised the features that we considered into multiple
viewpoints: project management, specification, collaboration, customisation, interoperabil-
ity, methodology, and user-support. The project management viewpoint is concerned with
the support for initiating, planning and executing the projects. The specification viewpoint
is concerned with the technique(s) supported for specifying requirements (e.g., natural
languages and modeling languages), the support for analysing requirements automatically,
and the support for transforming requirements into useful artefacts (e.g., code and test
scenarios). The customisation viewpoint is concerned with customising and extending the
requirements engineering tools for the specific user needs. The interoperability viewpoint
is concerned with the support for importing/exporting the requirement specifications
between different tools. The methodology viewpoint is concerned with the support for any
well-known software development methodologies that can facilitate the requirements engi-
neering activities such as agile development, product-line engineering, and model-based
engineering. Lastly, the user-support viewpoint is concerned with supporting users in their
tool usages through which the learning curve can be minimised.

The analysis results discussed in our paper are believed to provide invaluable guidance
for the stakeholders who are involved in the requirements engineering. Indeed, while the
existing literature includes some review studies on the requirements engineering tools,
none of those studies consider as many tools and focus on as many tool features as we
do in our review study here. Also, our review is further unique with its consideration
of several interesting viewpoints, such as project management, interoperability, different
methodologies of software development, and user-support, each of which is represented
with a cohesive set of features. We strongly believe that stakeholders can gain some
interesting insights from the review results about the requirements engineering and the
tool support. Practitioners in the industry may use the analysis results to identify many
of the existing requirements engineering tools, observe their weak and strong points in
terms of the practical set of features, compare different tools, and choose the ones that best
meet their needs. Tool vendors can use the results to understand to what extent their tools
satisfy different principal concerns for requirements engineering and any gaps that can
be improved. Researchers in the field of requirements engineering can conduct further
empirical studies on such concerns as understanding practitioners’ perspectives towards
the requirements engineering tools, analysing a subset of tools for a particular viewpoint,
comparing different types of tools for the requirements engineering, etc.

In the rest of the paper, we firstly give the research methodology that we applied in our
study. Then, we discuss the analysis results of the 56 different tools for a set of viewpoints.
Then, we give the summary of findings and the lessons learned, which are followed by the
discussions of any threats to the validity of the analysis results.

2. Research Methodology
2.1. Review Protocol

We performed our literature review using the PRISMA guidelines [12] and applied
the checklist provided by PRISMA for systematic review1.

Systems 2023, 11, 576 3 of 32

Conforming to the PRISMA guideline’s introduction section, we previously discussed
the motivation and objectives of our review study (see Section 1). In this section, we first
describe how we conducted the review according to the PRISMA method’s definitions.
In Section 2.2, we give the search strategy. In Section 2.3, we give the eligibility criteria.
In Section 2.4, we discuss the very first stage of the data collection process according to
PRISMA specifications and define the set of features for which we collect data about the
tools. Then, in Section 2.5, we explain how we keep the data sources for each tool and the
protocol that we follow for analysing the data sources. We also discuss in Section 2.5 the
risk of any biases due to the different reviewers contributing to the data collection process.
Lastly, in Section 2.6, we discuss how we synthesise the collected tool data for reaching
interesting findings.

Later, in Sections 3 and 4, we discuss the results that we reached through our syntheses
of the tool data and indicate the implications of our results and any lessons learned with
our study, respectively, again by following the PRISMA guideline.

2.2. Search Strategy

In this section, we discuss the search strategy that we followed for reaching as many
requirements engineering tools as possible. We discuss the search scope (i.e., the search
period and search platform), search method (i.e., manual/automated search), and search
query (i.e., the strings used for searching tools) subsequently.

2.2.1. Search Scope

In this review study, we aimed to search for the requirements engineering tools that
can be accessible via the popular search engine Google. We performed our tool search via
Google between March 2023 and June 2023.

2.2.2. Search Method

We used the Google search engine manually so as to reach as many tools as we could.
That is, we firstly used Google with the general search query given in the next section and
scanned through all the pages that Google returned manually. We performed the same for
each specific search query given in the next section. Moreover, we performed snowballing
in our search as we scanned through the web pages that Google returned and gave a list of
the requirements engineering tools. Table 1 gives the list of those web pages.

Table 1. The webpages that present a list of requirements engineering tools.

Name URL Access Date

List of requirements
engineering tools

https://en.wikipedia.org/wiki/List_of_requirements_engineering_tools 9 April 2023

7 Requirements engineering
tools to make your life easy

https://www.zumvie.com/7-requirements-engineering-tools-to-make-your-life-easy/ 9 April 2023

10 Best Requirements Management
Tools & Software of 2023

https://thedigitalprojectmanager.com/tools/requirements-management-tools/ 9 April 2023

Top 20+ Best Requirements
Management Tools

https://www.softwaretestinghelp.com/requirements-management-tools/ 9 April 2023

13 BEST Requirements Management
Tools & Software (2023)

https://www.guru99.com/requirement-management-tools.html 9 April 2023

Software Requirements
Engineering Tools

https://ecomputernotes.com/software-engineering/softwarerequirementsengineeringtools 9 April 2023

Top Requirements Management
Tools List

https://blog.testlodge.com/requirements-management-tools-list/ 9 April 2023

2.2.3. Search String

To find the requirements engineering tools, we initially used following general search
query: (“requirements”) AND (“engineering” OR “management” OR “specification” OR

https://en.wikipedia.org/wiki/List_of_requirements_engineering_tools
https://www.zumvie.com/7-requirements-engineering-tools-to-make-your-life-easy/
https://thedigitalprojectmanager.com/tools/requirements-management-tools/
https://www.softwaretestinghelp.com/requirements-management-tools/
https://www.guru99.com/requirement-management-tools.html
https://ecomputernotes.com/software-engineering/softwarerequirementsengineeringtools
https://blog.testlodge.com/requirements-management-tools-list/

Systems 2023, 11, 576 4 of 32

“modeling”) AND (“software” OR “tool” OR “technology” OR “platform” OR “language”).
Besides, we also used several specific queries that are related to the features for which the
tools are to be analysed. These include “requirements engineering tools/platforms”, “re-
quirements management tools/platforms”, “requirement modeling tools/platforms”, “re-
quirement tools/platforms”, “requirements modeler”, “SDLC tools”, “modeling
tools/platforms”, “software specification tools/platforms”, “agile requirements manage-
ment”, “agile requirements tools”, “model-driven requirements management”, “model-
driven engineering tools”, “product line requirements management”, and “product line
engineering tools”.

2.3. Eligibility Criteria

Figure 1 shows the PRISMA flow diagram2 that depicts the eligibility criteria for
the requirements engineering tools that we identified using the search strategy discussed
above. It is worth indicating that among four different variations of PRISMA flow diagrams,
we preferred and exactly followed the one here, which is specific for the new systematic
reviews including searches of databases and registers only. Therefore, we managed to obtain
200 different modeling tools in total and then eliminated 10 tools as they were essentially
the duplicates of some other tools. Among the remaining 190 tools, we eliminated 25 tools
as we were not able to reach their websites. We further excluded any tools that did not
provide direct support for managing software requirements (e.g., the modeling tools that
support UML modeling). We also excluded any tools for which we were not able to reach
any download link for a trial version, available resources (e.g., user manual, white papers,
case-studies, publications, etc.), and an online editor. Thus, we ended up with a list of
56 different tools, given in Table 2, which we can analyse for the features of interest.

Figure 1. The PRISMA flowchart diagram for the tool screening and reviewing process.

Systems 2023, 11, 576 5 of 32

Table 2. The requirements engineering tools.

Tool Website Supported
Platforms

Open-
Source Year

Accompa PM www.web.accompa.com Web No 2009

acunote www.acunote.com/ Web No 2006

Agile Requirements
Designer

www.broadcom.com/products/software/continuous-testing/agile-
requirements-designer Web and On-premise No 2020

agosense.fidelia www.agosense.com/ Web and On-premise No 2009

Aha! www.aha.io/ Web No 2013

Aligned Elements www.aligned.ch/features/requirement-management Web and On-premise No 2006

Quality Center—
Dimensions RM www.microfocus.com/en-us/products/dimensions-rm/overview Web No 2020

Auros IQ www.aurosks.com/ Web No 2010

Axosoft www.axosoft.com/ Web and On-premise No 2014

Azure DevOps www.azure.microsoft.com/ Web and On-premise No 2005

Balsamiq Wireframes www.balsamiq.com/ Web and On-premise Yes 2008

Business Optix www.businessoptix.com/ Web No 2010

Cameo Systems
Modeler

www.3ds.com/products-services/catia/products/no-magic/cameo-
systems-modeler/ Web and On-premise No 2014

Capella www.eclipse.org/capella/ On-premise Yes 2023

CaseComplete www.casecomplete.com/ Web No 2012

ClickUp www.clickup.com/ Web and On-premise No 2017

CodeBeamer ALM www.codebeamer.com/ Web and On-premise No 2002

Cradle www.threesl.com/cradle/ Web and On-premise No 2015

Doc Sheets www.docsheets.com Web and On-premise No 2000

Eclipse Papyrus www.eclipse.org/papyrus On-premise Yes 2019

Enterprise Architect www.sparxsystems.com/ On-premise No 2000

Helix RM www.perforce.com/products/helix-alm Web and On-premise No 2016

innoslate www.innoslate.com/ Web and On-premise No 2013

Innovator for
Business Analysts www.innovator.de/en/ On-premise No 2021

in-STEP BLUE www.microtool.de/en/products/in-step-blue/ Web and On-premise No 2014

iRise www.irise.com/ Web and On-premise No 2016

Jama Connect www.go.jamasoftware.com/ Web and On-premise No 2007

Kovair ALM www.kovair.com Web No 2006

MagicDraw www.3ds.com/products-services/catia/products/no-magic/magicdraw/ On-premise No 1998

Matrix ALM/QMS www.matrixreq.com/en/product Web No 2013

Modelio Analyst www.modeliosoft.com/en/modules/analyst.html Web and On-premise No 2009

OpenProject www.openproject.org/ Web and On-premise No 2012

Orcanos www.orcanos.com Web and On-premise No 2004

PivotalTracker www.pivotaltracker.com/ Web No 2008

Polarion
Requirements

www.polarion.plm.automation.siemens.com/products/polarion-
requirements Web No 2010

