o systems

Article

Using Dual Attention BiLSTM to Predict Vehicle Lane
Changing Maneuvers on Highway Dataset

Farzeen Ashfaq !, Rania M. Ghoniem %*, N. Z. Jhanjhi 17, Navid Ali Khan ! and Abeer D. Algarni >

check for
updates

Citation: Ashfaq, F.; Ghoniem, R.M.;
Jhanjhi, N.Z.; Khan, N.A.; Algarni,
A.D. Using Dual Attention BILSTM
to Predict Vehicle Lane Changing
Maneuvers on Highway Dataset.
Systems 2023, 11, 196. https://
doi.org/10.3390/systems11040196

Academic Editor: William T. Scherer

Received: 5 March 2023
Revised: 1 April 2023
Accepted: 3 April 2023
Published: 14 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Computer Science, SCS, Taylor’s University, Subang Jaya 47500, Malaysia;
noorzaman.jhanjhi@taylors.edu.my (N.Z.].)

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Correspondence: rmghoniem@pnu.edu.sa

Abstract: In this research, we address the problem of accurately predicting lane-change maneuvers
on highways. Lane-change maneuvers are a critical aspect of highway safety and traffic flow, and
the accurate prediction of these maneuvers can have significant implications for both. However,
current methods for lane-change prediction are limited in their ability to handle naturalistic driving
scenarios and often require large amounts of labeled data. Our proposed model uses a bidirectional
long short-term memory (BiLSTM) network to analyze naturalistic vehicle trajectories recorded from
multiple sensors on German highways. To handle the temporal aspect of vehicle behavior, we utilized
a sliding window approach, considering both the preceding and following vehicles’ trajectories. To
tackle class imbalances in the data, we introduced rolling mean computed weights. Our extensive
feature engineering process resulted in a comprehensive feature set to train the model. The proposed
model fills the gap in the state-of-the-art lane change prediction methods and can be applied in
advanced driver assistance systems (ADAS) and autonomous driving systems. Our results show that
the BILSTM-based approach with the sliding window technique effectively predicts lane changes
with 86% test accuracy and a test loss of 0.325 by considering the context of the input data in both the
past and future. The F1 score of 0.52, precision of 0.41, recall of 0.75, accuracy of 0.86, and AUC of 0.81
also demonstrate the model’s high ability to distinguish between the two target classes. Furthermore,
the model achieved an accuracy of 83.65% with a loss value of 0.3306 on the other half of the data
samples, and the validation accuracy was observed to improve over these epochs, reaching the
highest validation accuracy of 92.53%. The F1 score of 0.51, precision of 0.36, recall of 0.89, accuracy
of 0.82, and AUC of 0.85 on this data sample also demonstrate the model’s strong ability to identify
both positive and negative classes. Overall, our proposed approach outperforms existing methods
and can significantly contribute to improving highway safety and traffic flow.

Keywords: lane-change prediction; BiLSTM; naturalistic vehicle trajectories

1. Introduction

Lane-changing maneuvers refer to the action of a car transferring from a lane to
another on a multi-lane roadway. This maneuver is typically performed by vehicles when
they wish to pass another vehicle, change direction, or exit the roadway. Lane changes can
pose a challenge for drivers as they require them to assess the traffic flow in neighboring
lanes and determine the safety of switching lanes. This task is further complicated by the
need for precise control of both the vehicle’s longitudinal and lateral movements. In the
United States alone, approximately 539,000 two-lane traffic incidents occur annually [1].
Factors that can affect the safety of a lane change include the speed and distance of other
vehicles, the visibility of the road ahead, and the presence of any obstacles or hazards.
To make a lane change, the driver has to signal their intent, check mirrors, check blind
spots, and then execute the maneuver. The prediction of lane-change maneuvers is a

Systems 2023, 11, 196. https:/ /doi.org/10.3390/systems11040196

https:/ /www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11040196
https://doi.org/10.3390/systems11040196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0001-8116-4733
https://doi.org/10.3390/systems11040196
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11040196?type=check_update&version=1

Systems 2023, 11, 196

20f19

critical task in the field of advanced driver-assistance systems (ADAS) [2,3], autonomous
driving [4-7], and intelligent transportation systems (ITS) [8-11]. Accurately predicting
when a vehicle will change lanes can have significant implications for highway safety,
traffic flow, and traffic management as depicted in Figure 1.

Traffic Flow Optimization Safety Analysis Intelligent Transportation Systems

By understanding the patterns and factors Lane changing maneuvers can be a major Lane changing information can be used in ITS
that influence lane changing behavior, traffic contributor to traffic accidents, and as such, applications such as Advanced Traveler

engineers can optimize traffic flow by traffic management officials often analyze lane Information Systems (ATIS) and Advanced
adjusting road geometry, traffic signals, and changing data to identify and address problem Traffic Management Systems (ATMS) to provide
other elements to encourage safe and areas real-time information to drivers about traffic
efficient lane changing conditions and potential hazards, including lane
changing events

WHY PREDICTING LANE CHANGE HELPS

Simulation and modeling Allowing for incident management

Lane changing behavior can be simulated using In the event of a road incident, lane changing
traffic simulation software 1o evaluate the can allow for more effective incident

impact of different traffic management management, as it enables emergency
strategies on traffic flow and safety. vehicles to reach the scene more quickly and
safely

Figure 1. Ways in which lane changing can be used in traffic management.

ITS aims to optimize the usage of existing infrastructure and reduce traffic congestion
by improving traffic flow and reducing travel time [12,13]. The applications of lane-
changing in traffic management are varied and include both proactive and reactive mea-
sures to optimize traffic flow, improve safety, and better serve the needs of drivers and
other road-users. However, the task of predicting lane changes is difficult due to the
complexity of driving conditions, the unpredictable nature of other drivers, and the scarcity
of annotated data. There are many methods that can be used to anticipate the driver’s
intentions before a changing maneuver. Model-based, trajectory-based, and rule-based
change-prediction approaches have all been put forth in the past. Although prior research
has improved our ability to anticipate lane-change manoeuvres on highways, there still
exists a significant gap in the ability to accurately predict such maneuvers under naturalistic
driving scenarios.

1. Rule-based approaches rely on the explicit definition of rules based on the road
infrastructure and the traffic situation.

2. Trajectory-based methods rely on analyzing the historical data of the vehicles.

3. Model-based methods rely on mathematical models to predict the lane change.

Unfortunately, these techniques frequently have trouble with real-world driving situ-
ations, demand large datasets, and lack robustness. Hence, in this paper, we investigate
real-world vehicle trajectories captured on German motorways [14] propose a lane-change
prediction model that makes use of Bi-directional LSTM networks. Our proposed model
takes advantage of the temporal dependencies between successive observations, capturing
the non-linear relationships between various factors that influence lane changes, and can
better handle complex driving scenarios. The contributions of the study include:

1. Bidirectional long short-term memory (BiLSTM) network is used to assess naturalistic
vehicle trajectories captured from several sensors on German motorways and is offered
as a new lane change prediction model.

Systems 2023, 11, 196

30f19

2. Asliding window approach is introduced to handle the temporal aspect of vehicle be-
havior, considering both the preceding and following vehicles’ trajectories to optimise
the predictability of lane changes.

