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Abstract: This paper investigates single-machine scheduling with a deteriorating maintenance
activity, where the processing time of a job depends on whether it is handled before or after the
maintenance activity. Under common and slack due date assignments, the aim is to find the optimal
job schedule, position of the maintenance activity, and optimal value of the common due date
(flow-allowance) so that the linear weighted sum of earliness, tardiness and common due date
(flow-allowance) value is minimized, where the weights are location-dependent (position-dependent)
weights. Through a series of optimal properties, a polynomial time algorithm is proposed and it is
then proven that the problem is polynomially solvable.

Keywords: scheduling; maintenance activity; common due date; common flow-allowance; slack due
date; location-dependent weights

1. Introduction

Traditional scheduling problems consider that the machine is always available, while
actually, if a maintenance (rate-modifying) activity is carried out on the machine, it becomes
unavailable, and it reverts to its original condition after the maintenance activity is finished
(see Lee and Leon [1]; Ma et al. [2]; Strusevich and Rustogi [3]). In 2006, Mosheiov and
Oron [4] considered single-machine scheduling with a rate-modifying activity (denoted
rma). Under the common due-date (denoted CON) assignment, the goal is to minimize the
total earliness, tardiness and due-date cost. They proved that the problem can be solved in
polynomial time. In 2010, Wang and Wang [5] addressed single-machine scheduling with
rma and slack due-date (denoted SLK) assignment. They showed that the non-regular ob-
jective minimization is polynomially solvable. In 2012, Yin et al. [6] studied single-machine
batch delivery scheduling with the rma and CON assignment, with the goal of minimizing
the sum of earliness, tardiness, due-date, holding and delivery cost. They proved that some
special cases of the problem can be solved in polynomial time. In 2014, Bai et al. [7] studied
the single-machine problem with deteriorating jobs and rma. Under the SLK allocation, the
objective is to minimize the weighted sum of earliness, tardiness and the common flow
allowance cost. They showed that the problem is polynomially solvable. In 2018, Cheng
et al. [8] discussed single-machine batch problems with variable maintenance activities. For
the minimization of makespan (total completion time), they demonstrated that the problem
can be solved in polynomial time in a special case. In 2019, Detti et al. [9] addressed the
single-machine problem with a flexible maintenance activity. In 2021, Wang et al. [10]
considered the single-machine problem with rma and a common due-window. For the
generalized earliness/tardiness penalties, they showed that the problem is polynomially
solvable. In 2022, Zhao et al. [11] studied the single-machine resource allocation problem
with an aging effect as well as rma and SLK assignment. In 2023, Sun et al. [12] delved
into single-machine scheduling with worsening effects. With the maintenance activity, they
showed that some regular objective minimizations are polynomially solvable. For total
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weighted completion time minimization, they suggested several heuristic and branch-and-
bound algorithms. In addition, in 2014, Ji et al. [13] and Fan and Zhao [14] considered
due-date assignment scheduling with a deteriorating maintenance activity (denoted dma),
i.e., the maintenance duration (time) is a linear deteriorating function of the starting time of
this maintenance activity. In 2015, Mor and Mosheiov [15] studied single-machine schedul-
ing with dma. Under the due-window assignment, they proved that some non-regular
minimizations can be solved in polynomial time. In 2017, Li and Chen [16] investigated the
single-machine problems with job-rejection and dma, and they showed that the makespan,
total completion time and due-date assignment minimizations are polynomially solvable.
Zhu et al. [17] explored single-machine scheduling with a general (including worsening and
resource-dependent) maintenance activity. They showed that the problem can be solved
in polynomial time for a number of regular and non-regular objectives. Wang et al. [18]
addressed identical parallel machine scheduling with dma. They illustrated that the total
completion time minimization can be solved in polynomial time. More recent papers which
have studied scheduling problems with rma and dma include He et al. [19], Jia et al. [20],
liu et al. [21] and Zou et al. [22].

At the same time, in modern manufacturing, more and more industries are adopting
due-date assignment systems (see Gordon et al. [23,24], Qian and Zhan [25], Lu et al. [26],
Wang [27]) and location-dependent (position-dependent) weights (Brucker [28], Liu et al. [29],
Wang et al. [30], Wang et al. [31]). Recently, Jiang et al. [32] investigated proportionate flow-
shop problems with location-dependent weights. Under the CON and SLK assignments,
they showed that the non-regular objective minimization is polynomially solvable (i.e.,
time is O(n2 log n), where n is the number of jobs). Liu et al. [33] studied single-machine
scheduling with resource allocation, worsening jobs and location-dependent weights. Un-
der the CON and SLK assignments, they provided a bi-criteria analysis for the scheduling
cost (including the weighted sum of the absolute value in lateness and common due date
(flow-allowance) cost) and the resource consumption cost. They proved that three ver-
sions of these two costs can be solved in polynomial time. In 2021, Lv and Wang [34]
considered the same problems as Jiang et al. [32], and they demonstrated that both prob-
lems can be addressed by using a lower-order algorithm (i.e., time is O(n log n)). Wang
et al. [35] and Wang et al. [36] investigated single-machine scheduling with setup times
associated with past sequences and weights related to location. Under the CON and SLK
assignments, Wang et al. [35] demonstrated that the weighted sum of earliness, tardiness
and due-date cost minimization is polynomially solvable. Wang et al. [36] demonstrated
that the weighted sum of lateness, number of early and delayed jobs, and due-date cost
minimization is also polynomially solvable.

In real production processes, the location-dependent (position-dependent) weights
can be found in services and logistics systems (e.g., in Didi taxi dispatching, Sun et al. [37]).
Hence, the work of CON (SLK) assignment and dma will be continued by considering
the location-dependent weights, i.e., we investigate single-machine due-date assignment
scheduling with dma and location-dependent weights. Under the CON and SLK assign-
ments, the aim of the article is to find the job schedule, location of the maintenance activity,
and optimal value of common due-date (flow-allowance) so as to minimize the linear
weighted sum of the earliness, tardiness and due date assignment costs, where the weights
are related to the location. We demonstrate that the problem can be solved in polynomial
time, i.e., time complexity is O(n4). For a comparison with other similar papers (see Table 1;
the related symbols are given later), this article extends the results of Mosheiova and
Oron [4], Wang and Wang [5], Brucker [28], and Liu et al. [29], by scrutinizing a more
general scheduling model. The rest of this article is structured as below. In Section 2,
we introduce the problem. In Sections 3 and 4, we explore the main details of common
due-date and slack due-date assignments. In Section 5, an example and computational
experiments are reported to verify the effectiveness of the algorithms. Section 6 presents
the conclusion of the problem.
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Table 1. Summary of CON and SLK results.

Problem Complexity Ref.

