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Abstract: This paper addresses the issue of choosing an appropriate reward function in multi-agent
reinforcement learning. The traditional approach of using joint rewards for team performance is
questioned due to a lack of theoretical backing. The authors explore the impact of changing the
reward function from joint to individual on learning centralized decentralized execution algorithms
in a Level-Based Foraging environment. Empirical results reveal that individual rewards contain
more variance, but may have less bias compared to joint rewards. The findings show that different
algorithms are affected differently, with value factorization methods and PPO-based methods taking
advantage of the increased variance to achieve better performance. This study sheds light on the
importance of considering the choice of a reward function and its impact on multi-agent reinforcement
learning systems.
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1. Introduction

Multi-agent reinforcement learning (MARL) is a promising field of artificial intelli-
gence (AI) research, and over the last couple of years, has seen increasingly more pushes to
tackle less “toy” problems (full game environments such as ATARI and the Starcraft Multi-
Agent Environment (SMAC)) and instead try to solve complex “real-world” problems [1–3].
Coordination of agents across a large state space is a challenging and multifaceted problem,
with many approaches that can be used to increase coordination. These include com-
munication between agents, both learned and established, parameter sharing and other
methods of imparting additional information to function approximators, and increasing
levels of centralization.

One paradigm of MARL that aims to increase coordination is called centralized Learn-
ing decentralized Execution (CLDE) [4]. CLDE algorithms train their agents’ policies
with additional global information using a centralized mechanism. During execution,
the centralized element is removed, and the agent’s policy is based on conditions only on
local observations. This has been shown to increase the coordination of agents [5]. CLDE
algorithms separate into two major categories: centralized policy gradient methods [6–8]
and value decomposition methods [9,10]. Recently, however, there has been work that
has put into question the assumption that centralized mechanisms do indeed increase
coordination. Lyu et al. [11] found that in actor–critic systems, the use of a centralized critic
led to an increase in variance seen in the final policy learned; however, they noted more
coordinated agent behaviour while training and concluded that the use of a centralized
critic should be thought of as a choice that carries with it a bias variance trade-off .

One aspect of agent coordination that is similarly often taken at face value is the use
of a joint reward in cooperative systems that use centralization. The assumption is that
joint rewards are necessary for the coordination of systems that rely on centralization. We
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have not been able to find a theoretical basis for this claim. The closest works addressing
team rewards in cooperative settings that we could find include works on difference
rewards which try to measure the impact of an individual agent’s actions on the full system
reward [12]. The high learnability, among other nice properties, makes difference rewards
attractive but impractical, due to the required knowledge of the total system state [13–15].

We investigate the effects of changing the reward from a joint reward to an individual
reward in the Level-Based Foraging (LBF) environment. We investigate how different
CLDE algorithm performances change as a result of this change and discuss this perfor-
mance change. In this work, we study the effect of varying reward functions from joint
rewards to individual rewards on Independent Q Learning (IQL) [16], Independent Prox-
imal Policy Optimization (IPPO) [17], independent synchronous actor–critic (IA2C) [6],
multi-agent proximal policy optimization (MAPPO) [7], multi agent synchronous actor–
critic (MAA2C) [5,6], value decomposition networks (VDN) [10], and QMIX [9] when
evaluated on the LBF environment [18]. This environment was chosen as it is a gridworld
environment, and therefore simpler to understand when compared to other MARL environ-
ments such as those based on the StarCraft environment; however, it is a very challenging
environment that requires cooperation to solve and has the ability to include the forcing of
cooperative policies and partial observability for study.

We show empirically that using an individual reward in the LBF environment causes
an increase in the variance in the reward term in the Temporal Difference (TD) error signal
and any derivative of this term. We study the effects that this increase in variance has on
the selected algorithms and discuss whether this variance is helpful for the learning of
better joint policies in the LBF environment. Our results show that PPO-based algorithms,
with and without centralized systems and QMIX, perform better with individual rewards,
while actor–critic models based on A2C suffer when using individual rewards.

This work is comprised of multiple sections, starting with the background in Section 2.
Section 3 outlines our experimental method, and we report our results in Section 4. We
discuss the results and compare them to the previous results in Section 5. All supplementary
information pertaining to this work can be found in the Appendices A–C.

2. Background
2.1. Dec-POMDPs

We define a fully cooperative task as a decentralized partially observable Markov deci-
sion process (Dec-POMDP) which consists of the tuple M = < D, S, A, T, O, o, R, h, b0 > [4].
Where D is the set of agents, S is the set that describes the true state of the environment, A is
the joint action set over all agents, and T is the transition probability function, mapping the
joint actions to state. O is the joint observation set, o represents the observation probability
function, and R is the reward function which describes the set of all individual rewards for
each agent R = Ri

t. The problem horizon, h, is equivalent to the discount factor γ in the RL
literature. The initial state distribution is given by b0. M describes a partially observable
scenario in which agents interact with the environment through observations, without ever
knowing the true state of the environment. When agents have full access to the state
information, the tuple becomes < D, S, A, T, R, h, b0 > and is defined as Multi-agent Markov
Decision Process (MMDP) [4].