3. The issue of class imbalance in the data is addressed by introducing rolling mean
computed weights, resulting in a comprehensive feature set being used to train the
model and achieving high accuracy and precision in identifying the two target classes.

The remaining of this article is distributed into the sections that follow: The paper’s
literature review provides a summary of earlier investigations and studies on the subject. It
highlights knowledge gaps and establishes the background for the current research. The re-
search’s methodology and procedures, including the dataset preprocessing and model
specifics, are described in the study design and methods section. The research’s findings
are presented in the results section. The discussion section compares our performance
with baseline papers. The conclusion section highlights the study’s key findings and offers
suggestions for more research.

2. Literature Review

Lane-change prediction is a challenging task that has been studied in the discipline
of transportation and intelligent transportation systems (ITS) for many years. Numerous
methods have been proposed for lane-change prediction. Figure 2 shows the classification
of these methods.

Trajectory-Based
Methods
Rule Based

Methods to Methods Macﬁine

Predict Lane pa ' Learning
Change Model Based Methods

Methods
Deep Learning
Methods

Hybrid Methods

Figure 2. Classification of Methods Used So Far For Predicting Lane Change Maneuver.

2.1. Rule-Based Methods

This prediction method often relies on an explicit definition of rules based on the road
infrastructure and the traffic situation. Ref. [15] uses both vertical and horizontal motion
cues to predict lane-change movements in driver monitoring systems. The algorithm was
tested using NGSIM data on vehicle trajectory and showed high accuracy in recognizing the
intentions of left and right lane-change maneuvers with a low false-positive rate. The algo-
rithm is considered suitable for use in ADAS and autonomous vehicles. Previously, Ref. [16]
presented a model (MOBIL) for determining lane-changing rules for car-following models.
This takes into account the utility of a lane as well as the risk associated with lane changes,
as well as safety and incentive criteria, to derive lane-changing rules. The "politeness factor”
allows for the consideration of cooperative driving behavior. The model was validated
through traffic simulations, and the lane-changing rate was investigated in an open system
with an off-ramp.

Systems 2023, 11, 196

40f19

2.2. Model-Based Methods

Mathematical models are the most used model to predict lane changes. Ref. [17]
employed an enhanced Kalman filter to update a road model based on the space continuity
of the lane structure. The width of the search area was estimated from the covariances
of the model parameters and, with each update, the width becomes narrower, which
helps to detect distant lane boundaries more accurately and exclude noisy image features.
This results in a more robust lane-recognition system. Ref. [18] is a model-based method
to predict lane changes. In this model, the lane-change decision-making process of a
driver is modeled using fuzzy logic and inference rules. The model takes into account
various factors such as traffic conditions, driving comfort, and driving aggressiveness
to make predictions about lane-changing behavior. This approach is considered model-
based because it represents the underlying mechanisms and relationships that govern the
lane-change decision-making process in a mathematical form. Model-based methods are
often used in predictive modeling and control problems to represent and make predictions
about a system’s behavior. Ref. [19] focuses on developing mandatory lane-changing
models for both traditional and connected environments. The study employs the game
theory approach and addresses the issues in previous models. The results show that the
developed models have high accuracy in replicating observed mandatory lane-changing
behavior and outperform existing models. The comparison of the models with Liu’s [20]
and Talebpour’s [21] models indicate that the developed models (AZHW models) have
consistently performed better.

2.3. Trajectory Based Methods

Methods based on trajectory analysis look at the vehicles’ prior performance informa-
tion. Ref. [22] The potential field approach is used to generate a trajectory for the target
vehicle, such as nearby cars, the goal, and the sidelines of the current lane. The extracted
features based on the predicted trajectory are used to re-estimate the driving intention
and detect lane changes. To prevent potential crashes during the lane-change process,
Ref. [23] suggests a dynamic, automated lane-change manoeuvre. The approach uses an
all-encompassing trajectory planning technique that accounts for comfort, safety and traffic
efficiency, and transforms the issue into a limited optimization problem based on the time
and distance of lane changes. A safe driving distance is maintained by updating a refer-
ence trajectory with V2V communication and tracking it with a sliding mode controller.
The strategy has been tested and proven effective in simulations and a driving simulator.

2.4. Machine-Learning-Based Methods

Ref. [24] presents a unique Bayesian optimization lane -hange decision-making model
for autonomous vehicles that is based on Support Vector Machines (SVM). The model’s
improved accuracy of 85.33 percent in the training set and 86.27 percent in the test set was
used in comparison to a rule-based lane-change model. In terms of true-positive and false-
negative accuracy, the SVM model fared better than the rule-based model, proving that
it can faithfully describe drivers’ decision-making tendencies. The model’s accuracy and
validity were confirmed in a real-car experiment that served as its validation. Ref. [25] pro-
posed a machine learning model, specifically an adaptive fuzzy neural network, to analyze
sensor data such as cameras, LIDAR, and radar to identify patterns and make predictions
about lane changes. The authors used a driving simulator to test their method and they
showed that their approach can effectively predict lane change events in real-time. They
also showed that the adaptive fuzzy neural network is able to improve its performance
over time as it is exposed to more data. Ref. [26] proposes a trajectory prediction approach
for a lane-changing vehicle in advanced driver assistance systems (ADAS) considering the
driver’s high-level status. The approach is based on Hidden Markov Models (HMMs) for
driving behavior estimation and classification. At the start of the lane-change procedure,
the vehicle state emissions are observed in order to estimate the driver status. The next step
is to forecast the future trajectory of the lane-changing vehicle using the driver condition

Systems 2023, 11, 196

50f19

and position. The classifier demonstrated a good performance in identifying the driver’s
status and was developed and evaluated using real-life driving data. This trajectory predic-
tion method, which can be applied to both self-driving vehicles and early warning systems,
generates multiple trajectories based on the classifier’s outputs.

2.5. Deep-Learning-Based Methods

Methods based on deep learning are widely used to predict lane changes on highways.
A variety of neural network architectures have been proposed and applied in this domain,
including fully connected networks, multi-layer perceptrons, and more recently, convo-
lutional neural networks (CNNs) combined with recurrent neural networks (RNNs) or
long short-term memory (LSTM) units [27-31]. These models leverage the power of deep
learning to process and analyze large amounts of data and make accurate predictions of
lane changes. These techniques have shown promising results and have become a key tool
in the field of intelligent transportation systems. Ref. [32] suggested a model for capturing
driving behavior in lane-change predictions. The model integrates two key components,
including a deep belief Nets for decision-making related to lane changes and an Istm for
capturing the execution of the lane change. By combining these elements, the model is able
to accurately represent driving behavior and make effective predictions of lane changes.
The findings demonstrate that the framework accurately predicts LC behaviour, and the
sensitivity analysis demonstrates that the preceding vehicle’s relative position in the target
lane is the most important factor in determining LCD. The authors of [33] introduce a
novel deep learning model called direction convolutional LSTM (DCLSTM) that aims to
predict a driver’s lane-changing behavior. This model takes the lateral trajectory and its
spectrum as inputs, and is shown to outperform traditional LSTM methods in accurately
predicting the generation and direction of lane-changing intentions. Ref. [27] uses deep
learning to predict lane-change maneuvers in a vehicle. The authors use an image dataset,
the PREVENTION dataset, to train two different lane-change prediction algorithms: one
using a GoogleNet and LSTM model and the other using a trained CNN. The results show
that the GoogleNet and LSTM model outperforms the trained CNN, and that using the
double-vehicle-size ROI selection method and an extended feature vector slightly increases
the classification performance. The authors suggest that future work could include a more
multifaceted evaluation of the training and input configuration values, as well as incorpo-
rate LiDAR and radar information to improve the results. Ref. [34] presents an improved
LSTM approach for lane-change intention prediction for autonomous vehicles, addressing
the issue of imbalanced data by using a hierarchical over-sampling bagging method and
a sampling technique that keeps the temporal information. Empirical findings using two
benchmark datasets demonstrate that in terms of prediction time, the proposed method
outperforms numerous baseline algorithms in terms of F1, and G-mean. This method
additionally considers the interactions between nearby cars.

