
Citation: Lutfi, M.; Valerdi, R.

Integration of SysML and Virtual

Reality Environment: A Ground

Based Telescope System Example.

Systems 2023, 11, 189. https://

doi.org/10.3390/systems11040189

Academic Editors: Ed Pohl and

Eric Specking

Received: 10 March 2023

Revised: 3 April 2023

Accepted: 5 April 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Integration of SysML and Virtual Reality Environment: A
Ground Based Telescope System Example
Mostafa Lutfi * and Ricardo Valerdi

Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ 85721, USA;
rvalerdi@arizona.edu
* Correspondence: mostafalutfi@arizona.edu

Abstract: In recent years, Model Based Systems Engineering (MBSE) has continued to develop as
a standard for designing, managing, and maintaining increasingly complex systems. Unlike the
document centric approach, MBSE puts the model at the heart of system design. Among the various
MBSE language development efforts, “Systems Modeling Language (SysML)”, is the most anticipated
and broadly utilized in the research and in industrial practice. SysML originated from Unified
Modeling Language (UML) and follows the Object-Oriented Systems Engineering Method (OOSEM).
SysML diagrams help users create various systems engineering artifacts, including requirements,
use cases, operational concepts, system architecture, system behaviors, and parametric analyses of a
system model. In the early days of implementation, MBSE languages, including SysML, typically
relied on static viewpoints and limited simulation support to depict and analyze a system model.
Due the continuous improvement efforts and new implementation approaches by researchers and
organizations, SysML has advanced vastly to encompass dynamic viewpoints, in-situ simulation
and enable integration with external modeling and simulation (M&S) tools. Virtual Reality (VR)
has emerged as a user interactive and immersive visualization technology and can depict reality
in a virtual environment at different levels of fidelity. VR can play a crucial role in developing
dynamic and interactive viewpoints to improve the MBSE approach. In this research paper, the
authors developed and implemented a methodology for integrating SysML and VR, enabling tools to
achieve three dimensional viewpoints, an immersive user experience and early design evaluations of
the system of interest (SOI). The key components of the methodology being followed in this research
paper are the SysML, a VR environment, extracted data and scripting languages. The authors
initially developed a SysML for a ground-based telescope system following the four pillars of SysML:
Structure, Requirements, Behavior and Parametrics. The SysML diagram components are exported
from the model using the velocity template language and then fed into a virtual reality game engine.
Then, the SysML diagrams are visualized in the VR environment to enable better comprehension and
interaction with users and Digital Twin (DT) technologies. In addition, a VR simulation scenario of
space objects is generated based on the input from the SysML, and the simulation result is sent back
from the VR tool into the model with the aid of parametric diagram simulation. Hence, by utilizing the
developed SysML-VR integration methodology, VR environment scenarios are successfully integrated
with the SysML. Finally, the research paper mentions a few limitations of the current implementation
and proposes future improvements.

Keywords: virtual reality (VR); systems modeling language (SysML); model based systems engineering
(MBSE); digital twin (DT)

1. Introduction

According to the International Council on Systems Engineering (INCOSE), “Systems
Engineering is a transdisciplinary and integrative approach to enable the successful realiza-
tion, use, and retirement of engineered systems, using systems principles and concepts, and
scientific, technological, and management methods” [1]. Model Based Systems Engineering

Systems 2023, 11, 189. https://doi.org/10.3390/systems11040189 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11040189
https://doi.org/10.3390/systems11040189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-2866-3802
https://doi.org/10.3390/systems11040189
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11040189?type=check_update&version=3


Systems 2023, 11, 189 2 of 18

(MBSE) focuses on formalized applications of modeling to support systems engineering
artifacts development from the conceptual design phase throughout the end of the sys-
tem of interest (SOI) lifecycle [2]. In his 1993 book, “Model Based Systems Engineering”,
Dr. Wayne Wymore first introduced the term “MBSE” [3]. Systems engineers are living in a
generation wherein modern systems are growing in complexity [4,5]. MBSE is the proposed
solution by the researchers to cope with system complexity in a variety of SOI [6,7]. Various
MBSE methodologies have been developed in recent years. The most notable ones are Ob-
ject Oriented Systems Engineering Method (OOSEM), Object Process Methodology (OPM),
State Analysis, IBM Harmony and Arcadia-Capella [8,9]. Among these, OOSEM-based
SysML has better tool support than any other MBSE methodologies available [10,11]. In fact,
SysML has emerged as the de facto standard system modeling language for MBSE [12,13].
According to Friedenthal, Moore, and Steiner, “SysML is a general-purpose graphical mod-
eling language that supports the analysis, specification, design, verification, and validation
for complex systems” [14]. SysML is owned and published by the Object Management
Group, Inc. (OMG) [15]. SysML is a derivation of UML, developed in the 1990s as a general-
purpose language for software engineering [16]. SysML consists of nine diagram types,
namely Package Diagram, Requirements Diagram, Block Definition Diagram (BDD), Inter-
nal Block Diagram (IBD), Use Case Diagram, Activity Diagram, State Machine Diagram,
Sequence Diagram, and Parametric Diagram (see Figure 1) [15].

Systems 2023, 11, x FOR PEER REVIEW 2 of 18 
 

 

and scientific, technological, and management methods” [1]. Model Based Systems Engi-
neering (MBSE) focuses on formalized applications of modeling to support systems engi-
neering artifacts development from the conceptual design phase throughout the end of 
the system of interest (SOI) lifecycle [2]. In his 1993 book, “Model Based Systems Engi-
neering”, Dr. Wayne Wymore first introduced the term “MBSE” [3]. Systems engineers 
are living in a generation wherein modern systems are growing in complexity [4,5]. MBSE 
is the proposed solution by the researchers to cope with system complexity in a variety of 
SOI [6,7]. Various MBSE methodologies have been developed in recent years. The most 
notable ones are Object Oriented Systems Engineering Method (OOSEM), Object Process 
Methodology (OPM), State Analysis, IBM Harmony and Arcadia-Capella [8,9]. Among 
these, OOSEM-based SysML has better tool support than any other MBSE methodologies 
available [10,11]. In fact, SysML has emerged as the de facto standard system modeling 
language for MBSE [12,13]. According to Friedenthal, Moore, and Steiner, “SysML is a 
general-purpose graphical modeling language that supports the analysis, specification, 
design, verification, and validation for complex systems” [14]. SysML is owned and pub-
lished by the Object Management Group, Inc. (OMG) [15]. SysML is a derivation of UML, 
developed in the 1990s as a general-purpose language for software engineering [16]. 
SysML consists of nine diagram types, namely Package Diagram, Requirements Diagram, 
Block Definition Diagram (BDD), Internal Block Diagram (IBD), Use Case Diagram, Ac-
tivity Diagram, State Machine Diagram, Sequence Diagram, and Parametric Diagram (see 
Figure 1) [15]. 

 
Figure 1. SysML diagram taxonomy [17]. 

VR is one of the major technologies with the utmost anticipated potential for growth, 
especially in the fields of engineering, education, gaming, cinematography and healthcare 
[18–25]. For example, different engineering fields leveraged VR technologies to accom-
plish various tasks, such as VR based Civil Engineering training, Industry 4.0 implemen-
tation, and Aerospace training [26–32]. Coates et al. defined VR as an electronic simulation 
of environments with head mounted display and wired outfit, which allows the end user 
to interact with lifelike 3D environments [33]. A typical VR system consists of the follow-
ing key components: VR implementation software, Head Mounted Display (HMD), base 
station, tracking sensors, feedback devices, on board/external computers and users [34–
36]. 

Though SysML application has been widespread in recent years, it has not been fully 
adopted by organizations. In addition, stakeholders may not have knowledge of SysML 
[37]. External product suppliers do not have SysML software knowledge and often ask for 
Excel/Word documents for data exchanges. Hence, system engineers still need to generate 

Figure 1. SysML diagram taxonomy [17].

VR is one of the major technologies with the utmost anticipated potential for growth, es-
pecially in the fields of engineering, education, gaming, cinematography and
healthcare [18–25]. For example, different engineering fields leveraged VR technologies
to accomplish various tasks, such as VR based Civil Engineering training, Industry 4.0
implementation, and Aerospace training [26–32]. Coates et al. defined VR as an electronic
simulation of environments with head mounted display and wired outfit, which allows
the end user to interact with lifelike 3D environments [33]. A typical VR system consists
of the following key components: VR implementation software, Head Mounted Display
(HMD), base station, tracking sensors, feedback devices, on board/external computers and
users [34–36].

Though SysML application has been widespread in recent years, it has not been
fully adopted by organizations. In addition, stakeholders may not have knowledge of
SysML [37]. External product suppliers do not have SysML software knowledge and often
ask for Excel/Word documents for data exchanges. Hence, system engineers still need to
generate documents from the SysML system model to present the work in front of non-
technical audiences. Therefore, there is a need for automatic data extraction from SysML
models to facilitate model demonstration to technical and non-technical stakeholders alike.



Systems 2023, 11, 189 3 of 18

To date, SysML models have mostly been used to define requirements, use cases,
system architectures, system behaviors, and task sequences through static viewpoints and
elements. In recent years, researchers have incorporated simulation analysis within SysML
models to enable system requirements verification and design evaluation [38,39]. However,
very few studies have focused on the integration of VR tools with SysML models. Recent
studies indicate that VR-supported immersive design review allows participants to identify
more issues/faults in design, improve collaborative engagement, focus and presence as
compared to non-immersive methods [40,41]. Moreover, VR environments are beneficial for
visualizing complex structures and provide higher levels of understanding and knowledge
retention than the conventional approaches [42–44]. Recent case studies/evaluations by
the researchers showed that VR environment translation of visual formalisms (similar
to SysML) resulted in enhanced collaboration, learning and understanding among the
users/stakeholders. For example, multiple studies have confirmed that 3D VR environ-
ments significantly increase the processes of knowledge retention and the collaborative
process modeling experience of Business Process Model and Notation (BPMN) [45–47].
Similarly, modeling 3D UML diagrams in a virtual environment resulted in faster model
comprehension and a more enjoyable modeling experience than 2D diagrams [48,49]. Based
on the above study results, it can be elicited that visualization of 2D SysML diagrams in
a 3D VR environment can improve model understanding, especially of complex systems,
and facilitate a better collaborative environment among users and stakeholders.

