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Abstract: The performance of most evolutionary metaheuristic algorithms relies on various operators.
The crossover operator is a standard based on population-based algorithms, which is divided into
two types: application-dependent and application-independent crossover operators. In the process
of optimization, these standards always help to select the best-fit point. The high efficiency of
crossover operators allows engineers to minimize errors in engineering application optimization
while saving time and avoiding overpricing. There are two crucial objectives behind this paper; first,
we provide an overview of the crossover standards classification that has been used by researchers for
solving engineering operations and problem representation. This paper proposes a novel standard
crossover based on the Lagrangian Dual Function (LDF) to enhance the formulation of the Lagrangian
Problem Crossover (LPX). The LPX for 100 generations of different pairs parent chromosomes is
compared to Simulated Binary Crossover (SBX) standards and Blended Crossover (BX) for real-coded
crossovers. Three unimodal test functions with various random values show that LPX has better
performance in most cases and comparative results in other cases. Moreover, the LPB algorithm
is used to compare LPX with SBX, BX, and Qubit Crossover (Qubit-X) operators to demonstrate
accuracy and performance during exploitation evaluations. Finally, the proposed crossover stand
operator results are demonstrated, proved, and analyzed statistically by the Wilcoxon signed-rank
sum test.

Keywords: evolutionary metaheuristic algorithm; crossover standards; crossover operators;
Lagrangian Dual Function; Lagrangian Problem Crossover

1. Introduction

Combinatorial optimization is one of the most widely investigated areas of artificial
intelligence. Every year, several research projects focus on issues that arise in this domain.
The solution structure, rather than its coding, is utilized by a knowledge-based crossover
mechanism for strategic metaheuristic algorithms [1]. Thus, there are several different ap-
proaches that researchers have used in the past to solve single or dual problems. However,
in the majority of these kinds of applications, research is limited to solve linear programs,
quadratic programs, or, more broadly, convex programming issues. Because the primal
optimal solution is closely related to the optimal single or dual solution for convex problems,
such a study has assisted investigators in better understanding the relationship [2]. There-
with, a set of optimization algorithms influenced by natural events and animal intelligence
is characterized as evolutionary nature-inspired metaheuristic algorithms. They are, thus,
frequently nature-inspired algorithms, and samples of these evolutionary metaheuristic al-
gorithms are Genetic Algorithm (GA) [3], Artificial Bee Colony [4], Differential Evolution [5],
and Learner Performance based Behavior algorithm (LPB) [6]. Therefore, nature-inspired
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computing is a field of computer science that could be used and shared with an optimization
algorithm, computational intelligence, data mining, and machine learning [7].

A problem with a fluctuating objective function is one of the more difficult metaheuris-
tic optimization methods, but it is much more common in real-world search or self-adaptive
optimization. The search technique used to solve such problems for optimality must be
flexible enough to adjust to the present function [8]. A problem with population-based
optimizers is that once the investigation has found a locally optimal solution, there may
not be enough diversity to move the search forward to a new, better solution. In many of
these circumstances, diversity-preserving strategies such as a high amount of crossover
or the use of a clustering operator are required. Therefore, most of the algorithms have
been improved and enhanced in the field of metaheuristic optimization by these standard
operators [9]. In addition, several effective methods have been developed in this research
to improve existing optimizers based on crossing genes between parents. Alternatively,
updated standards are always accepted as long as the suggested methods offer novel
improvements or comparable results.

When the genetic recombination operator is chosen correctly, crossing genes can
match the best-known techniques for a wide range of problems involving restrictions. It
would be better to suggest or use the superlative crossover standard to accomplish the
goal. The efficiency of this new method could be shown to work for selected features [10].
The motivation behind this paper is the use of conventional techniques and direct search
procedures due to the complexity of variables in the problematic domain. Depending on
the situation, fixing the problem might involve modifying the basic algorithm, presenting
a systematic and comprehensive overview of the meta-analysis, or utilizing innovative
metaheuristics. In addition, this paper proposes a novel standard from several strategies
linked to mathematical assessments with originally generated methods.

The fundamental goal of this research is to investigate the effectiveness of experience
and understanding methods in GAs. This paper is focused on the generation and standards
of crossover and how it affects metaheuristic algorithms. Crossover, also known as recombi-
nation, is a genetic operator in the special process which is exploited to connect the genetic
codes of two parents to make new offspring (children). Further, crossover techniques can be
considered to be extremely useful for generating new solutions from a current population
stochastically [11]. In many studies, crossover and mutation operators have been associated
with GA’s success. Some of them conclude that success rests in both, whether the crossover
is performed alone or through mutation or both. Crossover operators play a substantial
role in balancing exploitation and exploration, allowing for feature extraction from both
chromosomes (parents), with the intention that the developing offspring have beneficial
qualities from both chromosomes [12].

Lagrangian Dual Function (LDF) [13] technique can support to exchange genes be-
tween chromosomes by locating the replacement chromosome at the highest or lowest point
to produce offspring with improved traits. A proposed standard known as Lagrangian
Problem Crossover (LPX) is imperative for generating new operators; the crucial charac-
teristic of LPX is that it allows offspring to inherit some characteristics from their parents
for finding a new optimal solution in population solution-based metaheuristics. Likewise,
depending on the meaning of the worst chromosome for each problem, this point (its worst
chromosome) can be chosen on both chromosomes (parents), or by applying crossover
between chromosomes to produce the best novel genes. Furthermore, the new operator is
identified automatically based on performance ratings and statistical evidence, so the time
spent selecting the best operator is taken into account.