Psoda www.psoda.com/ Web No 2008

Rational DOORS www.ibm.com/docs/en/ermd/ Web and On-premise No 1993

Rational Rhapsody www.ibm.com/products/uml-tools On-premise No 2011

ReqEdit www.reqteam.com/ On-premise No 2014

ReQtest www.reqtest.com/ Web No 2009

www.web.accompa.com
www.acunote.com/
www.broadcom.com/products/software/continuous-testing/agile-requirements-designer
www.broadcom.com/products/software/continuous-testing/agile-requirements-designer
www.agosense.com/
www.aha.io/
www.aligned.ch/features/requirement-management
www.microfocus.com/en-us/products/dimensions-rm/overview
www.aurosks.com/
www.axosoft.com/
www.azure.microsoft.com/
www.balsamiq.com/
www.businessoptix.com/
www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
www.eclipse.org/capella/
www.casecomplete.com/
www.clickup.com/
www.codebeamer.com/
www.threesl.com/cradle/
www.docsheets.com
www.eclipse.org/papyrus
www.sparxsystems.com/
www.perforce.com/products/helix-alm
www.innoslate.com/
www.innovator.de/en/
www.microtool.de/en/products/in-step-blue/
www.irise.com/
www.go.jamasoftware.com/
www.kovair.com
www.3ds.com/products-services/catia/products/no-magic/magicdraw/
www.matrixreq.com/en/product
www.modeliosoft.com/en/modules/analyst.html
www.openproject.org/
www.orcanos.com
www.pivotaltracker.com/
www.polarion.plm.automation.siemens.com/products/polarion-requirements
www.polarion.plm.automation.siemens.com/products/polarion-requirements
www.psoda.com/
www.ibm.com/docs/en/ermd/
www.ibm.com/products/uml-tools
www.reqteam.com/
www.reqtest.com/

Systems 2023, 11, 576 6 of 32

Table 2. Cont.

Tool Website Supported
Platforms

Open-
Source Year

ReqView www.reqview.com/ Web and On-premise No 2015

RMsis www.marketplace.atlassian.com/apps/30899/rmsis-requirements-
management-for-jira Web No 2010

ReqChecker https://reqchecker.eu/ On-premise No 2016

RMTrack www.rmtrack.com/ Web No 2002

Scrumwise www.scrumwise.com/ Web No 2009

SpiraTeam www.inflectra.com/SpiraTeam/ Web and On-premise No 2006

StoriesOnBoard https://storiesonboard.com/ Web No 2015

SwiftKanban www.nimblework.com/ Web and On-premise No 2011

Targetprocess www.targetprocess.com/ Web and On-premise No 2006

TopTeam www.topteamrequirements.com Web and On-premise No 1995

Tuleap Enterprise www.tuleap.org Web and On-premise No 2011

Valispace www.docs.valispace.com/ Web and On-premise No 2016

Visual Paradigm www.visual-paradigm.com Web and On-premise No 2002

Visure Requirements www.visuresolutions.com/ Web No 2007

Yodiz www.yodiz.com Web No 2010

Xebrio www.xebrio.com Web and On-premise No 2018

2.4. Identifying the Tool Features

Our data collection process started with identifying the tool features for which the
tool data were to be collected.

To determine the features for which the requirements engineering tools shown in
Table 2 can be examined, we used the results of our past relevant studies in the field. In-
deed, in [13], we surveyed among 84 practitioners from diverse industries to understand the
practitioners’ perspectives on the requirements engineering. The survey results helped us
understand the practitioners’ motivations for the requirements engineering, the techniques
and technologies used for different activities of requirements engineering, practitioners’
experiences with customer involvement, and their challenges. In another study [14], we
analysed 58 UML modeling tools for a number of tool features that are considered im-
portant for the practical use of the UML tools, which are modeling viewpoints, analysis,
transformation and export, collaboration, tool integration, scripting, project management,
and user-support. Also in [15], we analysed 124 different modeling languages for a compre-
hensive set of features, which are multiple viewpoints, non-functional properties, notation
sets, formal semantics, extensibility, programming framework, automated analysis, large-
view management, collaboration, versioning, and user-support. Thus, we essentially went
through (i) a high number of different feature candidates that we addressed in our previous
related studies and (ii) the survey results on the practitioners’ perspectives. Finally, we
filtered our existing feature set with regard to the relevance to the requirements engineering
and ended up with a subset of features that could be used for better understanding and
comparing the existing requirements engineering tools and reaching important findings. To
facilitate the understandability, we categorised the features that we focused on into multiple
viewpoints, which are project management, collaboration, requirements specification, cus-
tomisation, interoperability, methodology, and user-support. Within this context, it is worth
indicating that it could be an option to benefit from only a set of standard features existing
for the requirement engineering tools (as successfully utilized in various previous studies
such as [16]). However, in our study, we prefer considering both these existing standard
features that vary from requirement engineering definition to requirement management
as well as defining new ones to cover other aspects, such as applied software engineering

www.reqview.com/
www.marketplace.atlassian.com/apps/30899/rmsis-requirements-management-for-jira
www.marketplace.atlassian.com/apps/30899/rmsis-requirements-management-for-jira
https://reqchecker.eu/
www.rmtrack.com/
www.scrumwise.com/
www.inflectra.com/SpiraTeam/
https://storiesonboard.com/
www.nimblework.com/
www.targetprocess.com/
www.topteamrequirements.com
www.tuleap.org
www.docs.valispace.com/
www.visual-paradigm.com
www.visuresolutions.com/
www.yodiz.com
www.xebrio.com

Systems 2023, 11, 576 7 of 32

methodology and tool customization, which we believe have significant effects on the
planned tool evaluation.

2.4.1. Project Management

Project management is considered a highly important factor for the effective manage-
ment of requirements, and the proper support for managing projects needs to be considered
for requirements engineering [17–19]. With the project management viewpoint, we focus
on three project management stages, which are project initiation, project planning, and
project execution [20]. Project initiation can be considered as the first stage of project
management and is concerned with the activities that are performed once the project is
approved, including defining the problem, solution, and scope in detail, assigning project
manager and creating teams, and organising a physical area. Project initiation is followed
by the project planning, which is concerned with drawing a Gantt chart for planning the
tasks and their dependencies, and other issues such as resource planing, budget planning,
staff planning, and risk planning. Project execution is concerned with the stage where the
project plans are realised and any progresses are reported.

2.4.2. Collaboration

With the collaboration viewpoint, we focus on the capability of multiple users using
the same tool with different access rights collaboratively. We consider the collaboration
support in terms of multi-user access, user role definitions, user-access right definitions, and
requirements versioning. The multi-user access support enables multiple users to access
the same project and manage the requirements together at the same time. The support
for the user roles enables the definition of the roles of the users such as customer, analyst,
system engineer, developer, manager, etc. The support for the user-access right enables
the restriction of user access in such ways as read-only access, edit access, authorisation,
etc. The support for versioning enables different versions of the requirements to be kept
in a repository where different versions can be accessed, compared, and even deleted by
the users.

2.4.3. Requirement Specifications

With the requirements specification viewpoint, we are concerned with the specifi-
cation of requirements, the analysis of requirements specifications, and the transforma-
tion of requirements specifications into some useful artefacts such as code, test scenarios,
and documentation.

For the requirement specifications, we consider three important techniques suggested
by Taylor et al. [21]—natural languages, boxes-and-lines, and modeling languages. Natural
languages and boxes-and-lines essentially represent the informal techniques for specifying
requirements and promote any stakeholders without technical knowledge to be involved
in the requirements specification process. While natural languages may be used via some
structured templates to enhance the precision and facilitate the requirements analysis, the
pure (i.e., unstructured) use of natural languages (or boxes-and-lines) can indeed lead to
ambiguous specifications that are interpreted differently by different stakeholders due to
the lack of precise definitions (i.e., syntax and semantics).

Another method for specifying requirements is modeling languages. Modeling lan-
guages can be supported with precise (and sometimes formal) definitions (i.e., syntax and
semantics) and thus enable the nonambiguous communications of requirements among
stakeholders. Also, with some modeling tool support, it can be easier to analyse the re-
quirement specifications and even generate executable code and test scenarios. Modeling
languages can be general-purpose (e.g., UML [22], SysML [23], and BPMN [24]) or domain-
specific (e.g., AADL for embedded systems [25]). Modeling languages are supported by
several tools (e.g., UML tools [14] and AADL’s OSATE3), which can aid in specifying
requirements, analysing the specifications, and transforming them into code.

Systems 2023, 11, 576 8 of 32

Concerning the requirements analysis, we consider the tool support for a predefined
set of properties for which the requirement specifications can be analysed: (i) defining new
(i.e., user-defined) properties for which the requirements specifications can be analysed,
(ii) simulating (i.e., executing) the requirement specifications, and (iii) completeness and
consistency checks [26]. The requirement consistency here can be used to check if two
requirements conflict with each other (e.g., implying the same functionality), while the
requirement completeness can be used to check if all the requirements are specified and
each requirement is specified with no missing information.

Concerning the requirements transformation, we consider the support for generating
(i) skeleton code from requirements, (ii) test scenarios from requirements, and (iii) docu-
ments in different formats (e.g., HTML, PDF, Excel, Word, etc.).

2.4.4. Customisation

Customisation of software systems encourages the changing of the software systems
with the least effort possible (e.g., adding new components or replacing/changing an
existing component) [27]. Thus, with the customisation viewpoint, we are concerned with
learning to what extent the requirements engineering tools support any extensions for
the users. By doing so, the requirements engineering tools can be used for some domain-
specific problems such as the the analysis of requirements for particular properties and the
specification of requirements using a domain-specific notation set.

Inspired from Lago et al.’s approach towards extensibility and customisation [28], we
consider customisation in terms of the user-defined modeling viewpoints, integration with
external tools, API support, and DSL support. With the user-defined modeling viewpoint
support, developers can use the modeling elements supported by the requirements engi-
neering tool and define a new viewpoint in terms of the rules and constraints specific to
their concern. Then, users can use their viewpoint definition to specify domain-specific
requirements [29]. With the integration support, users can integrate the requirements
engineering tools with some external tools that exhibit different capabilities such as test
automation, design, simulation, verification, project management, versioning, and reposi-
tory management. With the API support, users can extend the requirements engineering
tools by developing new functionalities. With the DSL support, users can develop their
own domain-specific modeling languages for specifying requirement models in terms
of domain-specific concepts, relationships, and their symbols. Indeed, some tools can
enable the use of the UML profiling mechanism for extending the UML for domain-specific
purposes [30].