VR technology can help visualize the system architecture, facilitate virtual storytelling,
verify system requirements and evaluate product/service performance early in the lifecycle
of a SOI. For example, a system engineer can evaluate system architecture (e.g., Telescope
Mount System) in a 3D virtual environment and, based on their understanding of the
system, modify/refine the architecture early in the design phase. In addition, external
stakeholders with minimal technical knowledge can be immersed into a 3D virtual envi-
ronment and experience use case scenarios of proposed designs. As a result, there is a need
for interoperability between 3D VR models and SysML models to enable data exchange
and review to systems engineering artifacts such as use cases, requirements, operational
concepts, system architecture, etc.

In addition, use of Digital Twin (DT) technologies in systems engineering projects
have been increasing in recent years. DT as a concept was first introduced by Michael
Grieves as a virtual representation of an actual component that can be used to emulate
the same behavior as that of its real world counterpart [50]. However, the term “Digital
Twin” first appeared in National Aeronautics and Space Administration’s (NASA) draft
technological roadmap published in 2010 [51]. Over the last two decades, literature and
research in the field has evolved to produce a wide variety of DT definitions and method-
ologies [52]. To simplify the ambiguity, a DT can be defined as a digital or virtual model
of a real-world object (system, component, part, process, human, etc.) representative of
the exact or future state of its physical twin via real time data exchange as well as keeping
records of historical data [53]. Virtual models can be developed using a variety of methods,
including VR, Augmented Reality (AR), Mixed Reality (MR), dashboard technologies and
2D simulations, etc. [54–59]. For example, developers can fabricate an entire machine in a
digital environment and test their high-level control mechanism in a VR environment; man-
ufacturing engineers can utilize dashboards to analyze the production process in real time
and make necessary adjustments. Data exchanges between real and virtual counterparts of
a DT infrastructure are achieved through internal/external sensors connected to physical
systems and communication networks [58]. Recently, few DT frameworks have emerged
where VR environments co-exist with other DT infrastructure and support validation of the
digital/virtual configurations before the physical twin implementation [60,61]. The inte-
gration of MBSE tools and DT infrastructure can present several opportunities for systems
engineers to test and visualize large models [62,63]. Both the physical and virtual models
can be integrated with a shared MBSE repository (e.g., SysML model), which will act as
a communication hub between DT infrastructure and systems engineering activities [63].



Systems 2023, 11, 189 4 of 18

Moreover, MBSE efforts can introduce early DT development in a program’s lifecycle [64].
Therefore, integration of SysML models with VR tools is one of the key steps in establishing
synergy between DT and MBSE.

Hence, the authors have developed a methodology to integrate a SysML model with
VR environments for a ground-based telescope system. The authors have chosen the
above-mentioned system since telescope systems heavily rely on digital data products
and generate virtual scenarios to analyze different aspects of scientific findings. The key
contributions of this research are summarized as follows:

• A SysML model for a ground-based telescope system is developed, which will act as a
reference model for the telescope MBSE practitioners.

• A detailed methodology to integrate SysML models with VR environments.
• Data interchange between SysML parametric diagram simulation and the VR scenario,

which will enable DT and MBSE co-existence.
• SysML model diagram visualization in the interactive VR tool, which will enhance the

systems modeling experience, model understanding and collaboration among stakeholders.

2. Literature Review

The authors believe there are limited studies available in MBSE research which em-
phasize integration of VR environments with SysML tools. In his thesis paper, Kande
proposed an integration methodology of Virtual Engineering (VE) suite with the SysML
model, providing a graphical interface to demonstrate the system of interest and opera-
tions [65]. He created a fermenter analysis model using Computer Aided Design (CAD)
data and analyzed the effects of changes in design parameters on system performance. To
enable effective communication of systems engineering artifacts to the non-engineering
disciplines, Madni mapped systems engineering (SE) artifacts modeled in SysML to vir-
tual worlds, within which different storylines can unfold [66]. In addition, he combined
MBSE + frameworks (MBSE and storytelling in VR) and Experimental Design Language
(EDL) to enable early participation and collaboration of the stakeholders in the system
design [67]. Abidi et al. proposed an interactive VR simulation to encompass real time
simulation of production flows in a lean manufacturing industry through communication
between ARENA and Virtual Environment by utilizing SysML based transformation and
Real Time Infrastructure (RTI) [68]. Mahboob et al. proposed a concept for a user- and
task-centric model for product development in the VR environment. In that research pro-
posal, SysML was used to separate isolated model components into products, actors and
behaviors of a specific use case, and then those model components were combined to build
the use case-specific scenario in VR [69]. Sanvordenker visualized a self-driving truck’s
SysML model in a VR environment by extracting SysML model diagrams, representing
them in a browser, and finally embedding the web browser inside a Unity scene through
a custom plugin [70]. Oberhauser demonstrated a solution concept for visualizing and
interacting with SysML models as stacked hyperplanes in a VR environment [71].

However, in the above research there are some limitations. Namely, requiring exten-
sive manual effort to set up each of the simulation components and frequent changes in the
interface files (e.g., dynamic link library) to enable seamless data exchange. Furthermore,
the VR diagrams used in these studies were more complex (e.g., stacked hyperplanes)
instead of being easily comprehendible and their methodologies involved far-reaching con-
versions of models (XMI conversion, MASCARET, etc.). Those complex design techniques
may hinder the mass use of VR-enabled SysML due to the time and effort needed to set up
those systems.

3. Methodology

The overview of this study’s methodology is summarized in Figure 2. Key components
of the methodology are: SysML System Model, Virtual Environment, Scripting Languages
and Extracted Data. Details of the components are described below.



Systems 2023, 11, 189 5 of 18

Systems 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

3. Methodology 
The overview of this study�s methodology is summarized in Figure 2. Key compo-

nents of the methodology are: SysML System Model, Virtual Environment, Scripting Lan-
guages and Extracted Data. Details of the components are described below. 

 
Figure 2. Methodology overview. 

3.1. SysML System Model 
An SysML system model functions as the central hub for all the systems engineering 

artifacts. In this research paper, the authors selected eight SysML diagram types to repre-
sent system hierarchy, requirements, structure, and behavior, which are as follows: Pack-
age Diagram, Requirement Diagram, Block Definition Diagram (BDD), Internal Block Di-
agram (IBD), Use Case Diagram, Activity Diagram, State Machine Diagram and Paramet-
ric Diagram. A Requirement Diagram represents different types of requirements (system 
level, interface, etc.) and their traceability with other requirements, model elements that 
satisfy them, and the test cases which verify them. BDDs are primarily used to depict a 
system�s physical/logical architecture through the hierarchical relationship between the 
subsystem level components and classifiers. IBD is a diagram type which is owned by a 
particular block/system context and shows parts, properties, ports, interfaces and connect-
ors within it. Use Case Diagrams define use cases and operational concepts by visualizing 
the relationship between the system�s key functions and its actors (human/nonhuman). 
An Activity Diagram is a key SysML tool to represent system, subsystem and component 
level scenarios, and to represent behaviors through the sequence of data/control flows be-
tween actions. State Machine Diagrams are utilized to present information about dynamic 
system behaviors, transitions between system states, lifetime of a block through states, 
event triggers and transition elements. Parametric Diagrams are a specialized IBD diagram 
that help to combine structural and behavior model elements with engineering, simula-
tion, or mathematical models. Package Diagrams facilitate the organization of a complex 
system model through container packages and their relationships. The authors used 
Cameo Systems Modeler (CSM) as the SysML tool because it has Cameo Simulation toolkit 
incorporated [53]. Cameo Simulation toolkit and Report Wizard tools support a wide va-
riety of scripting languages including JavaScript, Python, MATLAB, Velocity Template 
Language (VTL), Modelica, etc. [72]. 

3.2. VR Environment 
The authors propose to use Unity as the VR environment tool to be integrated with 

CSM [73]. The VR environment can be configured by utilizing the input from the SysML 
system model. The VR scene can incorporate human interaction/feedback, which can be 

Figure 2. Methodology overview.

3.1. SysML System Model

An SysML system model functions as the central hub for all the systems engineer-
ing artifacts. In this research paper, the authors selected eight SysML diagram types to
represent system hierarchy, requirements, structure, and behavior, which are as follows:
Package Diagram, Requirement Diagram, Block Definition Diagram (BDD), Internal Block
Diagram (IBD), Use Case Diagram, Activity Diagram, State Machine Diagram and Para-
metric Diagram. A Requirement Diagram represents different types of requirements (system
level, interface, etc.) and their traceability with other requirements, model elements that
satisfy them, and the test cases which verify them. BDDs are primarily used to depict a
system’s physical/logical architecture through the hierarchical relationship between the
subsystem level components and classifiers. IBD is a diagram type which is owned by a
particular block/system context and shows parts, properties, ports, interfaces and connec-
tors within it. Use Case Diagrams define use cases and operational concepts by visualizing
the relationship between the system’s key functions and its actors (human/nonhuman).
An Activity Diagram is a key SysML tool to represent system, subsystem and component
level scenarios, and to represent behaviors through the sequence of data/control flows
between actions. State Machine Diagrams are utilized to present information about dynamic
system behaviors, transitions between system states, lifetime of a block through states,
event triggers and transition elements. Parametric Diagrams are a specialized IBD diagram
that help to combine structural and behavior model elements with engineering, simulation,
or mathematical models. Package Diagrams facilitate the organization of a complex sys-
tem model through container packages and their relationships. The authors used Cameo
Systems Modeler (CSM) as the SysML tool because it has Cameo Simulation toolkit incor-
porated [72]. Cameo Simulation toolkit and Report Wizard tools support a wide variety of
scripting languages including JavaScript, Python, MATLAB, Velocity Template Language
(VTL), Modelica, etc. [73].