2.2. Reward Functions
2.2.1. Joint Reward

The entire team receives a joint reward value at each time step taken as the sum
of all individual agent rewards R = Ri = · · · = RN = ∑N

i=1 Ri
t. The joint reward has

an interesting property that is usually left aside: by being the summation of all agents’
rewards, if an agent is not participating in a reward event, they still receive a reward. This
creates a small but nonzero probability for all agents to receive a reward in any state and
for any action. In addition, in partially observable tasks, these reward events can occur
with no context for some of the agents. The advantage of the joint reward is a salient signal
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across all that can be learned from, as well as additional information about the performance
of team members that may or may not be observable.

2.2.2. Individual Reward

Mixed tasks differ from the fully cooperative case only in terms of the reward received
by the agents. Mixed tasks attribute individual rewards to each agent rather than a joint
reward, making the term R in the tuple M, R = Ri

t for each agent i. During reward events,
a reward is only given to agents who participate in reward events. This reduces the saliency
of the reward signal during a reward event, and can cause increased variance in the reward
signal when different agents achieve a reward.

2.3. Level-Based Foraging

Level-Based Foraging (LBF) is a challenging exploration problem in which multiple
agents must work together to collect food items scattered randomly on a gridworld [18].
The environment is highly configurable, allowing for partial observability and the use of
cooperative policies only. In LBF, agents and food are assigned random levels, with the
maximum food level always being the sum of all agent levels. Agents can take discrete
actions, such as moving in a certain direction, loading food, or not taking any action. Agents
receive rewards when they successfully load a food item, which is possible only if the sum
of all agent levels around the food is equal to or greater than the level of the food item.
Agent observations are discrete and include the location and level of all food and agents on
the board, including themselves.

The LBF environment is highly configurable, starting with gridworld size, number
of agents, and number of food items. The scenarios in the LBF are described using the
following nomenclature: NxM-Ap-Bf, where N and M define the size of the gridworld, A
indicates the number of agents, and B indicates the number of food objectives in the world.
A 10 by 10 grid world with three agents and three food would be described as 10x10 -3p-3f.
Additionally, partial observability can be configured by adding Cs- before the grid size. C
defines the radius size that agents can observe. For all objects outside the radius, the agent
will receive a constant value of −1 in that observation. Finally, the addition of the -coop
tag after the number of food causes the game to enforce that all agents must be present to
collect food, thereby forcing cooperative policies to be the only policies that can be learned.
As an example, an eight-by-eight gridworld with two players and two food that forces
cooperative policies while subjecting the agents to partial observability with a radius of
two would be specified as 2s-8x8-2p-2f-coop . An example of the LBF gridworld is shown in
Figure 1.

Figure 1. LBF Foraging-8x8-2p-3f example gridworld taken from Papoudakis et al. [5]
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3. Method

To compare our results with those of previous publications, we made sure that the sce-
narios and scenario parameters matched those of Papoudakis et al. [5] and Atrazhev et al. [19],
and the results were compared to the results of those previous works.

To remain consistent with previous publications, the LBF scenarios selected for this
study are 8x8-2p-2f-coop, 2s-8x8-2p-2f-coop, 10x10-3p-3f, and 2s-10x10-3p-3f. Algorithms are
also selected based on these criteria: IQL [16], IA2C [6], IPPO [17], MAA2C [5], MAPPO [7],
VDN [10] and QMIX [9] were selected as they are studied in both Papoudakis et al. [5] and
in Atrazhev et al. [19] and represent an acceptable assortment of independent algorithms,
centralized critic CLDE algorithms, and value factorization CLDE algorithms.

To evaluate the performance of the algorithm, we calculate the average returns and
maximum returns achieved throughout all evaluation windows during training, and the
95% confidence interval across ten seeds.

Our investigation consists of varying two variables, the reward function, and episode
length. The length of the episode was varied between the reported value of 25 used by
Papoudakis et al. [5] and 50, which is the default length of the episode in the environment.
We perform two separate hyperparameter tunings, one for each reward type, adhering to
the hyperparameter tuning protocol included in Papoudakis et al. [5].

All other experimental parameters are taken from Papoudakis et al. [5], and we
encourage readers to look into this work for further details.

4. Results

We compare IQL, IA2C, IPPO, MAA2C, MAPPO, VDN, and QMIX and report the mean
returns and max returns achieved by algorithms using individual rewards in Tables 1 and 2,
respectively. The mean returns and maximum returns of algorithms using joint rewards are
reported in Tables 3 and 4, respectively. We include tables for the increased episode length
(50 timesteps) in the Appendix C.