2.4.5. Interoperability

Interoperability is considered as one of the most important quality attributes of
software engineering, and it promotes different tools to work together and exchange
information [31,32]. With the interoperability viewpoint, we are concerned with the re-
quirements engineering tools’ capabilities for exchanging the requirements specifications
with other tools. That is, we consider the requirements engineering tools’ support for
importing/exporting requirement specifications using (i) some commonly used data ex-
change formats (e.g., MS Word, MS Excel, CSV, XMI, and XML) and (ii) some well-accepted
standards (e.g., the ReqIF).

2.4.6. Methodology

Requirements engineering can be facilitated with some software design and develop-
ment methodologies. Indeed, methodologies such as agile development [33] and model-
driven development [34] can aid in facilitating the requirements engineering activities
(e.g., specifications, analysis, and transformation) and the application of software engineer-
ing principles to better manage requirements (e.g., software re-use, customer involvement,
and quality properties). Also, some methodologies, such as product-line engineering [35],
are considered with the effective management of requirements.

Systems 2023, 11, 576 9 of 32

In our literature review, we focus on three methodologies—i.e., agile, model-driven
engineering, and product-line engineering, which are related to the requirements engi-
neering and are highly popular in industry and academia [36–38]. The agile methodology
promotes the requirements engineering activities to be performed with the involvements
of customers in an iterative and incremental way so as to manage any change requests
effectively [33,39]. Agile development is supported with such techniques as Scrum, Kan-
ban, and lean management, through which the agile principles can be applied effectively.
Model-driven engineering (MDE) promotes specifying abstract models (e.g., requirements
models) for different perspectives of system development (e.g., structure, interaction, and
behaviour) that can further be processed via tool support (e.g., model simulation, code
generation, document generation, and versioning). Software product-line engineering
(SPLE) promotes the development of software products that have commonalities (e.g., the
same functionalities) and variations. SPLE essentially considers the specifications of the
commonalities and variabilities of the products (or parts) composing systems and their
requirements. As indicated in [40], requirements engineering has huge importance for
SPLE as one needs to determine common and variable set of requirements among the
products and perform their effective management.

In this review study, we aim to understand basically if the tools support either of
these three methodologies or not. We strongly believe that knowing about the tools that
support different methodologies can give useful insights for practitioners and even trigger
any future empirical research on requirements engineering tools. Note that for simplicity
reasons, we only focus on these three methodologies exclusively. Also, considering our
scope on analysing requirements engineering tools in general, we do not present any
detailed analysis of the tools for their methodology support.

2.4.7. User-Support

With the user-support viewpoint, we are concerned with the support that the re-
quirements engineering tools provide via their websites so as to reduce the time taken to
learn and use the tools. We consider different methods for the user-support, including
telephone, e-mail, forum, live-chat, help-desk, user-guide, blog, white papers, mailing lists,
case-studies, videos, training, and coaching/consulting.

2.5. Collecting Data

After identifying the tools features, we focused on collecting the tool data for the
features of interest.

Firstly, we prepared the data collection repository from which the tool resources can be
accessed easily. Thus, we created a repository in a shared drive that consists of a separate
folder for each tool. The folder for a tool includes (i) a file that has the website access
information for reaching the tool materials, (ii) the tool installation guide documents, and
(iii) any publications, user manuals, white papers, case-studies, etc. The repository also
includes an MS Excel file for storing the tool data with regard to the viewpoints introduced
in Section 2.4.

To collect data for each requirements engineering tool, we used the following data
collection protocol. We initially installed and used the tool to see which viewpoint features
were supported and how they were supported. If we were unable to reach the tool or could
not figure out the support for a particular feature using the tool, we used the resource
documents for that tool (e.g., website, user-guides, tutorials, white papers, blogs, and
videos). That is, we firstly went through the tool website for any useful information for a
particular feature. If we could not find any information available on the tool website, we
chose to consult the tool’s supporting documents. If we could not access the information
in any documents either, we tried sending an e-mail to the tool vendors as a last resort
(assuming that contact information was available on the website). Note that in the case
when we were not able to reach any useful information using the existing materials of
a tool, we considered that the associated tool did not provide support for that feature.

Systems 2023, 11, 576 10 of 32

Otherwise, we clearly indicated that the tool supported the viewpoint feature and further
gave some precise data about the support provided. In the Excel file created (see the
previous paragraph), we kept a record of each tool’s data. The Excel file included a separate
sheet for each viewpoint, where 56 different rows (i.e., one for each tool) and as many
columns as the number of viewpoint features were defined. Thus, for each tool, we added
a record to each sheet of the Excel file.

To minimise any risk of bias on the collected tool data, the data collection protocol
discussed above was performed by the three authors independently. Firstly, each author
created their own Excel file which included the data that the author collected for the tools
individually. Then, a session was held together with all the authors to merge the collected
data by the authors into a single Excel file. In this session, the goal was essentially to
compare for each tool the data that were collected by the three authors and check if there
were any discrepancies. Whenever a discrepancy was detected for a tool, we added the
name of the tool and the feature in question (e.g., the import–export support) into a separate
list of discrepancies. After analysing the authors’ dataset collected for each tool, we ended
up with a complete list of discrepancies. Then, we conducted another session together and
considered each discrepancy separately. For each discrepancy, we used the list to identify
the name of the tool and the feature in question and discussed what could have caused
the inconsistency (e.g., the lack of resources, misinterpretations, etc.). Upon reaching a
consensus on the cause, we made a decision on the actions that needed to be taken so as to
resolve the issue (e.g., re-examining the existing materials, searching for a new material,
contacting the tool vendors, etc.). We also kept the list of discrepancies updated with
the actions decided for each discrepancy. One of the authors was chosen to handle the
discrepancy list and carry out the agreed actions for each discrepancy in the list. The author
made the necessary revisions, documented the changes, and obtained the approval of the
other two authors in another short session. Lastly, the merged Excel file was updated and
finalised accordingly4.

2.6. Synthesising Data

After collecting and analysing the data, we focused on synthesising the data so as
to obtain some important findings about the requirements engineering tools’ support for
a comprehensive set of features. That is, we created a table for each viewpoint (i.e., the
related set of features) using the MS Excel office tool; thus, the data for the tools that
support the features of the viewpoint in question are displayed in a tabular format. Also,
we created some pie charts to indicate some important findings about the tools’ support for
the viewpoint features. Note that during the data analysis process, we had also needed to
recollect the data about some tools as we determined some ambiguities and inconsistencies.

3. Results

In this section, we discuss the analysis results of the 56 different requirements engi-
neering tools given in Table 2. We consider each viewpoint introduced in Section 2.4 and
discuss the tool support for the viewpoint features.

3.1. Project Management

As shown in Figure 2, 46% of the requirements engineering tools support all the
features of project management that are considered (i.e., project initiation, project planning,
and project execution). A total of 38% of the tools just support the initiation phase of the
project, which includes such activities as creating projects and assigning members to the
project. However, those tools do not support planning the project tasks with, e.g., a Gantt
chart, and the execution stage. A total of 16% of the tools do not provide built-in support for
project management. Note that those tools with no built-in support may provide integration
with project management tools such as Jira5.

Systems 2023, 11, 576 11 of 32

Figure 2. The support for the project management.

3.2. Collaboration

All the requirements engineering tools enable the multiple users to work together on
the same project. The only exception here is ReqChecker. A total of 80% of the tools further
support assigning roles to the users and giving them appropriate access rights. The tools
that ignore either the specifications of user role or access rights are given in Table 3.

Table 3. The requirements engineering tools that do not support either user roles or user-access rights.

Requirements Engineering Tools Multi-User Access User Roles User-Access Rights

acunote Yes No Yes

agosense.fidelia Yes No No

Balsamiq Wireframes Yes No No

Business Optix Yes No No

CaseComplete Yes No No

Eclipse (IDE) Papyrus Yes No Yes

Psoda Yes Yes No

ReqView Yes No No

Valispace Yes No Yes

Orcanos Yes No No

Xebrio Yes No Yes

Almost all the requirements engineering tools (93%) support versioning—ScrumWise,
RMTrack, and Psoda are the only exceptions. Table 4 shows the requirements engineering
tools’ versioning support in terms of the support for built-in central versioning system
and the integration with external versioning systems (i.e., GIT, SVN, and Mercurial). Thus,
apparently, 74% of the tools supporting versioning provide built-in versioning systems for
versioning requirements. The support for the integration with external versioning systems

Systems 2023, 11, 576 12 of 32

is quite rare (3–25%)—GIT is supported by 25% of the tools, SVN is supported by 20% of the
tools, and Mercurial is supported by just 3%. Acunote is the tool that supports all external
versioning systems that are considered—GIT, SVN, and Mercurial. Polarion Requirements
is the tool that provides an internal versioning system and supports the integration with
GIT and SVN at the same time.

Table 4. The requirements engineering tools that support versioning.

Requirements Engineering Tools Built-in Versioning GIT SVN Mercurial

acunote No Yes Yes Yes

agosense.fidelia No Yes No No

Aligned Elements Yes No No No

Auros IQ Yes No No No

Axosoft No Yes No No

Azure DevOps No Yes No No

Balsamiq Wireframes Yes No No No

Business Optix Yes No No No

Cameo Systems Modeler Yes No No No

Capella No Yes Yes No

CaseComplete No No Yes No

codeBeamer ALM No Yes Yes Yes

Cradle Yes No No No

Eclipse (IDE) Papyrus Yes Yes No No

Enterprise Architect Yes No Yes No

Helix RM Yes No No No

innoslate Yes No No No

Innovator for Business Analysts Yes No No No

in-STEP BLUE Yes No No No

iRise Yes No No No

Jama Connect Yes No No No

Kovair ALM Yes No No No

MagicDraw Yes No No No

Matrix ALM/QMS Yes No No No

Modelio Analyst Yes No No No

OpenProject Yes No No No

PivotalTracker Yes No No No

Polarion Requirements Yes Yes Yes No

Quality Center—Dimensions RM Yes No No No

Rational DOORS Yes No No No

Rational Rhapsody Yes No No No

ReqChecker Yes No Yes No

ReqEdit Yes No No No

ReQtest Yes No No No

ReqView Yes No Yes No

RMsis Yes No No No

SpiraTeam Yes No Yes No

Systems 2023, 11, 576 13 of 32

Table 4. Cont.

