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Abstract: Characterized by its resilience, connectivity, and real-time data processing capabilities,
the fourth industrial revolution, referred to as Industry 4.0, is the main driver of today’s digital
transformation. It is crucially important for manufacturing facilities to correctly identify the most
suitable Industry 4.0 technologies that meet their operational schemes and production targets. Dif-
ferent technology selection frameworks were proposed to tackle this problem, several of which are
complex, or require historic data from manufacturing facilities that might not always be available.
The aim of this paper is to develop a novel Industry 4.0 selection framework that utilizes Fuzzy
Analytical Hierarchy Process (FAHP) and Fuzzy Technique for Order of Preference by Similarity to
Ideal Solution (FTOPSIS) to rank different Industry 4.0 technologies based on their economic, social,
and environmental impact. The framework is also implemented on a real-life case study of a manu-
facturing firm to rank the different Industry 4.0 technologies required for its digital transformation
based on their significance to the facility’s key performance indicators. The framework is utilized
to select the top three Industry 4.0 technologies from a pool of eight technologies that are deemed
important to the manufacturing firm. Results of the case study showed that Cyber-Physical Systems,
Big Data analytics, and autonomous/industrial robots are the top three ranked technologies, having
closeness coefficient scores of 0.964, 0.928, and 0.601, respectively. Moreover, the framework showed
sensitivity towards weight changes. This is an advantage in the developed framework, since its main
aim is to provide policymakers with a customized list of technologies based on their importance to
the firm.

Keywords: Big Data; Cyber-Physical Systems; decision-making model; digital transformation; fourth
industrial revolution; Fuzzy Analytical Hierarchy Process; fuzzy logic; fuzzy TOPSIS; production
facilities; technology selection

1. Introduction

Industries have been continuously determined to increase their production in an effort
to meet fast-growing population demands, while maintaining minimum negative social
and environmental impacts [1]. These ever-growing demands and different societal and
environmental concerns have led to several industrial revolutions that began with the
use of steam power for production mechanization, followed by the use of electric power
for mass production, and information technology for the automation of production in
the second and third industrial revolutions, respectively [2]. Currently, industries are
shifting towards the fourth industrial revolution, named Industry 4.0. The term refers to
the digitalization and automation of the industrial value chain using different Industry 4.0
technologies [3]. The main aim of incorporating these technologies into manufacturing
firms is to achieve a resilient decentralized industrial value chain characterized by its
automation, interconnectivity, productivity, and real-time data collection, integration, and
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processing capabilities [3–6]. Industry 4.0 technologies also showed promising contribu-
tions to the sustainability pillars, sustainable development goals, and different circular
economy practices [4,7–9].

Several technologies have been linked to Industry 4.0. Originally, the term Industry 4.0
was introduced in Germany in 2011, referring to the use of Cyber-Physical Systems (CPSs) in
industrial production systems [10]. In addition to CPSs, Industry 4.0 nowadays refers to sev-
eral other technologies that include, but are not limited to, Cloud Computing, blockchain,
Artificial Intelligence (AI) and machine learning, Big Data and analytics, cybersecurity,
Digital Twin, Internet of Things (IoT), and additive manufacturing [11–13]. The unlimited
capabilities and promising economic outcomes of these technologies are promoting their
adoption and integration within manufacturing firms. Table 1 presents how the adoption
of some of the most common Industry 4.0 technologies can help improve several industrial
aspects, such as product design and modeling, production methodologies, raw material
traceability, and product deliveries, enhancing the firm’s overall performance.

Table 1. Selected Industry 4.0 technologies considered in the framework developed and their possible
impact on manufacturing firms.

Index Technology Description

T1 Big Data Analytics

Optimization of the production process, reduction in
costs, and enhancement of operational efficiency are all
positive impacts of Big Data Analytics on
manufacturing systems [14]. Being able to handle and
analyze raw data is becoming important for different
industries. The Big Data Analytics technology can help
to evaluate and examine the obtained data from the
production floor in order to assist decision makers.

T2 Cloud Computing

Meeting the demand for product individualization,
promoting global cooperation, and promoting
inter-organizational relationships are a few examples of
the benefits from integration of Cloud Computing
technology in firms [15]. Cloud Computing can be also
used to provide an additional storage space for
manufacturing firms to store a pool of important data.

T3 Cyber-Physical Systems

Cyber-Physical Systems are a group of technologies
which enable the connection between digital and
physical components within one firm, allowing the
digitalization of the production line. CPSs consist of
sensors which collect data from the production floor,
and actuators which interact with the physical
world [16]. Optimization of production systems,
enhancement of process control, and reduction in
manufacturing costs are examples of positive impacts on
manufacturing firms caused by utilization of
CPS [16,17].

T4 Internet of Things

Internet of Things (IoT) is one of the crucial technologies
in Industry 4.0 that can act as a bridge between different
components among the industry. There are a variety of
positive impacts that IoT can have on manufacturing
firms. Reducing manufacturing costs, enabling product
mass customization, reducing product time to market,
and assisting in design of product features are some of
the positive influences of IoT on manufacturing
firms [18].
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Table 1. Cont.

Index Technology Description

T5 Computer Simulation

Digital Twin is one type of computer simulation which
is a digital model of an actual physical system. With the
help of Digital Twin, the manufacturing firm can make
predictions on manufacturing processes [19]. Prior to
producing a product, simulations can be performed to
obtain results which are highly similar to the actual
results. With that, industries can visualize defects and
problems before starting the actual production, which
leads to saving time and funds.

T6 Blockchain

One of the main abilities of blockchain technology is
enabling secure and transparent transactions. The
traceability and transparency traits of blockchain
technology are enabled by utilizing smart contracts
which eliminate the intermediaries in between [20].