The crossover strategy starts with a low value and adjusts it every generation to
avoid premature convergence. Moreover, several crossover functions are employed as a
strategy to avoid convergence rates. Population (swarm) algorithms are one of the most
successful metaheuristics for managing these kinds of numerous case problems. As a result,
population-based methods have become one of the most efficient methods for combinatorial
function optimization [14]. These techniques operate with several populations of solutions
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that evolve in tandem with algorithm operation. Accordingly, the following summarizes
this paper’s main contributions:

• There are several standard operators used to illustrate how the implementation was
conducted and illustrate the mathematical crossover form using small examples and
technique operations;

• As a systematic development of previous standards, it has enabled the use of binary
form, real-coded form, and ordered-coded form methods;

• Based on LDF, a crossover operator has been proposed that can provide a novel
optimum solution for population metaheuristic algorithms that use original
metaheuristic optimization;

• The new anticipated LPX is evaluated by comparing it with selected previous tuning
methods, a variation on the traditional GA, as discussed in the next sections;

• LPX is compared with other well performing crossover operators using the LPB
algorithm as a single objective population-based algorithm and the affected random
values and elapsed time are measured;

• The proposed standard operator is statistically analyzed and compared, using non-
parametric statistical tests.

The next section describes how this paper is organized; this section is dedicated to
discussing related work on crossover standards. Several mathematical crossover standards
are presented by thinkable pseudocode in the third section of the paper. The fourth
segment examines the novel formula which can be developed as a standard crossover in
the future metaheuristic algorithm known as LPX. The fifth section is devoted to proving
the heuristic and exploitation crossover results by comparing LPX results with specific
real-coded crossover standards. At the end of the paper, the conclusion and novel features
are discussed.

2. Crossover Standards Overview

As stated, the paper includes two major subjects. The first part includes a systematic
review of crossover standards; the second, a proposed a method to generate novel offspring
by generating a newly created evolutionary algorithm.

A systematic review has been performed to assess several efficient methods presented
in the research. The reviewed articles, as well as standard sources, were examined us-
ing search terms including “crossover standard generation”, “generations of crossover
standards of parent chromosomes in evolutionary metaheuristic algorithms”, or “Genetic
Algorithm Based on crossover standard generation”. These queries are searched in Sci-
enceDirect, PubMed, and Google Search Engine. These articles and sources were culled to
address only crossover standards, evolutionary algorithms, Gas, and crossover operators
in GAs. Search dates include up to March 2022. A huge number of articles was retrieved,
but in the end, the standard crossover operators were approved by 41 eligible papers.

The second part is the proposed LPX standard which is used as the superlative
crossover standard to accomplish the target; the efficiency of this new method might be
proved for the feature selection optimization problems. The standard is generated from the
mathematical model of the LDF theorem.

Many forms of the crossover have been produced over the years, and comparisons
between various types have been proposed. These started with one-point crossover
and evolved into a range of ways to cover a variety of conditions, including uniform
crossover [15]. To generate improved self-adaptive combinational optimization, a set of
assumptions (rules) have been developed to simplify natural/biological events, and these
include a list of control parameters to define intensification and diversification rules [16].
The best solution is identified, and other solutions advance toward the most optimal solu-
tion according to the given rules. In the stochastic mode, the location of a few solutions can
be altered and controlled, such as crossover or mutation operations in several metaheuristic
algorithms, which is illustrated in a simple flowchart in Figure 1.
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Likewise, several standards for permutation applications, such as the Traveling Sales-
man Problem (TSP), were defined. There are several ways to approach the TSP using
evolutionary algorithms, including binary, route, closeness, ordinal, and vector representa-
tions. To reduce the overall distance, the researchers presented a novel crossover operator
for the TSP [17]. Another research study confirmed that sequential constructive crossover
(SCX) fixed the TSP in 2010. The primary idea behind this strategy is to choose a random
point, termed the crossover point; then, before the crossing point, use an SCX technique
with improved edges. After the crossover site, the remaining chromosomes are swapped
between parents to generate two children; if a chromosome currently exists, it is replaced
with an unoccupied chromosome [18].

Ring Crossover was offered as a solution to the recombination problem. Parents were
grouped in the design of a ring of this type, and then a cut point was chosen. Parents were
grouped in the design of this circle procedure, and then a slice point was selected randomly.
The other location was the length of the chromosome; the first offspring develops clockwise
from the line (the original cut), and the second offspring evolves counter clockwise. They
employed this type of crossover for the aspects mentioned and it outperformed the other
types of assessed crossover [19]. Despite that, to prevent creating erroneous solutions,
evolutionary algorithms that optimize the ordering of a very large series require specific



Systems 2023, 11, 144 5 of 26

crossover operators. It is difficult to list all of them. Thus, several standard crossovers have
already been documented in Table 1 and each of them has been generated for a specific
global solution. However, some of them produced offspring from parents based on real
code, whereas others relied on the binary-coded crossover started in the next section.

Table 1. Standard crossovers generation.

No. Standard Crossover Operator Name Initial
Abbreviation Related Work

1 Order Crossover Operator OX1 [17,20,21]

2 Sequential Constructive crossover SCX [18]

3 Order-Based Crossover Operator OX2-OBX [20,22]

4 Maximal Preservation Crossover MPX [22,23]

5 Alternating Edges Crossover AEX [21,23,24]

6 Edge Recombination Crossover ERX [20,21]

7 Position-Based Crossover Operator POS [20,22,25]

8 Voting Recombination Crossover Operator VR [20,22]

9 Alternating Position Crossover Operator AP [20,26]

10 Automated Operator Selection AOS [27]

11 Complete Sub-tour Exchange Crossover CSEX [22,28]

12 Double Masked Crossover BMX [22,29]

13 Fuzzy Connectives Based Crossover FCB [30,31]

14 Unimodal Normal Distribution Crossover UNDX [32,33]

15 Discrete Crossover DC [34]

16 Arithmetical Crossover AC [19,31,35]

17 Average Bound Crossover ABX [36]

19 Heuristic Crossover HC [17,37]

20 Parent Centric Crossover PCX [22,38]

21 Spin Crossover SCO [39]

In application, crossover standards have typically been classified based on the repre-
sentation of the gene; genetic sequence has been stored in a chromosome represented by a
bit matrix or real code in the different algorithms. Crossover strategies for both techniques
are popular, and illustrative instances or classes are genetic recombinations, which are
thoroughly explained in the following sections. Several current methods ensure that these
techniques can be applied to global numerical optimization and current practical problems
as a recently proposed meta-heuristic; for example: Slime Mold Algorithm [40], Moth
Search Algorithm [41], Hunger Games Search [42], Harris Hawks Optimization [43], and
Colony Predation Algorithm [44]. As a result, novel standards should be proposed for
evolving evolutionary algorithms.