Requirements Engineering Tools Built-in Versioning GIT SVN Mercurial

StoriesOnBoard No Yes No No

SwiftKanban No Yes No No

Targetprocess No Yes No No

Tuleap Enterprise No Yes Yes No

Valispace Yes No No No

Visual Paradigm Yes No No No

Visure Requirements Yes No No No

Yodiz No Yes Yes No

Accompa Yes No No No

CA Agile Requirements Designer Yes No No No

ClickUp No Yes No No

Doc Sheets Yes No No No

Orcanos Yes No No No

TopTeam Yes No No No

Xebrio Yes No No No

3.3. Requirements Specification

As Figure 3 shows, most of the languages (73%) support the informal specifications of
requirements using natural languages (e.g., English sentences). A few of those tools (Di-
mensions RM, Auros IQ, Balsamiq Wireframes, Helix RM, and Jama Connect) supplement
the natural languages with simple boxes-and-lines for the requirement specifications.

Figure 3. The requirements specification techniques supported by the requirements engineering tools.

A total of 25% of the requirements engineering tools given in Table 5 support the
precise specifications of requirements using well-known modeling languages, including
SysML, UML, and BPMN.

Table 6 shows the requirements engineering tools (36%) that support the analysis of the
requirement specifications. Some of the tools that support the requirements analysis require
practitioners to use modeling languages that lead to the precise requirement specifications
for facilitating the analysability. Those tools are Cameo, Capella, Eclipse Papyrus, Enterprise
Architect, Rhapsody, MagicDraw, Innovator for Business Analysts, and Visual Paradigm.
The rest of the tools offer the use of the natural languages in some structured format and,
thus, enable the analysis of the specifications for some properties. Note that a few of
those tools that support the requirement specifications in natural languages (i.e., innoslate,
ReqView, SwiftKanban, and Visure Requirements) use artificial intelligence and natural
language processing technologies to check the informal requirements in natural languages
(e.g., determining ambiguous requirements and similar requirements).

Systems 2023, 11, 576 14 of 32

Table 5. The requirements engineering tools that support modeling languages for the requirements
specification.

Requirements Engineering Tools Modeling Languages

Business Optix BPMN

Cameo Systems Modeler SysML

Capella SysML

CaseComplete UML

Cradle SysML

Eclipse (IDE) Papyrus UML, SySML

Rational Rhapsody UML, SySML

innoslate LML, SysML

Innovator for Business Analysts ArchiMate, BPMN, SysML

in-STEP BLUE UML, SySML, and natural languages

MagicDraw UML, SysML, BPMN, OWL, OCL, MARTE, SOAML

Visual Paradigm UML, BPMN, ArchiMate, DFD, ERD, SoaML, SysML, CMMN

CA Agile Requirements Designer Flowchart

TopTeam UML, SysML, BPMN

Table 6. The requirements engineering tools that support the requirements analysis.

Requirements
Engineering Tools

Pre-Defined
Properties

User-Defined
Properties

Simulation Consistency Completeness

agosense.fidelia X

Auros IQ X X

Business Optix X X

Cameo Systems Modeler X X X X X

Capella X X X X

Cradle X X X X

Eclipse (IDE) Papyrus X

Enterprise Architect X X X

Rational DOORS X

Rational Rhapsody X X X

innoslate X X X X

Innovator for Business Analysts X

MagicDraw X X X X

ReqEdit X

ReqView X

SwiftKanban X

Valispace X X

Visual Paradigm X

Visure Requirements X X

ReqChecker X X X

Checking requirements for predefined properties is the most popular feature, satisfied
by many of the tools. Also, some of the tools that support predefined properties further
enable users to define their own properties. Model simulation support is provided by
the tools that essentially enable the precise specifications of the behaviour requirements
via some modeling languages (e.g., UML, SysML, and BPMN). The completeness and

Systems 2023, 11, 576 15 of 32

consistency checks for the requirements are also quite popular. Lastly, Cameo Systems
Modeler is the only tool that supports all the analysis properties that are considered.

Table 7 shows that 75% of the requirements engineering tools support the requirements
transformation in terms of any of the three features which are code generation, test scenario
generation, and document generation. Thus, apparently, almost all of those tools support
generating documents from requirement specifications in different formats such as Word,
Excel, PDF, and HTML. Code generation from requirement specifications is supported by
a few tools only, which are Cameo, Papyrus, Enterprise Architect, MagicDraw, Modelio,
and Visual Paradigm. Note that those tools that support code generation are all software
modeling and design tools that generate code from precise models specified with modeling
languages (e.g., SysML and UML). Test scenario generation from the requirement specifica-
tions is supported by a small amount of tools, which are Quality Center—Dimensions RM,
Auros IQ, RMsis, SpiraTeam, TopTeam, and CA Agile Requirements Designers.

Table 7. The requirements engineering tools that support the requirements transformation.

Requirements
Engineering Tools

Code
Generation

Test Scenario
Generation

Document
Generation

Aligned Elements X

Quality Center-Dimensions RM X

Auros IQ X

Axosoft X

Azure DevOps X

Cameo Systems Modeler X

Capella X

CaseComplete X

codeBeamer ALM X

Cradle X

Eclipse (IDE) Papyrus X X

Enterprise Architect X X

Helix RM X

Rational DOORS X

innoslate X

in-STEP BLUE X

iRise X

Kovair ALM X

MagicDraw X X

Matrix ALM/QMS X

Modelio Analyst X X

OpenProject X

Polarion Requirements X

Psoda X

ReqEdit X

ReQtest X

ReqView X

RMsis X X

SpiraTeam X X

Tuleap Enterprise X

Valispace X

Visual Paradigm X X

Systems 2023, 11, 576 16 of 32

Table 7. Cont.

Requirements
Engineering Tools

Code
Generation

Test Scenario
Generation

Document
Generation

Visure Requirements X

Yodiz X

Accompa PM X

CA Agile Requirements Designer X X

Doc Sheets X

Orcanos X

TopTeam X X

Xebrio X

ReqChecker X

StoriesOnBoard X

3.4. Customisation

Customisation is considered in terms of the support for user-defined modeling view-
points, integration with external tools, API support, and DSL support.

Concerning the user-defined modeling viewpoint, Cameo Systems Modeler, Enterprise
Architect, Rational Rhapsody, MagicDraw, Modelio Analyst, and Visual Paradigm are the
only tools that enable the users to define their own custom modeling viewpoints for
specifying requirements. With those tools, users can reuse and extend the existing concepts
from popular modeling languages (e.g., UML and SysML) and define rules and constraints
on those concepts. By doing so, users can later consider the viewpoints to address their
particular needs and concerns.

Concerning the integration with external tools, most of the requirements engineering
tools (87%) support the integration with different types of tools, including test automation
tools, project management tools, versioning and repository tools. The exceptions here
are Modelio Analyst, OpenProject, ReqEdit, ReqView, RMTrack, CA Agile Requirements
Designer, and TopTeam.

Concerning the API support, 70% of the requirements engineering tools offer an API
for the users to extend the tools with specific features. Those tools provide websites that
guide the user on how to use the API and perform any extensions. Figure 4 shows the tools
that offer APIs and those that do not.

Figure 4. The requirements engineering tools that support API for enabling extension.

Systems 2023, 11, 576 17 of 32

Concerning the DSL development support, most of the requirements engineering tools
do not support the development of domain-specific languages for specifying requirements.
The only exceptions here are some of the tools that support UML—Cameo Systems Modeler,
Eclipse Papyrus, Enterprise Architect, Rational Rhapsody, MagicDraw, Modelio Analyst,
and Visual Paradigm. Those tools that support UML modeling enable users to benefit from
UML’s profiling mechanism for extending UML with domain-specific concepts.

3.5. Interoperability

Interoperability is considered in terms of the support for importing/exporting require-
ments in different data formats.

Most of the requirements engineering tools (89%) import requirements in different
data formats. The top-supported data formats are Excel (32%), CSV (31%), and Word (20%),
which are followed by other formats, including XML, XMI, Json, and PDF. Figure 5 shows
the tools that support the different data formats for importing requirements.

Figure 5. The requirements engineering tools that import the requirement specifications in
different formats.

A total of 77% of the requirements engineering tools enable both importing and
exporting requirements specifications in some data formats. The top-supported data format
is ReqIF (25%), which is followed by Excel (23%) and CSV (23%). Figure 6 shows the tools
that support different data formats for importing/exporting requirements.

Systems 2023, 11, 576 18 of 32

Figure 6. The requirements engineering tools that support importing and exporting requirement
specifications in different formats.

3.6. Methodology

We consider three widely-used software development methodologies, which are
model-driven engineering, agile software development, and product-line engineering.
A total of 70% of the requirements engineering tools support at least one of those three
methodologies, and those tools are given in Table 8. Agile software development is highly
popular among the requirements engineering tools (52%), enabling the management of
requirements using the agile development principles. A total of 32% of the tools sup-
port model-driven engineering and enable the specifications of models using modeling
languages and performing other facilities such as model validation, model simulation,
and model transformation (e.g., generating code from models). Product-line engineering
is rarely supported in comparison with agile software development and model-driven
engineering—Cameo Systems Modeler, codeBeamer ALM, and MagicDraw are the only
tools that support the specifications of software systems with the principles of product-line
engineering. Note that none of the requirements engineering tools support all the three
methodologies at the same time.

Table 8. The requirements engineering tools that support different methodologies.

Requirements
Engineering Tools Model-Driven Engineering Agile Software

Development Product-Line Engineering

acunote No Yes No

agosense.fidelia No Yes No

Aha! No Yes No

Quality Center—Dimensions RM Model-driven testing Yes No

Auros IQ No Yes No

Axosoft No Yes No

Azure DevOps No Yes No

Business Optix Model specification and simulation Yes No

Cameo Systems Modeler Model specification and validation No Yes

Capella Model specification and validation No No

CaseComplete Model specification No No

Systems 2023, 11, 576 19 of 32

Table 8. Cont.