2.6. Hybrid Methods

The method proposed in the paper [35] is not a purely rule-based method of lane-
change prediction, but rather a combination of a rule-based approach and a deep Q-network
(DQN). The proposed algorithm uses rule-based constraints to ensure that the decisions
made by the DQN algorithm are safe and can be used in real-world scenarios. The DQN
algorithm is trained to take appropriate actions based on sensor data and predefined rules.
It should be noted that DON is a type of reinforcement learning algorithm, which allows the
system to learn from experience and adapt to changing traffic conditions. Therefore, it is not
a rule-based method, but rather a combination of rule-based and learning-based methods.
Some other relevant studies include [36—40]. As can be seen from the above literature,
research on lane-change prediction has been extensive in recent years. Therefore, Table 1
provides a concise summary of various approaches and results from recent studies in
this area.

Systems 2023, 11, 196

60of 19

Table 1. Predicting lane-changing maneuvers: a snapshot of recent research.

Reference

Year

Approach/Method Model Architecture Dataset Limitations

[41]

2023

Machine Learning Decision Trees, Naive Bayes, HighD

The machine learning predictions’
configuration, training,
and reproducibility still need
to be checked and assessed.

Linear Discriminant, Logistic model,

SVM, ANN,

[42]

2022

Deep Learning

The proposed model is evaluated on only
CNN with spatial attention with German hishways dataset one dataset and the effectiveness of the model
Multi-Task Learning approach © ghways 5¢ in various driving environments and conditions needs
to be investigated

[43] 2021 Machine learning Random Forest (RF) Us Romll\tIeGls(;-:A dataset No limitations mentioned in the paper
Data collection limited to short highway
T Deniy g g and S0 e, e, ol e oo it
provide more interactions
Information from on-board sensors is
151 2017 measmidn?zr}:i? f‘r})‘: Ior::;)go;;ictlhsensors, 1;51\1} Data collected using a simulation tool Theapcr}(‘);l(l):geaflg(;:icﬂi‘:;asaiarsescifliicjeﬁf(;:.ther

validation in real-world driving situations.

3. Study Design and Methods

This section describes the procedures and techniques used in this study to analyze
the time series data of highway vehicles. The data were pre-processed to ensure their
validity and consistency for analysis. To capture the temporal dynamics of the data,
a sliding window approach was employed. This involved dividing the time series data
into overlapping windows of 20 time steps, with each window representing the movement
of a vehicle. The choice of window size was based on the observation that, on average,
25 frames or rows were present for each vehicle in the data. The sliding window approach
allowed for the model to consider the history of each vehicle in its predictions. The data
from each window were then fed into a bi-directional long short-term memory (Bi-LSTM)
model to predict the lane-change intention of the vehicles. The flow diagram of the overall
process is provided in Figure 3 to help understand the steps involved in our study.

Compile the model
Load the Trajectory with Binary Cross
Dataset Entropy Loss and
Adam Optimizer

Normalize the Fit the Model using
Numerical Columns Training data

Split the dataset Compute Rolling
into Training and Means of the Data
Test sets with window size

Evaluate the model
on Test data

Figure 3. Flow Diagram Illustrating the Overall Process of Lane-Change Prediction in Time Se-
ries Data.

3.1. Data Pre-Processing

In data pre-processing, the trajectory dataset used in this study was loaded and merged
from 60 different tracks of vehicles on the highway. The original data included vehicle
trajectory attributes for each frame, and a target column indicating whether the vehicle
changed lanes was added. The data were then normalized using min—-max normalization,

Systems 2023, 11, 196

7 of 19

and observations were made regarding the y velocity component for vehicles that changed
lanes versus those that did not.

3.1.1. Load the Trajectory Dataset

The dataset used in this study consisted of 60 different tracks of vehicles on the
highway [14]. The original data included the vehicle trajectory attributes for each frame,
including the vehicle’s ID, x, y, x velocity, y velocity, x acceleration, y acceleration. The target
column, indicating whether the vehicle changed lanes, was added by observing the vehicles’
trajectories. For vehicles that never changed lanes, the target was marked as “No”. In case
of a single lane-change, the target was marked as “Yes” for all the rows of that vehicle
ID. In order to merge all the data from the 60 sensors into one dataset, a sensor column
was added.

3.1.2. Normalize the Numerical Columns

The data were then normalized using the min—-max normalization method to ensure
all the attributes were on the same scale. During the data pre-processing, it was observed
that the y velocity component of vehicles that did not change lanes was a straight line on
the x-axis, indicating a lack of variation in y velocity. However, for vehicles that did change
lanes, the y velocity component was observed as a step-by-step curve, indicating a change
in y velocity. These observations were plotted and can be seen in the normalized charts of
y and x velocity for target “Yes” and target “No”. The study applied the sliding window
technique and used Bi-LSTM to predict vehicle lane-change intention. Figure 4a,b shows
the comparison of normalized horizontal and vertical velocity components over 20 frames.

xVelocity (in pixels/frame)

01786

01784

01782

xVelocity

01780

01778

01776

0.0000 0.0001 00(’]02 00603 00(‘]0% 00(‘705 0.0006 00(‘107
Frame

yVelocity (in pixels/frame)

0.486

0484

0.482

yVelocity

0480

0478

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
Frame

(@)

Figure 4. Cont.

Systems 2023, 11, 196

8of 19

xVelocity (in pixels/frame)

0.8095

0.8090

z
3
]
=

0.8085

0.8080

0.8075 T T T T T T T T
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
Frame

yVelocity (in pixels/frame)

053

052

051

yVelocity
o
o
a

049

048

0.0000 00001 0.0002 00003 00004 0.0005 00006 0.0007
Frame

(b)
Figure 4. Normalized Trajectory Data Comparison for Vehicles with and without Lane Change.
(a) with lane change. (b) without lane change.

3.1.3. Split the Dataset into Training & Test Sets

The dataset was divided into the training set and the test set for our study. This gave
us the opportunity to assess how well our machine learning model performed using fresh,
untested data. We divided the dataset using a common technique called random sampling.
The dataset was randomly divided between training and test sets with a predetermined ra-
tio using scikit-learn’s train_test_split() function. Specifically, we set the test_size parameter
to 0.2, which allocated 20% of the data to the test set and the remaining 80% to the training
set. We also set the random_state parameter to a fixed value to ensure reproducibility. We
were able to train our machine learning model on the training set and assess its performance
on the test set by dividing the dataset into training and test sets.