1|CON, bi = pi|
n
∑

i=1
(µi Ẽ[i] + µi L̃[i] + ω0dopt) O(n log n) Brucker [28]

1|SLK, bi = pi|
n
∑

i=1
(µi Ẽ[i] + µi L̃[i] + ω0qopt) O(n log n) Liu et al. [29]

1
∣∣∣Spsd, CON, bi = pi

∣∣∣ n
∑

i=1
(µi Ẽ[i] + µi L̃[i] + ω0dopt) O(n log n) Wang et al. [36]

1
∣∣∣Spsd, SLK, bi = pi

∣∣∣ n
∑

i=1
(µi Ẽ[i] + µi L̃[i] + ω0qopt) O(n log n) Wang et al. [36]

1|rma, CON, bi = (pi, εi pi)|
n
∑

i=1
(µ0Ẽ[i] + ν0 L̃[i] + ω0dopt) O(n4) Mosheiova and Oron [4]

1|rma, SLK, bi = (pi, εi pi)|
n
∑

i=1
(µ0Ẽ[i] + ν0 L̃[i] + ω0qopt) O(n4) Wang and Wang [5]

1|dma, CON, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωidopt) O(n4) Theorem 1

1|dma, SLK, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωiqopt) O(n4) Theorem 2

2. Problem Description

In this article, the problem can be described as: n independent jobs {Ť1, Ť2, . . . , Ťn}
can be usable at time 0 for handling on a single-machine and they are not preemptive. The
machine stops working when a maintenance activity is being carried out, if the job Ťi is
handled before the maintenance activity, the corresponding normal processing time (i.e.,
basic processing time that is not affected by other factors) is defined as pi, and its actual
processing time is bi = pi. If the job Ťi is processed after the maintenance activity, the
corresponding actual processing time is defined as bi = εi pi, where εi is the modified rate
of the job Ťi, and it satisfies 0 < εi ≤ 1. Meanwhile, the machine only has a deteriorating
maintenance activity, and its maintenance time is: ϕ(t) = t0 + αSt, where t0 is the basic
maintenance time, α > 0 is the rate of deterioration, and St is the starting time of dma. We
consider two different types of due-dates that include CON and SLK. As for the CON
model, all the jobs have the same due date, i.e., di = dopt, in which dopt is a decision
variable. For the SLK model, the due date di of job Ťi is equivalent to the sum of the actual
processing time bi and the common flow-allowance qopt, i.e., di = bi + qopt, and the common
flow-allowance qopt is a decision variable. For a known schedule σ, the completion (resp.
starting) time of the job Ťi is Ci (resp. Si), the earliness (resp. tardiness) cost of the job Ťi is
Ẽi = max{0, di − Ci} (resp. L̃i = max{0, Ci − di}). Let [i] be the job being arranged at the
ith position in the schedule, then our goal is: (1) to determine the optimal job schedule; (2) to
determine where to carry out the maintenance activity of the machine; (3) to determine
the value of the common due date and the common flow-allowance; (4) to minimize the

objective function: Ż =
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωidopt) and Z̈ =

n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωiqopt),

where µi, νi, ωi are weights of the ith location in a schedule, i.e., the weights are the location-
dependent weights rather than the weights connected with the job Ťi. With three-field
notation, the scheduling can be expressed as:

1|dma, CON, bi = (pi, εi pi)|
n

∑
i=1

(µi Ẽ[i] + νi L̃[i] + ωidopt); (1)

1|dma, SLK, bi = (pi, εi pi)|
n

∑
i=1

(µi Ẽ[i] + νi L̃[i] + ωiqopt). (2)
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3. Results of CON

Assuming that the maintenance activity occurs exactly before the job Ť[i], its starting
time is equivalent to the completion time of the job Ť[i−1], i.e., St = C[i−1]. For the sake of
simplicity, let j be the location of the maintenance activity.

Lemma 1. If C[i] ≥ dopt, then C[i+1] ≥ dopt, if C[i] ≤ dopt, then C[i−1] ≤ dopt.

Proof. For a given schedule σ, if C[i] ≥ dopt, we can get C[i] ≥ dopt ⇔ C[i+1] − b[i+1] ≥
dopt ⇒ C[i+1] ≥ dopt. Similarly, if C[i] ≤ dopt, we can also get C[i] ≤ dopt ⇔ C[i−1] + b[i] ≤
dopt ⇒ C[i−1] ≤ dopt.

From Lemma 1, it can be seen that the jobs before the job Ť[i] are the early jobs, and
the jobs after the job Ť[i] are the late jobs.

Lemma 2. For a known schedule σ = (Ť[1], Ť[2], . . ., Ť[n]), the optimal value of the common due
date dopt is equal to the completion time of the hth job, i.e., dopt = C[h], where h satisfies both(

h

∑
i=1

µi −
n

∑
i=h+1

νi +
n

∑
i=1

ωi

)
≥ 0 and

(
h−1

∑
i=1

µi −
n

∑
i=h

νi +
n

∑
i=1

ωi

)
≤ 0.

Proof. See Appendix A.

Remark 1. For a given schedule, if h satisfies both the above inequalities, the optimal common due
date can be determined by Lemma 2. But h may not meet the above both inequalities, so we need to
set dopt = 0.

Lemma 3 (Hardy et al. [38]). For
n
∑

i=1
ξi ηi, if the sequence {ξ1, . . . , ξn} is in non-decreasing

order and the sequence {η1, . . . , ηn} is in non-increasing order, or vice versa, it is the smallest.

Next, we consider the problem 1|dma, CON, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωidopt).

Under Lemmas 1–3, the following cases should be considered.

Case 1. If j ≤ h, the schedule is shown in Figure 1.

Ť[1] Ť[2] . . . Ť[j−1] dma . . . Ť[h] . . . Ť[n]
p
[1] p

[2] . . . p
[j−1] ϕ(t) . . . ε [h] p

[h] . . . ε [n] p
[n]

Figure 1. If j ≤ h.

Where dopt = C[h] =
j−1
∑

i=1
p
[i] + ϕ(t) +

h
∑
i=j

ε [i] p
[i] and ϕ(t) = t0 +α

j−1
∑

i=1
p
[i]. Then the

objective function is expressed as
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Ż([j]) =
n

∑
i=1

(µi Ẽ[i]+ νi L̃[i] + ωi dopt)

=
h

∑
i=1

µi

(
C[h]−C[i]

)
+

n

∑
i=h+1

υi

(
C[i]−C[h]

)
+

n

∑
m=1

ωm · C[h]

= t0

j−1

∑
m=1

µm + α
j−1

∑
i=1

p
[i]

(
j−1

∑
m=1

µm

)
+

h

∑
i=j

ε [i] p
[i]

(
j−1

∑
m=1

µm

)
+

j−1

∑
i=1

p
[i]

(
i−1

∑
m=1

µm

)

+
h

∑
i=j

ε [i] p
[i]

(
i−1

∑
m=j

µm

)
+

n

∑
i=h+1

ε [i] p
[i]

(
m

∑
m=i

νm

)
+

j−1

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)

+ t0

n

∑
m=1

ωm + α
j−1

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)
+

h

∑
i=j

ε [i] p
[i]

(
n

∑
m=1

ωm

)

=
j−1

∑
i=1

p
[i]

(
α

j−1

∑
m=1

µm +
i−1

∑
m=1

µm +
n

∑
m=1

ωm + α
n

∑
m=1

ωm

)
+

h

∑
i=j

ε [i] p
[i]

(
i−1

∑
m=1

µm +
n

∑
m=1

ωm

)

+
n

∑
i=h+1

ε [i] p
[i]

(
n

∑
m=i

υm

)
+ t0

(
j−1

∑
m=1

µm +
n

∑
m=1

ωm

)
= Ż1([j]) + f1(t0) (3)

where f1(t0) = t0

(
j−1
∑

m=1
µm +

n
∑

m=1
ωm

)
is a constant (if j is given),

Ż1([j]) =
j−1

∑
i=1

p
[i]

(
α

j−1

∑
m=1

µm +
i−1

∑
m=1

µm +
n

∑
m=1

ωm + α
n

∑
m=1

ωm

)

+
h

∑
i=j

ε [i] p
[i]

(
i−1

∑
m=1

µm +
n

∑
m=1

ωm

)
+

n

∑
i=h+1

ε [i] p
[i]

(
n

∑
m=i

υm

)
(4)

is only related to the location j of the maintenance activity. Therefore, for a known j,
minimizing Ż([j]) is equivalent to minimizing Ż1([j]). Let

λil =



pi

(
α

j−1
∑

m=1
µm +

l−1
∑

m=1
µm +

n
∑

m=1
ωm + α

n
∑

m=1
ωm

)
1 ≤ l ≤ j− 1

εi pi

(
l−1
∑

m=1
µm +

n
∑

m=1
ωm

)
j ≤ l ≤ h (5)

εi pi
n
∑

m=l
υm h + 1 ≤ l ≤ n

Ż1([j]) can be minimized by solving the next assignment problem:

Min Ż1([j]) =
n

∑
i=1

n

∑
l=1

λil βil

s.t
n

∑
i=1

βil = 1 l = 1, . . . , n

n

∑
l=1

βil = 1 i = 1, . . . , n (6)

βil = 0 or 1 1 ≤ i, l ≤ n

where βil is a 0 or 1 variable, if the job Ťi is at location l, βil = 1, otherwise βil = 0.
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Case 2. If j > h, the schedule is shown Figure 2.