Requirements
Engineering Tools Model-Driven Engineering Agile Software

Development Product-Line Engineering

codeBeamer ALM No Yes Yes

Cradle Model specification and validation Yes No

Eclipse (IDE) Papyrus Model specification and simulation No No

Enterprise Architect Model specification, validation,
and transformation

Yes No

Rational Rhapsody Model specification, validation,
simulation, and transformation

No No

innoslate Model specification and
simulation

No No

Innovator for Business Analysts Model specification No No

iRise Model specification Yes No

Kovair ALM Model specification Yes No

MagicDraw Model specification, validation,
and transformation

No Yes

Modelio Analyst Model specification, validation,
and transformation

No No

OpenProject No Yes No

PivotalTracker No Yes No

Psoda No Yes No

ReQtest No Yes No

RMsis No Yes No

Scrumwise No Yes No

SpiraTeam No Yes No

SwiftKanban No Yes No

Targetprocess No Yes No

Tuleap Enterprise No Yes No

Visual Paradigm Model specification, validation,
simulation, and transformation

Yes No

Visure Requirements No Yes No

Yodiz No Yes No

Accompa PM No Yes No

CA Agile Requirements Designer Model-driven testing No No

ClickUp No Yes No

Doc Sheets No Yes No

TopTeam Model-driven testing No No

3.7. User-Support

We consider the user-support viewpoint in terms of the requirements engineering
tools’ support for telephone communication, e-mail communication, forum, live-chat,
help-desk, user guide, blog, white papers, mailing list, case-studies, videos, training, and
coaching/consulting. Table 9 shows the related support provided by the requirements
engineering tools. Thus, apparently, each tool enables users to access any tool-related
knowledge to some extent. Indeed, each tool provides a user-guide for the users to learn
how to use the tool. Likewise, most of the tools (73–77%) provide telephone details and
e-mail addresses through which users may ask questions. A total of 73% of the tools provide
videos for the users to see and learn how to use the tool. Help-desk, training support, and
blog resources are also quite popular among the tools (50–57%); however, live-chat, mailing
list, and coaching are rarely supported (7–27%).

Systems 2023, 11, 576 20 of 32

Table 9. The user-support facilities provided by the requirements engineering tools.

Requirements
Engineering Tools Tel. E-mail Forum Livechat Help

Desk
Guide Blog White

Paper
M. List Case

Study Videos Training Coaching

acunote X X X X X

agosense.fidelia X X X X X

Aha! X X X X X

Aligned Elements X X X X

Quality Center—
Dimensions RM X X X X X X X X X

Auros IQ X X X X

Axosoft X X X

Azure DevOps X X X

Balsamiq Wireframes X X X X X X X

Business Optix X X X X X X X X

Cameo Systems
Modeler X X X X X X X

Capella X X X X X X X X

CaseComplete X X X X X

codeBeamer ALM X X X X X X X X

Cradle X X X X X X X

Eclipse (IDE) Papyrus X X X X X X X

Enterprise Architect X X X X X X X X X X

Helix RM X X X X X X X

Rational DOORS X X X X X X X X X X

Rational Rhapsody X X X X X X X X X X

innoslate X X X X X X X X

Innovator for
Business Analysts X X X X X

in-STEP BLUE X X X X X X

iRise X X X

Systems 2023, 11, 576 21 of 32

Table 9. Cont.

Requirements
Engineering Tools Tel. E-mail Forum Livechat Help

Desk
Guide Blog White

Paper
M. List Case

Study Videos Training Coaching

Jama Connect X X X X X X

Kovair ALM X X X X X X X

MagicDraw X X X X X X X X

Matrix ALM/QMS X X X X X X

Modelio Analyst X X X X X X X X X

OpenProject X X X X X X X X

PivotalTracker X X X X X

Polarion Requirements X X X X X X X X

Psoda X X X X X X X

ReqEdit X X X X X

ReQtest X X X X

ReqView X X X X X X X

RMsis X X X X X X

RMTrak X X X X X

Scrumwise X X X

SpiraTeam X X X X X X X

SwiftKanban X X X X X X X X

Targetprocess X X X X X X X X X X X

Tuleap Enterprise X X X X X X X X

Valispace X X X X X X X X

Visual Paradigm X X X X X X X X X X

Visure Requirements X X X X X X X X

Yodiz X X X X X X

Accompa X X X X X X

CA Agile
Requirements Designer X X X X X X X X X

Systems 2023, 11, 576 22 of 32

Table 9. Cont.

Requirements
Engineering Tools Tel. E-mail Forum Livechat Help

Desk
Guide Blog White

Paper
M. List Case Study Videos Training Coaching

ClickUp X X X X X X

Doc Sheets X X X X X X

Orcanos X X X X X X X X X X

TopTeam X X X

Xebrio X X X X X

ReqChecker X X X

StoriesOnBoard X X X X X

Systems 2023, 11, 576 23 of 32

Enterprise Architect, Rational Rhapsody, Targetprocess, and Visual Paradigm are the
tools that support the greatest number of criteria that are considered for the tool-support.
Note that none of the tools support all the features that are considered here.

4. Discussion
4.1. Summary of Findings

In Section 3, we analysed 56 different requirements engineering tools for a number of
features that are categorised as the project management, specification, collaboration, cus-
tomisation, interoperability, methodology, and user-support viewpoints. In the remainder
of this section, we summarise the key findings from our analysis.

The project management activities are not the priority for many tools. Only 46%
of the requirements engineering tools provide built-in support for managing projects in
terms of the project initiation, project planning, and project execution activities.

Multi-user collaboration support is provided by almost all the tools. All the require-
ments engineering tools support multi-user access—except ReqChecker. A total of 78%
of those tools further enable the assigning of different roles to users (e.g., editor, reader,
developer, tester, manager, etc.) and the configuration of access rights for the user roles.

Most of the tools provide their built-in versioning control system. A total of 74% of
the requirements engineering tools provide built-in versioning systems, while the support
for external versioning systems (e.g., GIT, SVN, and Mercurial) remains very low.

The most popular requirement specification technique is the natural language. A
total of 73% of the requirements engineering tools support the requirements to be specified
in natural languages rather than any modeling languages based on precise definitions.

The precise specification of requirements that can easily be processed is rarely sup-
ported. A total of 25% of the requirements engineering tools that support software modeling
and design enable users to specify requirements precisely using well-accepted modeling
languages such as SysML, UML, and BPMN. Using those tools, it is possible to specify
requirements precisely, analyse requirements, and further transform the requirements.

Analysing requirement specifications to detect issues is rarely supported. Only
30% of the requirements engineering tools analyse the requirement specifications. While
some of those tools enable the model analysis thanks to their support for the precise
modeling languages, some tools offer the use of structured natural languages for the
requirements specification and analysis. Note that a few tools use artificial intelligence and
natural language processing techniques to check the informal requirement specifications in
natural languages.

Requirements transformation is mainly considered for generating documents from
requirements. A total of 75% of the requirements engineering tools support the require-
ment transformation, and most of those tools only support generating documents in
formats such as Word, Excel, HTML, and PDF. However, generating skeleton code and
test-scenarios from requirements are rarely supported.

Tool customisation is highly popular by means of the external tool integrations and
API support. A total of 87% of the requirements engineering tools support the integration
with many external tools, including the test automation tools, project management tools,
and versioning tools. Also, 70% of the tools provide their own APIs through which users
can develop their own tool extensions.

Extending the notation set for the requirement specifications is rarely supported.
While the tool customisations/extensions are supported by most of the requirements
engineering tools, very few of them are capable of extending the notation set for giving the
domain-specific requirements (e.g., defining modeling viewpoints and developing DSLs).

Most tools accept requirements in different formats, and Excel/CSV are the most
popular formats. A total of 89% of the requirements engineering tools enable the importa-
tion of requirements in different data formats including Excel, CSV, Word, XMI, Json, and
PDF. The top import formats are Excel and CSV (31–32%), followed by Word (20%).

Systems 2023, 11, 576 24 of 32

Many tools support importing and exporting the requirement specifications via
the ReqIF, Excel, and CSV data exchange formats. A total of 77% of the requirements
engineering tools enable exchanging (i.e., importing and exporting) of the requirement
specifications. The top data exchange formats are ReqIF (25%), Excel (23%), and CSV (23%).

The top-supported software development methodology is agile. A total of 52% of
the requirements engineering tools enable users to manage their requirements using agile
principles and techniques. Model-driven engineering is supported by 32% of the require-
ments engineering tools, and product-line engineering is supported by just three tools.

User-guide, telephone details, e-mail addresses, and videos are the four most popu-
lar methods adopted by the tools for user-support. While all the requirements engineering
tools provide user-guide documents, 73–77% of the tools provide telephone details, e-mail
addresses, and videos.

4.2. Lessons Learned

Many requirements engineering tools promote the requirements to be specified in
natural languages. While using natural languages is important for reducing the learning
curve and enabling even nontechnical users to specify their requirements easily and quickly,
processing the natural language specifications can be hard. With the use of natural lan-
guages, the requirements engineering tools essentially focus on the requirements gathering
and documentation rather than the requirements analysis and transformation. Indeed, the
natural language processing techniques and technologies are rarely adopted by the tool
vendors for the requirements analysis. Note that we also observed a few tools that promote
the specifications of requirements using the structured natural languages and therefore
enable the requirements analysis.

The tools with software modeling and design support (e.g., Cameo, Visual Paradigm,
Magic Draw, and Enterprise Architect) do enable the automated analysis and simula-
tion of requirement specifications and their transformation into skeleton code. However,
those tools require users to use modeling languages with precise definitions. Note that
while the precision here facilitates the analysability and transformation of models, non-
technical users may not find it easy to learn and use the modeling languages for their
requirement specifications.

While the requirements engineering tools enable the tool extensions via external tool
integrations and API support, most of the tools ignore extending the notation sets used for
specifying requirements (e.g., enabling DSL development). Only a small number of tools
enable users to extend the well-known UML language via UML’s profiling mechanism and
define a domain-specific notation set. However, it should be noted that domain-specific
modeling is highly important in increasing the productivity and maximising the quality of
requirements engineering [41]. Indeed, many industries develop their own domain-specific
languages using meta-modeling technologies [42,43].

We also learned that most of the requirements engineering tools support importing
and exporting the requirements specifications. However, no single standard (e.g., ReqIF) is
adopted by all of the tools for the data exchange. Also, none of the tools share any case
studies that demonstrate exchange of the requirement specifications between different tools.
Another interesting lesson is that while ReqIF is considered a well-regarded standard for
exchanging requirements, only 25% of the requirements engineering tools support ReqIF.
The rest of the requirements engineering tools support some other formats, including Excel,
CSV, and XML.