3.2. Sliding Window Approach

In this study, the objective was to analyze the temporal dynamics of the time series
data collected from a highway, including information about the vehicle’s movement (frame
ID, x, y, x velocity, y velocity, x acceleration, y acceleration, and target). To achieve this
goal, we employed a sliding window approach and a bidirectional long-short term memory
(Bi-LSTM) model.

Compute Rolling Means of the Data with Window Size

The sliding window approach involves dividing the time series data into overlapping
windows of 25 time steps. This was chosen as each vehicle had an average of 25 frames of
movement information in the data. By using the sliding window approach, each window
of data was treated as a separate sample and fed into the Bi-LSTM model to predict the
vehicle’s lane-change intention. This allowed us to consider the history of each vehicle in
the model.

The reason we computed rolling means with a sliding window was to capture the
temporal dynamics and patterns present in the time series data. In other words, by an-
alyzing the data in small windows, we could examine how the data changed over time,
and identify patterns that were not apparent when looking at the data as a whole.

In the context of the Bi-LSTM model used in this study, computing rolling means that a
sliding window allowed for us to capture the historical context of each vehicle’s movement
behavior. By dividing the time series data into windows of 25 time steps and feeding them

Systems 2023, 11, 196

90f19

into the model, we were able to provide the model with information on how the vehicle
behaved over the previous 25 time steps. This historical context can be critical in predicting
the vehicle’s future behavior, such as a lane-change intention.

Furthermore, the sliding window approach allowed for us to capture changes in
behavior that occur over short time intervals, such as sudden lane changes or other quick
maneuvers. By analyzing the data in small windows, we could identify these changes more
easily and accurately than by looking at the data as a whole.

3.3. Bi-Directional LSTM

The bidirectional long short-term memory (BiLSTM) model is a type of recurrent
neural network designed to analyze sequential data such as time series, speech, or text.
In this BILSTM model, two separate LSTMs were trained, one in the forward direction and
another in the backward direction, to capture contextual information in both directions.
The outputs from both the LSTMs were then concatenated to produce the final output.
Figure 5 shows the general architecture of a BiLstm network.

Layer
Bidirectional LSTM &—- LSTM < --
Layer A A
LSTM LSTM
aver N\) ceeeee \0) ceeeens

Figure 5. Architecture of BILSTM Network adapted from [46].

For the task of lane-change prediction, the BILSTM model can be used to process
the sequential data collected from the vehicle’s sensors, such as GPS, speed, acceleration,
and yaw rate. This sequential data can then be used to learn the patterns and dependencies
between different variables, allowing the model to make predictions about the likelihood
of a lane change occurring. One of the main reasons why BiLSTM was chosen for this
task is its ability to handle sequences of varying lengths and its ability to capture both
past and future contextual information. This is important in the context of lane-change
prediction as it allows the model to consider both the previous driving behavior of the
vehicle and any future events that may impact the vehicle’s trajectory. Another reason is
the bidirectional architecture of the BiILSTM, which enables the model to take consider the
direction of the sequential data. This can be useful in the context of lane-change prediction,
as the direction of the vehicle’s motion can have a significant impact on its likelihood of
changing lanes. Overall, the BILSTM model provides a flexible and powerful approach to
analyze sequential data and make predictions based on these data, making it well-suited to
the task of lane-change prediction.

Systems 2023, 11, 196

10 of 19

3.3.1. Define BiDirectional LSTM Model

In this section, we present the architecture of our proposed BiDirectional LSTM model,
as depicted in Figure 6. In addition to the architecture of the proposed BiDirectional LSTM
model shown in Figure 6, we also provide the corresponding algorithm in Algorithm 1 to
demonstrate the specific steps involved in training the model. Below, we introduce and
define each of the model’s architecture layer in detail.

.. Model: "sequential_ 1™
Layer (type) Output Shape Param #
bidirezz:::al (Bidirzzzz:na {Honef=;T=256} T 13312@ -
1)
batch_normalization (BatchmM {Mone, 9, 25&6) 1824
aormalization)
dropout (Dropout) (Mones, 2, 25&) a
bidirectional_1 (Bidirectio {Mone, 128) 164352
nal)
batch_normalization 1 (Batc (Mone, 128) 512
hMormalization)
dropout_1 (Dropout) {MNons, 128) =]
dense (Dense) {Mons, 64) B256
dropout_2 [(Dropout) (Mones, B64) a
dense 1 (Dense) {(Mons, 32) 2036
dropout_3 (Dropout) {(Mone, 32) @
dense_2 (Dense) {Mone, 1) 33

Total params: 2@9,3277
Trainable params: 388,689
Mon-trainable params: 7638

Figure 6. Summary of the Bidirectional LSTM Model used for Lane-Change Prediction. The model
consists of multiple layers, including bidirectional LSTMs.

Bidirectional LSTM Layer

This layer consisted of 128 hidden units and was configured to return sequences (i.e.,
output at every time step) using the “return_sequences” parameter set to True. The layer
also used L2 regularization with a strength of 0.001 to prevent overfitting.

Batch Normalization Layer

By dividing by the standard deviation and removing the mean, this layer normalised
the output of the preceding layer. This enhanced the model’s performance and helped to
stabilise the training process.To avoid overfitting, the output of this layer was also subjected
to a dropout layer with a dropout rate of 0.1.

Second Bidirectional LSTM Layer

This layer consisted of 64 hidden units and used L2 regularization with a strength of
0.1. The output of this layer was fed into another batch normalization layer, followed by a
dropout layer with a dropout rate of 0.1.

Dense Layers

The model then had three dense (fully connected) layers with 64, 32, and 1 neurons,
respectively. The first two dense layers used the ReLU activation function, while the final
layer used the sigmoid activation function. The dropout rate for each dense layer was set
to 0.1 to prevent overfitting.

We defined “hidden units” as the number of neurons in a layer that were not directly
connected to the input or output of the layer. These neurons performed computations on

Systems 2023, 11, 196

11 of 19

the input data and produced an output that was passed on to the next layer. Overall, this
architecture aims to optimize the performance of the model while avoiding overfitting.

Algorithm 1 Bidirectional LSTM Model

Require: Training data X}, Training labels y;,,, Test data Xgst, Test labels ytest, Learn-
ing rate «, Regularization parameter A

Ensure: Trained Bidirectional LSTM model
1: Compute rolling mean for the training data

: Initialize window size w to 25

: Initialize weights w; to % foralli=1,...,w

: Apply rolling window with size w to training data to compute rolling mean

: Create new training data dataframe df using rolling mean

: Initialize activity regularization parameter to A

: Create new sequential model model

Add Bidirectional LSTM layer with 128 units and input shape of X;,,;,, to model

: Add Batch Normalization layer to model

: Add Dropout layer with dropout rate of 0.1 to model

: Add Bidirectional LSTM layer with 64 units to model

: Add Batch Normalization layer to model

: Add Dropout layer with dropout rate of 0.1 to model

: Add Dense layer with 64 units and ReLU activation to model

: Add Dropout layer with dropout rate of 0.1 to model

: Add Dense layer with 32 units and ReLU activation to model

: Add Dropout layer with dropout rate of 0.1 to model

: Add Dense layer with 1 unit and Sigmoid activation to model

: Print summary of model

: Define root mean squared error function using Keras backend

: Compile model with binary crossentropy loss, Adam optimizer, accuracy metric,
and root mean squared error metric