Table 1. Maximum returns and 95% confidence interval of algorithms using individual rewards
in selected scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values
indicate the best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.11 1.00 ± 0.00
8x8-2p-2f-2s-c 0.97 ± 0.0 0.94 ± 0.01 0.95 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.97 ± 0.0 0.98 ± 0.00

10x10-3p-3f 0.94 ± 0.02 0.86 ± 0.01 0.88 ± 0.04 0.85 ± 0.03 0.86 ± 0.02 0.93 ± 0.04 0.95 ± 0.02
10x10-3p-3f-2s 0.75 ± 0.01 0.71 ± 0.02 0.76 ± 0.02 0.7 ± 0.02 0.73 ± 0.07 0.74 ± 0.01 0.77 ± 0.01

Table 2. Mean return values and 95% confidence interval of algorithms using individual rewards
in selected scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values
indicate the best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 0.78 ± 0.08 0.82 ± 0.02 0.84 ± 0.07 0.78 ± 0.05 0.77 ± 0.07 0.7 ± 0.08 0.75 ± 0.04
8x8-2p-2f-2s-c 0.83 ± 0.01 0.71 ± 0.01 0.77 ± 0.01 0.68 ± 0.01 0.69 ± 0.03 0.81 ± 0.01 0.86 ± 0.01

10x10-3p-3f 0.68 ± 0.02 0.7 ± 0.02 0.72 ± 0.03 0.66 ± 0.03 0.69 ± 0.02 0.55 ± 0.04 0.58 ± 0.03
10x10-3p-3f-2s 0.62 ± 0.0 0.55 ± 0.02 0.58 ± 0.02 0.51 ± 0.02 0.53 ± 0.06 0.57 ± 0.01 0.62±0.01

Table 3. Maximum returns and 95% confidence interval of algorithms using joint rewards in selected
scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values indicate the
best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
8x8-2p-2f-2s-c 0.97 ± 0.01 1.0 ± 0.0 0.63 ± 0.02 1.0 ± 0.0 0.56 ± 0.02 0.98 ± 0.0 0.97 ± 0.0

10x10-3p-3f 0.89 ± 0.08 0.99 ± 0.01 0.89 ± 0.02 0.98 ± 0.01 0.9 ± 0.24 0.9 ± 0.03 0.91 ± 0.02
10x10-3p-3f-2s 0.7 ± 0.01 0.84 ± 0.04 0.56 ± 0.01 0.85 ± 0.01 0.58 ± 0.01 0.77 ± 0.01 0.76 ± 0.04
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Table 4. Mean return values and 95% confidence interval of algorithms using joint rewards in selected
scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values indicate the
best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 0.77 ± 0.08 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.78 ± 0.04 0.69 ± 0.04
8x8-2p-2f-2s-c 0.82 ± 0.01 0.94 ± 0.01 0.39 ± 0.02 0.94 ± 0.0 0.45 ± 0.02 0.84 ± 0.0 0.79 ± 0.01

10x10-3p-3f 0.47 ± 0.07 0.88 ± 0.02 0.71 ± 0.03 0.87 ± 0.02 0.59 ± 0.21 0.56 ± 0.03 0.46 ± 0.04
10x10-3p-3f-2s 0.56 ± 0.01 0.67 ± 0.05 0.44 ± 0.0 0.69 ± 0.02 0.46 ± 0.0 0.6 ± 0.01 0.56 ± 0.05

We generally observe that in the individual reward case, QMIX is able to consistently
achieve the highest maximal return value in all scenarios. In terms of the highest mean
returns, QMIX is able to outperform IPPO in the partially observable scenarios. In the joint
reward case, the majority of the results are in line with those reported in [5]; however, we
note that the average return results for QMIX are much higher with our hyperparameters.
We go into more detail regarding these results in Appendix A.

When comparing joint reward performance with individual reward performance, we
note that the effects of reward are not easily predictable. Centralized critic algorithms are
evenly split in performance, with MAPPO performing better with individual reward, while
MAA2C’s performance suffers. This is paralleled by the independent versions of MAPPO
and MAA2C. The value factorization algorithms are also divided, with QMIX performance
becoming the top-performing algorithm across the tested scenarios. VDN, however, sees an
incredible drop in performance when using joint rewards. Finally, IQL performance when
using individual reward is relatively unaffected in the simpler 8x8 scenarios but decreases
in the larger scenarios.