Most of the requirements engineering tools enable the application of the agile prin-
ciples and benefit from such techniques as Scrum, Kanban, and lean. While the agile
techniques help in managing the projects effectively and developing software systems that
meet the customer needs, agile development does not essentially address the important
principles of software engineering such as reusability, maintainability, automated code (or
test scenario) generation, and early detection of errors. Unfortunately, such methodologies

Systems 2023, 11, 576 25 of 32

as product line engineering and model-driven engineering that are believed to enhance the
software quality are rarely supported by the existing tools.

Software development lifecycle starts with the requirements engineering and continues
with other processes to be performed, including design, implementation, and testing under
the guidance of some process models (e.g., waterfall, V-model, incremental model, spiral
model, etc.) [44]. To develop the right systems correctly, the artefacts produced in the
requirements should be linked with the artefacts produced in design and implementation,
which enable tracing from requirements to the implementation (and vice versa). While there
exist tools that support the gradual development of software systems from requirement
specifications to the code generation, the existing tools do not support the full round-trip
engineering.

Another lesson is related to the user-support, as many of the requirements engineering
tools provide inadequate support for the users to resolve their tool-related concerns. Indeed,
given 13 different criteria that are considered for the user-support, more than half of the
tools support 6 of those criteria at most, and, therefore, those tools may require some
learning curve for the users as the users may not easily figure out how to use the tools and
their particular features as they wish.

Among the 56 different requirements engineering tools, a few tools were observed
to support the viewpoints and their features in a wider sense. Those tools are Enterprise
Architect, MagicDraw, and Visual Paradigm, which essentially support all the viewpoints
and most of their features. All the three tools here support the specifications of requirements
using de facto modeling languages (e.g., UML, SysML, and BPMN) in a way that can
automatically be analysed for the predefined and user-defined properties and further
transformed into code and some useful documentation. All the three tools support the tool
customisation by enabling the users to define their own requirement specification notation
sets via user-defined viewpoints. The three tools all further support the collaborative
modeling, project management facilities, and built-in versioning system. Also, while
MagicDraw and Enterprise Architect support importing and exporting the requirement
specifications in the standard ReqIF format, Visual Paradigm supports XML exclusively.

4.3. Threats to Validity

Internal validity is concerned with causal relationships between the results of the anal-
ysis and any independent variable (i.e., cause) that leads to the results [45]. In this study,
nonprobabilistic sampling was used and the requirements engineering tools were chosen
nonrandomly. That is, the tools to be analysed were sought from the Internet systematically
and filtered according to the exclusion criteria as discussed in Section 2.3. In addition, the
tools were analysed for various requirements engineering features categorized in seven
viewpoints. Derivation and the formalization of these features and composing viewpoints
were based on our previous research on understanding practitioners’ experiences in re-
quirements engineering [13].

Three experienced researchers were involved in the analysis of the requirements
engineering tools. To minimise any instrumentation biases here, we ensured that the
three researchers analysed the same set of tools independently of each other in the same
systematic way discussed in Section 2.5. The results obtained from the researchers were
compared to detect any inconsistencies in the data analysis.

External validity threats concern the generalizability of the analysis results, that is, the
degree to which the examined studies are representative of the reviewed topic [45]. The set
of requirements engineering tools analysed in our study may not be representative of the
entire set of all available tools; however, this threat was mitigated by an extensive search
on the Internet using various keywords, as listed in Section 2.3.

Construct validity relates to how well an analysis helps in achieving the research
objective. Our goal was to analyse the capabilities of the existing requirements engineering
tools according to the practitioners’ needs. For this purpose, we categorized various
requirement engineering features under seven viewpoints and used them during our

Systems 2023, 11, 576 26 of 32

analysis. The analysed data were compared, existing inconsistencies were determined, and
these parts were reanalysed together with all authors until they reached a consensus on
them. This method also contributed to minimizing the risk on the construct validity of
the conducted research. Additionally, we needed to ensure that all relevant requirement
engineering tools were found adequately. For this purpose, well-known terms/concepts
related to the requirement engineering tools and platforms were used to create search
strings; several search iterations were provided and, hence, the adequate coverage of the
all available tools was achieved.

Finally, to minimize the conclusion validity threat, the research methodology of this
study was designed and validated carefully to minimize the risk of excluding relevant
requirement engineering tools. Benefiting from our previous experience in conducting other
analysis studies (e.g., [46]), the search methodology here was formalized and applied in a
way such that only a very small number of relevant requirement engineering tools could
be missed, and a manageable quantity of irrelevant ones could be included. Furthermore,
the findings of the performed analysis were assessed within the context of the set of tool
features provided at the beginning of the study.

5. Related Work

In this section, we discuss the similar studies that compare a set of requirements
engineering tools for a number of features.

In [47], the authors aimed to provide a guidance for the practitioners on improving
their requirement specifications and choosing the right tool(s) to manage the requirements.
The authors analysed 13 important requirements engineering tools by observing their
practical use in client environments. The authors essentially considered the agile method-
ologies, collaboration, and test-driven requirements engineering. The authors also provided
interesting guidance on how to use the requirements engineering tools.

Taking into account the security support, seven requirement engineering tools were
analysed in [48]. Covered features for the analysis were methodology (e.g., model-driven
engineering, goal-oriented approach, Secure Tropos), the source of security element, the
requirement formality, and the support for the requirements engineering activities (i.e., elic-
itation, specification, analysis, and verification). The authors essentially pointed out the
tools’ weak points in terms of gathering and documenting security requirements in a
precise way that can be performed by stakeholders with limited technical knowledge and
further validated.

In [49,50], the main motivation was to understand the capabilities of the requirement
engineering tools existing so far. The authors surveyed the vendors of 38 different require-
ments engineering tools. The survey consisted of 146 questions and, with those questions,
the tool vendors were expected to rank their tools support for different capabilities. More-
over, the authors performed three separate scenarios to better understand the particular
features that are more important for practitioners and the tools’ support for those features.

A total of 58 different UML modeling tools were examined in [14] according to the
features (i.e., modeling viewpoints, analysis, transformation and export, collaboration, tool
integration, scripting, project management, and knowledge management) that are believed
to be important for practitioners. Note, however, that the author here focused on analysing
the tools with UML support rather than the tools that support requirements management.

In [51], the authors aimed to analyse 21 different requirements engineering tools for
a number of functionality features and their geographical locations and understand the
popular tool features and the countries with greater support for the requirements engineer-
ing tools. The functionality features were elicitation, specification, analysis, verification,
traceability, documentation, graphical representation and tool integration. The authors
simply indicated the tools’ support for those features using the yes/no answer style without
giving thorough discussions of the features.

The main objective of the analysis made in [52] was the tool support on the require-
ments management and traceability. Thirteen different requirements engineering tools

Systems 2023, 11, 576 27 of 32

were analysed, considering features including the automatic link detection, automatic link
creation/change, coverage analysis support, documentation support, graphical representa-
tion, and tool integration. The authors simply indicated which tools support which of the
features using yes/no answers.

In [53], the authors aimed to perform the qualitative analysis of 12 different require-
ments engineering tools via a number of features and compare the tools for some organi-
sational factors. The features considered here included traceability, analysis, security and
accessibility, portability, configuration management, collaboration, change management,
usability, and specification. Moreover, the organisational factors included cost, licensing
fees, and platform requirements.

The review conducted in [54] aimed at analysing 10 requirements engineering tools
with regard to their support for the artificial-intelligence-based requirements gathering
and requirements management techniques and activities. However, support of the ex-
amined tools according to these features were given only with yes/no style answers
(i.e., low, medium, and high) without any thorough discussions of the analysis results or
lessons learned.

In [55], the authors aimed to analyse eight different requirements engineering tools,
categorised as heavyweight, middleweight, and lightweight tools. The authors focused
on a set of features (i.e., traceability, template, graphical representation, tool integration,
scalability, and glossary) and analysed each tool to understand how many of those features
were supported.

In [56], the authors conducted a survey among 117 students to understand their
thoughts on nine highly-used UML modeling tools. The authors focused on understanding,
from the perspectives of the students, the main benefits and drawbacks of the tools.

In [57], the authors focused on three requirements engineering tools that support
the natural language processing and aimed to analyse and compare the three tools for
ambiguity and atomicity. The authors also proposed a framework for a next-generation
requirements engineering tool that combines the strengths of the existing tools in terms of
the natural language processing.

In [58], the authors aimed to determine the features for analysing the product-line
software engineering tools and analyse the existing tools for those features. The authors
selected four different tools that support the product-line software engineering and anal-
ysed them with regard to three viewpoints (i.e., product-line engineering, management,
and technical) which led to 13 different features in total.

Tables 10 and 11 give the comparisons of the review studies that are discussed above.
In Table 10, the review studies are compared with regard to (i) their publication year, (ii) the
time period of the tool versions considered, (iii) the number of tools and features considered,
(iv) the review type (i.e., systematic or not), and (v) the search strings used to reach the tools.
Note that when any information was not reached, it is indicated as “Not given”. In Table 11,
the review studies are compared with regard to the support for the feature viewpoints
that are considered in our study. Therefore, none of the existing literature review studies
analysed such a great number of requirements engineering tools for a diverse set of features
in as systematic a way as in our study. Most studies that are considered here are literature
review studies that do not perform any systematic reviews of the tools. In addition,
our study is distinguished by its consideration of a comprehensive set of tools that are
analysed for a comprehensive set of features which are grouped into multiple viewpoints.
It should also be noted that, unlike our study, many of the existing studies focus more
on understanding the tools that support certain features without collecting and analysing
any precise data about those features. For instance, the support for the requirements
transformation could be considered more precisely if the requirements transformation was
addressed in terms of code generation, test-scenario generation, and document generation,
as in our paper. Moreover, some studies just focus on the requirements engineering tools
in particular domains rather than considering the tools in general. Our study is further
distinguished by its consideration of the project management, collaboration, requirements

Systems 2023, 11, 576 28 of 32

specification, customisation, interoperability, methodology, and user-support viewpoints,
at the same time each of which is addressed with a cohesive set of features.

Table 10. The comparison of similar studies in the literature from different aspects.