Ť[1] Ť[2] . . . Ť[h] . . . Ť[j−1] dma . . . Ť[n]
p
[1] p

[2] . . . p
[h] . . . p

[j−1] ϕ(t) . . . ε [n] p
[n]

Figure 2. If j > h.

Where dopt = C
[h] =

h
∑

i=1
p
[i], and ϕ(t) = t0 +α

j−1
∑

i=1
p
[i]. Then the objective function is

expressed as

Ż([j]) =
n

∑
i=1

(µi Ẽ[i]+ υi L̃[i] + ωi dopt)

=
h

∑
i=1

µi

(
C[h]−C[i]

)
+

j−1

∑
i=h+1

υi

(
C[i]−C[h]

)
+

n

∑
i=j

υi

(
C[i]−C[h]

)
+

n

∑
i=1

ωi

(
h

∑
i=1

p
[i]

)

=
h

∑
i=1

p
[i]

(
i−1

∑
m=1

µm

)
+

j−1

∑
i=h+1

p
[i]

(
j−1

∑
m=i

υm

)
+

j−1

∑
i=h+1

p
[i]

(
n

∑
m=j

υm

)

+ t0

n

∑
m=j

υm +
j−1

∑
i=1

p
[i]

(
α

n

∑
m=j

υm

)
+

n

∑
i=j

ε [i] p
[i]

(
n

∑
m=i

υm

)
+

h

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)

=
h

∑
i=1

p
[i]

(
i−1

∑
m=1

µm + α
n

∑
m=j

υm +
n

∑
m=1

ωm

)
+

j−1

∑
i=h+1

p
[i]

(
n

∑
m=i

υm + α
n

∑
m=j

υm

)

+
n

∑
i=j

ε [i] p
[i]

(
n

∑
m=i

υm

)
+ t0

n

∑
m=j

υm

= Ż2([j]) + f2(t0) (7)

where f2(t0) = t0
n
∑

m=j
υm is only related to t0 and it is a constant,

Ż2([j]) =
h

∑
i=1

p
[i]

(
i−1

∑
m=1

µm + α
n

∑
m=j

υm +
n

∑
m=1

ωm

)
j−1

∑
i=h+1

p
[i]

(
n

∑
m=i

υm + α
n

∑
m=j

υm

)
+

n

∑
i=j

ε [i] p
[i]

(
n

∑
m=i

υm

)
(8)

is only related to the location j of the maintenance activity. Similarly to Case 1 (i.e., j ≤ h), let

δil =



pi

(
l−1
∑

m=1
µm + α

n
∑

m=j
υm +

n
∑

m=1
ωm

)
1 ≤ l ≤ h

pi

(
n
∑

m=l
υm + α

n
∑

m=j
υm

)
h + 1 ≤ l ≤ j− 1 (9)

εi pi
n
∑

m=l
υm j ≤ l ≤ n

then, the problem can be translated into the assignment problem below:

Min Ż2([j]) =
n

∑
i=1

n

∑
l=1

δil γil

s.t
n

∑
i=1

γil = 1 l = 1, . . . , n
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n

∑
l=1

γil = 1 i = 1, . . . , n (10)

γil = 0 or 1 1 ≤ i, l ≤ n

where γil is a 0 or 1 variable, when the job Ťi is at position l, γil = 1, otherwise γil = 0.

Case 3. If j = n + 1, the schedule is shown Figure 3.

Ť[1] Ť[2] . . . Ť[h] . . . Ť[n] dma
p
[1] p

[2] . . . p
[h] . . . p

[n] ϕ(t)

Figure 3. If j = n + 1.

where dopt = C
[h] =

h
∑

i=1
p
[i] and ϕ(t) = t0 +α

n
∑

i=1
p
[i]. This means that there is no

maintenance activity on the machine. In this case, the objective function is

Ż([n + 1]) =
n

∑
i=1

(µi Ẽ[i]+ υi L̃[i] + ωi dopt)

=
h

∑
i=1

µi

(
C[h]−C[i]

)
+

n

∑
i=h+1

υi

(
C[i]−C[h]

)
+

n

∑
i=1

ωi

(
h

∑
i=1

p
[i]

)

=
h

∑
i=1

p
[i]

(
i−1

∑
m=1

µm

)
+

n

∑
i=h+1

p
[i]

(
n

∑
m=i

υm

)
+

h

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)

=
h

∑
i=1

p
[i]

(
i−1

∑
m=1

µm +
n

∑
m=1

ωm

)
+

n

∑
i=h+1

p
[i]

(
n

∑
m=i

υm

)

=
n

∑
i=1

p
[i] πi (11)

where

πi =


i−1
∑

m=1
µm +

n
∑

m=1
ωm 1 ≤ i ≤ h

n
∑

m=i
υm h + 1 ≤ i ≤ n (12)

The optimal schedule σ as well as the minimum value of Ż can be acquired by matching
the minimum weight πi with the maximum processing time pi by using HLP rule (see
Lemma 3).

Case 4. if j = 1, the schedule is shown Figure 4.

dma Ť[1] Ť[2] . . . Ť[h] . . . Ť[n]
ϕ(t) ε [1] p

[1] ε [2] p
[2] . . . ε [h] p

[h] . . . ε [n] p
[n]

Figure 4. If j = 1.

where dopt = C
[h] =

h
∑

i=1
ε [i] p

[i] + ϕ(t), and ϕ(t) = t0. This means that the maintenance

activity occurs before the jobs are processed. In this case, the objective function is
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Ż([1]) =
n

∑
i=1

(µi Ẽ[i]+ υi L̃[i] + ωi dopt)

=
h

∑
i=1

µi

(
C[h]−C[i]

)
+

n

∑
i=h+1

υi

(
C[i]−C[h]

)
+

h

∑
i=1

ε [i] p
[i]

(
n

∑
m=1

ωm

)
+ t0

n

∑
m=1

ωm

=
h

∑
i=1

ε [i] p
[i]

(
i−1

∑
m=1

µm

)
+

n

∑
i=h+1

ε [i] p
[i]

(
n

∑
m=i

υm

)
+

h

∑
i=1

ε [i] p
[i]

(
n

∑
m=1

ωm

)
+ t0

n

∑
m=1

ωm

=
h

∑
i=1

ε [i] p
[i]

(
i−1

∑
m=1

µm +
n

∑
m=1

ωm

)
+

n

∑
i=h+1

ε [i] p
[i]

(
n

∑
m=i

υm

)
+ t0

n

∑
m=1

ωm

=
n

∑
i=1

ε [i] p
[i] πi + f3(t0) (13)

where f3(t0) = t0
n
∑

m=1
ωm is only related to t0 and it is a constant. Similarly, the optimal

schedule of this case can be obtained through Lemma 3.

From the above cases, the optimal solution of the problem 1|dma, CON, bi = (pi, εi pi)|
n
∑

i=1

(µi Ẽ[i] + νi L̃[i] + ωidopt) can be obtained by using the following algorithm.

Theorem 1. The optimal solution of 1|dma, CON, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωidopt)

can be obtained in O
(
n4) time by using Algorithm 1.

