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Abstract: Remote monitoring and maintenance are important for improving the performance of
production systems. However, existing studies on this topic usually focus on the monitoring and
maintenance of the working conditions of the equipment and pay relatively less attention to the
processing craft and processing quality. In addition, as far as we know, there are relatively few
industrial case studies on the real applications of remote monitoring and maintenance systems that
include both conventional and advanced maintenance techniques under the context of Industry 4.0.
Addressing these issues, an industrial case study on the monitoring and maintenance service system
for a robot-driven carbon block polishing service system is presented, including its application
background and engineering problems, software/hardware architecture and running logic, the
monitoring and maintenance-related enabling techniques, and the configuration and operation
workflows of the system in the form of screenshots of the functional WebAPPs of the software system.
The case study can provide real examples and references for the industrial application of remote
monitoring and maintenance service systems on industrial product service systems under the context
of Industry 4.0. Advanced techniques such as the Industrial Internet of Things, digital twins, deep
learning, and edge/cloud/fog computing have been applied to the system.

Keywords: Industry 4.0; remote monitoring; maintenance; deep learning; digital twin

1. Introduction
1.1. Background and Engineering Problems

Anode carbon blocks (Figure 1a) are important consumables during aluminum pro-
duction, and the production of anode carbon blocks mainly includes the processes of
mixing, kneading, forming, roasting, and polishing. At present, the polishing process is
commonly conducted manually in China, and this leads to issues such as environmental
pollution, occupational diseases among workers (e.g., pneumoconiosis), high labor costs,
and recruiting difficulty [1]. Under such a background, YX company developed a kind of
robot-based processing line for carbon block polishing to replace the conventional manual
polishing process, as shown in Figure 1b,c. However, the processing line was a newly de-
veloped equipment and its reliability still require further proving. Therefore, the customer
companies were hesitant to buy the processing line. In this regard, YX developed a kind of
industrial product service system (IPSS) based on the processing line and sells polishing
services rather than the processing line itself [2]. However, the reliability of the processing
line is still an issue of concern, and YX must develop a kind of monitoring and maintenance
service system for the polishing processing line-based IPSS.
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Figure 1. Robot-based carbon block polishing processing line and its control room displaying the 
remote monitoring and maintenance system: (a) carbon blocks, (b) real photo of robot-based polish-
ing processing line, (c) illustration of entire polishing processing line, (d) monitoring screens of the 
processing line in the control room.  

On the other hand, advanced techniques in Industry 4.0 contexts, such as the Indus-
trial Internet of Things [3,4], cyber-physical systems [5], digital twins [6], deep learning 
[7], and edge/cloud/fog computing [8], have boosted the fast development of intelligent 
and remote monitoring/maintenance systems together with the smart IPSS [9].  

However, as far as we know, currently there is a lack of examples of the above-men-
tioned systems in real industrial applications, especially when the purpose is to maintain 
equipment working conditions/processing craft/processing quality through remote mon-
itoring and maintenance at the same time. Moreover, there are few examples of integra-
tion using conventional and advanced maintenance techniques under the context of In-
dustry 4.0 at the same time.  

1.2. Related Works 
Under the context of Industry 4.0, using advanced information and computer science 

techniques for intelligent monitoring and maintenance of production systems has become 
an important research topic [10]. Much research has been devoted to the establishment of 
IPSSs and their corresponding maintenance and monitoring systems. For example, from 
the perspective of remote monitoring of manufacturing production lines, Chen [11] estab-
lished a kind of intelligent production line monitoring architecture enabled by a wireless 
sensor network and RFID, and the architecture was able to realize real-time multi-
threaded production data collection/storage and workpiece tracking monitoring for dis-
crete manufacturing production lines. Li et al. [12] discussed the strategy of integrating 

Figure 1. Robot-based carbon block polishing processing line and its control room displaying
the remote monitoring and maintenance system: (a) carbon blocks, (b) real photo of robot-based
polishing processing line, (c) illustration of entire polishing processing line, (d) monitoring screens of
the processing line in the control room.