3.2. VR Environment

The authors propose to use Unity as the VR environment tool to be integrated with
CSM [72]. The VR environment can be configured by utilizing the input from the SysML
system model. The VR scene can incorporate human interaction/feedback, which can
be returned to the SysML model using two-way communication. Unity can read the
automatically generated excel files with the aid of a scripting language to extract the SysML
model elements and import them into the VR environment. The major elements of a
Unity scene that one must have knowledge of to understand this research are as follows:
GameObject: fundamental objects in Unity that represent characters, props and scenery.
Components: added to the game objects to provide real functionality. Transform: determines



Systems 2023, 11, 189 6 of 18

the Position, Rotation, and Scale of each object in the scene Prefab: acts as a template from
which one can create new object instances in the scene [74]. For example, in this research
paper, the authors used Cube Game Objects to represent the blocks and requirements. So,
the authors attached scripts and collider components to a single instance of Cube. Then,
the authors created a prefab of the Cube so that the authors can automate the production of
similar game objects in the scene.

3.3. Extracted Data

For presentation purposes and communication of model data with external tools,
reusable generic scripts are developed to automate the generation of SysML model out-
put files in various formats (Word, Excel, XML, etc.) containing model elements and
diagrams/viewpoints. The extraction is done through a custom script which can be gener-
alized/modified for other project usage. Similarly, Unity simulation results are extracted as
Excel files, which are in turn imported into the SysML model for analysis.

3.4. Scripting Languages

The authors have used VTL to create the report wizard template file in the CSM
to export the SysML model diagram components (see Figures 3 and 4) [75]. CSM is
also integrated with MATLAB to exchange simulation parameter values with the Unity
engine. On the other hand, Unity installation comes with built-in C# scripting capabilities
(see Figure 5). Hence, C# scripts are used to define the behavior of the game objects,
import/export data values and user interaction methods (see Figure 5).

Systems 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

returned to the SysML model using two-way communication. Unity can read the auto-
matically generated excel files with the aid of a scripting language to extract the SysML 
model elements and import them into the VR environment. The major elements of a Unity 
scene that one must have knowledge of to understand this research are as follows: 
GameObject: fundamental objects in Unity that represent characters, props and scenery. 
Components: added to the game objects to provide real functionality. Transform: determines 
the Position, Rotation, and Scale of each object in the scene Prefab: acts as a template from 
which one can create new object instances in the scene [74]. For example, in this research 
paper, the authors used Cube Game Objects to represent the blocks and requirements. So, 
the authors attached scripts and collider components to a single instance of Cube. Then, 
the authors created a prefab of the Cube so that the authors can automate the production 
of similar game objects in the scene. 

3.3. Extracted Data 
For presentation purposes and communication of model data with external tools, re-

usable generic scripts are developed to automate the generation of SysML model output 
files in various formats (Word, Excel, XML, etc.) containing model elements and dia-
grams/viewpoints. The extraction is done through a custom script which can be general-
ized/modified for other project usage. Similarly, Unity simulation results are extracted as 
Excel files, which are in turn imported into the SysML model for analysis. 

3.4. Scripting Languages 
The authors have used VTL to create the report wizard template file in the CSM to 

export the SysML model diagram components (see Figures 3 and 4) [75]. CSM is also in-
tegrated with MATLAB to exchange simulation parameter values with the Unity engine. 
On the other hand, Unity installation comes with built-in C# scripting capabilities (see 
Figure 5). Hence, C# scripts are used to define the behavior of the game objects, import/ex-
port data values and user interaction methods (see Figure 5). 

 
Figure 3. Report wizard setup. 

 
Figure 4. VTL script snippets. 

Figure 3. Report wizard setup.

Systems 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

returned to the SysML model using two-way communication. Unity can read the auto-
matically generated excel files with the aid of a scripting language to extract the SysML 
model elements and import them into the VR environment. The major elements of a Unity 
scene that one must have knowledge of to understand this research are as follows: 
GameObject: fundamental objects in Unity that represent characters, props and scenery. 
Components: added to the game objects to provide real functionality. Transform: determines 
the Position, Rotation, and Scale of each object in the scene Prefab: acts as a template from 
which one can create new object instances in the scene [74]. For example, in this research 
paper, the authors used Cube Game Objects to represent the blocks and requirements. So, 
the authors attached scripts and collider components to a single instance of Cube. Then, 
the authors created a prefab of the Cube so that the authors can automate the production 
of similar game objects in the scene. 

3.3. Extracted Data 
For presentation purposes and communication of model data with external tools, re-

usable generic scripts are developed to automate the generation of SysML model output 
files in various formats (Word, Excel, XML, etc.) containing model elements and dia-
grams/viewpoints. The extraction is done through a custom script which can be general-
ized/modified for other project usage. Similarly, Unity simulation results are extracted as 
Excel files, which are in turn imported into the SysML model for analysis. 

3.4. Scripting Languages 
The authors have used VTL to create the report wizard template file in the CSM to 

export the SysML model diagram components (see Figures 3 and 4) [75]. CSM is also in-
tegrated with MATLAB to exchange simulation parameter values with the Unity engine. 
On the other hand, Unity installation comes with built-in C# scripting capabilities (see 
Figure 5). Hence, C# scripts are used to define the behavior of the game objects, import/ex-
port data values and user interaction methods (see Figure 5). 

 
Figure 3. Report wizard setup. 

 
Figure 4. VTL script snippets. Figure 4. VTL script snippets.



Systems 2023, 11, 189 7 of 18
Systems 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 5. C# script snippets. 

4. Ground Based Telescope System Model 
The Ground Based Telescope System Model developed for this research is a large 

model consisting of multiple instances of the SysML diagram types. Hence, each of the 
diagram type examples are included here to demonstrate how SysML diagrams are used 
to model different system artifacts for the SOI. 

Figure 6 shows the SysML package diagram of the system model, which is consists 
of “requirements”, “structure”, “behavior” and “parametric” packages. The requirements 
package consists of the requirements diagrams and tables. The structure package includes 
system architecture and communication interfaces. The behavior package contains use 
cases, operational scenarios, and system states. The parametric package includes the data 
exchange and integration components with the VR environment. 

 
Figure 6. Package diagram of the telescope system model. 

In this study, SysML requirement diagrams are used to represent the requirements 
specifications and their relationships with lower-level requirements. Relationship types 
between requirements and lower-level requirements and/or other related elements are 
“containment”, “derive”, “refine”, “satisfy”, “verify”, and “trace”. Figure 7 shows a 
SysML requirement diagram with a containment relationship between parent and child 
requirements for a telescope data collection system. Requirements can be displayed using 
a requirements table as well (Figure 8). 

Figure 5. C# script snippets.

4. Ground Based Telescope System Model

The Ground Based Telescope System Model developed for this research is a large
model consisting of multiple instances of the SysML diagram types. Hence, each of the
diagram type examples are included here to demonstrate how SysML diagrams are used to
model different system artifacts for the SOI.

Figure 6 shows the SysML package diagram of the system model, which is consists
of “requirements”, “structure”, “behavior” and “parametric” packages. The requirements
package consists of the requirements diagrams and tables. The structure package includes
system architecture and communication interfaces. The behavior package contains use
cases, operational scenarios, and system states. The parametric package includes the data
exchange and integration components with the VR environment.

Systems 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 5. C# script snippets. 

4. Ground Based Telescope System Model 
The Ground Based Telescope System Model developed for this research is a large 

model consisting of multiple instances of the SysML diagram types. Hence, each of the 
diagram type examples are included here to demonstrate how SysML diagrams are used 
to model different system artifacts for the SOI. 

Figure 6 shows the SysML package diagram of the system model, which is consists 
of “requirements”, “structure”, “behavior” and “parametric” packages. The requirements 
package consists of the requirements diagrams and tables. The structure package includes 
system architecture and communication interfaces. The behavior package contains use 
cases, operational scenarios, and system states. The parametric package includes the data 
exchange and integration components with the VR environment. 

 
Figure 6. Package diagram of the telescope system model. 

In this study, SysML requirement diagrams are used to represent the requirements 
specifications and their relationships with lower-level requirements. Relationship types 
between requirements and lower-level requirements and/or other related elements are 
“containment”, “derive”, “refine”, “satisfy”, “verify”, and “trace”. Figure 7 shows a 
SysML requirement diagram with a containment relationship between parent and child 
requirements for a telescope data collection system. Requirements can be displayed using 
a requirements table as well (Figure 8). 

Figure 6. Package diagram of the telescope system model.

In this study, SysML requirement diagrams are used to represent the requirements
specifications and their relationships with lower-level requirements. Relationship types
between requirements and lower-level requirements and/or other related elements are
“containment”, “derive”, “refine”, “satisfy”, “verify”, and “trace”. Figure 7 shows a
SysML requirement diagram with a containment relationship between parent and child
requirements for a telescope data collection system. Requirements can be displayed using
a requirements table as well (Figure 8).

SysML BDDs are used to depict the system architecture and relationship between the
components of the different subsystems of the ground-based telescope. Figures 9 and 10
demonstrate how the authors have decomposed different subsystems to a lower level with
the BDD. Also, users can specify the multiplicity to define the number of components
necessary for a given subsystem. The authors also included a navigator to the previous
diagram (see Figure 10).



Systems 2023, 11, 189 8 of 18Systems 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. Requirements diagram for the data collection system. 

 
Figure 8. Requirements table for the data collection system. 

SysML BDDs are used to depict the system architecture and relationship between the 
components of the different subsystems of the ground-based telescope. Figures 9 and 10 
demonstrate how the authors have decomposed different subsystems to a lower level with 
the BDD. Also, users can specify the multiplicity to define the number of components nec-
essary for a given subsystem. The authors also included a navigator to the previous dia-
gram (see Figure 10). 

 
Figure 9. BDD of the telescope mount system. 

 
Figure 10. BDD of the telescope control system. 

Communications and data flow between different subsystems are represented by 
SysML IBDs. Specifically, the IBDs represent interconnection, interfaces, and ports be-
tween the parts of a block. For example, Figure 11 depicts the telescope control system 

Figure 7. Requirements diagram for the data collection system.

Systems 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. Requirements diagram for the data collection system. 

 
Figure 8. Requirements table for the data collection system. 