22: Convert training and test labels from strings to integers using LabelEncoder

23: Compute class weights using balanced class weighting method

24: Create dictionary of class weights with class indices as keys and class weights as values

25: Initialize TensorBoard callback for model training logs

26: Fit model on training data and labels with 20 epochs, batch size of 90, validation data

of test data and labels, class weights dictionary, and TensorBoard callback

© N O U R W N

[S I S B e e e e e e e
= O 0 00 N1 0N Ul W N =R O

3.3.2. Compile the Model

In our research, we compiled a neural network model by configuring the optimizer,
loss function, and evaluation metrics. The choice of optimizer and loss function was
dependent on the type of problem being solved, while the evaluation metrics were used to
assess the performance of the model during training and testing. For our specific problem
of binary classification, we used the binary cross-entropy loss function, which measures the
difference between the predicted probability and the true label (either 0 or 1). We selected
the Adam optimizer, which is a popular choice in deep learning because it combines
the benefits of two other optimization methods: AdaGrad and RMSProp. To assess the
performance of our model during training and testing, we used the accuracy metric. This
metric measures the percentage of correctly classified samples. Additionally, we also used
the root mean squared error (RMSE) metric to evaluate our model. Although RMSE is
typically used for regression problems, we included it as an additional evaluation metric to
gain a more comprehensive understanding of our model’s performance.In order to assure
the best performance for our particular challenge of binary classification, we carefully
considered the optimizer, loss function, and evaluation metrics when building our neural
network model.

Systems 2023, 11, 196

12 0of 19

3.3.3. Compute Class Weights to Deal with Class Imbalance

In our study, we encountered the problem of detecting lane-change maneuvers using
a trajectory dataset. Since lane-change maneuvers occur relatively infrequently compared
to other driving maneuvers, the resulting dataset was highly imbalanced, with a majority
of samples representing non-lane-change scenarios. To address this issue, we computed
class weights for the dataset using the compute_class_weight() function from the scikit-
learn library. This function considers the class distribution of the dataset and computes
weights that assign greater importance to the minority class during training. In our case,
the minority class represented lane-change scenarios, which were of particular interest
for our application. By using class weights during training, we were able to reduce the
bias towards the majority class and improve the model’s ability to accurately classify lane-
change scenarios. This is important for safety-critical applications such as lane-departure
warning systems, where detecting lane changes accurately can help prevent accidents and
improve overall road safety. In conclusion, generating class weights enabled us to address
the class imbalance problem in our trajectory dataset and enhance the performance of our
model in identifying lane-change manoeuvres.

3.3.4. Fit the Model Using Training Data

Once we compiled our neural network model, we fit it with the training data using the
fit() function from the Keras API. The fit() function trains the model by iterating over the
training data for a specified number of epochs, updating the model’s weights at each itera-
tion to minimize the loss function. In our study, we used the fit() function to train the model
for 1000 epochs, with a batch size of 90. We also included a validation dataset consisting of
the X_test and y_test data to monitor the model’s performance during training. To deal
with the issue of class imbalance in our dataset, we used the class_weight parameter in the
fit() function to assign greater importance to the minority class during training. Specifically,
we passed in a dictionary of class weights computed using the compute_class_weight()
function from the scikit-learn library. The dict(enumerate(class_weights)) expression maps
the computed class weights to the corresponding class indices in the dataset. During train-
ing, we also used a tensorboard callback to monitor the model’s performance and visualize
various metrics, such as loss and accuracy. This helped us to identify potential issues
with the model and make adjustments as needed. Overall, iterating over the dataset for
a predetermined number of epochs and changing the model’s weights to minimise the
loss function were usd to fit the model with the training data. We were able to increase
the model’s accuracy and effectiveness for our particular problem of recognising lane-
change movements using a trajectory dataset by employing class weights, monitoring the
model’s performance with a validation dataset, and using tensorboard and a tensorboard
validation dataset.

3.3.5. Evaluate the Model on Test Data

We used the following evaluation metrics to evaluate our model’s performance:

Accuracy

The accuracy of a machine learning model is a frequently used statistic to gauge its
performance. As a proportion of all predictions, it determines the model’s accuracy rate.
The number of accurate forecasts and the total number of guesses made make up the
numerator and denominator of the fraction or percentage that represents it. For calculating
accuracy, use the formula:

Accuracy = (Numbero f CorrectPredictions) / (Total Numbero f Predictions) (1)

Systems 2023, 11, 196

13 0of 19

Precision

Precision gauges the proportion of correct positive predictions among the total number
of positive predictions made by the model. A high precision value indicates a low rate of
false-positive predictions made by the model.

Pr = TruePositives / (TruePositives 4+ FalsePositives) 2)

where, Pr = Precision

True positives (TP) are the number of positive cases that are correctly identified
as positive.

False negatives (FN) are the number of positive cases that are incorrectly identified as
negative.

Recall
Recall counts the number of predictions that came true out of all the actual positive

events. A high recall value means that the model is able to identify most of the positive
instances, i.e., the model has a low false-negative rate.

Rc = TruePositives / (TruePositives + FalseNegatives) ©)]
where, Rc = Recall

F1 Score

The F1 score represents the balance between precision and recall and is computed as
the harmonic mean of the two metrics. A high score indicates that the model has a good
balance between precision and recall, whereas a low value suggests a poor balance.

F1=2x (PrxRc)/(Pr+ Rc) 4)

AUC

A binary classification model’s performance is assessed using this metric. Area under
the curve (AUC) measures how easily positive and negative events can be distinguished.
AuC with 1.0 denotes the complete separation of positive and negative cases and 0.5 denotes
an imperfect separation of positive and negative examples. The formula for calculating is
given by:

1"= +
—Z Wit yir) yl“ (Xir1 — X)))
ni3

where n is the number of data points in the ROC curve, (x_i, y_i) are the coordinates of the
i — th data point in the ROC space. This curve is a plot of the sensitivity versus the fall-out
for a binary classification problem. By calculating the area under the ROC curve, the AUC
assesses a classifier’s overall performance. The range of AUC values is from 0 to 1, with 1
denoting perfect performance and 0.5 denoting random performance.

Root Mean Square Error (RMSE)

The square root of the mean of the squared discrepancies between the predicted and
actual values was used to calculate RMSE. This is a measurement of how far the model’s
predictions differ from the actual data. The model fits the data better with a lower RMSE.
This is due to the fact that a lower RMSE signifies a smaller discrepancy between the
predicted and actual values, demonstrating a higher level of model accuracy.

RMSE = [= Y (0; — p;)? (6)
1

where:

Systems 2023, 11, 196 14 of 19

n is sample size/observations
0; is the actual value
pi is the predicted value

4. Results

When using the proposed model’s training results, two different training methods on
the datasets are displayed in Figure 7a—d.

Model loss Model accuracy
10 1/— Tain 09 —— Tain
09 Validation - Validation
S
) ——
08 0.8 [
=
“ \ g 07 f
§ 06 g {
\ 4 /
05
S—a | 0.6
04 T
T ve—
03 035
02 T T T T T T T T T T T T T T T T
0.0 5 50 15 0.0 125 150 115 0o 25 5.0 15 00 125 150 175
Epoch Epoch
a) (b)
Model loss Model accuracy
14 { — Tain — Tain
Validation Validation
08 A N N A
12 KH_._'
10 0.6
= 0
4) g /
= o8 g
2 04
06 \
A — 0.z
04 —_—
0.0 25 5.0 75 00 125 150 175 oo 25 5.0 15 0.0 125 150 175
Epoch Epoch
(0 (d)

Figure 7. Loss and accuracy curves of two training sessions. (a) Loss curve of first training session.
(b) Accuracy curve of first training session. (c) Loss curve of second training session. (d) Accuracy
curve of second training session.