On the other hand, advanced techniques in Industry 4.0 contexts, such as the Industrial
Internet of Things [3,4], cyber-physical systems [5], digital twins [6], deep learning [7],
and edge/cloud/fog computing [8], have boosted the fast development of intelligent and
remote monitoring/maintenance systems together with the smart IPSS [9].

However, as far as we know, currently there is a lack of examples of the above-
mentioned systems in real industrial applications, especially when the purpose is to main-
tain equipment working conditions/processing craft/processing quality through remote
monitoring and maintenance at the same time. Moreover, there are few examples of inte-
gration using conventional and advanced maintenance techniques under the context of
Industry 4.0 at the same time.

1.2. Related Works

Under the context of Industry 4.0, using advanced information and computer sci-
ence techniques for intelligent monitoring and maintenance of production systems has
become an important research topic [10]. Much research has been devoted to the estab-
lishment of IPSSs and their corresponding maintenance and monitoring systems. For
example, from the perspective of remote monitoring of manufacturing production lines,
Chen [11] established a kind of intelligent production line monitoring architecture enabled
by a wireless sensor network and RFID, and the architecture was able to realize real-time
multi-threaded production data collection/storage and workpiece tracking monitoring for
discrete manufacturing production lines. Li et al. [12] discussed the strategy of integrating
production techniques with advanced information technology such as artificial intelligence,
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edge computing, digital twins, etc. for intelligent monitoring and maintenance. Mofidul
et al. [13] developed a remote monitoring system for an automatic packaging production
line based on a programmable logic controller (PLC), and the system can replace existing
industrial SCADA systems with ordinary sensors and control apps based on mobile appli-
cations, thus reducing the costs of building the monitoring systems. Mourtzis et al. [14]
developed a conditional preventive maintenance system that can suggest maintenance
strategies according to shop-floor data. From the perspective of production line main-
tenance under the context of Industry 4.0, Cheng et al. [15] developed an edge–cloud
collaborative maintenance architecture for bearing production lines. Following a roadmap
of “edge-side sensor data acquisition→ edge-side data cleansing→ cloud-side data an-
alyzing,” the architecture can realize a reduction in maintenance costs and improve the
equipment utilization rate by predicting equipment failure. Ayvaz and Alpay [16] proposed
a data-driven predictive maintenance system for production lines. The system can detect
potential production line faults by analyzing the real-time production data collected from
sensors using a random forest ensemble learning framework. Cachada et al. [17] developed
an architecture of intelligent and predictive maintenance framework under the context of
Industry 4.0. Enabled by the Internet of Things, deep learning, etc., the framework can
support equipment/production line fault prediction and monitor management, condition-
based maintenance, etc. Zhang et al. [18] developed an Internet of Things-driven smart
mine maintenance system, and the system is characterized by its integration of real-time
acquisition, event-driven operation rules building, and maintenance knowledge fusion.
From the perspective of IPSS, Qi and Tao [19] established a kind of industrial product
service system based on cloud/fog/edge computing, and the system can provide enhanced
product service management and control based on high-speed and low-delay collection
and analysis of multi-level real-time production data of production lines. Zheng et al. [20]
conducted a review of smart product service systems and discussed methods to improve
the smartness of industrial service activities through the application of advanced intelli-
gence and information techniques. Shihundla et al. [21] developed an integrated product
service system from an equipment lifecycle perspective. Supported by the data collected
by sensor networks and edge–cloud collaborated computing architecture, the system can
realize data-driven equipment health assessment and product service management.

All the works above can provide references for the development of monitoring and
maintenance systems for robot-driven smart product service systems. However, how
exactly to effectively integrate the techniques of the Internet of Things, deep learning, etc.
for the smart monitoring and maintenance of robot-driven processing lines still requires
detailed exploration. How to implement a service system based on the processing line
for the benefit of both the service provider and consumer companies in real commercial
scenarios still requires further testing and discussion.

In this regard, YX developed a remote monitoring and maintenance service system
for the polishing processing line-based IPSS. The monitoring and maintenance service
system can provide customized monitoring and maintenance service through web-based
software based on the processing line hardware. Conventional monitoring and maintenance
techniques together with some advanced techniques under the context of Industry 4.0 have
been applied in the system. The monitoring screens (deployed in the control room of the
processing line in the customer company) displaying monitoring contents on working
conditions/processing craft/polishing quality are illustrated in Figure 1d.