The capacity of solutions to learn from one another, however, is what gives rise to the
intriguing behavior of GAs. Solutions can combine to form offspring for the next generation.
Occasionally they will share their poor information, but if we use crossover in conjunc-
tion with a harsh selection method, better solutions will emerge; there are many details
to crossover with permutations, as in previous population-based algorithms, especially
these algorithms based on GA, such as the Quantum-based Avian Navigation Optimizer
Algorithm [45]. Thus, we will cover the basic crossover techniques, known as “modification
genes”, by Lagrange method techniques. Accordingly, Table 2 highlights the weak and
strong points of crossover operators in metaheuristic population-based algorithms.
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Table 2. Perfection and shortcomings of crossovers generation.

Perfection of Crossovers Generation Shortcomings of Crossovers Generation

n Through crossover, it is possible to mix incomplete solutions
from several competitors. This frequently entails taking a
pretty significant step away from either of the parents and
can swiftly push one outside of a local optimum;

n Crossover is crucial since the tested parents share genetic
material, which can result in a more effective solution;

n It signifies that even without crossover, the change would
be slow, and it would be impossible to push your
population over a local optimum;

n Without crossover, a population-based algorithm would
resemble a search algorithm that uses random numbers,
and finding a workable solution would require some luck.
However, with crossover, it improves with each iteration
while keeping the positive aspects of the previous one [46];

n A high crossover rate causes the genomes in the next
generation to be more random. This is because there will
be more genomes that are a mix of previous-generation
genomes rather than a low crossover rate. The second
approach decreases the chance that a very accurate
genome will be produced by the crossover operation [47].

n To ensure that their representations enable crossover to be
reasonable, limited generations should be required for
crossover to occur;

n An ideal generation is also determined by standard
crossover operators. Look at the type of two-point
crossovers compared to one-point crossovers. There might
be a loss of genetic material from the parent solution in a
point crossover or by another standard. As a result, most
evaluations depend on complex mathematical models of
the new generation [48];

n The actual permutations would be the only additional
representations in the second generation. In that situation,
the crossover will presumably result in a completely
distinct local optimum that is both meaningless
and unachievable;

n According to several references, single-point crossover results
in offspring genomes being less diversified since they are
more likely to resemble their parents rather than multi-point
which is a hybrid of single-point and uniform [49].

3. Mathematical Crossover Standards

In metaheuristic algorithms, the exploration of the optimal solution is based on the
generation of new members from existing members. The crossover process facilitates
the interchange of genetic code between parents, which results in a higher probability of
genes being exceptional to the parents. However, there are numerous crossover techniques
recorded in the cited study. Researchers should focus on finding and tackling the ques-
tion of whether the most effective standard strategy has been improved and adopted. As
mentioned, the crossover operator is comparable to multiplication and biological recombi-
nation. The data suggest that more than one genome must be selected and that children are
produced using the genetic codes (genomes as blue balls on the parents’ chromosomes [50])
and then two more children using two new offspring genes (pink balls). This probabilistic
scale is illustrated in Figure 2. Then, the graphic depicts the range of potential offspring in
two-dimensional constrained real space between x and y dimensions by generating a box
crossover between genes and new offspring.
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Typically, the crossover is used in metaheuristic algorithms with a significant prob-
ability, particularly in a GA, as challenging in real-coded crossovers [51]. Consequently,
the goal of establishing crossover likelihood is to prevent gene loss from the parents, even
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if the offspring are not better than the parents. According to the distribution of crossover
standards, Section 3.1 has determined the forms of binary crossover. The Section 3.2 has
classified the categories of real-coded or floating-point crossover. In Section 3.3, the form of
order-coded crossover is distributed.

3.1. Binary Form Crossover

This section provides a broader collection of crossover operators used in binary repre-
sentation for metaheuristic algorithms. Improvements to previous results demonstrate that,
according to the current challenges, most of these results are effective crossovers. How to
implement some types of crossover standards and point out some interesting comparisons
between others could also be shown [52]. Traditionally, genetic material has been stored
in a gene, which is represented as a bit collection in various techniques. Crossover pro-
cedures for bit-order are prominent, and specific examples or categories include genetic
manipulation, as explained in the points below.

Binary Single-point crossover [53]: A crossing point in the parent entity string is
picked. Apart from that point in the biological sequence, all data transfer between two
units, including biological parents and situational bias, is conducted through strings. As
indicated in Figure 3, Genes with sub-blocks that include three bits to the right of that point
are transferred correspondingly between the two parents. As illustrated by pink and blue
color bites, it has generated two new offspring.
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Double-point and n-point crossover [53]: two randomly generated locations (strings)
or n-point locations on the individual chromosomes are chosen, and the gene code is
switched at these locations. As seen in Figure 4, two equally spaced points on the right
and left sides are selected on parent chromosomes, then pink color and blue color bits are
swapped to perform two single-point crossovers.
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Uniform crossover [49] and half-Uniform crossover [54]: such as in the coin-throwing
approach, each gene (bit) is drawn randomly from one of the comparable genes in the
selected parents. Each genome is addressed separately rather than being separated into
segments. In this situation, we just flip a coin to see if each genome is present in the child.
The idea may be tossed about to support one parent having more genetic information in
their newborn. Figure 5 shows two chromosomes arrayed as a two-dimensional array with
bits exchanged in a light blue color and a pink color.
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Uniform Crossover with Crossover Mask (UCM) [27]: The matrices are separated
into several non-overlapping zones, and the matrix created by the logical operator is known
as the crossover mask (CM) generated by pseudocode control. In Figure 6, we present
an example and pseudocode to display how the new offspring has spawned between
chromosomes and CMs based on these conditions.
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Shuffle Crossover (SHX) [55,56]: Initially, we choose a crossover point at random,
such as the highlighted line in Figure 7, then mix the gene code of both parents. It should be
emphasized that Shuffle chromosomes for the right and left sites are handled independently.
A single point of crossing is chosen, which splits the chromosome into two sections, known
as schema. Chromosomes are scrambled in each schema by both parents. To produce
offspring, schemas are transferred (as in a single crossover).
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Three-Parent Crossover (TPX) [57]: According to the prior solution approach, in this
kind of operator, there are numerous probability rate algorithms with which to create
innovative offspring from three parent genes. In the elucidation example, Figure 8 high-
lights the problems involved in calculating future generations based on deliberate offspring
generated by swapping genes according to the general pseudocode.
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3.2. Real-Coded (Floating Point) Form Crossover