T7 Autonomous/Industrial
Robots

Industrial and autonomous robots are becoming an
integral element in different industries. Robots can
minimize error margins, automate repetitive jobs, assist
workers, etc. [21].

T8 Additive Manufacturing

Additive Manufacturing (AM) is a rapidly growing
technology used in Industry 4.0, since it can benefit
manufacturing firms. Enabling rapid manufacturing
and reducing production costs are examples of
advantages of AM [22].

This work aims to propose an Industry 4.0 technology selection framework by utilizing
some existing tools for manufacturing facilities. This framework aims to provide firms,
especially small- and medium-sized enterprises (SMEs), with low-cost methods of deter-
mining the required Industry 4.0 technologies that would positively impact their industrial
value chain and support its path towards digitalization. The framework also helps with
the selection, collection, and preparation of the different key performance indicators that
cover the production, environmental, economic, and social aspects associated with the
manufacturing facility.

2. Literature Review

Currently, the literature addressing the development of an Industry 4.0 technology
selection framework for manufacturing firms is limited. It is nonetheless worthwhile to
consider the frameworks that are available. Firstly, Hamzeh et al. designed an Industry
4.0 technology selection framework for manufacturing firms which consists of six steps.
The steps include an evaluation of the current situation, determining critical strategic
factors for the implementation of Industry 4.0, planning the range/time horizon, iden-
tifying the manufacturing technology, evaluating the technology, and conducting risk
assessment of technology alternatives [23]. Another study proposed an Industry 4.0 tech-
nology selection model that uses Mixed Integer Programming (MIP), Quality Function
Deployment (QFD), and the Analytical Hierarchy Process (AHP) [24]. The MIP model
in the proposed framework requires an algebraic modeling software to generate results.
Moreover, another framework suggests which Industry 4.0 technologies to be implemented
on the current assembly line within a manufacturing firm [25]. The model requires firms to
implement Industry 4.0 technologies one at a time on the assembly line, which might not
be a feasible approach for firms with limited financial resources and strict time constraints.
Also, assessing criteria weights in this framework are pre-defined and are not based on
experts’ opinions.

As mentioned earlier, very few frameworks are directly intended for Industry 4.0
technology selection. Hamzeh and Xu (2019) have performed a literature review on general
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technology selection methods and concluded that AHP, Data Envelopment Analysis (DEA),
fuzzy logic, Financial Analysis Techniques, Mathematical Programming (MP), and Hybrid
methods are the most frequently used methods for technology selection [26]. For instance,
Armayor et al. (2011) proposed a decision support model which uses the fuzzy approach
to select the suitable technologies for a given supply chain by calculating coefficients of
satisfaction and necessity based on the integration requirements [27]. While Nath and
Sarkar (2017) developed a method which utilizes fuzzy MCDM methods of Complex
Proportional Assessment with Grey Relations (COPRAS-G) and Evaluation of Mixed Data
(EVAMIX) to select AMTs for a given industry [28]. Similarly, Evans et al. (2013) used
a fuzzy-decision-tree approach to calculate the certainty index for different technologies.
This certainty later determines the rankings of technologies and shows the technology
that is most suitable for implementation [29]. Lastly, Yurdakul (2003) proposed a hybrid
technology selection approach, in which a combination of AHP and Goal Programming (GP)
methods are used to select between Computer-Integrated Manufacturing (CIM) technology
alternatives [30].

The Industry 4.0 technology selection procedure can be categorized as a Multi Criteria
Decision-Making (MCDM) problem, since technologies (alternatives) are ranked based on
a given criterion. MCDM analyses are often used to obtain an optimum solution when
a range of similar options are available [31]. The most prominent advantage of MCDM
analysis is the ability to analyze different forms of data that have high uncertainty [32]. The
Analytical Hierarchy Process (AHP), Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS), Complex Proportional Assessment (COPRAS), and Elimination
and Choice Translating Reality (ELECTRE) methods are a few examples of available MCDM
methods [33].

In general, the AHP method uses a 1–9 scale, which needs precise judgments by
experts to set priorities in a hierarchical manner [34]. However, some limitations to the AHP
method are the ambiguity associated in converting an expert’s judgment to crisp numbers
and the great influence of subjective judgements on AHP results [35]. As a solution, fuzzy
AHP was developed. Fuzzy AHP uses fuzzy numbers in calculations, which accounts
for the uncertainty associated with an expert’s opinion [34]. Another MCDM method is
the TOPSIS method. The TOPSIS method selects alternatives that have the least distance
from the positive ideal solution and the largest distance from the negative ideal solution.
Integration of fuzzy logic into the TOPSIS method removes vagueness from the results [36].
Efficiency and simplicity in computations and capability of handling uncertainty are some
of the important traits of the fuzzy TOPSIS method [37]. Fuzzy AHP and fuzzy TOPSIS
methods have been implemented in a variety of engineering applications. For example,
Pythagorean fuzzy AHP and fuzzy TOPSIS were used to select a green supplier for an
Industry 4.0-based firm [38]. Also, fuzzy AHP and fuzzy TOPSIS methods were used to
rank the barriers in the development of photovoltaic energy production [37]. The methods
were also used to select the best procedure for plastic recycling [39].