SysML BDDs are used to depict the system architecture and relationship between the 
components of the different subsystems of the ground-based telescope. Figures 9 and 10 
demonstrate how the authors have decomposed different subsystems to a lower level with 
the BDD. Also, users can specify the multiplicity to define the number of components nec-
essary for a given subsystem. The authors also included a navigator to the previous dia-
gram (see Figure 10). 

 
Figure 9. BDD of the telescope mount system. 

 
Figure 10. BDD of the telescope control system. 

Communications and data flow between different subsystems are represented by 
SysML IBDs. Specifically, the IBDs represent interconnection, interfaces, and ports be-
tween the parts of a block. For example, Figure 11 depicts the telescope control system 

Figure 8. Requirements table for the data collection system.

Systems 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. Requirements diagram for the data collection system. 

 
Figure 8. Requirements table for the data collection system. 

SysML BDDs are used to depict the system architecture and relationship between the 
components of the different subsystems of the ground-based telescope. Figures 9 and 10 
demonstrate how the authors have decomposed different subsystems to a lower level with 
the BDD. Also, users can specify the multiplicity to define the number of components nec-
essary for a given subsystem. The authors also included a navigator to the previous dia-
gram (see Figure 10). 

 
Figure 9. BDD of the telescope mount system. 

 
Figure 10. BDD of the telescope control system. 

Communications and data flow between different subsystems are represented by 
SysML IBDs. Specifically, the IBDs represent interconnection, interfaces, and ports be-
tween the parts of a block. For example, Figure 11 depicts the telescope control system 

Figure 9. BDD of the telescope mount system.

Systems 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. Requirements diagram for the data collection system. 

 
Figure 8. Requirements table for the data collection system. 

SysML BDDs are used to depict the system architecture and relationship between the 
components of the different subsystems of the ground-based telescope. Figures 9 and 10 
demonstrate how the authors have decomposed different subsystems to a lower level with 
the BDD. Also, users can specify the multiplicity to define the number of components nec-
essary for a given subsystem. The authors also included a navigator to the previous dia-
gram (see Figure 10). 

 
Figure 9. BDD of the telescope mount system. 

 
Figure 10. BDD of the telescope control system. 

Communications and data flow between different subsystems are represented by 
SysML IBDs. Specifically, the IBDs represent interconnection, interfaces, and ports be-
tween the parts of a block. For example, Figure 11 depicts the telescope control system 

Figure 10. BDD of the telescope control system.

Communications and data flow between different subsystems are represented by
SysML IBDs. Specifically, the IBDs represent interconnection, interfaces, and ports between
the parts of a block. For example, Figure 11 depicts the telescope control system data flows.
Signals are sent from one port to another through connectors to depict the transfer of data
between the system components.



Systems 2023, 11, 189 9 of 18

Systems 2023, 11, x FOR PEER REVIEW 9 of 18 
 

 

data flows. Signals are sent from one port to another through connectors to depict the 
transfer of data between the system components. 

 
Figure 11. IBD showing telescope control system data flows. 

SysML use case diagrams are a good way of visualizing operations concepts and use 
cases for different systems through the visualization of the interaction between actors and 
use cases. In Figure 12, a data analysis operational concept (OpsCon) is presented that 
consists of use cases, actors, and their relationships. As the actors are human in this case, 
they are represented by a human icon. Non-human actors are usually represented through 
block-like actors. 

 
Figure 12. Data analysis OpsCon through use case diagram. 

Activity diagrams are another type of behavior diagram used in this model to visu-
alize different operational scenarios for a ground-based telescope system. Usually, an ac-
tivity diagram starts with an initial node (a solid circle) to symbolize the start of an activ-
ity. The diagram connects different action types with control flows or object flows. Control 
flows are used to model the flow of control between actions, whereas object flows are used 
to model the flow of data. In Figure 13, an operational scenario on how to disable the 
telescope motions are depicted through an activity diagram. 

Figure 11. IBD showing telescope control system data flows.

SysML use case diagrams are a good way of visualizing operations concepts and use
cases for different systems through the visualization of the interaction between actors and
use cases. In Figure 12, a data analysis operational concept (OpsCon) is presented that
consists of use cases, actors, and their relationships. As the actors are human in this case,
they are represented by a human icon. Non-human actors are usually represented through
block-like actors.

Systems 2023, 11, x FOR PEER REVIEW 9 of 18 
 

 

data flows. Signals are sent from one port to another through connectors to depict the 
transfer of data between the system components. 

 
Figure 11. IBD showing telescope control system data flows. 

SysML use case diagrams are a good way of visualizing operations concepts and use 
cases for different systems through the visualization of the interaction between actors and 
use cases. In Figure 12, a data analysis operational concept (OpsCon) is presented that 
consists of use cases, actors, and their relationships. As the actors are human in this case, 
they are represented by a human icon. Non-human actors are usually represented through 
block-like actors. 

 
Figure 12. Data analysis OpsCon through use case diagram. 

Activity diagrams are another type of behavior diagram used in this model to visu-
alize different operational scenarios for a ground-based telescope system. Usually, an ac-
tivity diagram starts with an initial node (a solid circle) to symbolize the start of an activ-
ity. The diagram connects different action types with control flows or object flows. Control 
flows are used to model the flow of control between actions, whereas object flows are used 
to model the flow of data. In Figure 13, an operational scenario on how to disable the 
telescope motions are depicted through an activity diagram. 

Figure 12. Data analysis OpsCon through use case diagram.

Activity diagrams are another type of behavior diagram used in this model to visualize
different operational scenarios for a ground-based telescope system. Usually, an activity
diagram starts with an initial node (a solid circle) to symbolize the start of an activity. The
diagram connects different action types with control flows or object flows. Control flows
are used to model the flow of control between actions, whereas object flows are used to
model the flow of data. In Figure 13, an operational scenario on how to disable the telescope
motions are depicted through an activity diagram.



Systems 2023, 11, 189 10 of 18Systems 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 13. Activity diagram of “disable motion” scenario. 

SysML state machine diagrams help to model different operational states and transi-
tions between states triggered by events/signals/values, etc. State machine diagrams can 
be also used to define/build verification constraints of a system to verify the system re-
quirements [76]. In Figure 14, different states and their transition paths with signals are 
displayed. For instance, when an errrorIsTrue signal is triggered, the system transitions to 
FaultState from DisabledState or EnabledState. If there is maintenance activity required, a 
maintenance signal will trigger a transition to MaintenanceState from FaultState. 

 
Figure 14. State machine showing operational states of the telescope mount system. 

SysML parametric diagrams help the modeler to combine system models with engi-
neering analysis models (e.g., performance, reliability, cost analysis, simulation). SysML 

Figure 13. Activity diagram of “disable motion” scenario.

SysML state machine diagrams help to model different operational states and tran-
sitions between states triggered by events/signals/values, etc. State machine diagrams
can be also used to define/build verification constraints of a system to verify the system
requirements [76]. In Figure 14, different states and their transition paths with signals are
displayed. For instance, when an errrorIsTrue signal is triggered, the system transitions to
FaultState from DisabledState or EnabledState. If there is maintenance activity required, a
maintenance signal will trigger a transition to MaintenanceState from FaultState.

Systems 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 13. Activity diagram of “disable motion” scenario. 

SysML state machine diagrams help to model different operational states and transi-
tions between states triggered by events/signals/values, etc. State machine diagrams can 
be also used to define/build verification constraints of a system to verify the system re-
quirements [76]. In Figure 14, different states and their transition paths with signals are 
displayed. For instance, when an errrorIsTrue signal is triggered, the system transitions to 
FaultState from DisabledState or EnabledState. If there is maintenance activity required, a 
maintenance signal will trigger a transition to MaintenanceState from FaultState. 

 
Figure 14. State machine showing operational states of the telescope mount system. 

SysML parametric diagrams help the modeler to combine system models with engi-
neering analysis models (e.g., performance, reliability, cost analysis, simulation). SysML 

Figure 14. State machine showing operational states of the telescope mount system.

SysML parametric diagrams help the modeler to combine system models with engi-
neering analysis models (e.g., performance, reliability, cost analysis, simulation). SysML



Systems 2023, 11, 189 11 of 18

activity diagrams with the aid of the opaque action can serve a similar purpose of integration
with external analysis tools [77]. However, to serve large, complex system models, the
using a parametric diagram is a more efficient way of trading with a high volume of data
and calculations as compared to an activity diagram. In Figure 15, the authors incorporated
a MATLAB function into a constraint block by dragging it into the parametric diagram. The
function takes the numObjects (the number of space Objects to be created in a unity scene)
variable as input and returns the xPos of a selected game object in the same unity scene by
a user.

Systems 2023, 11, x FOR PEER REVIEW 11 of 18 
 

 

activity diagrams with the aid of the opaque action can serve a similar purpose of integra-
tion with external analysis tools [77]. However, to serve large, complex system models, 
the using a parametric diagram is a more efficient way of trading with a high volume of 
data and calculations as compared to an activity diagram. In Figure 15, the authors incor-
porated a MATLAB function into a constraint block by dragging it into the parametric di-
agram. The function takes the numObjects (the number of space Objects to be created in a 
unity scene) variable as input and returns the xPos of a selected game object in the same 
unity scene by a user. 

 
Figure 15. Parametric diagram for unity data exchange. 

5. Integration with the VR Environment 
In this research paper, a SysML system model is integrated with the VR environment 

in Unity using two different methods. First, the authors utilized CST in the CSM tool to 
simulate the parametric diagram in order to achieve data exchange between the model 
and the VR environment. The value properties SpaceObjects and xPosition are mapped to 
the numObjects and xPos variables from the MATLAB script, respectively (see Figure 15). 
Both the MATLAB function and Unity engine access the same excel file to read and write 
the data values being exchanged. As shown in Figure 16, the SpaceObjects value was set to 
10 and the authors received a returned xPosition value of −2.1438 from the Unity scene. It 
is apparent from Figure 17 that C# script from Unity received the input from the model 
and generated 10 space objects in the Unity scene by instantiating the Space Objects prefab. 
Then, the xPosition value becomes populated in the CST console of the system model once 
the user selects a space object in the Unity scene by hovering the mouse over the object 
(see Figure 18). The value can be confirmed by comparing it to the unity console showing 
the xPosition value of the selected object (see Figure 19). The color of the object changes to 
red once the user selects a particular space object in the Unity scene (see Figure 18). Thus, 
two-way data exchange between the system model and the Unity environment is facili-
tated. 