The genes are real-valued without encoding or decoding into binary, and the digits are
left alone to speed up the process. Nevertheless, it is less logical than binary representation
since crossover has demonstrated that floating-point format can function as well as, if
not better than, ordinary binary strings. Therefore, there is no reason to be concerned
about algorithm efficiency if the floating-point encoding is utilized [51]. Several crossover
techniques for real-coded crossovers were developed. The method is based on effectively
adjusted real-coded crossover operations that use the likelihood function to create very
distinct sequences that may be candidates for alternative solutions [58]. The crossover
techniques are described mathematically in the next points.

Real Single-point Crossover (RSPX) [59]: It is marginally comparable with a binary
single-point crossover; it could be combined with two chromosomes and use a real number
for each gene at the crossover point. It can also be generated for two-point, three-point, and
n-point crossovers. As shown in Figure 9, two genes were crossed and real numbers were
swapped between them, resulting in two new offspring.
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Single arithmetic crossover (SAX) [57]: This standard should be derived from a single
genome (k), randomly chosen from both chromosomes (n). For instance, in Figure 10, k = 2
and then we define a random parameter (α = 0.5). We modify the kth gene of chromosome 1
and chromosome 2 to generate offspring by the selected asthmatic formula that is calculated
as Equation (1) [60,61].

Geneoffspring(n,k) = (1− α)∗ Gnk + α ∗ Gnk (1)

Geneoffspring(n,2) = (1− 0.5)∗ 0.13 + 0.5 ∗ 0.94 = 0.535
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Whole Arithmetic Crossover (WAX) and Linear Crossover (LX) [62]: The calcula-
tions for the whole arithmetic (linear) crossover have been handled for all genes on the
chromosome (n) with a single similar arithmetic crossover. The calculation is shown in
Equation (2) [58], and an example of how to create new offspring can be seen in Figure 11.
Despite this, the probability rates are higher since the number of offspring produced will
equal the number of chromosomes (genes = k). It should be defined as a random parameter
(α and β) and as (α1 = 0.5, α2 = 1.5, α3 = −0.5 . . . . . . αm) and (β1 = −0.5, β2 = 0.5,
β3 = 1.5 . . . . . . βm) and, for this example, when the numbers of genes (k) equals three. This
example calculated and produced three offspring when k = 1; in consequence, it can be
calculated for k numbers. However, Figure 11 just generates three offspring, the generation
could be developed by other children according to the k numbers.

Geneoffspring(m,n,K) = αm∗ Gnk + βm ∗ Gnk (2)

Gene1,n,1 = α1∗ G11 + β1 ∗ G21 = α1∗ 0.88 + β1 ∗ 0.64 = 0.12
Gene2,n,1 = α2∗ G11 + β2 ∗ G21 = α1∗ 0.88 + β1 ∗ 0.64 = 1.64
Gene3,n,1 = α3∗ G11 + β3 ∗ G21 = α1∗ 0.88 + β1 ∗ 0.64 = 0.52
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Blended Crossover (BX) [50,63]: One of the effective crossovers that improved several
algorithms. If the two-parameter values in a pair of chromosomes are G1 and G2, G1 is
thus smaller than G2, and the blend crossover method produces an offspring option in the
range [G1− α (G2− G1), G2− α (G2− G1)]. Where α is a constant to be established, the
solutions of the offspring do not exceed the scope of the single variable [50,64].

The example is stated in Figure 12 which indicated k number is equal to 2,
G1 = 0.13 < G2 = 0.94, so we calculate the range by [G1 – α (G2 – G1), G2 – α (G2 – G1)];
when α = 0.5 the range is [1.345, 0.535] so, we randomly select G1 and G2 between the range.
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Figure 12. BX for second genes by the range calculation.

If the process was evaluated in the previous range, it could not find a global solution,
as documented in several improvement algorithms. According to earlier researchers [50],
the condition might be calculated by the updated blend formula. Thus, a novel technique
has been developed for the BX standard. The parameter γ must be determined using α and
a random integer r in the range limitation between (0.0, 1.0), both of which are excluded
from the Equation (3) [65].

γ = (1 + 2α) (3)
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Genome1 and Genome2 are the offspring solutions which are regulated by the parents
as Equations (4) and (5) [65], consecutively:

Gene1 = (1− γ)∗ G1 + γ ∗ G2 ; (4)

Gene2 = (1− γ)∗ G2 + γ ∗ G1. (5)

Figure 13 pointed out the example when k (gene) = 2, then identified randomly α = 0.5
and r = 0.5, so parameter γ is calculated by Equation (3).

γ = (1 + 2α)∗r − α = (1 + 2 ∗ 0.5) ∗ 0.5− 0.5 = 0.5
Gene1 = (1− γ)∗ G1 + γ ∗ G2 = (1− 0.5) ∗ 0.13 + 0.5 ∗ 0.94 = 0.535
Gene2 = (1− γ)∗ G2 + γ ∗ G1 = (1− 0.5) ∗ 0.94 + 0.5 ∗ 0.13 = 0.535
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Simulated Binary Crossover (SBX) [66,67]: It is preferable and common to imple-
ment a standard crossover operation across all standards. Due to these reasons, SBX
was applied to the real-coded parameter without any mutation operator, and SBX was
also developed based on the single-point crossover [66]. This approach focuses on the
probability distribution of obtainable offspring (Gene) by the specified parents (Genes),
as shown in Equation (11) [68]. SBX initially computes the number of children using
Formulas (6) and (7) [68], or by using Formulas (8) and (9), that enhance the last two for-
mulas by Azevedo [66], which are the most commonly used. The steps to calculate the float
number resulting from the crossover are started by fixing a random number µ ~ (0, 1) at
first; then, calculate the α and generate offspring by using α.