Proof. The correctness of Algorithm 1 follows from the above analysis. For each j, the
complexity of the assignment problem is O

(
n3), and it takes n − 1 times. So the time

complexity of Algorithm 1 is O
(
n4).

Algorithm 1: Solution of 1|dma, CON, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωidopt)

Initialization: Let Ż = ∞, σ̇∗ = 0, d∗opt = 0 and j∗ = 0.
Step 1: Calculate h from Lemma 2.
Step 2: For j = 1→ n + 1

If j ≤ h, then
obtain the minimum value Ż([j]) and the schedule σ̇ by using (3)–(6);

If Ż([j]) < Ż, then
let Ż = Ż([j]), j∗ = j, d∗opt = dopt and σ̇∗ = σ̇;

If j > h, then
obtain the minimum value Ż([j]) and the schedule σ̇ by using (7)–(10);

If Ż([j]) < Ż, then
let Ż = Ż([j]), j∗ = j, d∗opt = dopt and σ̇∗ = σ̇;

If j = n + 1, then
acquire the optimal value of Ż = Ż([n + 1]) and the schedule σ̇∗ by
the HLP rule;
Calculate d∗opt;

If j = 1, then
obtain the optimal value of Ż = Ż([1]) and the schedule σ̇∗ by the HLP rule;
Calculate d∗opt.

Step 3: Choose the minimum value Ż∗ = min{Ż[j], j = 1, 2, . . . , n + 1}, and obtain the
corresponding schedule σ̇∗, d∗opt and j∗.
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4. Results of SLK

Lemma 4. If C[i] ≥ d[i], then C[i+1] ≥ d[i+1], if C[i] ≤ d[i], then C[i−1] ≤ d[i−1].

Proof. For a given schedule σ, under the SLK model, we have d[i] = b[i] + qopt. If
C[i] ≥ d[i], we can get C[i] ≥ d[i] ⇔ C[i−1] + b[i] ≥ b[i] + qopt ⇒ C[i−1] + b[i] ≥ qopt ⇔
C[i−1] + b[i] + b[i+1] ≥ qopt + b[i+1] ⇔ C[i] + b[i+1] ≥ d[i+1], i.e., C[i+1] ≥ d[i+1]. Similarly,
if C[i] ≤ d[i], we can also get C[i] ≤ d[i] ⇔ C[i−1] + b[i] ≤ b[i] + qopt ⇔ C[i−1] ≤ qopt ⇒
C[i−1] ≤ qopt + b[i−1], i.e., C[i−1] ≤ d[i−1].

Lemma 5. For a given schedule σ = (Ť[1], Ť[2], . . ., Ť[n]), the optimal value of the common flow-
allowance qopt is decided by the start time of the hth job, i.e., qopt = S[h], where h satisfies both(

h

∑
i=1

µi −
n

∑
i=h+1

νi +
n

∑
i=1

ωi

)
≥ 0 and

(
h−1

∑
i=1

µi −
n

∑
i=h

νi +
n

∑
i=1

ωi

)
≤ 0.

Proof. Similar to the proof of Lemma 2.

Remark 2. Similarly, if h does not meet the above both inequalities, we need to set qopt = 0.

Next, we investigate the problem 1|dma, SLK, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] +ωiqopt).

Under Lemmas 3–5, the following cases will be considered.

Case 5. If j ≤ h, the schedule is identical to Case 1, where qopt = S[h] =
j−1
∑

i=1
p
[i] + ϕ(t) +

h−1
∑
i=j

ε [i] p
[i] and ϕ(t) = t0 +α

j−1
∑

i=1
p
[i]. Then the objective function is expressed as

Z̈([j]) =
n

∑
i=1

(µi Ẽ[i] + νi L̃[i] + ωi qopt)

=
h

∑
i=1

µi

(
d[i]−C[i]

)
+

n

∑
i=h+1

υi

(
C[i]− d[i]

)
+

n

∑
i=1

ωi qopt

= t0

j−1

∑
m=1

µm +
j−1

∑
i=1

p
[i]

(
α

j−1

∑
m=1

µm

)
+

h−1

∑
i=j

ε [i] p
[i]

(
j−1

∑
m=1

µm

)
+

j−1

∑
i=1

p
[i]

(
i

∑
m=1

µm

)

+
h−1

∑
i=j

ε [i] p
[i]

(
i

∑
m=j

µm

)
+

n

∑
i=h

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
+

j−1

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)

+ t0

n

∑
m=1

ωm +
j−1

∑
i=1

p
[i]

(
α

n

∑
m=1

ωm

)
+

h−1

∑
i=j

ε [i] p
[i]

(
n

∑
m=1

ωm

)

=
j−1

∑
i=1

p
[i]

(
α

j−1

∑
m=1

µm +
i−1

∑
m=1

µm +
n

∑
m=1

ωm + α
n

∑
m=1

ωm

)
+

h−1

∑
i=j

ε [i] p
[i]

(
i

∑
m=1

µm +
n

∑
m=1

ωm

)

+
n

∑
i=h

ε [i] p
[i]

(
n

∑
m=i+1

υm

)
+ t0

(
j−1

∑
m=1

µm +
n

∑
m=1

ωm

)
= Z̈3([j]) + f1(t0) (14)

where f1(t0) is the same as it in Case 1, and
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Z̈3([j]) =
j−1

∑
i=1

p
[i]

(
i−1

∑
m=1

µm + α
j−1

∑
m=1

µm +
n

∑
m=1

ωm + α
n

∑
m=1

ωm

)

+
h−1

∑
i=j

ε [i] p
[i]

(
i

∑
m=1

ωm +
n

∑
m=1

ωm

)
+

n

∑
i=h

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
(15)

is only related to the position of j. Therefore, for a known j, minimizing Z̈([j]) is identical
to minimizing Z̈3([j]), and Z̈3([j]) can be minimized by resolving the assignment problem.
Let ρil represent the weight of job Ťi at location l, i.e.,

ρil =



pi

(
l−1
∑

m=1
µm + α

j−1
∑

m=1
µm +

n
∑

m=1
ωm + α

n
∑

m=1
ωm

)
1 ≤ l ≤ j− 1

εi pi

(
l

∑
m=1

µm +
n
∑

m=1
ωm

)
j ≤ l ≤ h− 1 (16)

εi pi
n
∑

m=l+1
νm h ≤ l ≤ n

The problem can be translated into the assignment problem below:

Min Z̈3([j]) =
n

∑
i=1

n

∑
l=1

ρil χil

s.t
n

∑
i=1

χil = 1 l = 1, . . . , n

n

∑
l=1

χil = 1 i = 1, . . . , n (17)

χil = 0 or 1 1 ≤ i, l ≤ n

where χil is a 0 or 1 variable, if the job Ťi is at position l, χil = 1, otherwise χil = 0.