 
Figure 16. CST variables with values. 

Figure 15. Parametric diagram for unity data exchange.

5. Integration with the VR Environment

In this research paper, a SysML system model is integrated with the VR environment
in Unity using two different methods. First, the authors utilized CST in the CSM tool to
simulate the parametric diagram in order to achieve data exchange between the model and
the VR environment. The value properties SpaceObjects and xPosition are mapped to the
numObjects and xPos variables from the MATLAB script, respectively (see Figure 15). Both
the MATLAB function and Unity engine access the same excel file to read and write the
data values being exchanged. As shown in Figure 16, the SpaceObjects value was set to 10
and the authors received a returned xPosition value of −2.1438 from the Unity scene. It
is apparent from Figure 17 that C# script from Unity received the input from the model
and generated 10 space objects in the Unity scene by instantiating the Space Objects prefab.
Then, the xPosition value becomes populated in the CST console of the system model once
the user selects a space object in the Unity scene by hovering the mouse over the object
(see Figure 18). The value can be confirmed by comparing it to the unity console showing
the xPosition value of the selected object (see Figure 19). The color of the object changes
to red once the user selects a particular space object in the Unity scene (see Figure 18).
Thus, two-way data exchange between the system model and the Unity environment
is facilitated.

Systems 2023, 11, x FOR PEER REVIEW 11 of 18 
 

 

activity diagrams with the aid of the opaque action can serve a similar purpose of integra-
tion with external analysis tools [77]. However, to serve large, complex system models, 
the using a parametric diagram is a more efficient way of trading with a high volume of 
data and calculations as compared to an activity diagram. In Figure 15, the authors incor-
porated a MATLAB function into a constraint block by dragging it into the parametric di-
agram. The function takes the numObjects (the number of space Objects to be created in a 
unity scene) variable as input and returns the xPos of a selected game object in the same 
unity scene by a user. 

 
Figure 15. Parametric diagram for unity data exchange. 

5. Integration with the VR Environment 
In this research paper, a SysML system model is integrated with the VR environment 

in Unity using two different methods. First, the authors utilized CST in the CSM tool to 
simulate the parametric diagram in order to achieve data exchange between the model 
and the VR environment. The value properties SpaceObjects and xPosition are mapped to 
the numObjects and xPos variables from the MATLAB script, respectively (see Figure 15). 
Both the MATLAB function and Unity engine access the same excel file to read and write 
the data values being exchanged. As shown in Figure 16, the SpaceObjects value was set to 
10 and the authors received a returned xPosition value of −2.1438 from the Unity scene. It 
is apparent from Figure 17 that C# script from Unity received the input from the model 
and generated 10 space objects in the Unity scene by instantiating the Space Objects prefab. 
Then, the xPosition value becomes populated in the CST console of the system model once 
the user selects a space object in the Unity scene by hovering the mouse over the object 
(see Figure 18). The value can be confirmed by comparing it to the unity console showing 
the xPosition value of the selected object (see Figure 19). The color of the object changes to 
red once the user selects a particular space object in the Unity scene (see Figure 18). Thus, 
two-way data exchange between the system model and the Unity environment is facili-
tated. 

 
Figure 16. CST variables with values. Figure 16. CST variables with values.



Systems 2023, 11, 189 12 of 18Systems 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 17. Objects created in the VR simulation scene. 

 
Figure 18. User selection of an object by hovering the mouse. 

 
Figure 19. X-Position of the user selected object in the unity console. 

Secondly, the authors used VTL and report wizard from CSM to export the SysML 
diagram components and their relationships to different Excel files which are shared with 
Unity C# scripts. The scripts written for different diagram types can take the information 
from the Excel files and generate visualization of the same diagram exported in the Excel 
files in the Unity scene. In Figure 20, the exact same BDD as modeled in the system model 
shown in Figure 10 can be seen. The authors used a Cube prefab to depict the blocks and 
cylinder prefabs to visualize the relationship in the Unity scene. Parent blocks are shown 
in a different color (cyan) compared to the child blocks (see Figure 20). Users can visualize 
the requirements diagram utilizing the same prefabs used in a BDD, as both are hierar-
chical diagrams. However, for a requirements diagram visualization, the authors only 
show the requirement details when the user selects a particular requirement by hovering 
the mouse over the selection to keep the diagram less cluttered (see Figure 21). This selec-
tion of a requirement also shows how users can design user interactions with diagrams 
inside the VR environment. Using a similar method, users can use different types of pre-
fabs and organization patterns to visualize the different types of SysML diagrams in the 
VR environment (e.g., using human prefabs to depict actors in the use case diagram). 
Hence, with the aid of VTL and C# scripts attached to custom prefabs, users can visualize 
SysML diagrams inside Unity scenes to enable improved user interaction and communi-
cation. 

Figure 17. Objects created in the VR simulation scene.

Systems 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 17. Objects created in the VR simulation scene. 

 
Figure 18. User selection of an object by hovering the mouse. 

 
Figure 19. X-Position of the user selected object in the unity console. 

Secondly, the authors used VTL and report wizard from CSM to export the SysML 
diagram components and their relationships to different Excel files which are shared with 
Unity C# scripts. The scripts written for different diagram types can take the information 
from the Excel files and generate visualization of the same diagram exported in the Excel 
files in the Unity scene. In Figure 20, the exact same BDD as modeled in the system model 
shown in Figure 10 can be seen. The authors used a Cube prefab to depict the blocks and 
cylinder prefabs to visualize the relationship in the Unity scene. Parent blocks are shown 
in a different color (cyan) compared to the child blocks (see Figure 20). Users can visualize 
the requirements diagram utilizing the same prefabs used in a BDD, as both are hierar-
chical diagrams. However, for a requirements diagram visualization, the authors only 
show the requirement details when the user selects a particular requirement by hovering 
the mouse over the selection to keep the diagram less cluttered (see Figure 21). This selec-
tion of a requirement also shows how users can design user interactions with diagrams 
inside the VR environment. Using a similar method, users can use different types of pre-
fabs and organization patterns to visualize the different types of SysML diagrams in the 
VR environment (e.g., using human prefabs to depict actors in the use case diagram). 
Hence, with the aid of VTL and C# scripts attached to custom prefabs, users can visualize 
SysML diagrams inside Unity scenes to enable improved user interaction and communi-
cation. 

Figure 18. User selection of an object by hovering the mouse.

Systems 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 17. Objects created in the VR simulation scene. 

 
Figure 18. User selection of an object by hovering the mouse. 

 
Figure 19. X-Position of the user selected object in the unity console. 

Secondly, the authors used VTL and report wizard from CSM to export the SysML 
diagram components and their relationships to different Excel files which are shared with 
Unity C# scripts. The scripts written for different diagram types can take the information 
from the Excel files and generate visualization of the same diagram exported in the Excel 
files in the Unity scene. In Figure 20, the exact same BDD as modeled in the system model 
shown in Figure 10 can be seen. The authors used a Cube prefab to depict the blocks and 
cylinder prefabs to visualize the relationship in the Unity scene. Parent blocks are shown 
in a different color (cyan) compared to the child blocks (see Figure 20). Users can visualize 
the requirements diagram utilizing the same prefabs used in a BDD, as both are hierar-
chical diagrams. However, for a requirements diagram visualization, the authors only 
show the requirement details when the user selects a particular requirement by hovering 
the mouse over the selection to keep the diagram less cluttered (see Figure 21). This selec-
tion of a requirement also shows how users can design user interactions with diagrams 
inside the VR environment. Using a similar method, users can use different types of pre-
fabs and organization patterns to visualize the different types of SysML diagrams in the 
VR environment (e.g., using human prefabs to depict actors in the use case diagram). 
Hence, with the aid of VTL and C# scripts attached to custom prefabs, users can visualize 
SysML diagrams inside Unity scenes to enable improved user interaction and communi-
cation. 

Figure 19. X-Position of the user selected object in the unity console.

Secondly, the authors used VTL and report wizard from CSM to export the SysML
diagram components and their relationships to different Excel files which are shared with
Unity C# scripts. The scripts written for different diagram types can take the information
from the Excel files and generate visualization of the same diagram exported in the Excel
files in the Unity scene. In Figure 20, the exact same BDD as modeled in the system model
shown in Figure 10 can be seen. The authors used a Cube prefab to depict the blocks and
cylinder prefabs to visualize the relationship in the Unity scene. Parent blocks are shown in
a different color (cyan) compared to the child blocks (see Figure 20). Users can visualize the
requirements diagram utilizing the same prefabs used in a BDD, as both are hierarchical
diagrams. However, for a requirements diagram visualization, the authors only show
the requirement details when the user selects a particular requirement by hovering the
mouse over the selection to keep the diagram less cluttered (see Figure 21). This selection
of a requirement also shows how users can design user interactions with diagrams inside
the VR environment. Using a similar method, users can use different types of prefabs
and organization patterns to visualize the different types of SysML diagrams in the VR
environment (e.g., using human prefabs to depict actors in the use case diagram). Hence,



Systems 2023, 11, 189 13 of 18

with the aid of VTL and C# scripts attached to custom prefabs, users can visualize SysML
diagrams inside Unity scenes to enable improved user interaction and communication.

Systems 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 20. SysML BDD of the telescope control system in VR. 

 
Figure 21. Requirement diagram showing requirement description on mouse hover. 