Gene1 = 0.5[(1 + αi)G1 + (1− αi)G2] (6)

Gene2 = 0.5[(1− αi)G1 + (1 + αi)G2] (7)

Gene1 = 0.5[(G1 + G2)− αi|G2 − G1|] (8)

Gene2 = 0.5[(G1 + G2) + αi|G2 − G1|] (9)

As a function of (9), Alpha (αi) [63] must be calculated as a function of the two previous
offspring. H is the index of a user-defined distribution (not negative), which means η is the
number of parameters chosen by the user.

α =

 (2µ)
1

η+1 , i f µ < 0.5(
1

2(1−µ)

) 1
η+1 , otherwise

(10)

Utilize the probability distributions to compute the function of Alpha (αi).

α =

{
0.5(η+ 1)αη, i f α ≤ 1 (Contracting Crossover)

0.5(η + 1) 1
αη+2 , otherwise (Expanding Crossover)

(11)

When selecting the second gene as a parent 1 and 2 from Figure 14 will produce two
new offspring genes, we need to find (αi) if µ = 0.4, and the user chooses two parameters.
The calculation is executed as follows:
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α = (2 ∗ 0.4)
1

2+1 = 0.928;
Gene1 = 0.5[(0.13 + 0.94)− 0.928|0.94− 0.13|] = 0.1592;
Gene2 = 0.5[(0.13 + 0.94) + 0.928 ∗ |0.94− 0.13|] = 0.9108 (out-of-range probability distribution).
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Figure 14. SBX for the second Genes.

However, this technique has many advantages, such as a wider range of offspring
explored, and results are reliable and often reach global optima. In Figure 15, it is illustrated
that sometimes the results of the offspring gene are out of range based on the probability
distributions. This is because the new gene’s impact should be bigger than the old gene,
but in this case, the updated gene is smaller than the old gene.
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3.3. Order-Coded Problem Methods Crossover

Several different crossover operators have been proposed to reproduce either the
relative order or the precise organization of chromosomes from the homologous chromo-
some. The majority of standard-matched crossovers are operators that maintain exact
locations [69]. As a result, the following sections focus on the most basic forms of order-
coded crossovers.

Partially Mapped Crossover (PMX) [70]: The procedure produces offspring solutions
by transferring sub-orders from one genome to the other while maintaining the original
sequence (order) with possible several points, as shown in Figure 16. To initiate, we
choose a random range of crossovers and produce children by swapping genes. Unselected
substrings are then used to identify the mapping relationship at the time of legalization of
the resulting offspring [71].
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The Cycle Crossover Operator (CX) [17,72]: Determines the number of cycles that
exist between two-parent chromosomes. It may be used with numerical strings in which
each component appears only once. This assures that each index point in the resultant
offspring is filled with a value from one of his parents [73]. Figure 17 shows that the first
offspring world is generated by relying on the pseudocode when the random cycle includes
{2, 5, 7, 6, 11}.
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4. Lagrangian Problem Crossover

Two types of crossover operators have been used in population-based algorithms. The
first type is operated with binary numbers, while the other is operated with real numbers.
By using real code, the crossover operator is vindicated by most of the algorithms rather
faster than by binary code [74,75]. As discussed in the private table, crossover standards
have several weak and strong points. As a result, the major motivation for proving the
crossover standards is to propose and demonstrate a distinctive crossover technique. Using
novel generated algorithms, crossover operators will take on those responsibilities with
varying degrees of precision to find global convergence quickly. The suggested technique
is based on LDF for gene crossings. Thus, some following points highlight the novel
properties of LPX that should be obvious.

n When there are limitations on the input values that can be used, the Lagrange multi-
plier technique can be utilized. This technique is used to determine the maximum or
minimum of a multivariable function [76,77];

n The main goal is to find locations where the contour lines of the multivariable function
and the input space are adjacent to one another [76];

n The constrained population-based optimization problem is transformed into an un-
constrained problem using the Lagrange multiplier technique [77,78], which provides
the optimum solution when used as a point in the crossover standard;

n Optimization with the Lagrangian method explores the application of Lagrange
multiplier methods to find local and global convergence for Lagrangian methods
under constraint minimization and maximization [79];

n Based on LDF, LPX attempts to calculate the most appropriate offspring, which often
involves taking a fairly significant step away from each parent.

The event points show that the Lagrange multiplier method is used for determining a
function of local maxima and local minima with equality constraints or requirements. This
issue contains the requirement that one or more equations be exactly solved by the selected
variable values [80]. The correlation between the gradient (slope) of the function and the
gradients (slopes) of the constraints leads to a natural form of formulation of the global
problem, characterized as the Lagrangian Function [81,82]. These points around or near
the slopes may have a function to generate new genes within the specific chromosome.

According to Figure 18, there may be an objective function, signified as f (x, y), which
must be optimized while it is subject to the restriction g(x, y) = c. Let us put this problem
statement into perspective before delving further into its discussion. The Gradient∇ f (x, y)
is a vector which, at every position (x, y), indicates the direction in which f should be
increased as effectively as possible. f will rise as long as the stationary point continues
to move in that direction, which is the steepest curve in this direction. Any function’s
gradient that is calculated at a specific position (x, y) will always result in a vector that
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is perpendicular to the contour line that passes through that point. It is worth noting the
exploring point must always remain on the constraint curve g(x, y) = c when ascending
this top of the climax point (at Gradient Vector), such as the global point. In other words,
the only directions the solution can travel are tangents to this constraint curve. These
tangents’ values remain constant throughout the constraint curve g(x, y) = c because they
are orthogonal to the gradient of the limitation function g. Then Gradient Vector must track
the optimizer’s motion on the surface of f as the optimizer moves along the constraint
curve g(x, y) = c. The solution point should continue to raise f , even if it is shifted in a
direction along the Gradient ∇ f (x, y) that has a non-trivial component. A gradient can
only be shifted orthogonally to the gradient ∇ f (x, y) once if it moves only in the direction
orthogonal to the gradient. In this case, the solution has reached a local maximum. The
gradients of f and g are now pointing in the same general direction.
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Thus, as illustrated in Figure 18, the restriction g(x, y) = c appears as a red curve. The
blue curves are characteristics f (xi, yi). Because S1 > S2, the point where the red constraint
tangentially contacts a blue curve is the maximum f (x1, y2), which means tangential to
S1 in the sideways constraint. Moreover, it shows that the assumption that line graphs
are tangential has no bearing on the size of any of these gradient vectors, but it is well.
When two vectors have the same orientation, we may multiply one by a constant to obtain
the other [83]. The Lagrange multiplier works by assuming that the local minimums and
maximums along the constraint occur when the constraint is parallel to the contours. This
is stated in S1, S2, S3.