Study Publication
Year

Period of
the Tools

Number of
the Tools

Number of
the Features

Systematic
Review

Search String Used

[47] 2021 2017–2021 13 17 No Not given

[48] 2013 Not given 7 9 No Not given

[49,50] 2012 Not given 38 23 Yes

Seven Databases used
(Ian Alexander,
Alarcos Research Group,
INCOSE,
Ludwig Consulting Services,
Qaguild, Volere,
and @WEBO)

[14] 2019 Not given 58 9 No

UML tool, UML toolset,
UML editor, UML modeler,
UML modeling tool,
UML application,
Online UML tool,
UML tool free/commercial,
UML for practitioners

[51] 2017 2002–2017 21 8 Yes

Software Engineering Tools,
Elicitation Tools, and
Requirement Management
tool

[52] 2011 2001–2011 13 9 No Not given

[53] 2003 Not given 12 13 No Not given

[54] 2022 Not given 10 10 No Not given

[55] 2022 Not given 8 7 No Not given

[56] 2019 Not given 31 Student Survey No Not given

[57] 2016 2004–2015 3 2 Yes Snowballing the literature

[58] 2007 2005–2007 4 13 Yes Not given

Our Study 2023 1993–2017 56 20 Yes see Section 2.2.3

Table 11. The comparison of similar studies with regard to the viewpoints focused on in our study.

Study Project
Man. Specification Collaboration Customisation Interoperability Methodology User-Support

[47] No No Yes No Yes Yes Yes

[48] No Yes No No No Yes No

[49,50] Yes Yes No No Yes No No

[14] Yes Yes Yes Yes Yes No Yes

[51] No Yes No Yes No No No

[52] No Yes No Yes No No No

[53] No Yes Yes No Yes No No

[54] No Yes Yes No No No No

[55] No Yes Yes Yes No No No

[56] No No No No No No No

[57] No No No No No No No

[58] No Yes Yes No Yes No No

Our Study Yes Yes Yes Yes Yes Yes Yes

Systems 2023, 11, 576 29 of 32

6. Conclusions

In this study, we analysed 56 different requirements engineering tools for a com-
prehensive set of features that were categorised into multiple viewpoints (i.e., project
management, specification, collaboration, customisation, interoperability, methodology,
and user-support). The analysis results revealed many important lessons. Most require-
ments engineering tools promote the requirements to be specified in natural languages.
While using natural languages is important for reducing the learning curve, processing
natural language specifications can be very hard (if not impossible). The requirements
engineering tools enable the tool extensions via external tool integrations and API support;
however, most of the tools ignore the extension of the notation sets used for specifying
requirements. Most tools support the exchange of requirements data among different tools;
however, no single standard (e.g., ReqIF) is adopted by all of the tools for the data exchange.
Most tools support the agile principles and such techniques as Scrum, Kanban, and lean,
while any other methodologies, such as product-line engineering and model-driven en-
gineering, that can significantly improve the quality of software development are rarely
supported. None of the tools enable round-trip engineering—i.e., receiving requirements
in natural languages, specifying and verifying design models, linking requirements with
the design models, and transforming all those into test-scenarios and code.

We strongly believe that the results of our literature review can be uniquely used as a
reference guide for understanding and comparing the requirements engineering tools in
general without being restricted to particular tools and domains. Unlike the existing studies
in the literature, our study reveals (i) the greatest number of requirements engineering
tools that can be used for specifying requirements in general and (ii) several interesting
viewpoints that concern the requirements engineering and are explained by many different
tool necessities. Many different stakeholders can, therefore, find the analysis results useful.
Indeed, practitioners can use the results to compare the existing requirements engineering
tools and find the ones that best meet their needs. Tool vendors can use the results to
determine the gaps that can be improved. Researchers can conduct further empirical
studies to better understand practitioners’ perspectives and propose new projects that
improve the existing requirements engineering tools.

In the future, our first goal is to conduct a series of interviews with a group of de-
velopers from diverse industries so as to receive their feedback about the analysis results
and validate the lessons learned. We will also design a survey that primarily focuses on
practitioners’ challenges regarding requirements engineering tools.

Author Contributions: M.O. conceived and designed the experiments; M.O., G.K. and M.A.K.
performed the experiments; M.O., G.K. and M.A.K. analyzed the data; M.O. and G.K. contributed
reagents/materials/analysis tools; M.O. and G.K. wrote the paper. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The collected data can be accessed via the link: https://zenodo.org/
records/10184749.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 PRISMA 2020 checklist: http://www.prisma-statement.org/PRISMAStatement/Checklist (accessed on 15 April 2023.).
2 PRISMA Flow Diagram: http://www.prisma-statement.org/PRISMAStatement/FlowDiagram (accessed on 15 April 2023).
3 https://osate.org/ (accessed on 15 April 2023).
4 The collected data can be accessed via the link: https://zenodo.org/records/10184749 (accessed on 22 November 2023).
5 https://www.atlassian.com/software/jira (accessed on 9 April 2023).

https://zenodo.org/records/10184749
https://zenodo.org/records/10184749
http://www.prisma-statement.org/PRISMAStatement/Checklist
http://www.prisma-statement.org/PRISMAStatement/FlowDiagram
https://osate.org/
https://zenodo.org/records/10184749
https://www.atlassian.com/software/jira

Systems 2023, 11, 576 30 of 32

References
1. IEEE Std 1220-2005 (Revision of IEEE Std 1220-1998); IEEE Standard for Application and Management of the Systems Engineering

Process. IEEE: Piscataway, NJ, USA, 2005; pp. 1–96. [CrossRef]
2. SEBoK Editorial Board (Ed.) Guide to the Systems Engineering Body of Knowledge (SEBoK), version 2.9; 2023. Available online:

https://sebokwiki.org/ (accessed on 1 April 2023).
3. Lethbridge, T.C.; Lagamiere, R. Object-Oriented Software Engineering—Practical Software Development Using UML and Java;

MacGraw-Hill: New York, NY, USA, 2001.
4. Curcio, K.; Navarro, T.; Malucelli, A.; Reinehr, S.S. Requirements engineering: A systematic mapping study in agile software

development. J. Syst. Softw. 2018, 139, 32–50. [CrossRef]
5. Nuseibeh, B.; Easterbrook, S. Requirements Engineering: A Roadmap. In Proceedings of the ICSE’00: Conference on the Future

of Software Engineering, Limerick, Ireland, 4–11 June 2000; pp. 35–46. [CrossRef]
6. Laplante, P.A. Requirements Engineering for Software and Systems, 3rd ed.; Auerbach Publications: Sebastopol, CA, USA, 2017.
7. Pohl, K. Requirements Engineering: Fundamentals, Principles, and Techniques, 1st ed.; Springer Publishing Company, Incorporated:

Berlin/Heidelberg, Germany, 2010.
8. Humphrey, W. Why Big Software Projects Fail: The 12 Key Questions. J. Def. Softw. Eng. 2005, 18, 25–29.
9. Charette, R. Why software fails [software failure]. IEEE Spectrum 2005, 42, 42–49. [CrossRef]
10. Hussain, A.; Mkpojiogu, E.O.C. Requirements: Towards an understanding on why software projects fail. AIP Conf. Proc. 2016,

1761, 020046. [CrossRef]
11. Ebert, C.; Jastram, M. ReqIF: Seamless Requirements Interchange Format between Business Partners. IEEE Softw. 2012, 29, 82–87.

[CrossRef]
12. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021,
88, 105906. [CrossRef]

13. Ozkaya, M.; Akdur, D.; Toptani, E.C.; Kocak, B.; Kardas, G. Practitioners’ Perspectives towards Requirements Engineering:
A Survey. Systems 2023, 11, 65. [CrossRef]

14. Ozkaya, M. Are the UML modelling tools powerful enough for practitioners? A literature review. IET Softw. 2019, 13, 338–354.
[CrossRef]

15. Ozkaya, M. The analysis of architectural languages for the needs of practitioners. Softw. Pract. Exper. 2018, 48, 985–1018.
[CrossRef]

16. ISO/IEC TR 24766:2009; Information Technology—Systems and Software Engineering—Guide for Requirements Engineering Tool
Capabilities. Technical Report ISO/IEC JTC 1/SC 7—Software and Systems Engineering; ISO/IEC: Geneva, Switzerland, 2009.

17. Shafiq, M.; Zhang, Q.; Akbar, M.A.; Khan, A.A.; Hussain, S.; Amin, F.E.; Khan, A.; Soofi, A.A. Effect of Project Management in
Requirements Engineering and Requirements Change Management Processes for Global Software Development. IEEE Access
2018, 6, 25747–25763. [CrossRef]

18. Verner, J.; Cox, K.; Bleistein, S.; Cerpa, N. Requirements Engineering and Software Project Success: An industrial survey in
Australia and the U.S. Australas. J. Inf. Syst. 2005, 13, 225-238. [CrossRef]

19. Arnaut, B.M.; Ferrari, D.B.; de Oliveira e Souza, M.L. A requirements engineering and management process in concept phase of
complex systems. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK,
3–5 October 2016; pp. 1–6. [CrossRef]

20. Westland, J. The Project Management Life Cycle: A Complete Step-By-Step Methodology for Initiating, Planning, Executing & Closing a
Project Successfully; Kogan Page, Limited: London, UK, 2006.

21. Taylor, R.N.; Medvidovic, N.; Dashofy, E.M. Software Architecture—Foundations, Theory, and Practice; Wiley: Hoboken, NJ, USA,
2010; pp. I–XXIV, 1–712.

22. Rumbaugh, J.E.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual; Addison-Wesley-Longman: Devon, UK,
1999; pp. I–XVII, 1–550.

23. Balmelli, L. An Overview of the Systems Modeling Language for Products and Systems Development. J. Object Technol. 2007,
6, 149–177. Available online: www.sysml.org (accessed on 1 April 2023). [CrossRef]

24. Völzer, H. An Overview of BPMN 2.0 and Its Potential Use. In Proceedings of the Business Process Modeling Notation—Second
International Workshop, BPMN 2010, Potsdam, Germany, 13–14 October 2010; Proceedings; Mendling, J., Weidlich, M., Weske,
M., Eds.; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 67, pp. 14–15.
[CrossRef]

25. Feiler, P.H.; Gluch, D.P.; Hudak, J.J. The Architecture Analysis & Design Language (AADL): An Introduction; Technical Report;
Software Engineering Institute: Pittsburgh, PA, USA, 2006.

26. Zowghi, D.; Gervasi, V. On the interplay between consistency, completeness, and correctness in requirements evolution. Inf.
Softw. Technol. 2003, 45, 993–1009. [CrossRef]

27. Szyperski, C. Independently extensible systems-software engineering potential and challenges. Aust. Comput. Sci. Commun. 1996,
18, 203–212.