5. Discussion
5.1. Independent Algorithms
5.1.1. IQL

Our results show that IQL achieves increased mean return values and maximum
return values when using individual rewards. Our results also show that IQL experienced
a reduction in loss variance when using individual rewards. Since IQL is an independent
algorithm, the joint reward is the only source of information from other agents. Seeing that
IQL does not observe the other agents specifically, our results suggest that the joint reward
seems to increase the variance in the loss function by the nonzero probability of agents
receiving the reward at any timestep, as discussed earlier. The reduction in variance in the
loss function allows for better policies to be learned by each individual agent, and this is
further evidenced by the reduction in variance and simultaneous increase in the mean of
the absolute TD error that agents have in the CLBF experiments.

5.1.2. IPPO

IPPO is able to use the individual reward signal to achieve higher mean returns and
maximum returns in all scenarios except for the 8x8-2p-2f-coop. We believe that this is
in large part due to the decrease in variance that is observed in the maximum policy
values that are learned. Our results show that the TD error that is generated from multiple
different individual rewards appears to be higher and more varied than the TD error that is
generated from a joint reward. This variance seems to permeate through the loss function,
allowing the algorithm to continue discovering new higher policies through training. It
seems that joint rewards cause the TD error to start out strong, and quickly the algorithm
finds a policy (or set of policies) that has the maximal chances of achieving rewards at
all timesteps. This is a local minimum, but the error is too small for policies to escape
the minima.
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5.1.3. IA2C

IA2C suffers from the increase in variance in individual rewards. We note evidence
of divergent policy behaviour in a number of metrics, most notably the critic and policy
gradient loss. The critic is still able to converge; however, the policy gradient loss diverges
quite a bit more in the individual reward case. It seems that a joint reward is necessary to
help coordinate the agent’s behaviour.

5.2. Value Factorization Algorithms
5.2.1. VDN

VDN with individual rewards has a very rapid reduction in loss values. Our data
suggest that when using individual rewards, VDN converges prematurely on suboptimal
policies, causing the observed reduction in mean and max return. This may be due to
the fact that VDN does not incorporate any state information into the creation of the joint
value function. The authors seem to have relied on the information contained in the joint
rewards to help guide the coordination of agents through the learned joint value function.
With individual rewards, the joint action value function simply optimizes for the first policy
that serves to maximize returns without regard for agent coordination or guiding agents to
find optimal policies.

5.2.2. QMIX

Our results show that when individual rewards are used with qmix, return mean and
maximum return values are increased. When comparing joint rewards to independent
rewards, independent rewards show signs of faster convergence in loss and gradient norms.
Qmix’s combination of monotonicity constraints and global state information in its hyper-
network seems to be able to find coordinated policies when using individual rewards that
achieve higher returns than those found when using joint rewards. By leveraging the
global state information during training, the improvement shows significantly higher in the
partially observable scenarios where the increased information builds stronger coordination
between agents.

5.3. Centralized Critic Algorithms

Performance in centralized critics is varied and seems to depend on the underlying
algorithm used.

5.3.1. MAA2C

The increase in information that is imparted by MAA2C’s centralized critic seems to
not be enough to counter the increase in variance that is caused by individual rewards.
When using joint rewards, the critic is able to converge and is able to guide the actor policies
to find optimal values relatively quickly, and is best demonstrated by the convergence of
the TD error. When using individual rewards, there seems to be too much variance for the
critic to be able to converge quickly. It has been shown that simply adding a centralized
critic to an actor–critic MARL algorithm with the hopes of decreasing variance in the agent
learning is not necessarily true and will actually increase the variance seen by actors [11]. It
seems that in MAA2C, using the joint reward to decrease the variance seen by the critic
is a good way to increase performance. We do, however, note that when we increased
the episode length, the individual reward mean and max returns continued to increase;
however, they do not show any evidence of rapid convergence. It seems that more research
is required on the effects of increasing the episode length to determine if the joint reward
has a bias component.

5.3.2. MAPPO

Similarly to IPPO, MAPPO performs better when using individual rewards than
when using joint rewards. MAPPO’s centralized critic does not seem to be able to prevent
the critic from converging prematurely. Centralized critics have been shown to increase



Systems 2023, 11, 180 7 of 16

variance [11]; however, our results show that the increase in variance in the critic loss is not
enough. Just as in IPPO, the critic converges within 100 episodes when using joint rewards.
This corresponds to the majority of the gains in return, which seems to indicate that some
local minima are found by the algorithm.

6. Conclusions and Future Work

In summary, our results show that different CLDE algorithms respond in different
ways when the reward is changed from joint to individual in the LBF environment. MAPPO
and QMIX show that they are able to leverage the additional variance present in the
individual reward to find improved policies, while VDN and MAA2C suffer from the
increase and perform worse. Of the centralized critic algorithms, it seems that it is crucial
that the centralized algorithm critic be able to converge slowly enough to find the optimal
joint policy, but not fast enough to find a local minima. In addition, if the critic is too
sensitive to the increase in variance, it may diverge as in MAA2C and be unable to find
the optimal policy. Value decomposition methods also seem to need additional state
information to condition the coordination of agents to learn optimal policies. Since much
of the emergent behaviour sought in MARL systems is a function of how agents work
together, we feel that the choice of reward function may be of even more importance in
MARL environments than in a single-agent environment. Our results hint that there may be
some greater bias variance-type trade-off between joint and individual rewards; however,
more research will need to be performed to confirm this.