In each of the above scenarios, assuming the point is on the contour line, Figure 18
shows how to calculate the stationary point of L given a function ∇ f (x, y) = λ∇g(x, y)
and the Lagrange multiplier λ. Thus, it uses a general method, called the Lagrange
multiplier method, as formulated in Equation (12), for solving constrained optimization
problems [84,85]. Equation (12) is explained in the following evaluation.

L(x, y) = f (x, y)− cg(x, y) = c If c is a constantL(x, y) = f (x, y)− g(x, y)

From these points, it is proved that the Lagrange multiplier λ in Equation (12) is
improved by maximizing (or minimizing).

L(x, y, λ) = f (x, y)− λ g(x, y) (12)

Gradient vectors indicate that this model should be fixed to compute many examples
and to determine the optimum point. It will, for example, assist with physical routing. It
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will be used to select the smallest point to find the shortest physical path. However, the
Lagrange dual function may be convenient for identifying several global solutions [86]. As
such, the LDF theorem depends on real equation samples [87]. To identify several local
points, the theorem would be formulated using a novel crossover operator. Thus, each
station should generate a gene for offspring from parent chromosome(s). The developed
alternative to the Conic Duality theory is called LDF theory. The Lagrangian Duality
Problem theory is more applicable to generic nonlinear limitations [88]. From the stationary
point in Equation (12), an offspring is derived in Equation (13) using the LDF theorem.

Offspring = L (x1 , x2, α) = f (x1, x2) − α g(x1, x2)= f (x1, x2)−∑n=2
i=1 α gi (x1, x2) (13)

For Offspring 1 : f (x1, x2) = (x1 − x2)
2 + (x2 − 1) 2

Subject to g1(x1, x2) = x1 + 2x2 − 1

g2(x1, x2) = 2x1 + x2 − 1

For Offspring 2 : f (x2, x1) = (x2 − x1)
2 + (x1 − 1) 2

Subject to g1(x2, x1) = x2 + 2x1 − 1

g2(x2, x1) = 2x2 + x1 − 1

Consequently, it is possible to generate Offspring1 and Offspring2 at the stationary
point by including Equation (13) if the Lagrangian Multiplayer has produced a random
value for (α) in the specified range according to the population-based generations crossover
rate. Therefore, we developed Equations (14) and (15).

Offspring1 = (x1 − x2)
2 + (x2 − 1) 2 − (α (x1 + 2x2 − 1) + α (2x1 + x2 − 1)) (14)

Offspring2 = (x2 − x1)
2 + (x1 − 1) 2 − (α (x2 + 2x1 − 1) + α (2x2 + x1 − 1)) (15)

In this case, the proposed standard for this crossover standard (LPX) is the same as
the real-coded crossover. It creates offspring solutions by inserting a sub-sequence from
one of the genomes into the parent, while the initial order would be as many point states
as reasonable, such as in the example calculated by Equations (14) and (15) to generate
new offspring, which is illustrated in Figure 19 as a modification sample crossover. While
x1 is indicated as Gene two G1 in chromosome one, x2 is indicated as Gene two G2 in
chromosome two when the stationary multiplier is defined randomly as (α = 0.2). In the
next section, the comparison results are improved heuristically and statistically.
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5. Results and Discussion

There are several standard benchmark test functions available to evaluate these stan-
dard operators and the performance of population-based algorithms. In Table 3, three test
functions are selected to analyze this newly introduced operator. However, classical test
functions are divided into unimodal modal test functions, multimodal test functions, and
composite test functions [89]. Each set of these test functions is used to benchmark certain
aspects of the algorithm. For determining the exploitation level and convergence of the
standards in the population algorithms, we select these three functions from the unimodal
test functions. LPX and BX are compared in the first part of this subsection as heuristic
evaluation results. The second part compares our standard operator with BX, SBX, and
Qubit-X [45,90] operators, while they are tested by LPB as a population-based algorithm
as part of exploitation and convergence results. A Wilcoxon Rank Sum test is used to test
all results statistically in the last part as statistical evaluation results. To determine the
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most appropriate solution, all of the results are affected by the random number value. We
illustrated the time consumed during processing to execute dynamic cost minimization.

Table 3. Three unimodal benchmark test functions [83].

TF Functions Range Dimension

TF1 F(x) =
n
∑

i=1
xi

2 [−100, 100] 10

TF3 F(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
[−100, 100] 10

TF7 F(X) = ∑n
i=1 ixi

4 + roundom [0, 1] [−1.28, 1.28] 10

5.1. Heuristic Evaluation Results

Using mathematical comparisons, this evaluation aimed to identify major usability and
performance problems with the standard operators. Tests achieved a total of 100 stochastic
generations (genes) for different pairs parents (chromosomes) with crossover rate values (α)
are 0.3, 0.5, and 0.7. This difference in random values assists newly proposed algorithms in
choosing the best range when selecting the values and achieving the best optima rapidly. Sev-
eral standards have been reviewed in the previous section, but the test focuses on BX and SBX
crossovers. As a result, these two standard heuristic results are compared with LPX results. In
addition, performance can be measured based on the statistical value produced. Based on the
random value, the more significant value is calculated according to the average, indicating
a superior outcome [91–93]. Based on crossovers, the outcomes of mathematical calcula-
tions from chromosome parents are used to generate a gene in chromosomal offspring [94].
The operation of the arithmetic process is found by applying Equations (4) and (5) for BX,
Equations (8) and (9) for SBX, and Equations (14) and (15) for LPX.