The three main concepts used in this work are indicator selection, multi-criteria
decision-making (MCDM) methods, and fuzzy logic theory. Industries face the burden of
selecting the most suitable indicators set to correctly capture their activities in an effective
manner that would allow for a fair assessment of their digitalization pathway. Thus, the
study presents a guide on how to select the correct set of indicators. As several indicators
are better, or more exclusively described in linguistic terms, fuzzy logic theory is utilized
in the proposed framework. Fuzzy logic models logical reasoning with linguistic terms
or imprecise statements, such as “short, tall, big, small”. By utilizing fuzzy logic in the
technology selection framework, users can easily describe the indicators using linguistic
terms. Hence, this allows for the inclusion of qualitative indicators, rather than relying
on quantitative ones only. Lastly, to allow for any number of indicators and technologies,
MCDM methods are used. MCDM methods analyses are used to obtain an optimum
solution when a range of similar options are available. The aforementioned three aspects



Systems 2023, 11, 192 5 of 22

are integrated together in a customized way, as it is described in the text, to achieve an
optimum technology selection procedure.

As transforming to Industry 4.0 is now becoming a necessity for each firm to maintain
its market competitiveness, manufacturing firms now face the burden of selecting the
correct Industry 4.0 technologies that are to be used to positively enhance their industrial
value chain. Small- and medium-sized enterprises (SMEs) are mostly affected by this
problem. Several studies revealed the low adoption rate of Industry 4.0 technologies
among SMEs. This is mainly due to the major challenge SMEs face when transitioning to
Industry 4.0, which lies within initial adoption decisions [13,40,41]. This, along with the
variation of industrial activities of each firm, calls for an Industry 4.0 technology selection
framework. Such a framework would present a low-cost method of determining the
required Industry 4.0 technologies that would positively impact the firm’s industrial value
chain and support its path towards digitalization.

The aim of this paper is to develop an Industry 4.0 technology selection framework that
can be used by manufacturers of all sizes and types to digitalize their industrial value chain.
The developed framework will facilitate the decision-making process of selecting the most
appropriate Industry 4.0 technologies that would enhance the firm’s different economic,
social, environmental, and production aspects. Given the capabilities of fuzzy AHP and
fuzzy TOPSIS, the two methods were utilized in the developed framework to rank the
alternatives based on the firm’s key performance indicators. The following sections of the
paper present the framework development methodology, where the selection process of key
performance indicators (KPI), and the procedures of implementing fuzzy AHP and fuzzy
TOPSIS, are stated. The paper also presents a case study conducted on a real manufacturing
firm to implement the developed Industry 4.0 technology selection framework. Lastly,
sensitivity analysis is performed to visualize the sensitivity of the developed framework to
changes in indicators’ global weights.

3. Methods

This section presents the development of the technology selection framework. It also
presents the procedure of selecting KPIs and explains how fuzzy sets, fuzzy AHP, and
fuzzy TOPSIS are utilized to obtain the results. Afterwards, the developed framework will
be implemented on a real-life example of an aluminum extrusion firm in Section 3.

The construction of the subsections is as follows: firstly, Section 3.1 introduces the
technology selection framework. Section 3.2 presents the suggested key performance
indicators (KPIs) selection procedure. Section 3.3 presents the fuzzy logic theory, while
Sections 3.4 and 3.5 present fuzzy AHP and fuzzy TOPSIS theories, respectively.

3.1. Technology Selection Framework

Figure 1 represents the technology selection framework. Firstly, a team of experts/decision
makers is formed. The role of this team is to define a set of KPIs that best suits the firm’s
goals and objectives (i.e., aspects that are needed to be optimized). The selected KPIs
should be able to represent the firm’s production, economic, environmental, and social
implications. After selecting the appropriate KPIs, a fuzzy AHP survey is created and
filled by the decision makers. This step avoids randomness in weight assignment and
ensures that proper weights are assigned to each KPI. During this step, a pairwise fuzzy
comparison matrix is created, which leads to calculating the geometric mean values. Fuzzy
geometric mean values will help in calculating the fuzzy weights for each dimension and
indicator. Fuzzy weights are converted to crisp weights so that they can be used later. Next,
the fuzzy TOPSIS questionnaire is filled, and the fuzzy TOPSIS decision matrix is obtained.
The decision matrix is normalized, and weights obtained from the fuzzy AHP analysis are
multiplied into the normalized decision matrix. Using the normalized weighted decision
matrix, Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS)
values are calculated for each indicator. Using FPIS and FNIS, the positive and negative
distance values are calculated. Aggregated positive and negative distance values for each
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technology will help in calculating the closeness coefficient values for the technologies.
Finally, the technologies are ranked based on the value of the closeness coefficient obtained.
Closeness coefficient values vary between zero and one. Technologies with higher closeness
coefficients will have better rankings. The higher the rank of a technology is, the more
important it is to the firm’s goals and objectives.
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3.2. Key Performance Indicators (KPI) Selection

In this paper, KPIs are divided into different categories that are of importance to any
manufacturing firm. The first category is production. KPIs used in this category are taken
from the International Organization for Standardization (ISO22400), which includes 34 KPIs
for manufacturing operations management. KPIs defined in ISO standards are derived
from different supporting elements [42]. For example, Availability (A) KPI is derived by
dividing the Actual Production Time (APT) and Planned Busy Time (PBT) from one another
and multiplying the result by 100 to obtain the percentage value [42]. The second, third,
and fourth categories of KPIs are the environmental, social, and economic categories. These
categories are the main dimensions covering different aspects of sustainable manufactur-
ing. Joung et al. have performed a literature review on publicly available indicator sets
for measuring sustainability in manufacturing firms. The Global Report Initiative (GRI)
sustainability report indicator set, Dow Jones Sustainability Indexes (DJSI), and the Ford
Product Sustainability Index (Ford PSI) are a few examples of sustainability indicator sets
reported [43]. Moreover, Accounting-based Financial Performance (AFP) and Value-based
Financial Performance (VFP) measures can be used to evaluate the economic performance
of the manufacturing firm. Yalcin et al. (2012) included some of the commonly used
financial performance measures in their paper that can be used to evaluate the financial
performance of manufacturing firms [44]. In this framework, KPIs have been chosen from a
pool of ISO22400, GRI Sustainability Reporting Standards (2021), and other sources, so that
all of the dimensions that are important to manufacturing firms are covered. Table 2 gathers
and defines some important KPIs that are recommended to be used in the Industry 4.0
technology selection framework to achieve a comprehensive coverage of the manufacturing
firms’ operations. These KPIs are collected from different sources, such as the ISO22400,
GRI Sustainability Reporting Standards, and from the literature [42,44–46]. Since not all
manufacturing firms operate in the same manner, KPIs can be customized by industrial
value chain experts to match the firms’ operations and targets.