As we have outlined in several sections of this work, there are still many questions
that need answering before we can definitively say that the choice of using a joint reward
or an individual reward when training MARL algorithms comes down to a bias variance
trade-off. First, this theory of increased variance would need to be studied in simpler
scenarios that can be solved analytically in order to confirm that individual rewards do
increase variance. This simpler scenario would need to have the same sparse positive
reward as seen in the LBF. Following the establishment of this theoretical underpinning,
the next step would be to either relax the sparse constraint or the positive reward constraint
and still see if the theory holds true. Once that is performed, a definitive conclusion could
be presented about the effects of varying reward functions between joint and individual
rewards in cooperative MARL systems.
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Appendix A. Hyperparameter Optimization

CLBF Hyperparameter Optimisation

The appendix of [5] contains the hyperparameter search protocol that they used in
order to perform their hyperparameter search. In order to keep the comparison to [5], we
propose following the same hyperparameter search protocol, which is outlined in Table A1.

https://github.com/at-peter/System-all-about-rewards-data
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Table A1. Hyperparameter search protocol taken from [5].

Hyperparameters Values

Hidden dimension 64/128
Learning rate 0.0001/0.0003/0.0005

Reward Standardization True/False
Network Type FC/GRU

Evaluation Epsilon 0.0/0.05
Epsilon Anneal 50,000/200,000
Target Update 200 (hard)/0.01 (soft)

Entropy Coefficient 0.01/0.001
n-step 5/10

The hyperparameter search was performed as follows. A search with three seeds
was performed on the 10x10-3p-3f scenario to narrow down a short list of candidate
hyperparameter configurations. Priority was given to hyperparameter sets that repeat.

Table A2 Shows the difference between previously tested hyperparameters and the hyper-
parmeters that were discovered during the hyperparameter search on the CLBF environment.

Table A2. IPPO selected hyperparameters.

Hyperparameters Papoudakis et al. [5] Our Hyperparameter Search

Hidden dimension 128 64
Learning rate 0.0003 0.0003

Reward Standardization False True
Network Type FC GRU
Target Update 200 (hard) 200 (hard)

Entropy Coefficient 0.001 0.01
n-step 5 10

Appendix B. Validation of Papoudakis et al. [5] Results

As part of our work on the analysis of algorithmic performance, we replicated the
work that was performed as part of [5] on the LBF environment. This section includes the
data that were collected from our repeated experiments. We used the hyperparameters that
were reported in the appendix section of [5] and ran 10 runs for each hyperparameter con-
figuration. The selected hyperparameters were those for parameter sharing, and parameter
sharing was used for the data collection to keep in line with the results in [5].

We found discrepancies between the reported data in [5] for VDN and QMIX, and these
discrepancies also seem to explain some of the results we reported in [19]. Notably, we
found that the convergence of the value factorization methods was not reported properly
in [5], and these convergence values are in line with the increase in convergence rates that
we found in [19].

Table A3. Maximum returns and 95% confidence interval of hyperparameter configurations taken
from [5]. Bolded values are those that differ significantly from [5].

Tasks/Algs IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 1.0 ± 0.0 1.0 ± 0.00 1.0 ± 0.00 1.0 ± 0.00 1.0 ± 0.0 1.0 ± 0.00 1.0 ± 0.00
8x8-2p-2f-2s-c 0.97 ± 0.01 1.0 ± 0.0 0.63 ± 0.02 1.0 ± 0.0 0.56 ± 0.02 0.98 ± 0.00 0.97 ± 0.0

10x10-3p-3f 0.89 ± 0.08 0.99 ± 0.01 0.89 ± 0.02 0.98 ± 0.01 0.9 ± 0.24 0.9 ± 0.03 0.91 ± 0.02
10x10-3p-3f-2s 0.7 ± 0.01 0.84 ± 0.04 0.56 ± 0.01 0.85 ± 0.01 0.58 ± 0.01 0.77 ± 0.01 0.76 ± 0.04
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Table A4. Average returns and 95% confidence interval of hyperparameter configurations taken
from [5]. Bolded values are those that differ significantly from [5].