28. Lago, P.; Malavolta, I.; Muccini, H.; Pelliccione, P.; Tang, A. The Road Ahead for Architectural Languages. IEEE Softw. 2015,
32, 98–105. [CrossRef]

http://doi.org/10.1109/IEEESTD.2005.96469
https://sebokwiki.org/
http://dx.doi.org/10.1016/j.jss.2018.01.036
http://dx.doi.org/10.1145/336512.336523
http://dx.doi.org/10.1109/MSPEC.2005.1502528
http://dx.doi.org/10.1063/1.4960886
http://dx.doi.org/10.1109/MS.2012.121
http://dx.doi.org/10.1016/j.ijsu.2021.105906
http://dx.doi.org/10.3390/systems11020065
http://dx.doi.org/10.1049/iet-sen.2018.5409
http://dx.doi.org/10.1002/spe.2561
http://dx.doi.org/10.1109/ACCESS.2018.2834473
http://dx.doi.org/10.3127/ajis.v13i1.73
http://dx.doi.org/10.1109/SysEng.2016.7753130
www.sysml.org
http://dx.doi.org/10.5381/jot.2007.6.6.a5
http://dx.doi.org/10.1007/978-3-642-16298-5_3
http://dx.doi.org/10.1016/S0950-5849(03)00100-9
http://dx.doi.org/10.1109/MS.2014.28

Systems 2023, 11, 576 31 of 32

29. IEEE Std 1471-2000; IEEE Recommended Practice for Architectural Description for Software-Intensive Systems. IEEE: Piscataway,
NJ, USA, 2000; pp. 1–30. [CrossRef]

30. Selić, B.; Gérard, S. Chapter 2—An Introduction to UML Profiles. In Modeling and Analysis of Real-Time and Embedded Systems with
UML and MARTE; Selić, B., Gérard, S., Eds.; Morgan Kaufmann: Boston, MA, USA, 2014; pp. 27–43. [CrossRef]

31. Wegner, P. Interoperability. ACM Comput. Surv. (CSUR) 1996, 28, 285–287. [CrossRef]
32. Motta, R.C.; De Oliveira, K.M.; Travassos, G.H. Rethinking Interoperability in Contemporary Software Systems. In Proceedings

of the 2017 IEEE/ACM Joint 5th International Workshop on Software Engineering for Systems-of-Systems and 11th Work-
shop on Distributed Software Development, Software Ecosystems and Systems-of-Systems (JSOS), Buenos Aires, Argentina,
23–23 May 2017; pp. 9–15. [CrossRef]

33. Dingsøyr, T.; Nerur, S.; Balijepally, V.; Moe, N.B. A decade of agile methodologies: Towards explaining agile software development.
J. Syst. Softw. 2012, 85, 1213–1221. [CrossRef]

34. Kent, S. Model Driven Engineering. In Proceedings of the Integrated Formal Methods, Third International Conference, IFM 2002,
Turku, Finland, 15–18 May 2002; Proceedings; Butler, M.J., Petre, L., Sere, K., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2002; Volume 2335, pp. 286–298. [CrossRef]

35. Metzger, A.; Pohl, K. Software product line engineering and variability management: achievements and challenges. In Proceed-
ings of the Future of Software Engineering, FOSE 2014, Hyderabad, India, 31 May–7 June 2014; Herbsleb, J.D., Dwyer, M.B., Eds.;
ACM: New York, NY, USA, 2014; pp. 70–84. [CrossRef]

36. Al-Zewairi, M.; Biltawi, M.; Etaiwi, W.; Shaout, A. Agile Software Development Methodologies: Survey of Surveys. J. Comput.
Commun. 2017, 5, 74–97. [CrossRef]

37. Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice, 2nd ed.; Morgan & Claypool Publishers:
Kentfield, CA, USA, 2017.

38. Thüm, T.; Apel, S.; Kästner, C.; Schaefer, I.; Saake, G. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Comput. Surv. 2014, 47, 6:1–6:45. [CrossRef]

39. Schön, E.; Thomaschewski, J.; Escalona, M.J. Agile Requirements Engineering: A systematic literature review. Comput. Stand.
Interfaces 2017, 49, 79–91. [CrossRef]

40. Alves, V.; Niu, N.; Alves, C.F.; Valença, G. Requirements engineering for software product lines: A systematic literature review.
Inf. Softw. Technol. 2010, 52, 806–820. [CrossRef]

41. Wasowski, A.; Berger, T. Domain-Specific Languages—Effective Modeling, Automation, and Reuse; Springer Cham: Berlin/Heidelberg,
Germany, 2023. [CrossRef]

42. Kosar, T.; Bohra, S.; Mernik, M. Domain-Specific Languages: A Systematic Mapping Study. Inf. Softw. Technol. 2016, 71, 77–91.
[CrossRef]

43. Leblebici, O.; Kardas, G.; Tuglular, T. A Domain-Specific Language for the Document-Based Model-Driven Engineering of
Business Applications. IEEE Access 2022, 10, 104093–104110. [CrossRef]

44. Ruparelia, N.B. Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes 2010, 35, 8–13. [CrossRef]
45. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B. Experimentation in Software Engineering; Springer: Berlin/Heidelberg,

Germany, 2012. [CrossRef]
46. Arslan, S.; Ozkaya, M.; Kardas, G. Modeling Languages for Internet of Things (IoT) Applications: A Comparative Analysis Study.

Mathematics 2023, 11, 1263. [CrossRef]
47. de Gea, J.M.C.; Ebert, C.; Hosni, M.; Vizcaíno, A.; Nicolás, J.; Alemán, J.L.F. Requirements Engineering Tools: An Evaluation.

IEEE Softw. 2021, 38, 17–24. [CrossRef]
48. Yahya, S.; Kamalrudin, M.; Sidek, S. A review on tool supports for security requirements engineering. In Proceedings of the 2013

IEEE Conference on Open Systems (ICOS), Kuching, Malaysia, 2–4 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 190–194.
[CrossRef]

49. de Gea, J.M.C.; Nicolás, J.; Alemán, J.L.F.; Álvarez, J.A.T.; Ebert, C.; Vizcaíno, A. Requirements Engineering Tools. IEEE Softw.
2011, 28, 86–91. [CrossRef]

50. de Gea, J.M.C.; Nicolás, J.; Alemán, J.L.F.; Toval, A.; Ebert, C.; Vizcaíno, A. Requirements engineering tools: Capabilities, survey
and assessment. Inf. Softw. Technol. 2012, 54, 1142–1157. [CrossRef]

51. Shah, A.; Alasow, M.A.; Sajjad, F.; Baig, J.J.A. An evaluation of software requirements tools. In Proceedings of the 2017
Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 5–7 December 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 278–283. [CrossRef]

52. Shahid, M.; Ibrahim, S.; Mahrin, M.N. An Evaluation of Requirements Management and Traceability Tools. Int. J. Comput. Inf.
Eng. 2011, 5, 627–632.

53. Sud, R.R.; Arthur, J.D. Requirements Management Tools: A Quantitative Assessment; Technical Report TR-03-10; Department of
Computer Science, Virginia Polytechnic Institute & State University: Blacksburg, VA, USA, 2003.

54. Nadeem, M.A.; Lee, S.U.J.; Younus, M.U. A Comparison of Recent Requirements Gathering and Management Tools in Require-
ments Engineering for IoT-Enabled Sustainable Cities. Sustainability 2022, 14, 2427. [CrossRef]

55. Inam-Ul-Haq.; Abbas, W.; Butt, W.H. Systematic Literature Review on Requirement Management Tools. In Proceedings of the
2022 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 23–24 September 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/IEEESTD.2000.91944.
http://dx.doi.org/10.1016/B978-0-12-416619-6.00002-X
http://dx.doi.org/10.1145/234313.234424
http://dx.doi.org/10.1109/JSOS.2017.5
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1145/2593882.2593888
http://dx.doi.org/10.4236/jcc.2017.55007
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1016/j.csi.2016.08.011
http://dx.doi.org/10.1016/j.infsof.2010.03.014
http://dx.doi.org/10.1007/978-3-031-23669-3
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1109/ACCESS.2022.3210530
http://dx.doi.org/10.1145/1764810.1764814
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.3390/math11051263
http://dx.doi.org/10.1109/MS.2021.3058394
http://dx.doi.org/10.1109/ICOS.2013.6735072
http://dx.doi.org/10.1109/MS.2011.81
http://dx.doi.org/10.1016/j.infsof.2012.04.005
http://dx.doi.org/10.1109/INTELCIS.2017.8260075
http://dx.doi.org/10.3390/su14042427
http://dx.doi.org/10.1109/ICETST55735.2022.9922932

Systems 2023, 11, 576 32 of 32

56. Agner, L.T.W.; Lethbridge, T.C.; Soares, I.W. Student experience with software modeling tools. Softw. Syst. Model. 2019,
18, 3025–3047. [CrossRef]

57. Arendse, B.; Lucassen, G. Toward Tool Mashups: Comparing and Combining NLP RE Tools. In Proceedings of the 24th IEEE
International Requirements Engineering Conference, RE 2016, Beijing, China, 12–16 September 2016; IEEE Computer Society:
Piscataway, NJ, USA, 2016; pp. 26–31. [CrossRef]

58. Djebbi, O.; Salinesi, C.; Fanmuy, G. Industry Survey of Product Lines Management Tools: Requirements, Qualities and Open
Issues. In Proceedings of the 15th IEEE International Requirements Engineering Conference, RE 2007, New Delhi, India,
15–19 October 2007; IEEE Computer Society: Piscataway, NJ, USA, 2007; pp. 301–306. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10270-018-00709-6
http://dx.doi.org/10.1109/REW.2016.019
http://dx.doi.org/10.1109/RE.2007.29

	Introduction
	Research Methodology
	Review Protocol
	Search Strategy
	Search Scope
	Search Method
	Search String

	Eligibility Criteria
	Identifying the Tool Features
	Project Management
	Collaboration
	Requirement Specifications
	Customisation
	Interoperability
	Methodology
	User-Support

	Collecting Data
	Synthesising Data

	Results
	Project Management
	Collaboration
	Requirements Specification
	Customisation
	Interoperability
	Methodology
	User-Support

	Discussion
	Summary of Findings
	Lessons Learned
	Threats to Validity

	Related Work
	Conclusions
	References