Case 6. If j > h, the schedule is the same as Case 2, where qopt = S
[h] =

h−1
∑

i=1
p
[i], and

ϕ(t) = t0 +α
j−1
∑

i=1
p
[i]. Then the objective function is stated as

Z̈([j]) =
n

∑
i=1

(µi Ẽ[i] + νi L̃[i] + ωi qopt)

=
h

∑
i=1

µi

(
d[i]−C[i]

)
+

j−1

∑
i=h+1

νi

(
C[i]− d[i]

)
+

n

∑
i=j

νi

(
C[i]− d[i]

)
+

n

∑
i=1

ωi qopt

=
h−1

∑
i=1

p
[i]

(
i

∑
m=1

µm

)
+

j−1

∑
i=h

p
[i]

(
j−1

∑
m=i+1

νm

)
+

j−1

∑
i=h

p
[i]

(
n

∑
m=j

νm

)
+ t0

n

∑
m=j

νm

+
j−1

∑
i=1

p
[i]

(
α

n

∑
m=j

νm

)
+

n

∑
i=j

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
+

h−1

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)

=
h−1

∑
i=1

p
[i]

(
i

∑
m=1

µm + α
n

∑
m=j

νm +
n

∑
m=1

ωm

)
+

j−1

∑
i=h

p
[i]

(
n

∑
m=i+1

νm + α
n

∑
m=j

νm

)

+
n

∑
i=j

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
+ t0

n

∑
m=j

νm

= Z̈4([j]) + f2(t0) (18)

where f2(t0) same as it in Case 2, and
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Z̈4([j]) =
h−1

∑
i=1

p
[i]

(
i

∑
m=1

µm + α
n

∑
m=j

νm +
n

∑
m=1

ωm

)

+
j−1

∑
i=h

p
[i]

(
n

∑
m=i+1

νm + α
n

∑
m=j

νm

)
+

n

∑
i=j

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
(19)

is only related to the location of the maintenance activity. Similarly to Case 5 (i.e., j ≤ h), let

Ωil =



pi

(
l

∑
m=1

µm + α
n
∑

m=j
νm +

n
∑

m=1
ωm

)
1 ≤ l ≤ h− 1

pi

(
n
∑

m=l+1
νm + α

n
∑

m=j
νm

)
h ≤ l ≤ j− 1 (20)

εi pi

(
n
∑

m=l+1
νm

)
j ≤ l ≤ n

The problem can be translated into the assignment problem below:

Min Z̈4([j]) =
n

∑
i=1

n

∑
l=1

Ωil ςil

s.t
n

∑
i=1

ςil = 1 l = 1, . . . , n

n

∑
l=1

ςil = 1 i = 1, . . . , n (21)

ςil = 0 or 1 1 ≤ i, l ≤ n

where ςil is a 0 or 1 variable, when the job Ťi is at position l, ςil = 1, otherwise ςil = 0.

Case 7. If j = n + 1, the schedule is equal to Case 3, where qopt = S
[h] =

h−1
∑

i=1
p
[i], and

ϕ(t) = t0 +α
n
∑

i=1
p
[i]. In this case, the objective function is

Z̈([n + 1]) =
n

∑
i=1

(µi Ẽ[i] + νi L̃[i] + ωi qopt)

=
h

∑
i=1

µi

(
C[h]−C[i]

)
+

n

∑
i=h+1

υi

(
C[i]−C[h]

)
+

n

∑
i=1

ωi

(
h−1

∑
i=1

p
[i]

)

=
h−1

∑
i=1

p
[i]

(
i

∑
m=1

µm

)
+

n

∑
i=h

p
[i]

(
n

∑
m=i+1

υm

)
+

h−1

∑
i=1

p
[i]

(
n

∑
m=1

ωm

)

=
h−1

∑
i=1

p
[i]

(
i

∑
m=1

µm +
n

∑
m=1

ωm

)
+

n

∑
i=h

p
[i]

(
n

∑
m=i+1

υm

)

=
n

∑
i=1

p
[i] τi (22)

where

τi =


i

∑
m=1

µm +
n
∑

m=1
ωm 1 ≤ i ≤ h− 1

n
∑

m=i+1
υm h ≤ i ≤ n (23)

The optimal schedule σ and the minimum value of the objective function Z̈ can be
found by matching the minimum weight τi with the maximum processing time pi by using
Lemma 3.
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Case 8. If j = 1, the schedule is identical with Case 4, where qopt = S
[h] =

h−1
∑

i=1
ε [i] p

[i] + ϕ(t)

and ϕ(t) = t0. In this case, the objective function is

Z̈([1]) =
n

∑
i=1

(µi Ẽ[i] + νi L̃[i] + ωi qopt)

=
h

∑
i=1

µi

(
d[i]−C[i]

)
+

n

∑
i=h+1

νi

(
C[i]− d[i]

)
+

n

∑
i=1

ωi qopt

=
h−1

∑
i=1

ε [i] p
[i]

(
i

∑
m=1

µm

)
+

n

∑
i=h

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
+

h−1

∑
i=1

ε [i] p
[i]

(
n

∑
m=1

ωm

)
+ t0

n

∑
m=1

ωm

=
h−1

∑
i=1

ε [i] p
[i]

(
i

∑
m=1

µm +
n

∑
m=1

ωm

)
+

n

∑
i=h

ε [i] p
[i]

(
n

∑
m=i+1

νm

)
+ t0

n

∑
m=1

ωm

=
n

∑
i=1

ε [i] p
[i] τi + f3(t0) (24)

where f3(t0) is the same as it in Case 4. Similar to Case 7, the minimum weight τi with the
maximum εi pi can minimize the objective function Z̈ by using Lemma 3.

From above cases, the optimal solution of 1|dma, SLK, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i]

+ ωiqopt) can be obtained by the next algorithm.

Theorem 2. The optimal solution of 1|dma, SLK, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i]+ νi L̃[i]+ωiqopt) can

be obtained in O
(
n4) time by using Algorithm 2.

Proof. Similar to the proof of Theorem 1.

Algorithm 2: Solution of 1|dma, SLK, bi = (pi, εi pi)|
n
∑

i=1
(µi Ẽ[i] + νi L̃[i] + ωiqopt).

Initialization: Let Z̈ = ∞, σ̈∗ = 0, q∗opt = 0 and j∗ = 0.
Step 1: Calculate h from Lemma 5.
Step 2: For j = 1→ n + 1

If j ≤ h, then
obtain the minimum value Z̈([j]) and the schedule σ̈ by using (14)–(17);

If Z̈([j]) < Z̈, then
let Z̈ = Z̈([j]), j∗ = j, q∗opt = qopt and σ̈∗ = σ̈;

If j > h, then
obtain the minimum value Z̈([j]) and the schedule σ̈ by using (18)–(21);

If Z̈([j]) < Z̈, then
let Z̈ = Z̈([j]), j∗ = j, q∗opt = qopt and σ̈∗ = σ̈;

If j = n + 1, then
acquire the optimal value of Z̈ = Z̈([n + 1]) and the schedule σ̈∗ by the HLP

rule;
Calculate q∗opt;

If j = 1, then
obtain the optimal value of Z̈ = Z̈([1]) and the schedule σ̈∗ by the HLP rule;

Calculate q∗opt.
Step 3: Choose the minimum value Z̈∗ = min{Z̈[j], j = 1, 2, . . . , n + 1}, and obtain the

corresponding schedule σ̈∗, q∗opt and j∗.
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5. An Example and Computational Experiments
5.1. An Example

Let n = 7, t0 = 2, α = 0.5, µi = ωi = νi, respectively are 7, 4, 3, 1, 5, 13, 2, and the
remaining data are given in Table 2.

Table 2. The remaining data.

Ť i Ť1 Ť2 Ť3 Ť4 Ť5 Ť6 Ť7

pi 9 11 6 10 15 12 8
εi 0.7 0.9 0.8 0.5 0.2 0.3 0.4

Solution: according to Lemmas 2 and 5, we can get h = 4 and µ1 = 7, µ2 = 4, µ3 = 3,
ω4 = 1, ν5 = 5, ν6 = 13, ν7 = 2.

First, we consider the case of the common due date dopt.