Table 2 shows the loss and accuracy of two trainings, on the test set and training set,
as well as the validation set. Table 3 provides a performance comparison of two training
models on a sensor data set. The data set was divided into two halves, and each half was
used to train a different model. The table shows the results in terms of accuracy, F1 score,
precision, recall, and AUC. The accuracy and F1 score of the first training model performed
better, but the recall and precision of the second training model performed better.

Table 2. Comparisonof Loss and Accuracy Metrics.

Metric Test Training Validation
Loss 0.32 0.41 0.47
First Training
Accuracy 0.86 0.81 0.77
Loss 0.33 0.03 0.14

Second Training
Accuracy 0.83 0.99 0.96

Systems 2023, 11, 196

15 0f 19

Table 3. Performance Comparison of Two Training Methods on Test Sets.

Test

F1 Precision Recall AUC
Accuracy
First Training 0.83 0.51 0.36 0.89 0.85
Second Training 0.86 0.53 0.41 0.75 0.81

The model was trained on a dataset with 20 epochs and the results were evaluated
using the accuracy and loss metrics. The accuracy measures the model’s ability to correctly
predict lane changes while the loss measures the error between the predicted and actual
values. With our first training on half of the sensor data, the training accuracy improved
from 49.64% in the first epoch to 81.06% in the final epoch. The training loss also decreased
from 0.9850 in the first epoch to 0.3776 in the final epoch. The validation accuracy started
at 42.39% in the first epoch and improved to 86.05% in the final epoch. The validation loss
started at 0.6981 in the first epoch and decreased to 0.3255 in the final epoch. Here, our
model acieved a test accuracy of 86% with a test loss of 0.325. These results suggest that
our model was able to learn from the training data and make accurate predictions on the
validation data. Also, during training, we noticed a decrease in the root mean square (RMS)
value from 7.054 to 2.33, which indicated that our model improved over time. This suggests
that our model became better at predicting the target values, and the error between the
predicted and actual values gradually decreased. Hence, due to the use of the rolling mean
approach and compute weights to address the class imbalance, we helped our model to
better handle the imbalanced data by weighing the minority class higher. This resulted
in a more accurate model and improved performance metrics with an F1 score of 0.52,
a precision of 0.41, a recall of 0.75, an accuracy of 0.86, and an AUC of 0.81 demonstrating
how well our model can tell the difference between the lane-changing and keeping classes.
On the other half of the data samples, we conducted training and observed that the model
achieved an accuracy of 83.65% with a loss value of 0.3306. The validation accuracy was
also observed to improve over the epochs, with the highest validation accuracy of 92.53%.
The RMSE value decreased from 5.67 to 2.67, indicating the model’s improvement over time.
The test loss was 0.33 with a test accuracy of 83%. Our model’s strong ability to identify
positive and negative classes is demonstrated by its F1 score of 0.51 and its precision of
0.36, recall of 0.89, accuracy of 0.82, and AUC of 0.85.

5. Discussion

In order to determine the effectiveness of our suggested methodology, we compare
the performance of our lane-change prediction model based on trajectory data with other,
comparable baseline methods in this section. The four baseline papers we chose for this
purpose are as follows:

1. Ref. [47]: This work applies the LSTM approach to forecast future longitudinal and
lateral trajectories for automobiles on highways, trained on the NGSIM dataset, using
local lateral position, local longitudinal position, and local longitudinal position as
major features.

2. Ref. [48]: This work combines deep learning based, two-dimensional trajectory pre-

diction models to forecast both car-following and lane-changing behaviours simulta-

neously. The proposed model to simulate and predict joint behaviours incorporates

BiLSTM), a switch neural network structure based on the attention mechanism, and a

temporal convolution neural network (TCN). This model was trained and evaluated

using the NGSIM dataset.

Ref. [49]: This paper utilizes a simple BILSTM model for path prediction.

4. Ref. [50]: This paper employs a CNN-LSTM hybrid sequential model for the prediction
of motion trajectory.

®

Systems 2023, 11, 196

16 of 19

It is worth noting that although these papers use the NGSIM dataset, the characteristics
of the data and the objectives of the research are different; hence, the performance cannot
be directly compared. Nonetheless, we compared the RMSE value of our method with
these baseline methods, and the results are presented in the table. As can be seen in Table 4,
our proposed method outperformed all the baseline methods, with the lowest RMSE value.

Table 4. Comparison with Baseline Papers.

Model Method RMSE
Our Model We?gikf;ﬁixif:ges 267
(7] LSTM 9.37
(28] ITPM 567
2] BiLSTM 836
[50] CNNLSTM 6.66

6. Conclusions

In conclusion, this study proposed a novel approach for predicting lane-change behav-
ior on highways using Bi-LSTM networks. The preprocessed dataset was modified to fit
the lane-change prediction task, and the results demonstrated that the proposed approach
achieved high accuracy by considering both the past and future context of the input data.
The model achieved an accuracy of 86% on one half of the dataset and 83.65% on the other
half, with an F1 score of 0.52 and 0.51, respectively. The precision, recall, accuracy, and AUC
also showed that the model had a high discrimination ability between the two target classes.
The proposed approach outperformed other models in terms of execution time and simplic-
ity, making it a viable solution for real-time lane-change prediction in practical applications.
This research has one limitation that the dataset used is limited to a specific region and time
frame, which may affect the generalizability of the model to other regions and time periods.
Nevertheless, the proposed approach shows promising results and has the potential to
significantly improve highway safety through better vehicle coordination and proactive
warnings to drivers. However, there is still room for improvement, and future work will
focus on the following:

1. Increasing the dataset to encompass various driving scenarios and settings to enhance
the model’s generalization capability.

2. Investigating other deep learning architectures to improve the model’s performance.

3. Conducting k-fold cross-validation to evaluate the model’s performance on multiple
subsets of the dataset.

In summary, this study presents a promising approach for lane-change prediction
on highways using Bi-LSTM networks. The results demonstrate a high accuracy and
discrimination ability, and future work will focus on enhancing the model’s performance
and evaluating its applicability in real-world situations.

Author Contributions: All authors have equal contributions. All authors have read and agreed to
the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
RI-44-0831.

Data Availability Statement: Data will be available on request.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number RI-44-0831.