6. Discussion 
Telescope systems depend heavily on vast amounts of data collection and scenario 

visualizations to analyze different science aspects of existing space objects, consider the 
possibility of new discoveries and run educational programs for different institutions. So, 
integration of VR environments with the SysML system model will enable design/analysis 
of those visualization systems with reduced cost and effort, as alternative architectures 
can be evaluated within the system model. The system model developed in SysML will 
contribute to the literature on the application of MBSE in ground-based telescope systems. 
Model based system engineers will be able to use different SysML diagrams appropriately 
to model similar telescope systems. The system�s integration capabilities with VR envi-
ronments also facilitates future integration of DT technologies with MBSE tools. As DT�s 
virtual components can be designed in a VR environment, SysML models can potentially 
communicate with the physical twin through the digital counterpart in the VR environ-
ment. Design/analysis parameters from SysML models can be fed into the VR environ-
ment. Then, those changes in VR environment will dictate the physical twin�s behavior, 
as twins can be connected through data communication networks and sensors. In an al-
ternative configuration, SysML models can be shared with both digital and physical twins, 
where the system receives sensor fed data from the physical twin and makes changes/up-
dates in the digital twin or vice versa. As a majority of the VR environment tools are also 
equipped to develop AR/MR models, the proposed methodology can be expanded to en-
able integration of SysML models with AR/MR based DT infrastructure [55,78]. In addi-
tion, with the aid of predesigned prefab databases and ontological dictionaries, it will be 
possible to create DT scenes of more complex alternatives with multiple game objects 
seamlessly in the VR environment from the system model. Hence, the time, cost, and effort 
necessary to design the individual components of the whole MBSE-DT paradigm will be 
greatly reduced. 

Early prototypes can be generated from the system model by utilizing the proposed 
methodology. Then, the responsible engineer can test the design of the planned system by 
analyzing the interaction results with the potential customer and other stakeholders. Fi-
nally, SysML diagrams are not easily comprehendible to all types of stakeholders involved 

Figure 20. SysML BDD of the telescope control system in VR.

Systems 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 20. SysML BDD of the telescope control system in VR. 

 
Figure 21. Requirement diagram showing requirement description on mouse hover. 

6. Discussion 
Telescope systems depend heavily on vast amounts of data collection and scenario 

visualizations to analyze different science aspects of existing space objects, consider the 
possibility of new discoveries and run educational programs for different institutions. So, 
integration of VR environments with the SysML system model will enable design/analysis 
of those visualization systems with reduced cost and effort, as alternative architectures 
can be evaluated within the system model. The system model developed in SysML will 
contribute to the literature on the application of MBSE in ground-based telescope systems. 
Model based system engineers will be able to use different SysML diagrams appropriately 
to model similar telescope systems. The system�s integration capabilities with VR envi-
ronments also facilitates future integration of DT technologies with MBSE tools. As DT�s 
virtual components can be designed in a VR environment, SysML models can potentially 
communicate with the physical twin through the digital counterpart in the VR environ-
ment. Design/analysis parameters from SysML models can be fed into the VR environ-
ment. Then, those changes in VR environment will dictate the physical twin�s behavior, 
as twins can be connected through data communication networks and sensors. In an al-
ternative configuration, SysML models can be shared with both digital and physical twins, 
where the system receives sensor fed data from the physical twin and makes changes/up-
dates in the digital twin or vice versa. As a majority of the VR environment tools are also 
equipped to develop AR/MR models, the proposed methodology can be expanded to en-
able integration of SysML models with AR/MR based DT infrastructure [55,78]. In addi-
tion, with the aid of predesigned prefab databases and ontological dictionaries, it will be 
possible to create DT scenes of more complex alternatives with multiple game objects 
seamlessly in the VR environment from the system model. Hence, the time, cost, and effort 
necessary to design the individual components of the whole MBSE-DT paradigm will be 
greatly reduced. 

Early prototypes can be generated from the system model by utilizing the proposed 
methodology. Then, the responsible engineer can test the design of the planned system by 
analyzing the interaction results with the potential customer and other stakeholders. Fi-
nally, SysML diagrams are not easily comprehendible to all types of stakeholders involved 

Figure 21. Requirement diagram showing requirement description on mouse hover.

6. Discussion

Telescope systems depend heavily on vast amounts of data collection and scenario
visualizations to analyze different science aspects of existing space objects, consider the
possibility of new discoveries and run educational programs for different institutions. So,
integration of VR environments with the SysML system model will enable design/analysis
of those visualization systems with reduced cost and effort, as alternative architectures
can be evaluated within the system model. The system model developed in SysML will
contribute to the literature on the application of MBSE in ground-based telescope systems.
Model based system engineers will be able to use different SysML diagrams appropriately
to model similar telescope systems. The system’s integration capabilities with VR envi-
ronments also facilitates future integration of DT technologies with MBSE tools. As DT’s
virtual components can be designed in a VR environment, SysML models can potentially
communicate with the physical twin through the digital counterpart in the VR environ-
ment. Design/analysis parameters from SysML models can be fed into the VR environment.
Then, those changes in VR environment will dictate the physical twin’s behavior, as twins
can be connected through data communication networks and sensors. In an alternative
configuration, SysML models can be shared with both digital and physical twins, where the
system receives sensor fed data from the physical twin and makes changes/updates in the
digital twin or vice versa. As a majority of the VR environment tools are also equipped to
develop AR/MR models, the proposed methodology can be expanded to enable integration
of SysML models with AR/MR based DT infrastructure [55,78]. In addition, with the aid
of predesigned prefab databases and ontological dictionaries, it will be possible to create
DT scenes of more complex alternatives with multiple game objects seamlessly in the VR



Systems 2023, 11, 189 14 of 18

environment from the system model. Hence, the time, cost, and effort necessary to design
the individual components of the whole MBSE-DT paradigm will be greatly reduced.

Early prototypes can be generated from the system model by utilizing the proposed
methodology. Then, the responsible engineer can test the design of the planned system by
analyzing the interaction results with the potential customer and other stakeholders. Finally,
SysML diagrams are not easily comprehendible to all types of stakeholders involved in
the development of a system. An end user may not have enough expertise to understand
the different types of diagrams and their relationships within a SysML tool. By recreating
the SysML diagrams in an interactive virtual environment, the learning curve present in
understanding SysML models will be improved.

The developed methodology to integrate VR environments with SysML has few scopes
for extension. The communication of SysML diagram visualizations in VR environments is
implemented as one way, i.e., users can only update in the SysML model and then export
for interactive visualization in the VR environment. However, the user in VR environments
may want to change some blocks of a BDD and propose additional blocks to be added into
the diagram. These updates can be exported from the VR scene and incorporated back to
the system model upon approval of the systems engineer. Next, the authors have utilized
Excel format for extracting the SysML diagrams to visualize in the VR environment. As
researchers frequently use JSON and/or XML data interchange format as mediums for
data interoperation between tools, the authors will consider these formats in the future
expansion of this research. Moreover, since the scope of this research is to develop an easily
replicable integration approach, the authors did not design the VR scenario generation
scripts with the consideration of VR design parameters such as an end user’s engagement
level, fatigue, lighting conditions, etc. Finally, although the benefits of integration of VR
and SysML are perceivable through the illustration of the proposed methodology and
related studies (see introduction) discussed in this paper, formal measurement studies need
to be performed to measure the benefits of the integrated MBSE approach.

7. Conclusions

This research paper demonstrated modeling of a ground-based telescope system
utilizing the widely accepted MBSE language SysML. The system model was organized by
the four pillars of SysML, which are the Requirements, Structure, Behavior and Parametrics
aspects of the SOI. From a methodological viewpoint, this study is useful in illustrating
step-by-step how SysML diagrams can be applied to model various design aspects of a
telescope system’s system artifacts including requirements, architectures, interfaces, use
cases, operational concepts, operational scenarios, and system states. The system model
was integrated with a virtual reality environment (Unity engine) to enable data exchange
between SysML and VR scenarios through MATLAB and C#. Finally, the SysML diagrams
were exported using VTL and recreated automatically through C# scripts as Unity scenes,
where users can interact with the SysML diagrams. The proposed methodology fills the gap
in the literature by achieving direct communication between SysML and VR environments
through real time data exchange. In addition, unlike the previous efforts by the researchers,
the proposed methodology did not involve intensive conversion of SysML components
to multiple file types to facilitate the integration. In this research, the SysML diagrams
visualized in the VR environment are more comprehendible and interactable. Hence, the
developed integration methodology will be easy to understand and replicate by future users.
The authors plan to expand upon this research in the future to overcome the limitations
mentioned in the previous section. The capability to update SysML model diagrams from
VR environments based on user feedback will be incorporated. In addition, the integration
approach will be evaluated by analyzing the selected benefit types from the MBSE value
and benefits review performed by Henderson and Salado [79].



Systems 2023, 11, 189 15 of 18

Author Contributions: Conceptualization, M.L. and R.V.; methodology, M.L.; software, M.L.; val-
idation, M.L. and R.V.; formal analysis, M.L.; investigation, M.L. and R.V.; resources, M.L.; data
curation, M.L.; writing—original draft preparation, M.L.; writing—review and editing, M.L. and R.V.;
visualization, M.L.; supervision, R.V.; project administration, M.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable—no new data generated data sharing does
not apply to this article as no new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. INCOSE. System and SE Definitions. Available online: https://www.incose.org/about-systems-engineering/system-and-se-

definition/system-and-se-definitions (accessed on 26 January 2023).
2. Hart, L. Introduction to model-based system engineering (MBSE) and SysML. In Proceedings of the Delaware Valley Chapter

Meeting, Philadelphia, PA, USA, 26 April 2015; p. 43.
3. Wymore, L.A.W. Model-Based Systems Engineering; CRC Press: Boca Raton, FL, USA, 1993.
4. Honour, E. Systems Engineering and Complexity. Insight 2008, 11, 20–21. [CrossRef]
5. Calvano, C.N.; John, P. Systems engineering in an age of complexity. Syst. Eng. 2004, 7, 25–34. [CrossRef]
6. French, M.O. Extending model based systems engineering for complex systems. In Proceedings of the 53rd AIAA Aerospace

Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [CrossRef]
7. Alvarez, J.L.; Metselaar, H.; Amiaux, J.; Criado, G.S.; Venancio, L.M.G.; Salvignol, J.-C.; Laureijs, R.J.; Vavrek, R. Model-based

system engineering approach for the Euclid mission to manage scientific and technical complexity. Model. Syst. Eng. Proj. Manag.
Astron. VII 2016, 9911, 99110C. [CrossRef]

8. Estefan, J.A. Survey of Model-Based Systems Engineering (MBSE) Methodologies; INCOSE MBSE Initiative: San Diego, CA, USA,
2008; p. 70.