Tasks/Algs IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 0.77 ± 0.08 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.78 ± 0.04 0.69 ± 0.04
8x8-2p-2f-2s-c 0.82 ± 0.01 0.94 ± 0.01 0.39 ± 0.02 0.94 ± 0.0 0.45 ± 0.02 0.84 ± 0.0 0.79 ± 0.01

10x10-3p-3f 0.47 ± 0.07 0.88 ± 0.02 0.71 ± 0.03 0.87 ± 0.02 0.59 ± 0.21 0.56 ± 0.03 0.46 ± 0.04
10x10-3p-3f-2s 0.56 ± 0.01 0.67 ± 0.05 0.44 ± 0.0 0.69 ± 0.02 0.46 ± 0.0 0.6 ± 0.01 0.56 ± 0.05

Appendix C. Variance Analysis Data

This section of the appendix contains all the statistical data analysis that was used
during the empirical variance analysis in Section 4. The statistical analysis used Bartlett’s
test in order to determine if the variance in two means is the same. The α value used to
determine statistical significance is α = 0.05. Bartlett’s test tests the null hypothesis h0 that
the variances of each data distribution tested are identical. If the p-value is below that of
the selected α, then the null hypothesis is rejected, and the variances of the data tested are
not the same. In our analysis, the data collected for each run were averaged over, and then
the set of 10 replicates was used in Bartlett’s test. The nan value indicates that there was
no variation at all because the algorithm was able to solve the scenario perfectly in the
25 timestep scenarios for both individual and joint rewards.

Appendix C.1. IQL

Below are the statistics that were gathered on the IQL algorithm. The result aspects of
the algorithm that were compared include the following:loss, grad norm, mean of selected
q values, means of return, max of returns, and target network mean q values for the selected
action. Variances are evaluated between joint reward and independent reward. Bolded
p-values reject the null hypothesis, indicating that the variances between the 25-step and
50-step runs are different.

Table A5. p-values of Bartlett’s test for homogeneity of variances for gradient norm values of IQL
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.88 0.15 0.048 0.35
50 0.066 0.63 0.18 0.044

Table A6. p-values of Bartlett’s test for homogeneity of variances for loss values of IQL between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.014 0.095 1.45 × 10−3 0.71
50 0.21 0.069 6.42 × 10−4 0.67

Table A7. p-values of Bartlett’s test for homogeneity of variances for the mean q value of selected
actions of IQL between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.68 0.50 0.074 0.002
50 0.56 0.49 0.059 0.64

Table A8. p-values of Bartlett’s test for homogeneity of variances for the target value of selected
actions of IQL between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.70 0.47 0.080 2.08 × 10−3

50 0.56 0.47 0.061 0.63
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Table A9. p-values of Bartlett’s test for homogeneity of variances for the mean return values of IQL
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.99 0.36 2.80 × 10−3 7.73 × 10−3

50 0.73 0.48 0.023 0.57

Table A10. p-values of Bartlett’s test for homogeneity of variances for the max return values of IQL
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.84 × 10−6 0.77 5.28 × 10−5 0.41
50 nan 9.22 × 10−3 1.60 × 10−3 0.47

Appendix C.2. IPPO

Below are the statistics that were gathered on the IPPO algorithm. The statistics that
were tested include the following: mean return, max return, agent grad norms, critic grad
norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Variances are evaluated between joint reward and independent reward. Bolded
p-values reject the null hypothesis, indicating that the variances between the 25-step and
50-step runs are different.

Table A11. p-values of Bartlett’s test for homogeneity of variance for mean returns of IPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 4.52 × 10−5 0.074 0.54 1.14 × 10−5

50 0.16 3.39 × 10−6 0.75 1.37 × 10−4

Table A12. p-values of Bartlett’s test for homogeneity of variance for max returns of IPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 0.013 0.049 9.04 × 10−4

50 0.0 8.66 × 10−7 8.26 × 10−6 0.34

Table A13. p-values of Bartlett’s test for homogeneity of variance for agent grad norms returns of
IPPO varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 8.27 × 10−17 9.97 × 10−4 1.17 × 10−12 3.23 × 10−14

50 9.14 × 10−16 5.11 × 10−8 8.82 × 10−13 5.99 × 10−18

Table A14. p-values of Bartlett’s test for homogeneity of variance for critic grad norms returns of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.98 × 10−21 1.15 × 10−13 2.98 × 10−22 2.27 × 10−15

50 4.39 × 10−23 2.60 × 10−15 9.49 × 10−20 5.75 × 10−18

Table A15. p-values of Bartlett’s test for homogeneity of variance for critic loss of IPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.51 × 10−25 2.56 × 10−10 2.33 × 10−22 2.43 × 10−17

50 1.69 × 10−28 1.79 × 10−11 1.01 × 10−18 2.90 × 10−18
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Table A16. p-values of Bartlett’s test for homogeneity of variance for policy gradient loss of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.86 × 10−17 2.06 × 10−9 5.25 × 10−14 4.11 × 10−12

50 1.22 × 10−22 9.84 × 10−17 7.55 × 10−14 4.60 × 10−14

Table A17. p-values of Bartlett’s test for homogeneity of variance for maximum policy values of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.39 × 10−5 1.28 × 10−3 0.19 0.18
50 0.64 6.63 × 10−4 1.88 × 10−4 0.011