Table 2. Examples of Key Performance Indicators that can be Used for Industry 4.0 Technology
Selection.

Dimension Indicator Description

Pr
od

uc
ti

on

Effectiveness

Measures the effectiveness of an industrial machine
during the production period. The indicator is
calculated by multiplying planned run time per item
with produced quantity, and then dividing the actual
production time from the answer [42].

Technical Efficiency
Calculated by dividing the summation of actual
production time and actual unit down-time from
actual production time [42].

Rework Ratio
Calculated by dividing the rework quantity, which is
the amount of product which did not pass quality
requirements, by processed quantity [42].

Setup Ratio

Calculated by dividing actual unit setup time, which
is the time spent for setting up a machine, by actual
unit process time, which is the total time spent for
production and setup of a machine [42].

Utilization Efficiency Calculated by dividing the actual production time
by actual unit busy time [45].

Production Process Ratio

The indicator measures the overall efficiency in
production and is calculated by dividing actual
order execution time from actual production
time [42].
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Table 2. Cont.

Dimension Indicator Description

En
vi

ro
nm

en
ta

l

Materials Used by Weight
or Volume

Represents the total weight or volume of material
used for producing and packaging the main product
of the firm [46].

Energy Consumption
Within Organization

Includes the total fuel consumptions from renewable
and non-renewable sources to run the
organization [46].

Reduction of Energy
Consumption

Represent the amount of reduction in energy
consumed using initiatives that lead to energy
conservation [46].

Water Consumption The amount of water that the firm has consumed in
different areas within the firm [46].

Direct (Scope 1) GHG
Emissions

Represents the total amount of direct Green House
Gas (GHG) emissions to the air [46].

Air Emissions The amount of other significant air emissions that is
released to the air [46].

Waste Generated Represents the total amount of waste created by the
firm [46].

So
ci

al

Work-related Injuries Represents the number of work-related injuries [46].

Breaches of Customer
Privacy and Losses of

Data Complaints

Represents the number of complaints from
customers on their privacy breach and leak [46].

Hazard Identification, Risk
Assessment, and Incident

Investigation

Identifies the work-related hazards and the
associated risks to them [46].

Ec
on

om
ic

Direct Economic Value
Generated and Distributed

Includes revenues, operation costs, worker wages,
and all other types of payments (GRI, 2021) [46].

Tax Governance, Control,
and Risk Management

Includes different aspects on tax governance and
control [46].

Price Earnings Ratio (P/E)
An important financial indicator for firms, which is
calculated through dividing the market price per
share by earnings per share [44].

Return on Assets (ROA)
This financial performance measure is calculated by
dividing the total assets that a firm owns from the
net income of the firm after tax [44].

Return on Equity (ROE)

An important financial performance measure which
showcases the firm’s profitability for stockholders.
The measure is calculated through dividing the net
income to the stockholder by the stockholder’s
equity investment in the firm [44].

Market Value Added
(MVA)

Calculated by subtracting total capital employed
from the total market value of a firm [44].

3.3. Fuzzy Theory

Experts and decision makers often use linguistic terms to evaluate a given problem.
In 1965, Zadeh introduced the fuzzy set theory to accommodate for the ambiguity and
imprecision in humans’ criteria definitions and judgements [47]. Fuzzy set Ã, which has
universe of discourse X, is described by membership function µ(x), shown as below [48]:

Ã = {x, µ(x)}, x ∈ X (1)
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For every x in the universe of discourse X, this membership function can have a real
number in the interval [0, 1] [49]. The membership functions used in this paper are in the
form of triangular membership functions. Each triangular membership function can be
described by three numbers. The triangular fuzzy set Ã is defined by (a1, a2, a3), and the
mathematical form of its membership function is defined as below [50]:

µ(x) =


0 x ≤ a1

x−a1
a2−a1

a1 < x ≤ a2
a3−x
a3−a2

a2 < x ≤ a3

0 x > a3

(2)

The mathematical operations between two fuzzy sets Ã and B̃ are described as fol-
lows [50]:

Ã + B̃ = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)
Ã− B̃ = (a1, a2, a3)− (b1, b2, b3) = (a1 − b1, a2 − b2, a3 − b3)

Ã× B̃ = (a1, a2, a3)× (b1, b2, b3) = (a1b1, a2b2, a3b3)
(3)

The inverse of a fuzzy set can be also defined as the following:

Ã−1 = (a1, a2, a3)
−1 = (1/a3, 1/a2, 1/a1) (4)

3.4. Fuzzy AHP

The fuzzy AHP method is a modification of the AHP method, which uses fuzzy sets to
determine the weight of the given criteria. This method can be approached in two different
ways. The first approach is by finding the geometric mean proposed by Buckley in 1985 [51].
The second approach is introduced by Chang, and is based on an extent analysis method
to perform the fuzzy AHP analysis [48]. For simplicity in calculation, the geometric mean
approach is utilized in this framework. After defining the triangular membership functions
for criteria weighting, the fuzzy number x̃ij is defined as (lij, mij, uij), where lij, mij, and uij
are the lower, middle, and upper bound values for the fuzzy number x̃ij [52]. The following
steps are then followed to obtain criteria weights [52,53].