Case 9. j = 2: from Equation (5), we can get

λil =


pi(α ∗ µ1 + n ∗ωm + α ∗ n ∗ωm) l = 1

εi pi

(
l−1
∑

m=1
µm + n ∗ωm

)
l = 2, 3, 4 (25)

εi pi
n
∑

m=l
υm l = 5, 6, 7

and it is easy to see that
λ11 = p1(α ∗ µ1 + n ∗ω4 + α ∗ n ∗ω4) = 9× (0.5× 7 + 7× 1 + 0.5× 7× 1) = 126;
λ12 = ε1 p1(µ1 + n ∗ω4) = 0.7× 9× (7 + 7× 1) = 88.2;
λ13 = ε1 p1(µ1 + µ2 + n ∗ω4) = 0.7× 9× (7 + 4 + 7× 1) = 113.4;
λ14 = ε1 p1(µ1 + µ2 + µ3 + n ∗ω4) = 0.7× 9× (7 + 4 + 3 + 7× 1) = 132.4;
λ15 = ε1 p1(ν5 + ν6 + ν7) = 0.7× 9× (5 + 13 + 2) = 126;
λ16 = ε1 p1(ν6 + ν7) = 0.7× 9× (13 + 2) = 94.5;
λ17 = ε1 p1 ∗ν7 = 0.7× 9× 2 = 12.6.
Similarly, the rest of the values of λil are given in Table 3,

Table 3. The values of λil .

i \ l 1 2 3 4 5 6 7

1 126 88.2 113.4 132.3 126 94.5 12.6
2 154 138.6 178.2 207.9 198 148.5 19.8
3 84 67.2 86.4 100.8 96 72 9.6
4 140 70 90 105 100 75 10
5 210 42 54 63 60 45 6
6 168 50.4 64.8 75.6 72 54 7.2
7 112 44.8 57.6 67.2 64 48 6.4

The bold values are the optimal solution.

We can obtain the optimal schedule σ̇ = [Ť2, Ť7, Ť1, Ť6, Ť4, Ť3, Ť5] by solving the
assignment problem (6), and Ż1([2]) = 88.2 + 19.8 + 84 + 75 + 63 + 64.8 + 64 = 458.8,
ϕ(t) = t0 + α ∗ p2 = 2+ 0.5× 11 = 7.5, dopt = p2 +ϕ(t) + ε7 p7 + ε1 p1 + ε6 p6 = 11+ 7.5+
0.4× 8 + 0.7× 9 + 0.3× 12 = 31.6, f1(t0) = t0(µ7 + n ∗ ω4) = 2× (7 + 7× 1) = 28, so
Ż([2]) = Ż1([2]) + f1(t0) = 458.8 + 28 = 486.8.

j = 3: Similarly, we can easily find the values of λil from Equation (5), and solve the
assignment problem (6) to obtain the optimal schedule σ̇ = [Ť1, Ť7, Ť2, Ť6, Ť4, Ť3, Ť5], and
Ż1([3]) = 562.6, ϕ(t) = t0 + α(p1 + p7) = 2 + 0.5× (9 + 8) = 10.5, dopt = p1 + p7 +ϕ(t) +
ε2 p2 + ε6 p6 = 9 + 8 + 10.5 + 0.9× 11 + 0.3× 12 = 41, f1(t0) = t0(µ1 + µ2 +n ∗ ω4) =
2× (7 + 4 + 7× 1) = 36, so Ż([3]) = Ż1([3]) + f1(t0) = 562.6 + 36 = 598.6.



Systems 2023, 11, 150 14 of 19

j = 4: Similarly, we can easily find the values of λil from Equation (5), and solve
the assignment problem (6) to obtain the optimal schedule σ̇ = [Ť1, Ť7, Ť3, Ť6, Ť4, Ť5, Ť2],
and Ż1([4]) = 754.3, ϕ(t) = t0 + α(p1 + p7 + p3) = 2 + 0.5× (9 + 8 + 6) = 13.5, dopt =
p1 + p7 + p3 +ϕ(t) + ε6 p6 = 9 + 8 + 6 + 13.5 + 0.3× 12 = 40.1, f1(t0) = t0(µ1 + µ2 + µ3 +
n ∗ω4) = 2× (7 + 4 + 3 + 7× 1) = 42, so Ż([4]) = Ż1([4]) + f1(t0) = 754.3 + 42 = 796.3.

Case 10. j = 5: from Equation (9), the values of δil are known, similarly, we can obtain the
optimal schedule σ̇ = [Ť2, Ť7, Ť4, Ť1, Ť5, Ť6, Ť3] by solving the assignment problem (10),
and Ż2([5]) = 929.8, ϕ(t) = t0 + α(p2 + p7 + p4 + p1) = 2 + 0.5× (11 + 8 + 10 + 9) = 21,
dopt = p2 + p7 + p4 + p1 = 11 + 8 + 10 + 9 = 38, f2(t0) = t0(ν5 + ν6 + ν7) = 2× (5 + 13 +
2) = 40, so Ż([5]) = Ż2([5]) + f2(t0) = 929.8 + 40 = 969.8.

j = 6: Similarly, we can obtain the values of δil from Equation (9) and tackle the
assignment problem (10) to get the optimal schedule σ̇ = [Ť3, Ť1, Ť4, Ť2, Ť6, Ť7, Ť5], and
Ż2([6]) = 1047.2, ϕ(t) = t0 + α(p3 + p1 + p4 + p2 + p6) = 2 + 0.5× (6 + 9 + 10 + 11 +
12) = 26, dopt = p3 + p1 + p4 + p2 = 6 + 9 + 10 + 11 = 36, f2(t0) = t0(ν6 + ν7) =
2× (13 + 2) = 30, so Ż([6]) = Ż2([6]) + f2(t0) = 1047.2 + 30 = 1077.2.

j = 7: Similarly, we can get the values of δil from Equation (9) and tackle the as-
signment problem (10) to acquire the optimal schedule σ̇ = [Ť3, Ť2, Ť4, Ť6, Ť7, Ť1, Ť5], and
Ż2([7]) = 898, ϕ(t) = t0 + α(p3 + p2 + p4 + p6 + p7 + p1) = 2 + 0.5× (6 + 11 + 10 + 12 +
8 + 9) = 30, dopt = p3 + p2 + p4 + p6 = 6 + 11 + 10 + 12 = 39, f2(t0) = t0 ∗ ν7 = 2× 2 = 4,
so Ż([7]) = Ż2([7]) + f2(t0) = 898 + 4 = 902.

Case 11. j = 8: From (12), we can obtain π1 = n ∗ω4 = 7× 1 = 7, π2 = µ1 + n ∗ω4 =
7 + 7× 1 = 14, π3 = µ1 + µ2 + n ∗ω4 = 7 + 4 + 7× 1 = 18, π4 = µ1 + µ2 + µ3 + n ∗ω4 =
7 + 4 + 3 + 7× 1 = 21, π5 = ν5 + ν6 + ν7 = 5 + 13 + 2 = 20, π6 = ν6 + ν7 = 13 + 2 =
15, π7 = ν7 = 2, according to the HLP rule the optimal schedule is σ̇ = [Ť6, Ť2, Ť1, Ť3, Ť7,
Ť4, Ť5], and ϕ(t) = t0 + α(p6 + p2 + p1 + p3 + p7 + p4 + p5) = 2 + 0.5 × (12 + 11 + 9 +
6 + 8 + 10 + 15) = 37.5, dopt = p6 + p2 + p1 + p3 = 12 + 11 + 9 + 6 = 38, Ż([8]) =
p6 π1 + p2 π2 + p1 π3 + p3 π4 + p7 π5 + p4 π6 + p5 π7 = 12 × 7 + 11 × 14 + 9 × 18 + 6 ×
21 + 8× 20 + 10× 15 + 15× 2 = 866.