Table A18. p-values of Bartlett’s test for homogeneity of variance for advantage means of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 2.05 × 10−17 3.98 × 10−10 9.86 × 10−15 2.59 × 10−12

50 1.12 × 10−21 1.38 × 10−16 5.35 × 10−14 8.63 × 10−14

Appendix C.3. IA2C

Below are the statistics that were gathered on the IA2C algorithm. The statistics that
were tested include the following: mean return, max return, agent grad norms, critic grad
norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Variances are evaluated between joint reward and independent reward. Bolded
p-values reject the null hypothesis, indicating that the variances between the 25-step and
50-step runs are different.

Table A19. p-values of Bartlett’s test for homogeneity of variances for mean return values of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.016 0.35 0.63 6.69 × 10−3

50 0.003 0.38 0.12 0.063

Table A20. p-values of Bartlett’s test for homogeneity of variances for max return values of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 4.27 × 10−4 0.071 0.29
50 0.0 0.0 2.07 × 10−9 0.016

Table A21. p-values of Bartlett’s test for homogeneity of variances for critic grad norm of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.25 0.24 0.33 0.005
50 0.13 0.31 0.019 0.010

Table A22. p-values of Bartlett’s test for homogeneity of variances for critic loss of IA2C between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.60 0.19 0.011 4.12 × 10−4

50 0.81 0.33 0.045 0.17
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Table A23. p-values of Bartlett’s test for homogeneity of variances for PG loss of IA2C between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.25 0.24 0.33 4.89 × 10−3

50 0.13 0.31 0.019 9.87 × 10−3

Table A24. p-values of Bartlett’s test for homogeneity of variances for advantage mean of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.20 0.17 3.13 × 10−3 0.033
50 0.029 0.13 0.15 3.15 × 10−3

Appendix C.4. VDN

Below are the statistics that were gathered on the VDN algorithm. The results aspects
of the algorithm that were compared include the following: loss, grad norm, mean of
selected q values, means of return, max of returns, and target network mean q values for
the selected action. Variances are evaluated between joint reward and independent reward.
Bolded p-values reject the null hypothesis, indicating that the variances between the 25-step
and 50-step runs are different.

Table A25. p-values of Bartlett’s test for homogeneity of variances for gradient norm values of VDN
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.30 0.41 1.00 0.13
50 0.45 0.011 0.55 0.005

Table A26. p-values of Bartlett’s test for homogeneity of variances for loss values of VDN between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.17 0.40 0.016 0.10
50 0.87 0.58 0.33 0.076

Table A27. p-values of Bartlett’s test for homogeneity of variances for the mean q value of selected
actions of VDN between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.034 0.099 0.77 0.052
50 0.021 0.87 0.83 0.20

Table A28. p-values of Bartlett’s test for homogeneity of variances for the target network mean q
values of selected actions of VDN between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.034 0.11 0.78 0.038
50 0.020 0.86 0.81 0.18

Table A29. p-values of Bartlett’s test for homogeneity of variances for the mean return values VDN
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.038 0.002 0.27 0.11
50 0.36 0.75 0.71 0.37
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Table A30. p-values of Bartlett’s test for homogeneity of variances for the max return values VDN
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 0.50 0.31 0.089
50 0.0 0.26 0.26 0.003

Appendix C.5. QMIX

Below are the statistics that were gathered on the QMIX algorithm. The results aspects
of the algorithm that were compared include the following: loss, grad norm, mean of
selected q values, means of return, max of returns, and target network mean q values for
the selected action. Variances are evaluated between joint reward and independent reward.
Bolded p-values reject the null hypothesis, indicating that the variances between the 25-step
and 50-step runs are different.

Table A31. p-values of Bartlett’s test for homogeneity of variances for loss values of Qmix between
25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 8.18 × 10−6 0.13 7.12 × 10−5 5.66 × 10−8

50 9.17 × 10−32 1.84 × 10−10 0.25 3.55 × 10−4

Table A32. p-values of Bartlett’s test for homogeneity of variances for gradient norm values of Qmix
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 2.92 × 10−8 0.20 6.36 × 10−7 7.19 × 10−10

50 1.09 × 10−17 1.53 × 10−11 1.06 × 10−3 9.73 × 10−7

Table A33. p-values of Bartlett’s test for homogeneity of variances for the mean q value of selected
actions of Qmix between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.04 0.55 0.01 1.65 × 10−8

50 0.04 2.86 × 10−8 0.03 0.08

Table A34. p-values of Bartlett’s test for homogeneity of variances for the target network mean q
values of selected actions of Qmix between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.04 0.52 6.18 × 10−3 1.21 × 10−8