Step 1: The pairwise comparison matrix, which relates the preference of the ith criterion
(row) over the jth criterion (column) is constructed as:

Ã =
[
x̃ij
]
=


(1, 1, 1) (l12, m12, u12) . . . (l1n, m1n, u1n)(

1
u12

, 1
m12

, 1
l12

)
(1, 1, 1) . . . (l2n, m2n, u2n)

...(
1

u1n
, 1

m1n
, 1

l1n

) ...(
1

u2n
, 1

m2n
, 1

l2n

) . . .
. . .

...
(1, 1, 1)

 (5)

Step 2: The fuzzy geometric mean is calculated for each row using Equation (6) and
implementing fuzzy multiplication rules, as shown in Equation (3).

r̃i =

(
n

∏
j=1

x̃ij

)1/n

(6)

where n is the total number of criteria and i = 1, 2, 3, . . . , n.
Step 3: After calculating the fuzzy geometric value for each row, Equation (7) is used

to calculate the fuzzy weights. Fuzzy geometric values are added using the summation
operation for fuzzy numbers, as shown in Equation (3), and the inverse of the summation
is obtained using Equation (4).

w̃i = r̃i × (r̃i=1 + r̃i=2 + · · ·+ r̃i=n)
−1 = (lwi, mwi, uwi) (7)
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Step 4: The above calculated weight is still a fuzzy number, hence the Centre of Area
(COA) defuzzification method is utilized to convert the fuzzy number into a crisp value
using Equation (8). This crisp weight is then normalized using Equation (9).

Gi =
lwi + mwi + uwi

3
(8)

Fi =
Gi

∑n
i=1 Gi

(9)

Step 5: Since multiple experts can be considered for determining criteria weights,
Equation (10) is used to obtain the final weights, where y is the total number of experts.

Wi =
∑

y
j=1 Fij

y
(10)

The membership functions defined for the fuzzy AHP process are defined in Table 3
and shown in Figure 2a.

Table 3. Membership Functions Defined for the Fuzzy AHP Process.

Linguistic Term Notation Fuzzy Value Reciprocals

Equally Important ELI (1, 1, 1) (1, 1, 1)
Very Weakly Important VWI (1, 2, 3) (1/3, 1/2, 1)

Weakly Important WI (2, 3, 4) (1/4, 1/3, 1/2)
Weakly to Moderately Important WMI (3, 4, 5) (1/5, 1/4, 1/3)

Moderately Important MI (4, 5, 6) (1/6, 1/5, 1/4)
Moderately to Strongly Important MSI (5, 6, 7) (1/7, 1/6, 1/5)

Strongly Important SI (6, 7, 8) (1/8, 1/7, 1/6)
Very Strongly Important VSI (7, 8, 9) (1/9, 1/8, 1/7)

Extremely Important EI (8, 9, 10) (1/10, 1/9, 1/8)
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Figure 2. Triangular Fuzzy Membership Functions Defined for (a) Dimensions and Indicators
Weighting (b) Technology Alternatives Selection.

3.5. Fuzzy TOPSIS

The fuzzy TOPSIS method was first introduced by Chen, in which fuzzy numbers
replaced crisp number sets [54]. In this framework, fuzzy TOPSIS is implemented to
rank Industry 4.0 technologies, based on given criterions. The steps for the fuzzy TOPSIS
approach used in this framework are shown below [50,54,55].
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Step 1: Fuzzy decision matrix X̃ is constructed, such that the ith rows correspond to
alternatives (technologies), and jth columns correspond to the criterion. Each input in the
matrix is a fuzzy number defined as x̃ij =

(
aij, bij, cij

)
.

X̃ =
[
x̃ij
]
=

 x̃11 . . . x̃1n
...

. . .
...

x̃m1 . . . x̃mn

 (11)

where i = 1, 2, ......, m and j = 1, 2, ......, n.
Step 2: If multiple Decision Makers (DM) are considered to fill the survey, the fuzzy

decision matrices obtained from Equation (11) are all combined into a single decision
matrix, using the following formulas, to compute each component in the combined matrix.

aij = mink

(
aijk

)
,

bij =
1
K ∑K

k=1 bijk,

cij = maxk

(
cijk

) (12)

where the kth DM has decision matrix components of x̃ijk =
(

aijk, bijk, cijk

)
, and k is the

total number of DMs.
Step 3: The normalized fuzzy decision matrix R̃ =

[
r̃ij
]

is then constructed by:

r̃ij =

(
aij

c∗j
,

bij

c∗j
,

cij

c∗j

)
; c∗j = maxi

(
cij
)

(13)

r̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
; a−j = mini

(
aij
)

(14)

in which Equations (13) and (14) are used when they have benefit and cost criterions,
respectively.

Step 4: Fuzzy weights, or crisp weights, calculated from the fuzzy AHP approach, are
used to calculate the weighted normalized fuzzy decision matrix Ṽ =

[
ṽij
]
.