Case 12. j = 1: Similar to Case 11, we can know π1 = 7, π2 = 14, π3 = 18, π4 = 21, π5 =
20, π6 = 15, π6 = 2, meanwhile ε1 p1 = 0.7× 9 = 6.3, ε2 p2 = 0.9× 11 = 9.9, ε3 p3 = 0.8×
6 = 4.8, ε4 p4 = 0.5× 10 = 5, ε5 p5 = 0.2× 15 = 3, ε6 p6 = 0.3× 12 = 3.6, ε7 p7 = 0.4× 8 =
3.2, using the HLP rule the optimal schedule is σ̇ = [Ť1, Ť4, Ť6, Ť5, Ť7, Ť3, Ť2], and f3(t0) =
t0 ∗ n ∗ ω4 = 2× 7× 1 = 14, ϕ(t) = t0 = 2, dopt = ε1 p1 + ε4 p4 + ε6 p6 + ε5 p5 +ϕ(t) =
6.3 + 5 + 3.6 + 3 + 2 = 19.9, so Ż([1]) = ε1 p1 ∗π1 + ε4 p4 ∗π2 + ε6 p6 ∗π3 + ε5 p5 ∗π4 + ε7
p7 ∗π5 + ε3 p3 ∗π6 + ε2 p2 ∗π7 + f3(t0) = 6.3× 7 + 5× 14 + 3.6× 18 + 3× 21 + 3.2× 20 +
4.8× 15 + 9.9× 2 + 14 = 397.7 + 14 = 411.7.

Next, we consider the case of the common flow allowance qopt.

Case 13. j = 2: Similar to Case 9, the values of ρil can been gathered from (16), and we
can obtain the optimal schedule σ̈ = [Ť6, Ť7, Ť1, Ť5, Ť3, Ť2, Ť4] by solving the assignment
problem (17), and Z̈3([2]) = 363.4, ϕ(t) = t0 + α ∗ p6 = 2 + 0.5× 12 = 8, qopt = p6 +ϕ(t) +
ε7 p7 + ε1 p1 = 12+ 8+ 0.4× 8+ 0.7× 9 = 29.5, f1(t0) = 28, so Z̈([2]) = Z̈3([2]) + f1(t0) =
363.4 + 28 = 391.4.

j = 3: Similarly, we can easily find the values of ρil from (16), and solve the assignment
problem (17) so that we can obtain the optimal schedule σ̈ = [Ť1, Ť7, Ť2, Ť6, Ť3, Ť5, Ť4], and
Z̈3([3]) = 473, ϕ(t) = t0 + α(p1 + p7) = 2 + 0.5× (9 + 8) = 10.5, qopt = p1 + p7 +ϕ(t) +
ε2 p2 = 9 + 8 + 10.5 + 0.9× 11 = 37.4, f1(t0) = 36, so Z̈([3]) = Z̈3([3]) + f1(t0) = 473 +
36 = 509.

j = 4: Similarly, we can obtain the values of ρil from (16), and tackle the assign-
ment problem (17) to acquire the optimal schedule σ̈ = [Ť1, Ť7, Ť3, Ť6, Ť4, Ť5, Ť2], and
Z̈3([4]) = 648.5, ϕ(t) = t0 + α(p1 + p7 + p3) = 2 + 0.5 × (9 + 8 + 6) = 13.5, qopt =
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p1 + p7 + p3 +ϕ(t) = 9 + 8 + 6 + 13.5 = 36.5, f1(t0) = 42, so Z̈([4]) = Z̈3([4]) + f1(t0) =
648.5 + 42 = 690.5.

Case 14. j = 5: from (20), the values of Ωil are given, similarly, we can get the opti-
mal schedule σ̈ = [Ť2, Ť7, Ť3, Ť1, Ť5, Ť6, Ť4] by solving the assignment problem (21), and
Z̈4([5]) = 970.2, ϕ(t) = t0 + α(p2 + p7 + p3 + p1) = 2 + 0.5 × (11 + 8 + 6 + 9) = 19,
qopt = p2 + p7 + p3 = 11 + 8 + 6 = 25, f2(t0) = 40, so Z̈([5]) = Z̈4([5]) + f2(t0) =
970.2 + 40 = 1010.2.

j = 6: Similarly, we can obtain the values of Ωil from (20), and tackle the assignment
problem (21) to know the optimal schedule σ̈ = [Ť2, Ť1, Ť3, Ť5, Ť6, Ť7, Ť4], and Z̈4([6]) =
1088, ϕ(t) = t0 + α(p2 + p1 + p3 + p5 + p6) = 2 + 0.5 × (11 + 9 + 6 + 15 + 12) = 28.5,
qopt = p2 + p1 + p3 = 11 + 9 + 6 = 26, f2(t0) = 30, so Z̈([6]) = Z̈4([6]) + f2(t0) =
1088 + 30 = 1118.

j = 7: Similarly, we can obtain the values of Ωil from (20), and tackle the assignment
problem (21) to acquire the optimal schedule σ̈ = [Ť2, Ť1, Ť3, Ť5, Ť7, Ť6, Ť4], and Z̈4([7]) =
832, ϕ(t) = t0 + α(p2 + p1 + p3 + p5 + p7 + p6) = 2 + 0.5× (11 + 9 + 6 + 15 + 8 + 12) =
32.5, qopt = p2 + p1 + p3 = 11 + 9 + 6 = 26, f2(t0) = 4, so Z̈([7]) = Z̈4([7]) + f2(t0) =
832 + 4 = 836.

Case 15. j = 8: From (23), we can get τ1 = µ1 + n ∗ω4 = 7 + 7× 1 = 14, τ2 = µ1 + µ2 +
n ∗ω4 = 7 + 4 + 7× 1 = 18, τ3 = µ1 + µ2 + µ3 + n ∗ω4 = 7 + 4 + 3 + 7× 1 = 21, τ4 =
ν5 + ν6 + ν7 = 5 + 13 + 2 = 20, τ5 = ν6 + ν7 = 13 + 2 = 15, τ6 = ν7 = 2, τ7 = 0, according
to the HLP rule the optimal schedule is σ̈ = [Ť2, Ť1, Ť3, Ť7, Ť4, Ť6, Ť5], and ϕ(t) = t0 +
α(p2 + p1 + p3 + p7 + p4 + p6 + p5) = 2 + 0.5× (11 + 9 + 6 + 8 + 10 + 12 + 15) = 37.5,
qopt = p2 + p1 + p3 = 11 + 9 + 6 = 26, Z̈([8]) = p2 τ1 + p1 τ2 + p3 τ3 + p7 τ4 + p4 τ5 + p6 τ6
+ p5 τ7 = 11× 14 + 9× 18 + 6× 21 + 8× 20 + 10× 15 + 12× 2 + 15× 0 = 776.

Case 16. j = 1: Similar to Cases 12 and 15, we can obtain τ1 = 14, τ2 = 18, τ3 = 21, τ4 =
20, τ5 = 15, τ6 = 2, τ7 = 0 and ε1 p1 = 6.3, ε2 p2 = 9.9, ε3 p3 = 4.8, ε4 p4 = 5, ε5 p5 =
3, ε6 p6 = 3.6, ε7 p7 = 3.2, and according to the HLP rule the optimal schedule is σ̈ =
[Ť4, Ť6, Ť5, Ť7, Ť3, Ť1, Ť2], and f3(t0) = 14, ϕ(t) = t0 = 2, qopt = ε4 p4 + ε6 p6 + ε5 p5 +ϕ(t)
= 5+ 3.6+ 3+ 2 = 13.6, so Z̈([1]) = ε4 p4 ∗ τ1 + ε6 p6 ∗ τ2 + ε5 p5 ∗ τ3 + ε7 p7 ∗ τ4 + ε3 p3 ∗ τ5
+ ε1 p1 ∗ τ6 + ε2 p2 ∗ τ7 + f3(t0) = 5× 14 + 3.6× 18 + 3× 21 + 3.2× 20 + 4.8× 15 + 6.3×
2 + 9.9× 0 + 14 = 346.4 + 14 = 360.4.

After the above calculation, the results are shown in Table 4.