50 0.03 2.66 × 10−8 0.03 0.07

Table A35. p-values of Bartlett’s test for homogeneity of variances for the max return values Qmix
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 Nan 0.90 0.76 2.73 × 10−4

50 4.65 × 10−6 0.83 3.90 × 10−4 0.21

Table A36. p-values of Bartlett’s test for homogeneity of variances for the mean return values Qmix
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.87 0.61 0.40 1.24 × 10−5

50 7.55 × 10−3 2.10 × 10−2 0.51 0.25
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Appendix C.6. MAA2C

Below are the statistics that were gathered on the MAA2C algorithm. The statistics
that were tested include the following: mean return, max return, agent grad norms,critic
grad norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Bolded p-values reject the null hypothesis, indicating that the variances between
the 25-step and 50-step runs are different.

Table A37. p-values of Bartlett’s test for homogeneity of variance for mean returns of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.46 × 10−7 9.93 × 10−5 0.12 0.22
50 9.03 × 10−8 7.12 × 10−12 1.59 × 10−7 0.89

Table A38. p-values of Bartlett’s test for homogeneity of variance for Max Returns of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 9.83 × 10−10 1.09 × 10−4 0.011
50 0.0 0.0 9.83 × 10−2 0.28

Table A39. p-values of Bartlett’s test for homogeneity of variance for agent grad norms of MAA2C
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.90 7.12 × 10−2 0.43 4.62 × 10−3

50 1.76× 10−2 0.50 0.80 4.54 × 10−2

Table A40. p-values of Bartlett’s test for homogeneity of variance for critic grad norms of MAA2C
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.33 0.020 2.81 × 10−5 0.74
50 0.13 0.005 0.13 0.012

Table A41. p-values of Bartlett’s test for homogeneity of variance for critic loss of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.027 2.52 × 10−4 0.004 0.69
50 0.029 0.11 1.20 × 10−5 0.59

Table A42. p-values of Bartlett’s test for homogeneity of variance for pg loss of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.20 × 10−5 1.32 × 10−5 2.22 × 10−3 0.029
50 0.034 1.17 × 10−6 0.014 0.025

Table A43. p-values of Bartlett’s test for homogeneity of variance for max policy values of MAA2C
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.28 × 10−7 6.16 × 10−4 0.18 0.019
50 3.31 × 10−4 1.64 × 10−3 1.94 × 10−8 0.061
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Table A44. p-values of Bartlett’s test for homogeneity of variance for advantage mean values of
MAA2C varying episode length between 25 timesteps and 50 timesteps and comparing reward func-
tions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.51 × 10−3 0.025 1.11 × 10−3 0.071
50 0.38 3.53 × 10−4 0.90 1.07 × 10−4

Appendix C.7. MAPPO

Below are the statistics that were gathered on the MAPPO algorithm. The statistics
that were tested include the following:mean return , max return, agent grad norms, critic
grad norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Bolded p-values reject the null hypothesis, indicating that the variances between
the 25-step and 50-step runs are different.

Table A45. p-values of Bartlett’s test for homogeneity of variance for return means of MAPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.21 × 10−4 0.12 1.08 × 10−6 2.85 × 10−6

50 2.76 × 10−6 0.84 0.92 4.05 × 10−6

Table A46. p-values of Bartlett’s test for homogeneity of variance for return maxes of MAPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.28 × 10−5 0.90 3.71 × 10−8 3.70 × 10−4

50 0.00 1.86 × 10−5 1.66 × 10−6 1.74 × 10−3

Table A47. p-values of Bartlett’s test for homogeneity of variance for agent grad norms of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.73 × 10−12 1.85 × 10−5 2.49 × 10−10 3.24 × 10−9

50 6.17 × 10−16 2.60 × 10−8 3.29 × 10−13 4.52 × 10−18

Table A48. p-values of Bartlett’s test for homogeneity of variance for critic grad norm of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.29 × 10−17 2.35 × 10−11 6.32 × 10−11 4.66 × 10−12

50 1.53 × 10−20 1.51 × 10−19 9.26 × 10−22 8.30 × 10−20

Table A49. p-values of Bartlett’s test for homogeneity of variance for policy gradient loss of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.46 × 10−18 6.95 × 10−7 1.15 × 10−7 6.13 × 10−8

50 3.70 × 10−22 1.11 × 10−17 1.14 × 10−14 3.87 × 10−16

Table A50. p-values of Bartlett’s test for homogeneity of variance for max policy values of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 6.89 × 10−3 0.83 1.44 × 10−6 0.22
50 0.015 0.15 0.40 0.10
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Table A51. p-values of Bartlett’s test for homogeneity of variance for advantage mean values of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 2.81 × 10−18 4.19 × 10−7 3.13 × 10−7 5.83 × 10−8

50 6.95 × 10−22 1.27 × 10−17 1.62 × 10−14 4.02 × 10−16
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