ṽij = r̃ij × wj (15)

Step 5: The Fuzzy Positive Ideal Solution (FPIS, A*), and Fuzzy Negative Ideal Solution
(FNIS, A−), are defined as:

A∗ = (ṽ∗1 , ṽ∗2 , ...., ṽ∗n) ; ṽ∗j = maxi
(
vij3
)

(16)

A− =
(
ṽ−1 , ṽ−2 , ...., ṽ−n

)
; ṽ−j = mini

(
vij1
)

(17)

Step 6: The distance of each alternative from A* and A− are next calculated by:

d∗i =
n

∑
j=1

d
(

ṽij, ṽ∗j
)

(18)

d−i =
n

∑
j=1

d
(

ṽij, ṽ−j
)

(19)

where the distance between two fuzzy numbers can be calculated by:

d
(

Ã, B̃
)
=

√
1
3

(
(a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2
)

(20)
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Step 7: The Closeness Coefficient (CCi) of each alternative is calculated as below:

CCi =
d−i

d∗i + d−i
(21)

Industry 4.0 technologies are finally ranked based on the CCi obtained for each tech-
nology, such that the technology with the highest value for CCi will be ranked first, etc.
Triangular fuzzy membership functions used for technology selection are described in
Table 4 and shown in Figure 2b.

Table 4. Membership Function for Alternative Rankings in Fuzzy TOPSIS Process [55].

Linguistic Term Notation Fuzzy Value

Very Low Impact VLI (1, 1, 3)
Low Impact LI (1, 3, 5)

Medium Impact MI (3, 5, 7)
High Impact HI (5, 7, 9)

Very High Impact VHI (7, 9, 9)

4. Case Study

In this section, the proposed framework is implemented on an aluminum extrusion
firm located in Jordan to select the most important Industry 4.0 technologies for the firm
as an example of the implementation of this framework. The decision matrices for fuzzy
AHP and fuzzy TOPSIS methods have been obtained through consensus decision-making
between multiple experts within the firm. In other words, multiple decision makers of the
facility have met and filled a single decision survey. This survey is used to generate the
decision matrices.

4.1. Defining the Dimensions and Indicators

From the list of KPIs provided in Table 2, decision makers have selected a certain
number of KPIs that align with the firm’s goals and objectives to be considered as indica-
tors for this framework. Users of the framework are encouraged to consult an expert to
customize a set of indicators that would correctly capture the activities and the impact of
the manufacturing facility. Any sets of indicators can be used, given that they effectively
cover the environmental, social, economic, and production categories. For this case study,
the indicators have been grouped into four main dimensions of production, environmental,
social, and economic. Each dimension contains several indicators. Figure 3 shows the pro-
posed dimensions and indicators chosen. These dimensions and indicators can be modified
further if the manufacturing firm have certain goals and objectives to follow that have not
been considered in this framework. It is noted that all these indicators are considered as
beneficial indicators. As an example, when decision makers are making a decision on how
important an Industry 4.0 technology to sub-criterion Direct (Scope 1) GHG Emissions is,
the importance is considered with respect to reducing the GHG emissions. Table 5 discusses
the assessment methodology for the indicators selected, which are all being considered as
beneficial indicators.
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Table 5. Membership Function for Alternative Rankings in Fuzzy TOPSIS Process [55].

Index Indicator Methodology

I11 Rework Ratio

The expert should decide to what extent an Industry
4.0 technology will affect the rework ratio in a
positive manner. In other words, to what extent will
an Industry 4.0 technology reduce the number of
products that do not pass quality requirements.

I12 Setup Ratio

The expert should decide to what extent an Industry
4.0 technology will positively influence the setup
ratio, i.e., to what extent an Industry 4.0 technology
reduces the time for setting up a machine.

I13 Production Process Ratio The expert should decide to what extent an Industry
4.0 technology will positively influence the ratio.

I21 Direct (Scope 1) GHG Emissions
The expert should decide to what extent an Industry
4.0 technology will help in reducing direct GHG
emissions from the manufacturing firm.

I22 Energy Consumption within
Organization

The expert should decide to what extent an Industry
4.0 technology can reduce the energy consumptions
within the manufacturing firm.

I23 Material Used by Weight or
Volume

The expert should decide to what extent an Industry
4.0 technology will help in reducing the amount of
materials used for production and packaging.

I31 Work-Related Injuries
The expert should decide to what extent an Industry
4.0 technology will reduce the number of
work-related injuries.

I32
Hazard Identification, Risk
Assessment, and Incident

Investigation

The expert should decide to what extent an Industry
4.0 technology will help in identifying hazards,
evaluating risks, and investigating incidents
happening within the manufacturing firm.
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Table 5. Cont.

Index Indicator Methodology

I41 Price Earnings Ratio (P/E) The expert should decide to what extent an Industry
4.0 technology will positively impact the P/E ratio.

I42 Return on Assets (ROA)
The expert should decide to what extent an Industry
4.0 technology will positively impact the ROA of a
manufacturing firm.

4.2. Assigning Weights to the Dimensions and Indicators

After defining the dimensions and indicators, the AHP survey is filled to construct
the decision matrix for KPI weighting. Table 6 summarizes the obtained fuzzy values, and
Table 7 provides the calculation of the fuzzy geometry mean. Fuzzy and crisp weights
obtained from the survey for the dimensions are tabulated in Table 8. The same procedure
as above is repeated to obtain the indicator weightings based on DMs’ inputs, as shown in
Tables 9–12.

Table 6. Dimension Weights Assigned by the Firm.

Production (D1) Environmental (D2) Social (D3) Economic (D4)

Production (D1) ELI WI WMI ELI
Environmental (D2) WI−1 ELI ELI WMI−1

Social (D3) WMI−1 ELI ELI WI−1

Economic (D4) ELI WMI WI ELI

Table 7. Calculation of Fuzzy Geometry Mean.