The test relies on three unimodal functions [95] based on a group of traditional bench-
mark functions to determine approval for each gene on a chromosome. The three-test
equation in the benchmarks for a single variable includes test function one (TF1), test
function three (TF3), and test function seven (TF7), as shown in Table 3 [96]. An algorithm
must avoid all local optimal solutions to reach the global optimum, and these sample
test functions can aid in mapping out a strategy for exploration. The single result has
statistically calculated the summation of generation on chromosome parent and then the
average (Mean) and standard deviation (STD) have been mentioned to compare all stan-
dards relying on alpha value (α) as a random value that will be generated during the steps
of the algorithm.

The Lagrangian functions look for new points in complex applications by searching
around the largest local optimum. As has been explained earlier, the Lagrange multiplier
method in mathematics is a technique for identifying the local maximum or minimum
value of an action that is subject to equality requirements. It is subject to the requirement
that the exact values of the variables chosen must satisfy one or more equations as has been
proved in LPX. Thus, Table 4 represents the results of the tests of summation, Mean, and
STD values for three standard operators by three test functions. For all values of alpha
(α), it is found that LPX is more powerful than BX and SBX. Although BX and SBX were
reasonable in previous generations, this seems such as a more reasonable option now. In
addition, results show that TF7 has high convergence and exploitation for all alpha values.
Similarly, LPX could be computed to show the ranking of social classes and stochastically
analyze metaheuristic algorithms [97].

Nevertheless, all standards were reasonable according to evolution’s invincible al-
gorithms. Thus, we proved two examples of the maximum and minimum genes on
chromosome parents for TF1 for three alpha values. The performance of BX and SBX in
TF1 is trivial, but LPX shows slightly better results. Moreover, LPX has demonstrated
maximum and minimum gene expression when compared to both BX and SBX standards.
Moreover, the process of convergence in LPX revealed that the relationships between gen-
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erations are higher than the other two crossover standards for all alpha values in TF3, even
though it showed the relationship between generations for maximum and minimum gene
values based on TF3. Based on TF7 results for all alpha values, LPX has a strangely high
result compared to BX and SBX. This is because they have defined and obtained maximum
genes and minimum genes. TF7 shows how the chromosome comparative results of the
divergent max and min genes are evaluated and highlighted. The frequency of subsequent
generations derived from the parent genes is represented on the Y axis in Figures 20–28.
This is because there are different max and min genes on each chromosome, which are used
to evaluate the comparison results. Ultimately, the heuristic evaluation results indicate that
the LPX frequencies are rapidly maximized for these three test functions.

Table 4. The performance result test for selected crossover standards with LPX.

Standards BX SBX LPX

α Test Functions Sum Mean STD Sum Mean STD Sum Mean STD

0.2

TF1 42.36 0.42 0.30 31.37 0.31 0.32 1737.56 17.38 17.09

TF3 60.00 0.60 0.66 60.00 0.60 0.66 3197.01 31.97 31.27

TF7 779.24 7.79 10.78 487.58 4.88 9.52 1,937,510.53 19,375.11 33,631.08

0.5

TF1 30.00 0.30 0.30 38.58 0.39 0.30 2776.00 27.76 26.17

TF3 60.00 0.60 0.66 60.00 0.60 0.66 5273.89 52.74 50.06

TF7 461.88 4.62 9.41 661.72 6.62 10.21 4,348,187.50 43,481.88 64,658.48

0.7

TF1 35.49 0.35 0.31 46.82 0.47 0.30 3648.64 36.49 34.78

TF3 60.00 0.60 0.66 60.00 0.60 0.66 7019.17 70.19 67.65

TF7 579.02 5.79 9.88 941.45 9.41 11.81 7,300,002.73 73,000.03 109,185.64
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5.2. Exploitation and Convergence Evaluation Results

The effectiveness of the LPX has been assessed using a range of experiments. These
studies are designed differently to examine the behaviors of the LPX and reflect both its
qualitative and quantitative characteristics. LPX’s exploitation capabilities and convergence
behavior for solving problems are demonstrated through a qualitative analysis that employs
exploration and average fitness values. For this purpose, we choose the recently developed
population algorithm LPB, which is mentioned in the previous section. In the quantitative
analysis, the proposed LPX has been compared with other standard crossovers such as
BX, SBX, and Qubit-X. We have also selected three classical test functions in Table 3. The
effectiveness was evaluated by testing escape ability from local optima, and convergence
speed by summing the elapsed time to obtain the fitness point. The novelty of this study
lies in its proving the effectiveness of the random value; therefore, three different random
values for each test function have been selected. Over 500 iterations, each standard with a
different random value is tested with the LPB algorithm, which is executed 30 times using
80 search agents. The sum, STD, and processing time are calculated. The LPX metrics,
sum, and STD are rated first or second on almost all three test functions. Due to the results
and convergence in the fastest time calculations; thus, bold results are shown in Table 5.
Specifically, the comparison of the LPX standard’s unimodal test functions compared to
others at TF7 and all random values showed that LPX had a faster rate of exploitation
and convergence. Moreover, the execution time for LPX is marginally faster than TF7
calculations. In addition, if the random value is near (0.5) during TF3, LPX is the most
optimal rate of convergence and exploitation.

Table 5. The crossover operator’s comparison results of classical test functions.

Test
Fun. α

LPX SBX BX Qubit-X

Mean STD Time
(S.) Mean STD Time

(S.) Mean STD Time
(S.) Mean STD Time

(S.)