Systems 2023, 11, 196 17 of 19

Conflicts of Interest: Authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADAS Advanced Driver-Assistance Systems
AUC Area Under the Curve

API Application Programming Interface
ANN Artificial Neural Network

BILSTM Bidirectional Long Short-Term Memory

Ccv Connected Vehicles

DL Deep Learning

DON Deep Q-Network

FC Fully Connected

F1 F1 Score

G-Mean Geometric Mean

GPS Global Positioning System
HMM Hidden Markov Models
LCD Lane Change Decisions
LSTM Long Short-Term Memory
L2 L2 Regularization

LiDAR Light Detection and Ranging
RADAR Radio Detection and Ranging
ReLU Rectified Linear Unit

RMS Root Mean Square
RMSE Root Mean Square Error
ROC Receiver Operating Characteristic
SVM Support Vector Machine
ITS Intelligent Transport System
References
1. Sen, B.; Smith, J.; Najm, W. Analysis of Lane Change Crashes; National Highway Traffic Safety Administration: Washington, DC,
USA, 2003.
2. Khan, M.; Lee, S. A comprehensive survey of driving monitoring and assistance systems. Sensors 2019, 19, 2574. [CrossRef]
[PubMed]
3. Greenwood, P; Lenneman, J.; Baldwin, C. Advanced driver assistance systems (ADAS): Demographics, preferred sources of
information, and accuracy of ADAS knowledge. Transp. Res. Part F Traffic Psychol. Behav. 2022, 86, 131-150. [CrossRef]
4. Fagnant, D.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations.
Transp. Res. Part A Policy Pract. 2015, 77, 167-181. [CrossRef]
5. Haboucha, C;Ishaq, R.; Shiftan, Y. User preferences regarding autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 78,
37-49. [CrossRef]
6. Narayanan, S.; Chaniotakis, E.; Antoniou, C. Shared autonomous vehicle services: A compre-hensive review. Transp. Res. Part C
Emerg. Technol. 2020, 111, 255-293. [CrossRef]
7. Hussain, R.; Zeadally, S. Autonomous cars: Research results, issues, and future challenges. IEEE Commun. Surv. Tutor. 2018, 21,
1275-1313. [CrossRef]
8. Kaffash, S.; Nguyen, A.; Zhu, J. Big data algorithms and applications in intelligent transportation sys-tem: A review and
bibliometric analysis. Int. J. Prod. Econ. 2021, 231, 107868. [CrossRef]
9. Arena, F; Pau, G.; Severino, A. A review on IEEE 802.11 p for intelligent transportation systems. J. Sens. Actuator Netw. 2020,
9, 22. [CrossRef]
10. Veres, M.; Moussa, M. Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 3152-3168. [CrossRef]
11. Saharan, S.; Bawa, S.; Kumar, N. Dynamic pricing techniques for Intelligent Transportation Sys-tem in smart cities: A systematic
review. Comput. Commun. 2020, 150, 603-625. [CrossRef]
12. Humayun, M.; Ashfaq, F,; Jhanjhi, N.; Alsadun, M. Traffic management: Multiscale vehicle detec-tion in varying weather
conditions using yolov4 and spatial pyramid pooling network. Electronics 2022, 11, 2748. [CrossRef]
13. Humayun, M.; Afsar, S.; Almufareh, M.F; Jhanjhi, N.Z.; AlSuwailem, M. Smart Traffic Management System for Metropolitan

Cities of Kingdom Using Cutting Edge Technologies. |. Adv. Transp. 2022, 2022, 4687319. [CrossRef]

http://doi.org/10.3390/s19112574
http://www.ncbi.nlm.nih.gov/pubmed/31174275
http://dx.doi.org/10.1016/j.trf.2021.08.006
http://dx.doi.org/10.1016/j.tra.2015.04.003
http://dx.doi.org/10.1016/j.trc.2017.01.010
http://dx.doi.org/10.1016/j.trc.2019.12.008
http://dx.doi.org/10.1109/COMST.2018.2869360
http://dx.doi.org/10.1016/j.ijpe.2020.107868
http://dx.doi.org/10.3390/jsan9020022
http://dx.doi.org/10.1109/TITS.2019.2929020
http://dx.doi.org/10.1016/j.comcom.2019.12.003
http://dx.doi.org/10.3390/electronics11172748
http://dx.doi.org/10.1155/2022/4687319

Systems 2023, 11, 196 18 of 19

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german
highways for validation of highly automated driving systems. In Proceedings of the 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4-7 November 2018; pp. 2118-2125.

Nilsson, J.; Fredriksson, J.; Coelingh, E. Rule-based highway maneuver intention recognition. In Proceedings of the 2015 IEEE
18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15-18 September 2015; pp. 950-955.
Kesting, A.; Treiber, M.; Helbing, D. General lane-changing model MOBIL for car-following models. Transp. Res. Record 2007,
1999, 86-94. [CrossRef]

Takahashi, A.; Ninomiya, Y. Model-based lane recognition. In Proceedings of the Conference on Intelligent Vehicles, Tokyo,
Japan, 19-20 September 1996; pp. 201-206.

Guan, M.; Wang, Z.; Yang, B.; Nakano, K. A Fuzzy Inference-Based Driver’s Lane-Change Decision-Making Model with Different
Levels of Aggressiveness. Proc. Jpn. Jt. Autom. Control Conf. 2022, 65, 604—609.

Laval, J.; Daganzo, C. Lane-changing in traffic streams. Transp. Res. Part B Methodol. 2006, 40, 251-264. [CrossRef]

Ban, J. A game theoretical approach for modelling merging and yielding behaviour at freeway on-ramp sec-tions. In Transportation
and Traffic Theory: Papers Selected for Presentation at 17th International Symposium on Transportation and Traffic Theory, a Peer Reviewed
Series Since 1959; Elsevier: Amsterdam, The Netherlands, 2007; p. 197.

Talebpour, A.; Mahmassani, H.; Hamdar, S. Modeling lane-changing behavior in a connected environment: A game theory
approach. Transp. Res. Procedia 2015, 7, 420-440. [CrossRef]

Woo, H,; Ji, Y.; Kono, H.; Tamura, Y.; Kuroda, Y.; Sugano, T.; Yamamoto, Y.; Yamashita, A.; Asama, H. Lane-change detection
based on vehicle-trajectory prediction. IEEE Robot. Autom. Lett. 2017, 2, 1109-1116. [CrossRef]

Luo, Y;; Xiang, Y.; Cao, K.; Li, K. A dynamic automated lane change maneuver based on vehi-cle-to-vehicle communication.
Transp. Res. Part C Emerg. Technol. 2016, 62, 87-102. [CrossRef]

Liu, Y,; Wang, X,; Li, L.; Cheng, S.; Chen, Z. A novel lane change decision-making model of autonomous vehicle based on support
vector machine. IEEE Access 2019, 7, 26543-26550. [CrossRef]

Tang, J.; Liu, F; Zhang, W.; Ke, R.; Zou, Y. Lane-changes prediction based on adaptive fuzzy neural net-work. Expert Syst. Appl.
2018, 91, 452-463. [CrossRef]

Liu, P; Kurt, A.; Ozgiiner, U. Trajectory prediction of a lane changing vehicle based on driver behav-ior estimation and
classification. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Macau,
China, 8-12 October 2022; pp. 942-947.

Izquierdo, R.; Quintanar, A.; Parra, I.; Fernandez-Llorca, D.; Sotelo, M. Experimental vali-dation of lane-change intention
prediction methodologies based on CNN and LSTM. In Proceedings of the 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), Auckland, New Zealand, 27-30 October 2019; pp. 3657-3662.

Saranya, M.; Archana, N.; Reshma, J.; Sangeetha, S.; Varalakshmi, M. Object detection and lane changing for self driving car
using cnn. In Proceedings of the 2022 International Conference on Communication, Computing and Internet of Things (IC3I0T),
Chennai, India, 10-11 March 2022; pp. 1-7.