D1 D2 D3 D4 r̃i

D1 (1, 1, 1) (2, 3, 4) (3, 4, 5) (1, 1, 1) (1.57, 1.86, 2.11)
D2 (1/4, 1/3, 1/2) (1, 1, 1) (1, 1, 1) (1/5, 1/4, 1/3) (0.47, 0.54, 0.64)
D3 (1/5, 1/4, 1/3) (1, 1, 1) (1, 1, 1) (1/4, 1/3, 1/2) (0.47, 0.54, 0.64)
D4 (1, 1, 1) (3, 4, 5) (2, 3, 4) (1, 1, 1) (1.57, 1.86, 2.11)

Total r̃i (4.08, 4.80, 5.51)
(Total r̃i) − 1 (0.18, 0.21, 0.25)

Table 8. Fuzzy and Crisp Calculated Weights for the Dimensions.

r̃i w̃i = r̃i × (Total r̃i)
−1 Crisp Weight

D1 (1.57, 1.86, 2.11) (0.284, 0.388, 0.518) 0.397
D2 (0.47, 0.54, 0.64) (0.085, 0.112, 0.156) 0.118
D3 (0.47, 0.54, 0.64) (0.085, 0.112, 0.156) 0.118
D4 (1.57, 1.86, 2.11) (0.284, 0.388, 0.518) 0.397

Table 9. Production Dimension Decision Matrix.

Rework Ratio
(I11)

Setup Ratio
(I12)

Production
Process Ratio (I13)

Crisp
Weight Rank

Rework Ratio (I11) (1, 1, 1) (3, 4, 5) (0.17, 0.20, 0.25) 0.22 2
Setup Ratio (I12) (0.20, 0.25, 0.33) (1, 1, 1) (0.17, 0.20, 0.25) 0.09 3

Production Process
Ratio (I13) (4, 5, 6) (4, 5, 6) (1, 1, 1) 0.70 1



Systems 2023, 11, 192 15 of 22

Table 10. Environmental Dimension Decision Matrix.

I21 I22 I23 Crisp Weight Rank

I21 (1, 1, 1) (0.11, 0.13, 0.14) (0.25, 0.33, 0.50) 0.078 3
I22 (7, 8, 9) (1, 1, 1) (4, 5, 6) 0.75 1
I23 (2, 3, 4) (0.17, 0.20, 0.25) (1, 1, 1) 0.18 2

Table 11. Social Dimension Decision Matrix.

I31 I32 Crisp Weight Rank

I31 (1, 1, 1) (7, 8, 9) 0.89 1
I32 (0.11, 0.13, 0.14) (1, 1, 1) 0.11 2

Table 12. Economic Dimension Decision Matrix.

I41 I42 Crisp Weight Rank

I41 (1, 1, 1) (0.13, 0.14, 0.17) 0.12 2
I42 (6, 7, 8) (1, 1, 1) 0.88 1

Table 13 tabulates the results obtained for the normalized local and global crisp
weights for the indicators. Figures 4 and 5 graphically represent the global and local
weights obtained for the indicators, respectively.

Table 13. Indicators Normalized Local and Global Crisp Weights.

Dimension Normalized
Weight Indicator Code Normalized

Weight Global Weight Rank

D1 0.39
I11 0.221 0.08619 4
I12 0.089 0.03471 7
I13 0.690 0.2691 2

D2 0.11
I21 0.077 0.00847 10
I22 0.739 0.08129 5
I23 0.184 0.02024 8

D3 0.11
I31 0.888 0.09768 3
I32 0.112 0.01232 9

D4 0.39
I41 0.126 0.04914 6
I42 0.874 0.34086 1
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4.3. Normalization and Ranking of Technologies

The fuzzy TOPSIS method is implemented to rank the Industry 4.0 technology alterna-
tives after obtaining the dimensions and indicators weights through fuzzy AHP. Experts
are asked to fill a fuzzy TOPSIS survey and make judgments based on fuzzy linguistic
terms, as shown in Table 4. Results obtained from the consensus decision-making between
decision makers in the firm are tabulated in Table 14.

Table 14. Fuzzy TOPSIS Decision Matrix (Fuzzy Linguistic Value).

I11 I12 I13 I21 I22 I23 I31 I32 I41 I42

T1 HI MI VHI MI VHI HI HI LI MI HI
T2 MI LI MI MI MI LI LI LI LI LI
T3 VHI HI VHI MI HI MI VHI MI MI HI
T4 LI LI LI LI LI VLI VLI VLI VLI VLI
T5 LI LI HI MI MI MI LI LI VLI VLI
T6 MI LI VLI LI LI VLI MI MI LI LI
T7 HI HI HI MI LI HI VHI VHI LI LI
T8 VLI VLI VLI VLI VLI VLI VLI VLI VLI VLI

The fuzzy linguistic values tabulated in Table 14 are converted into fuzzy numerical
values. These values are normalized using Equation (13) as all the defined indicators are
beneficial. The normalized fuzzy decision matrix is then multiplied by the crisp indicators’
global weights to obtain the weighted decision matrix. Table 15 shows the weighted
decision matrix obtained.

Using Equations (16) and (17), the FPIS (A*), and FNIS (A−) are obtained. Using
Equations (18)–(21), the positive and negative distances for each component in the matrix is
calculated to obtain the closeness coefficient for technology ranking. Table 16 and Figure 6
tabulate and illustrate the results obtained.
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Table 15. Weighted fuzzy TOPSIS Decision Matrix.