Table 4. The results of the example.

dopt qopt Ż([j]) Z̈([j]) σ̇ σ̈

j = 1 19.9 13.6 411.7 360.4 [Ť1, Ť4, Ť6, Ť5, Ť7, Ť3, Ť2] [Ť4, Ť6, Ť5, Ť7, Ť3, Ť1, Ť2]
j = 2 31.6 29.5 486.8 391.4 [Ť2, Ť7, Ť1, Ť6, Ť4, Ť3, Ť5] [Ť6, Ť7, Ť1, Ť5, Ť3, Ť2, Ť4]
j = 3 41 37.4 598.6 509 [Ť1, Ť7, Ť2, Ť6, Ť4, Ť3, Ť5] [Ť1, Ť7, Ť2, Ť6, Ť3, Ť5, Ť4]
j = 4 40.1 36.5 796.3 690.5 [Ť1, Ť7, Ť3, Ť6, Ť4, Ť5, Ť2] [Ť1, Ť7, Ť3, Ť6, Ť4, Ť5, Ť2]
j = 5 38 25 969.8 1010.2 [Ť2, Ť7, Ť4, Ť1, Ť5, Ť6, Ť3] [Ť2, Ť7, Ť3, Ť1, Ť5, Ť6, Ť4]
j = 6 36 26 1077.2 1118 [Ť3, Ť1, Ť4, Ť2, Ť6, Ť7, Ť5] [Ť2, Ť1, Ť3, Ť5, Ť6, Ť7, Ť4]
j = 7 39 26 902 836 [Ť3, Ť2, Ť4, Ť6, Ť7, Ť1, Ť5] [Ť2, Ť1, Ť3, Ť5, Ť7, Ť6, Ť4]
j = 8 38 26 866 776 [Ť6, Ť2, Ť1, Ť3, Ť7, Ť4, Ť5] [Ť2, Ť1, Ť3, Ť7, Ť4, Ť6, Ť5]

We can see that the optimal solution to the question about CON is j = 1, σ̇∗ =
[Ť1, Ť4, Ť6, Ť5, Ť7, Ť3, Ť2], d∗opt = 19.9 and the optimal solution to the question about SLK
is j = 1, σ̈∗ = [Ť4, Ť6, Ť5, Ť7, Ť3, Ť1, Ť2], q∗opt = 13.6.

5.2. Computational Experiments

To test the validity of Algorithms 1 and 2, the examples are generated randomly.
Microsoft visual C++ 2022 was applied to code Algorithms 1 and 2. For every problem
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size, 20 cases were created and coded on a PC with a 3.10 GHz CPU and 8.00 GB RAM. The
features of the examples are listed below:

(1) n = 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, t0 = 5 and
α = 0.1;

(2) pi (i = 1, 2, . . . , n) is evenly distributed over [1, 100];
(3) εi (i = 1, 2, . . . , n) is evenly distributed over [0.5, 0.95];
(4) µi, νi and ωi (i = 1, 2, . . . , n) are evenly distributed over [1, 50].

The computational tests for Algorithms 1 and 2 are given as follows. The minimum
(min), average (mean) and maximum (max) CPU times (milliseconds (ms)) are shown in
Table 5. From Table 5, we can see that Algorithms 1 and 2 are effective and their CPU
times increase moderately as n increases from 30 to 200, and the maximum CPU time is
830,682.20 ms for n = 200.

Table 5. CPU times of algorithms.

Algorithm 1 (ms) Algorithm 2 (ms)

Jobs (n) Min Mean Max Min Mean Max

30 96.15 104.12 116.47 105.57 123.42 131.36
40 403.13 447.04 468.66 456.02 490.37 533.89
50 1100.62 1133.92 1207.00 1800.97 1869.21 1969.54
60 2385.21 2415.26 2480.62 2406.82 3211.60 3621.18
70 4764.21 4824.51 4962.15 4427.60 5595.50 6072.50
80 8988.25 9047.69 9174.25 9546.26 10,260.97 11,854.23
90 15,607.89 15,735.94 15,993.65 18,732.12 19,081.05 20,657.20
100 25,808.64 26,019.12 26,248.52 25,948.21 31,214.80 34,985.24
110 40,791.23 40,888.99 41,023.33 44,216.25 47,840.15 50,154.56
120 62,351.40 62,705.79 62,994.49 69,263.57 72,753.31 76,016.59
130 91,992.40 92,142.26 92,376.48 95,431.29 104,475.77 112,460.39
140 131,937.56 132,467.57 134,070.77 153,157.28 159,192.78 165,218.85
150 185,206.31 186,061.38 187,231.45 185,069.15 197,686.43 204,623.32
160 255,436.23 256,559.22 259,944.61 259,783.23 266,256.81 279,325.82
170 342,530.15 342,989.64 344,039.89 382,981.28 389,495.60 391,893.45
180 453,007.52 455,489.67 457,957.65 494,021.26 496,965.56 501,507.23
190 594,550.76 597,809.51 602,660.32 625,462.31 639,839.76 661,165.27
200 763,412.32 780,313.79 791,677.65 812,131.25 822,461.92 830,682.20

6. Conclusions

In this paper, we studied the single-machine due-date assignment problem with a
deteriorating maintenance activity. Under the common and slack due-date assignments, the
purpose of the problem is to find the optimal job schedule, the position of the maintenance
activity, the optimal value of the common due date or the optimal value of the common
flow-allowance so that the linear weighted sum of earliness, tardiness and due-date assign-
ment cost is minimized. The problem is proved to be solved in polynomial time. Through
computational complexity analysis and experimentation, we demonstrated that the pro-
posed algorithm (approach) performs very well. In the future, other non-regular objectives
with deteriorating maintenance activity can be studied, or multi-machine (flexible job shop,
see Zhang et al. [39] and Song et al. [40]) due-date assignment problems with deteriorating
maintenance activity can be addressed.
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Appendix A

Proof. When j = n + 1, we first consider a schedule σ, and the common due date dopt
satisfies C[k] < dopt < C[k+1], Ż is the corresponding value of objective function, let
ẋ = dopt − C[k], ẏ = C[k+1]−dopt (ẋ, ẏ ≥ 0), Ż′ and Ż′′ are the corresponding objective
function values of dopt = C[k] and dopt = C[k+1], respectively, therefore

Ż′ = Ż + ẋ

[
n

∑
i=1

(νi −ωi)−
k

∑
i=1

(µi − νi)

]

Ż′′ = Ż− ẏ

[
n

∑
i=1

(νi −ωi)−
k

∑
i=1

(µi − νi)

]
.

Obviously, if
n
∑

i=1
(νi −ωi) ≤

k
∑

i=1
(µi + νi), Ż′ ≤ Ż, otherwise Ż′′ ≤ Ż, this means that

dopt is equal to the completion time of some job.
We assume that the value of dopt coincides with the completion time of the job at the

hth position, i.e., dopt = C[h], then for ∀θ � 0, the common due date shifted θ unit to the
left, and it is obtained

Ż
(

C[h] +θ, σ
)
− Ż

(
C[h], σ

)
≥ 0,

we have (
h

∑
i=1

µi −
n

∑
i=h+1

νi +
n

∑
i=1

ωi

)
≥ 0.

If the common due date shifted θ unit to the right, we have

Ż
(

C[h]−θ, σ
)
− Ż

(
C[h], σ

)
≥ 0,

and (
h−1

∑
i=1

µi −
n

∑
i=h

νi +
n

∑
i=1

ωi

)
≤ 0

Thus, h satisfies(
h

∑
i=1

µi −
n

∑
i=h+1

νi +
n

∑
i=1

ωi

)
≥ 0 and

(
h−1

∑
i=1

µi −
n

∑
i=h

νi +
n

∑
i=1

ωi

)
≤ 0.

Similarly, the above result can be obtained when j = 1, . . . , n, i.e., for any given
schedule, dopt = C[h].
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