Mo, X.; Xing, Y.; Lv, C. Interaction-aware trajectory prediction of connected vehicles using cnn-lstm networks. In Proceedings
of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18-21 October 2020;
pp- 5057-5062.

Zhang, Y.; Zhang, S.; Luo, R. Lane Change Intent Prediction Based on Multi-Channel CNN Consider-ing Vehicle Time-Series
Trajectory. In Proceedings of the 17th International IEEE Conference On Intelligent Transportation Systems (ITSC), Macau, China,
8-12 October 2022; pp. 287-292.

Lee, D.; Kwon, Y.; McMains, S.; Hedrick, J. Convolution neural network-based lane change inten-tion prediction of surrounding
vehicles for ACC. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC),
Yokohama, Japan, 16-19 October 2017; pp. 1-6.

Xie, D.; Fang, Z.; Jia, B.; He, Z. A data-driven lane-changing model based on deep learning. Transp. Res. Part C Emerg. Technol.
2019, 106, 41-60. [CrossRef]

Zhao, N.; Wang, B.; Lu, Y,; Su, R. Direction convolutional LSTM network: Prediction network for drivers’ lane-changing
behaviours. In Proceedings of the 2022 IEEE 17th International Conference on Control Automation (ICCA), Naples, Italy, 27-30
June 2022; pp. 752-757.

Shi, Q.; Zhang, H. An improved learning-based LSTM approach for lane change intention prediction subject to imbalanced data.
Transp. Res. Part C Emerg. Technol. 2021, 133, 103414. [CrossRef]

Wang, J.; Zhang, Q.; Zhao, D.; Chen, Y. Lane change decision-making through deep reinforcement learning with rule-based
constraints. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14-19
July 2019; pp. 1-6.

Torkey, H.; Atlam, M.; El-Fishawy, N.; Salem, H. Machine Learning Model for Cancer Diagnosis based on RNAseq Microarray.
Menoufia J. Electron. Eng. Res. 2021, 30, 65-75. [CrossRef]

Torkey, H.; Atlam, M.; El-Fishawy, N.; Salem, H. A novel deep autoencoder based survival analysis approach for microarray
dataset. Peer] Comput. Sci. 2021, 7, e492. [CrossRef]

Zhao, L.; Xu, T.; Zhang, Z.; Hao, Y. Lane-Changing Recognition of Urban Expressway Exit Using Natural Driving Data. Appl. Sci.
2022, 12, 9762. [CrossRef]

http://dx.doi.org/10.3141/1999-10
http://dx.doi.org/10.1016/j.trb.2005.04.003
http://dx.doi.org/10.1016/j.trpro.2015.06.022
http://dx.doi.org/10.1109/LRA.2017.2660543
http://dx.doi.org/10.1016/j.trc.2015.11.011
http://dx.doi.org/10.1109/ACCESS.2019.2900416
http://dx.doi.org/10.1016/j.eswa.2017.09.025
http://dx.doi.org/10.1016/j.trc.2019.07.002
http://dx.doi.org/10.1016/j.trc.2021.103414
http://dx.doi.org/10.21608/mjeer.2021.146277
http://dx.doi.org/10.7717/peerj-cs.492
http://dx.doi.org/10.3390/app12199762

Systems 2023, 11, 196 19 of 19

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Zhang, H.; Guo, Y.; Wang, C.; Fu, R. Stacking-based ensemble learning method for the recognition of the preceding vehicle
lane-changing manoeuvre: A naturalistic driving study on the highway. IET Intell. Transp. Syst. 2022, 16, 489-503. [CrossRef]
Liu, J.; Liu, Y,; Wei, D.; Ni, W.; Zeng, X.; Song, L. Attention-Based Auto-Encoder Framework for Ab-normal Driving Detection. In
Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May 2022-1 June
2022; pp. 3150-3154.

Khelfa, B.; Ba, L; Tordeux, A. Predicting highway lane-changing maneuvers: A benchmark analy-sis of machine and ensemble
learning algorithms. Phys. A Stat. Mech. Its Appl. 2023, 612, 128471. [CrossRef]

Mozaffari, S.; Arnold, E.; Dianati, M.; Fallah, S. Early lane change prediction for automated driving systems using multi-task
attention-based convolutional neural networks. IEEE Trans. Intell. Veh. 2022, 7, 758-770. [CrossRef]

Abraham, A.; Zhang, Y.; Prasad, S. Real-time prediction of multi-class lane-changing intentions based on highway vehicle
trajectories. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis,
IN, USA, 19-22 September 2021; pp. 1457-1462.

Mabhajan, V.; Katrakazas, C.; Antoniou, C. Prediction of lane-changing maneuvers with auto-matic labeling and deep learning.
Transp. Res. Record 2020, 2674, 336-347. [CrossRef]

Kim, L; Bong, J.; Park, J.; Park, S. Prediction of driver’s intention of lane change by augmenting sensor information using machine
learning techniques. Sensors 2017, 17, 1350. [CrossRef]

Ihianle, I.; Nwajana, A.; Ebenuwa, S.; Otuka, R.; Owa, K.; Orisatoki, M. A deep learning approach for human activities recognition
from multimodal sensing devices. IEEE Access 2020, 8, 179028-179038. [CrossRef]

Altché, F,; La Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16-19 October 2017; pp. 353-359.

Shi, K.; Wu, Y,; Shi, H.; Zhou, Y,; Ran, B. An integrated car-following and lane changing vehicle tra-jectory prediction algorithm
based on a deep neural network. Phys. A Stat. Mech. Its Appl. 2022, 599, 127303. [CrossRef]

Abdalla, M.; Hendawi, A.; Mokhtar, H.; Elgamal, N.; Krumm, J.; Ali, M. DeepMotions: A Deep Learning System for Path
Prediction Using Similar Motions. IEEE Access 2020, 8, 23881-23894. [CrossRef]

Xie, G.; Shangguan, A ; Fei, R.; Ji, W.; Ma, W.; Hei, X. Motion trajectory prediction based on a CNN-LSTM sequential model. Sci.
China Inf. Sci. 2020, 63, 1-21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/itr2.12154
http://dx.doi.org/10.1016/j.physa.2023.128471
http://dx.doi.org/10.1109/TIV.2022.3161785
http://dx.doi.org/10.1177/0361198120922210
http://dx.doi.org/10.3390/s17061350
http://dx.doi.org/10.1109/ACCESS.2020.3027979
http://dx.doi.org/10.1016/j.physa.2022.127303
http://dx.doi.org/10.1109/ACCESS.2020.2966982
http://dx.doi.org/10.1007/s11432-019-2761-y

	Introduction
	Literature Review
	Rule-Based Methods
	Model-Based Methods
	Trajectory Based Methods
	Machine-Learning-Based Methods
	Deep-Learning-Based Methods
	Hybrid Methods

	Study Design and Methods
	Data Pre-Processing
	Load the Trajectory Dataset
	Normalize the Numerical Columns
	Split the Dataset into Training & Test Sets

	Sliding Window Approach
	Bi-Directional LSTM
	Define BiDirectional LSTM Model
	Compile the Model
	Compute Class Weights to Deal with Class Imbalance
	Fit the Model Using Training Data
	Evaluate the Model on Test Data

	Results
	Discussion
	Conclusions
	References