I11 I12 :: :: I41 I42

T1 (0.047, 0.067, 0.086) (0.011, 0.019, 0.027) .... .... (0.021, 0.035, 0.049) (0.189, 0.265, 0.340)
T2 (0.028, 0.047, 0.067) (0.003, 0.011, 0.019) .... .... (0.007, 0.021, 0.035) (0.037, 0.113, 0.189)
:: .... .... .... .... .... ....
:: .... .... .... .... .... ....

T7 (0.047, 0.067, 0.086) (0.019, 0.027, 0.034) .... .... (0.007, 0.021, 0.035) (0.037, 0.113, 0.189)
T8 (0.009, 0.009, 0.028) (0.003, 0.003, 0.011) .... .... (0.007, 0.007, 0.021) (0.037, 0.037, 0.113)

Table 16. The Obtained Technologies Rankings.

Code Technology Name D* D- CCi Rank

T1 Big Data Analytics 0.04849 0.63418 0.92897 2
T2 Cloud Computing 0.42419 0.27547 0.39372 4
T3 Cyber-Physical Systems 0.02399 0.65484 0.96466 1
T4 Internet of Things 0.60449 0.08748 0.12643 7
T5 Computer Simulations 0.44754 0.24710 0.35573 5
T6 Blockchain 0.52131 0.17184 0.24792 6
T7 Autonomous/Industrial Robots 0.27892 0.42141 0.60174 3
T8 Additive Manufacturing 0.67560 0 0 8
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For the aluminum extrusion firm studied, Cyber-Physical Systems technologies ob-
tained the highest closeness coefficient, which depicts that this technology is the most
impactful technology for the firm. On the other hand, Additive Manufacturing obtained
the lowest closeness coefficient, which portrays that this technology is the least impact-
ful technology for the firm, based on the given indicators. With the help of the results
obtained, the manufacturing firm’s decision makers will have a better idea on which
Industry 4.0 technologies have the most impact on their firm and, hence, are the most
useful to be implemented.

4.4. Sensitivity Analysis

A sensitivity analysis is performed to visualize the robustness of a given framework to
changes in indicators’ global weights. Two sets of experiments have been performed. The
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number of trials in both experiments are equal to ten. In the first experiment, for each trial,
one indicator weight has been assigned to 0.64, and other indicators’ weights are assumed
to be same and equal to 0.04. In the second set of the experiment, for each trial, the weight
of one indicator was assigned as 0.37, while other indicators have an equal weight of 0.07.
Figures 7 and 8 present the results of the conducted sensitivity analysis.
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(b) Experiment 2.

Sensitivity analysis show that the framework is relatively sensitive to changes in indi-
cators’ weightings. In the first experiment, where a relatively larger weight is assigned to a
single indicator, the analysis shows that the framework is not robust, since the technology’s
rankings vary, going from one trial to another. In the second experiment, where a lower
weight is assigned to a single indicator at each trial, the framework showed more robustness
to weight changes. As can be seen in Figure 8b, the top three ranked technologies always
stayed the top three rankings. The same observation can be made for the middle three
ranked technologies, in which the corresponding technologies always stayed in the middle
three rankings. Having a relative sensitivity to changes in indicators’ weights is acceptable
in this framework, since the rankings of technologies must depend on manufacturing firm’s
requirements and KPIs weight assignments.



Systems 2023, 11, 192 19 of 22

5. Conclusions

An Industry 4.0 technology selection framework is developed to facilitate the Industry 4.0
technology selection decision-making process. The following points summarize the con-
tributions of this work by highlighting the main advantages of the developed technology
selection framework and the findings of the case study:

• The developed framework helps decision makers, especially at the SMEs level, to
decide on the most suitable Industry 4.0 technology needed in a timely and cost-
effective manner.

• The framework utilizes fuzzy AHP and fuzzy TOPSIS, which are capable of eliminating
any uncertainties that are associated with expert’s opinions and linguistic terms.

• This work also proposed a comprehensive set of indicators that are capable of captur-
ing the environmental, economic, and social dimensions, as well as the production
performance of the assessed manufacturing firm.

• Nevertheless, the framework is flexible, which makes it easy to select and use other
sets of indicators that best suits the firm’s goals and functionalities.

• A case study was carried out on an aluminum extrusion firm. The framework detected
several Industry 4.0 technologies that, if adopted and implemented, would enhance
the firm’s overall environmental, economic, social, and production performances.

• The technologies, in order of their importance, were Cyber-Physical systems, Big Data,
and autonomous/industrial robots, respectively.

• The framework showed sensitivity towards weight changes. This is an advantage
in the developed framework, since its main aim is to provide policymakers with a
customized list of technologies, based on their importance to the firm.

• Several specialized industries could benefit from the utilization of this framework,
such as the sustainability of the healthcare industry [56], the fashion industry [57], and
waste management [58].

One limitation of the framework lies within the length of the surveys presented to
the manufacturing facility. If a large number of indicators are used, the surveys and the
calculations will become lengthy and time-consuming. Thus, it is recommended to use
a computer program to assist in carrying out the computational steps involved in the
fuzzy AHP and fuzzy TOPSIS methods. This would ease the technology selection process
and would eliminate any unforced errors that may occur while following the calculation
steps. Furthermore, experts of their respected areas are encouraged to collect and prepare
standard sets of indicators to be used by firms that perform similar activities. This would
enhance the technology selection procedure and would further reduce subjectivity. Also,
a standard set of indicators will enable investors to compare between different firms,
allowing them to make informed decisions about their future investments. As of future
work, the framework can be compared with other MCDM methods. Furthermore, inclusive
indicators, such as the Internet of People can be added to enhance the coverage of the
framework. Due to its flexibility, the presented framework can be easily implemented for
Industry 4.0 technology selection in other sectors, such as healthcare and education, rather
than being solely focused on manufacturing industries.
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