9. Roques, P. MBSE with the ARCADIA method and the capella tool. In Proceedings of the 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016), Toulouse, France, 27–29 January 2016. Available online: https://hal.archives-
ouvertes.fr/hal-01258014 (accessed on 8 August 2021).

10. Object-Oriented SE Method, Default. Available online: https://www.incose.org/incose-member-resources/working-groups/
transformational/object-oriented-se-method (accessed on 17 September 2021).

11. Free, Open Source & Commercial MBSE + SysML Tools—MBSE Tool Reviews. Available online: https://mbsetoolreviews.com/
(accessed on 17 September 2021).

12. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling Language|Pearson. Available online: https:
//www.pearson.com/us/higher-education/program/Delligatti-Sys-ML-Distilled-A-Brief-Guide-to-the-Systems-Modeling-
Language/PGM259527.html (accessed on 8 August 2021).

13. Wolny, S.; Mazak, A.; Carpella, C.; Geist, V.; Wimmer, M. Thirteen years of SysML: A systematic mapping study. Softw. Syst.
Model. 2020, 19, 111–169. [CrossRef]

14. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language; Morgan Kaufmann: Burlington,
MA, USA, 2014.

15. OMG SysML Home|OMG Systems Modeling Language. Available online: https://www.omgsysml.org/ (accessed on 8 August 2021).
16. Erickson, J.; Siau, K. Unified modeling language: The teen years and growing pains. In Human Interface and the Management of

Information. Information and Interaction Design; Yamamoto, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8016,
pp. 295–304. [CrossRef]

17. What is SysML?|OMG SysML. Available online: https://www.omgsysml.org/what-is-sysml.htm (accessed on 26 June 2022).
18. Berni, A.; Borgianni, Y. Applications of Virtual Reality in Engineering and Product Design: Why, What, How, When and Where.

Electronics 2020, 9, 1064. [CrossRef]
19. Williams, E.; Love, C.; Love, M. Virtual Reality Cinema: Narrative Tips and Techniques; Routledge: England, UK, 2021.
20. Dowling, D.; Fearghail, C.O.; Smolic, A.; Knorr, S. Faoladh: A case study in cinematic VR storytelling and production. In

Proceedings of the Interactive Storytelling: 11th International Conference on Interactive Digital Storytelling, ICIDS 2018, Dublin,
Ireland, 5–8 December 2018; Proceedings 11. pp. 359–362.

21. Haluck, R.S. Computers and Virtual Reality for Surgical Education in the 21st Century. Arch. Surg. 2000, 135, 786–792. [CrossRef]
22. Rivas, Y.C.; Valdivieso, P.A.V.; Rodriguez, M.A.Y. Virtual reality and 21st century education. Int. Res. J. Manag. IT Soc. Sci. 2020, 7,

37–44. [CrossRef]
23. Ma, M.; Jain, L.C.; Anderson, P. Future trends of virtual, augmented reality, and games for health. In Virtual, Augmented Reality

and Serious Games for Healthcare 1; Ma, M., Jain, L.C., Anderson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–6.
[CrossRef]

https://www.incose.org/about-systems-engineering/system-and-se-definition/system-and-se-definitions
https://www.incose.org/about-systems-engineering/system-and-se-definition/system-and-se-definitions
http://doi.org/10.1002/inst.200811120
http://doi.org/10.1002/sys.10054
http://doi.org/10.2514/6.2015-1639
http://doi.org/10.1117/12.2231373
https://hal.archives-ouvertes.fr/hal-01258014
https://hal.archives-ouvertes.fr/hal-01258014
https://www.incose.org/incose-member-resources/working-groups/transformational/object-oriented-se-method
https://www.incose.org/incose-member-resources/working-groups/transformational/object-oriented-se-method
https://mbsetoolreviews.com/
https://www.pearson.com/us/higher-education/program/Delligatti-Sys-ML-Distilled-A-Brief-Guide-to-the-Systems-Modeling-Language/PGM259527.html
https://www.pearson.com/us/higher-education/program/Delligatti-Sys-ML-Distilled-A-Brief-Guide-to-the-Systems-Modeling-Language/PGM259527.html
https://www.pearson.com/us/higher-education/program/Delligatti-Sys-ML-Distilled-A-Brief-Guide-to-the-Systems-Modeling-Language/PGM259527.html
http://doi.org/10.1007/s10270-019-00735-y
https://www.omgsysml.org/
http://doi.org/10.1007/978-3-642-39209-2_34
https://www.omgsysml.org/what-is-sysml.htm
http://doi.org/10.3390/electronics9071064
http://doi.org/10.1001/archsurg.135.7.786
http://doi.org/10.21744/irjmis.v7n1.820
http://doi.org/10.1007/978-3-642-54816-1_1


Systems 2023, 11, 189 16 of 18

24. Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M.; Papanastasiou, E. Virtual and augmented reality effects on K-12, higher and
tertiary education students’ twenty-first century skills. Virtual Real. 2019, 23, 425–436. [CrossRef]

25. Wang, P.; Wu, P.; Wang, J.; Chi, H.L.; Wang, X. A critical review of the use of virtual reality in construction engineering education
and training. Int. J. Environ. Res. Public Health 2018, 15, 1204. [CrossRef]

26. Dinis, F.M.; Guimarães, A.S.; Carvalho, B.R.; Martins, J.P.P. Virtual and augmented reality game-based applications to civil
engineering education. In Proceedings of the 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece,
26–28 April 2017; pp. 1683–1688. [CrossRef]

27. Hilfert, T.; König, M. Low-cost virtual reality environment for engineering and construction. Vis. Eng. 2016, 4, 2. [CrossRef]
28. Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ.

2020, 229, 107776. [CrossRef]
29. Salah, B.; Abidi, M.H.; Mian, S.H.; Krid, M.; Alkhalefah, H.; Abdo, A. Virtual Reality-Based Engineering Education to Enhance

Manufacturing Sustainability in Industry 4.0. Sustainability 2019, 11, 1477. [CrossRef]
30. Stone, R.J.; Panfilov, P.B.; Shukshunov, V.E. Evolution of aerospace simulation: From immersive Virtual Reality to serious games.

In Proceedings of the 5th International Conference on Recent Advances in Space Technologies—RAST2011, Istanbul, Turkey, 9–11
June 2011; pp. 655–662. [CrossRef]

31. Fussell, S.G.; Truong, D. Using virtual reality for dynamic learning: An extended technology acceptance model. Virtual Real. 2022,
26, 249–267. [CrossRef]

32. Lee, H.; Woo, D.; Yu, S. Virtual Reality Metaverse System Supplementing Remote Education Methods: Based on Aircraft
Maintenance Simulation. Appl. Sci. 2022, 12, 2667. [CrossRef]

33. Steuer, J. Defining Virtual Reality: Dimensions Determining Telepresence. J. Commun. 1992, 42, 73–93. [CrossRef]
34. Biocca, F. Virtual Reality Technology: A Tutorial. J. Commun. 1992, 42, 23–72. [CrossRef]
35. Maheepala, M.; Kouzani, A.Z.; Joordens, M.A. Light-Based Indoor Positioning Systems: A Review. IEEE Sens. J. 2020, 20,

3971–3995. [CrossRef]
36. Bamodu, O.; Ye, X.M. Virtual Reality and Virtual Reality System Components. Adv. Mater. Res. 2013, 765–767, 1169–1172.

[CrossRef]
37. Patterson, E.A. Utilizing SysML Viewpoints to Improve Understanding and Communication of Human Mental Models Within System

Design Teams; The University of Alabama in Huntsville: Huntsville, AL, USA, 2017.
38. Karban, R.; Jankevičius, N.; Elaasar, M. Esem: Automated systems analysis using executable SysML modeling patterns. In

Proceedings of the INCOSE International Symposium, Edinburgh, Scotland, 18–21 July 2016; Volume 26, Number 1. pp. 1–24.
39. Karban, R.; Dekens, F.G.; Herzig, S.; Elaasar, M.; Jankevičius, N. Creating system engineering products with executable models in

a model-based engineering environment. In Proceedings of the Modeling, Systems Engineering, and Project Management for
Astronomy VII, Edinburgh, UK, 26–28 June 2016; Volume 9911, pp. 96–111.

40. Tea, S.; Panuwatwanich, K.; Ruthankoon, R.; Kaewmoracharoen, M. Multiuser immersive virtual reality application for real-time
remote collaboration to enhance design review process in the social distancing era. J. Eng. Des. Technol. 2022, 20, 281–298.
[CrossRef]

41. Wolfartsberger, J. Analyzing the potential of Virtual Reality for engineering design review. Autom. Constr. 2019, 104, 27–37.
[CrossRef]

42. Shao, X.; Yuan, Q.; Qian, D.; Ye, Z.; Chen, G.; Le Zhuang, K.; Jiang, X.; Jin, Y.; Qiang, D. Virtual reality technology for teaching
neurosurgery of skull base tumor. BMC Med. Educ. 2020, 20, 3. [CrossRef] [PubMed]

43. Brown, C.E.; Alrmuny, D.; Williams, M.K.; Whaley, B.; Hyslop, R.M. Visualizing molecular structures and shapes: A comparison
of virtual reality, computer simulation, and traditional modeling. Chem. Teach. Int. 2020, 3, 69–80. [CrossRef]

44. Ferrell, J.B.; Campbell, J.P.; McCarthy, D.R.; McKay, K.T.; Hensinger, M.; Srinivasan, R.; Zhao, X.; Wurthmann, A.; Li, J.; Schneebeli,
S.T. Chemical Exploration with Virtual Reality in Organic Teaching Laboratories. J. Chem. Educ. 2019, 96, 1961–1966. [CrossRef]

45. Pöhler, L.; Schuir, J.; Lübbers, S.; Teuteberg, F. Enabling collaborative business process elicitation in virtual environments. In
Proceedings of the Business Modeling and Software Design: 10th International Symposium, BMSD 2020, Berlin, Germany,
6–8 July 2020; Proceedings 10. pp. 375–385.