TF1

0.2 0.0635 0.0184 141.740 0.01751 0.0236 161.423 0.04428 0.0446 150.384 0.1758 0.0926 144.474

0.5 0.0680 0.0281 149.798 0.04161 0.0270 162.160 0.04178 0.0323 157.700 0.1411 0.0510 151.992

0.7 0.0596 0.0279 151.112 0.02959 0.0172 188.501 0.04150 0.0294 163.809 0.1425 0.1045 157.042

TF3

0.2 43.5652 24.8093 159.289 83.37500 59.0221 178.260 41.60497 28.4041 169.970 120.7210 73.2963 164.986

0.5 40.4260 26.2073 165.144 78.18210 52.1304 161.057 52.58699 37.7840 169.130 175.6268 119.6147 165.608

0.7 66.7197 58.8220 164.711 85.92191 71.4473 180.216 50.67240 49.2447 167.669 81.3198 52.6167 164.450

TF7

0.2 0.0048 0.0031 143.005 0.01351 0.0188 153.884 0.00624 0.0045 156.457 0.0076 0.0043 160.718

0.5 0.0049 0.0027 152.029 0.00770 0.0066 164.322 0.00616 0.0029 162.973 0.0094 0.0051 147.530

0.7 0.0052 0.0033 157.893 0.00773 0.0056 164.504 0.00709 0.0042 163.520 0.0123 0.0064 155.061



Systems 2023, 11, 144 21 of 26

5.3. Statistical Evaluation Results

The optimization algorithms are stochastic, thus several non-parametric statistical
tests, including Wilcoxon signed-rank sum, and analysis of variance (ANOVA) can be used
to quantitatively examine the algorithms’ overall performance. Before using a standard
to solve optimization problems, its applicability should be determined statistically. The
comparison is conducted only between LPX with SBX and LPX with BX standards by the
Wilcoxon signed-rank sum test in Table 6. The LPX results are considered significant and
thus rejected null hypnosis in all statistical tests; all p-value are smaller than 0.05.

Table 6. The Wilcoxon rank sum test (p-value) between crossovers operator for random generations.

Test Functions α
Standards

LPX vs. SBX LPX vs. BX

TF1

0.2 3.6746 × 10−16 5.3124 × 10−16

0.5 4.7409 × 10−17 4.0951 × 10−17

0.7 4.7409 × 10−17 3.8618 × 10−17

TF3

0.2 8.5768 × 10−16 8.5768 × 10−16

0.5 9.5355 × 10−17 9.5355 × 10−17

0.7 8.2482 × 10−17 8.2482 × 10−17

TF7

0.2 1.6983 × 10−16 2.6103 × 10−16

0.5 4.0951 × 10−17 3.2378 × 10−17

0.7 3.2378 × 10−17 2.0802 × 10−17

Based on Table 7, the Wilcoxon rank sum test was used to determine the statistical
result (p-value) for all crossover operators with LPX. Qubit-X means significant results
for all three test functions except TF2 (α = 0.7), which is insignificant and rejects the null
hypothesis. Moreover, significant results with SBX have been determined for all test
functions for all values without (α = 0.7) for TF3 and TF7. In addition, the significant value
of LPX with the BX standard is significant for TF1 for all alpha values. This is due to a
lower value than 0.05.

Table 7. The Wilcoxon rank sum test (p-value) between standards for the LPB algorithm.

Test Functions α
Standards

LPX vs. SBX LPX vs. BX LPX vs. Qubit-X

TF1

0.2 0.000031 0.002415 0.000005

0.5 0.000241 0.001965 0.000002

0.7 0.00042 0.015658 0.000031

TF3

0.2 0.002765 0.517048 0.000002

0.5 0.006836 0.318491 0.000002

0.7 0.328571 0.393334 0.271155

TF7

0.2 0.000716 0.298944 0.009271

0.5 0.044919 0.085896 0.000664

0.7 0.071903 0.057096 0.000058

6. Conclusions

In conclusion, the most evolutionary metaheuristic algorithm is based on efficient
computation techniques that are applied effectively to different problems. Encoding tech-
niques and standard operators, particularly crossover operators for enhanced metaheuristic
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optimization, have been responsible for determining their outcomes. In this research, sev-
eral crossover standards have been collected to assist researchers in obtaining an effective
crossover operator and selecting a global solution to the problem. The majority of them were
easy to calculate; thus, the calculation was faster, as illustrated. In addition, they allowed
for the production of a wide range of offspring from two parameters as determined by two
parent values. In addition, the study provided an improved standard option crossover
operator to assist in the enhancement of novel mathematical evolutionary algorithms.

In this study, standard crossover operators such as binary-coded crossover, real-coded
crossover (floating point), and order-coded problem crossover were mathematically and
systematically reviewed. Then, we recommend the optimum crossover standard operator,
and LPX has been discovered to be a novel mathematical approach to crossover standards.
The LPX is derived from the LDF theorem, which is based on the stationary Lagrange
multiplier. Additionally, the capability of the technique was evaluated heuristically for
the generation of parent chromosomes and compared with BX and SBX. LPX has the most
impressive performance in terms of rate of exploitation and convergence fitness for selected
random values. In this manner, these random values assist in selecting the most appropriate
range when generating newly developed population-based populations. Moreover, we
evaluated LPX results by LPB as a metaheuristic algorithm when LPX, SBX, BX, and Qubit-
X were determined by all algorithms. Most test functions have reasonable convergence in
the exploitation evaluation for selected random values. Finally, most statistical results for
LPX with other standards have proved the significant hypothesis.

In future works, the researcher can evaluate LPX by comparing it with other standard-
ized crossover techniques based on binary form, real-code form, or order-coded problem
methods for crossover, and it will be proved by comparison with more test functions such as
two-dimensional test functions. LPX may be determined with functional tests that illustrate
multimodal test functions and composite test functions. From another perspective, the
researchers improved a novel evolutionary metaheuristic algorithm based on populations
through single-objective optimization or multi-objective optimization [98,99]. Moreover,
LPX equations will be improved based on algorithms such as frequency-modulated synthe-
sis with multi-parent crossover [100] in the Ant Nesting Algorithm [101], Child Drawing
Development Optimization [102], and Capuchin Search Algorithm [103]. Thus, LPX asserts
that it can deliver the most effective fitness solution. Several research studies by heuristic
suggest that large-scale structural optimization, modified to evaluate several strategies
pooled with programming techniques, can be used for quantitative appraisal in compli-
ance with enforcement learning [104–106]. As a result, LPX might be used for evaluating
time-scales in heuristic game problems such as A* or (BA*) search algorithms [107].
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