46. Leyer, M.; Brown, R.; Aysolmaz, B.; Vanderfeesten, I.; Turetken, O. 3D virtual world BPM training systems: Process gateway
experimental results. In Proceedings of the Advanced Information Systems Engineering: 31st International Conference, CAiSE
2019, Rome, Italy, 3–7 June 2019; Proceedings 31. pp. 415–429.

47. West, S.; Brown, R.; Recker, J. Collaborative business process modeling using 3D virtual environments. In Proceedings of the 16th
Americas Conference on Information Systems: Sustainable IT Collaboration around the Globe, Lima, Peru, 12–15 August 2010;
pp. 1–11.

48. Oberhauser, R. VR-UML: The unified modeling language in virtual reality—An immersive modeling experience. In Proceedings
of the Business Modeling and Software Design: 11th International Symposium, BMSD 2021, Sofia, Bulgaria, 5–7 July 2021;
Proceedings 11. pp. 40–58.

49. Reuter, R.; Hauser, F.; Muckelbauer, D.; Stark, T.; Antoni, E.; Mottok, J.; Wolff, C. Using augmented reality in software engineering
education? First insights to a comparative study of 2D and AR UML modeling. In Proceedings of the 52nd Hawaii International
Conference on System Sciences, Grand Wailea, HI, USA, 8–11 January 2019.

50. Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7.

http://doi.org/10.1007/s10055-018-0363-2
http://doi.org/10.3390/ijerph15061204
http://doi.org/10.1109/EDUCON.2017.7943075
http://doi.org/10.1186/s40327-015-0031-5
http://doi.org/10.1016/j.ijpe.2020.107776
http://doi.org/10.3390/su11051477
http://doi.org/10.1109/RAST.2011.5966921
http://doi.org/10.1007/s10055-021-00554-x
http://doi.org/10.3390/app12052667
http://doi.org/10.1111/j.1460-2466.1992.tb00812.x
http://doi.org/10.1111/j.1460-2466.1992.tb00811.x
http://doi.org/10.1109/JSEN.2020.2964380
http://doi.org/10.4028/www.scientific.net/AMR.765-767.1169
http://doi.org/10.1108/JEDT-12-2020-0500
http://doi.org/10.1016/j.autcon.2019.03.018
http://doi.org/10.1186/s12909-019-1911-5
http://www.ncbi.nlm.nih.gov/pubmed/31900135
http://doi.org/10.1515/cti-2019-0009
http://doi.org/10.1021/acs.jchemed.9b00036


Systems 2023, 11, 189 17 of 18

51. Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. Draft modeling, simulation, information
technology & processing roadmap. Natl. Aeronaut. Space Adm. 2012, 2010, 11.

52. Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design
Implications. IEEE Access 2019, 7, 167653–167671. [CrossRef]

53. Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36.
[CrossRef]

54. Kaarlela, T.; Pieskä, S.; Pitkäaho, T. Digital twin and virtual reality for safety training. In Proceedings of the 2020 11th
IEEE International Conference on Cognitive Infocommunications, (CogInfoCom), Mariehamn, Finland, 23–25 September 2020;
pp. 000115–000120.

55. Tu, X.; Autiosalo, J.; Jadid, A.; Tammi, K.; Klinker, G. A Mixed Reality Interface for a Digital Twin Based Crane. Appl. Sci. 2021, 11, 9480.
[CrossRef]

56. Sepasgozar, S.M.E. Digital Twin and Web-Based Virtual Gaming Technologies for Online Education: A Case of Construction
Management and Engineering. Appl. Sci. 2020, 10, 4678. [CrossRef]

57. Choi, S.H.; Park, K.-B.; Roh, D.H.; Lee, J.Y.; Mohammed, M.; Ghasemi, Y.; Jeong, H. An integrated mixed reality system for
safety-aware human-robot collaboration using deep learning and digital twin generation. Robot. Comput. Manuf. 2022, 73, 102258.
[CrossRef]

58. Wang, K.-J.; Lee, Y.-H.; Angelica, S. Digital twin design for real-time monitoring—A case study of die cutting machine. Int. J. Prod.
Res. 2021, 59, 6471–6485. [CrossRef]

59. Liu, Y.K.; Ong, S.K.; Nee, A.Y.C. State-of-the-art survey on digital twin implementations. Adv. Manuf. 2022, 10, 1–23. [CrossRef]
60. Pérez, L.; Rodríguez-Jiménez, S.; Rodríguez, N.; Usamentiaga, R.; García, D.F. Digital Twin and Virtual Reality Based Methodology

for Multi-Robot Manufacturing Cell Commissioning. Appl. Sci. 2020, 10, 3633. [CrossRef]
61. Havard, V.; Jeanne, B.; Lacomblez, M.; Baudry, D. Digital twin and virtual reality: A co-simulation environment for design and

assessment of industrial workstations. Prod. Manuf. Res. 2019, 7, 472–489. [CrossRef]
62. Brusa, E. Digital Twin: Toward the Integration Between System Design and RAMS Assessment Through the Model-Based Systems

Engineering. IEEE Syst. J. 2021, 15, 3549–3560. [CrossRef]
63. Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019,

7, 7. [CrossRef]
64. Bickford, J.; Van Bossuyt, D.L.; Beery, P.; Pollman, A. Operationalizing digital twins through model-based systems engineering

methods. Syst. Eng. 2020, 23, 724–750. [CrossRef]
65. Kande, A. Integration of Model-Based Systems Engineering and Virtual Engineering Tools for Detailed Design. Master’s Thesis,

Missouri University of Science and Technology, Rolla, MO, USA, 2011; p. 79.
66. Madni, A.M. Expanding Stakeholder Participation in Upfront System Engineering through Storytelling in Virtual Worlds. Syst.

Eng. 2015, 18, 16–27. [CrossRef]
67. Madni, A.M.; Nance, M.; Richey, M.; Hubbard, W.; Hanneman, L. Toward an Experiential Design Language: Augmenting

Model-based Systems Engineering with Technical Storytelling in Virtual Worlds. Procedia Comput. Sci. 2014, 28, 848–856.
[CrossRef]

68. Abidi, M.A.; Lyonnet, B.; Chevaillier, P.; Toscano, R. Contribution of virtual reality for lines production’s simulation in a lean
manufacturing environment. Simulation 2016, 9, 11. [CrossRef]

69. Mahboob, A.; Weber, C.; Husung, S.; Liebal, A.; Krömker, H. Model based systems engineering (MBSE) approach for configurable
product use-case scenarios in virtual environments, DS 87-3. In Proceedings of the 21st International Conference on Engineering
Design (ICED 17) Vol. 3: Product, Services and Systems Design, Vancouver, BC, Canada, 21–25 August 2017.

70. Sanvordenker, R. Visualization and Testing of an Autonomously Driving Truck’s Sysml Models in a Virtual 3D Simulation
Environment. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 13 August 2020.

71. Oberhauser, R. VR-SysML: SysML model visualization and immersion in virtual reality. In Proceedings of the International
Conference of Modern Systems Engineering Solutions (MODERN SYSTEMS 2022), IARIA, Nice, France, 24–28 July 2022;
pp. 59–64.

72. No Magic Inc. Cameo Systems Modeler. Available online: https://www.nomagic.com/products/cameo-systems-modeler
(accessed on 19 June 2020).

73. Cameo Simulation Toolkit—CATIA—Dassault Systèmes®. Available online: https://www.3ds.com/products-services/catia/
products/no-magic/addons/cameo-simulation-toolkit/ (accessed on 16 August 2021).

74. Unity Technologies. Unity Real-Time Development Platform|3D, 2D VR & AR Visualizations. Available online: https://unity.
com/ (accessed on 19 June 2020).

75. Apache Velocity Engine—User Guide. Available online: https://velocity.apache.org/engine/1.7/user-guide.html (accessed on
27 January 2023).

76. Anwar, M.W.; Rashid, M.; Azam, F.; Kashif, M.; Butt, W.H. A model-driven framework for design and verification of embedded
systems through SystemVerilog. Des. Autom. Embed. Syst. 2019, 23, 179–223. [CrossRef]

77. Lutfi, M.; Valerdi, R. Executable modeling of a cubesat-based space situational awareness system. In Recent Trends and Advances in
Model Based Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 475–484. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2953499
http://doi.org/10.3390/asi4020036
http://doi.org/10.3390/app11209480
http://doi.org/10.3390/app10134678
http://doi.org/10.1016/j.rcim.2021.102258
http://doi.org/10.1080/00207543.2020.1817999
http://doi.org/10.1007/s40436-021-00375-w
http://doi.org/10.3390/app10103633
http://doi.org/10.1080/21693277.2019.1660283
http://doi.org/10.1109/JSYST.2020.3010379
http://doi.org/10.3390/systems7010007
http://doi.org/10.1002/sys.21559
http://doi.org/10.1002/sys.21284
http://doi.org/10.1016/j.procs.2014.03.101
http://doi.org/10.7763/IJCTE.2016.V8.1041
https://www.nomagic.com/products/cameo-systems-modeler
https://www.3ds.com/products-services/catia/products/no-magic/addons/cameo-simulation-toolkit/
https://www.3ds.com/products-services/catia/products/no-magic/addons/cameo-simulation-toolkit/
https://unity.com/
https://unity.com/
https://velocity.apache.org/engine/1.7/user-guide.html
http://doi.org/10.1007/s10617-019-09229-y
http://doi.org/10.1007/978-3-030-82083-1_40


Systems 2023, 11, 189 18 of 18

78. Koca, B.A.; Çubukçu, B.; Yüzgeç, U. Augmented reality application for preschool children with unity 3D platform. In Proceedings
of the 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13
October 2019; pp. 1–4.

79. Henderson, K.; Salado, A. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature. Syst.
Eng. 2021, 24, 51–66. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/sys.21566

	Introduction 
	Literature Review 
	Methodology 
	SysML System Model 
	VR Environment 
	Extracted Data 
	Scripting Languages 

	Ground Based Telescope System Model 
	Integration with the VR Environment 
	Discussion 
	Conclusions 
	References