On this basis, this paper provides a case study on the design, development, and
deployment of the monitoring and maintenance service system, and it aims at providing
examples of the industrial applications of the above-mentioned systems and techniques.

The rest of the paper is organized as follows. Section 2 introduces the architecture
and overall run-time logic of the hardware/software of the monitoring and maintenance
service system together with the monitoring and maintenance domain technologies that
support the realization of the system. Section 3 introduces how the system was deployed in
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a customer company using combinations of screenshots of the functional WebAPPs of the
system. Section 4 concludes the works and discusses the contributions and future works.

2. Systematic Architecture and Key Enabling Technologies

In this section, the software/hardware architecture and the key enabling techniques
of the monitoring and maintenance service system of the polishing processing line-based
IPSS are demonstrated.

2.1. System Architecture and Working Logic
2.1.1. System Architecture

A browser/server and configuration/operation separated architecture is applied
for a monitoring and maintenance service system to enable convenient configuration of
the monitoring and maintenance service according to specific customer requirements, as
illustrated in Figure 2. The configuration system was deployed in the provider company
(i.e., YX company), and it is mainly for generating a configuration file that defines the
services provided by the provider company to specific customers. The operation system
was deployed in the customer company, and it has to be activated by the configuration
file before providing the monitoring and maintenance services. The entire architecture can
be roughly separated into four layers, as listed below. It is worth mentioning that under
the contexts of Industry 4.0 and Industrial IoT, layered architectures are usually applied to
organize the components of the systems, and a four-layer structure is commonly applied,
with the first layer for perception and the fourth layer for application [22–24].
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• Sensor network layer: This layer is mainly for collecting the edge-side operation data
of the robot-based polishing processing line, and the sensors can be mainly separated
into two categories. The first category is the built-in sensors of the processing line.
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This mainly includes the built-in sensors of ABB-6700 (i.e., the robot applied in the
case) and the servo motors in the polishing head. The signals monitored by the
built-in sensors in this case study include the torques, the rotation angles of the
axes of the robot, the position coordinates of the end effector of the robot (i.e., the
polishing head), and the currents and torques of the polishing head. The second
category is additionally mounted sensors, which mainly include three power sensors
for the entire processing line/the robot/the polishing head, and a dust concentration
transducer in the dust cover of the processing line. It is worth mentioning that
message queuing telemetry transport (MQTT) protocol was applied to support the
data transmission among the equipment in the sensor network layer and the data
collecting/storing/transmitting layer due to its reliability in low bandwidth and
unstable network environments, which was the case of the working environment of
the carbon block polishing processing line.

• Data collecting/storing/transmitting layer (i.e., lower computer layer): This layer
mainly contains PLC for deploying the programs for collecting the raw data from the
sensors, an industrial computer for deploying the programs for prepossessing the
raw data into flow data for high-frequency transmitting, and an edge-side database
for temporarily storing the data, and a process filed network (PROFINET) protocol
was applied to support the data transmission between the PLC and the industrial
control computer.

• Server layer (i.e., upper computer layer): The previous two layers are both deployed
in the customer company, whereas the server layer is deployed in both the provider
and the customer company. More specifically, both the provider and the customer
deployed a web server for running the software of the configuration and the operation
system and a database server to store all of the data generated during the service
configuration and operation process.

• WebAPP-enabled service interaction layer: This layer is supported by the software
of the configuration and operation systems, and the functions of the software were
developed in the form of WebAPPs (i.e., web-enabled apps), each of which has rela-
tively independent but related functions (as introduced in Section 3, where each bullet
point indicates a WebAPP). In total, 12 functional WebAPPs were developed for the
configuration system, and they can be roughly separated into resource management
WebAPPs and resource configuration WebAPPs. Another 24 functional WebAPPs
were developed for the operation system, and they can be roughly separated into mon-
itoring and maintenance WebAPPs on working conditions/processing craft/polishing
quality and knowledge service WebAPPs. The details of the WebAPPs are introduced
in Section 3.

2.1.2. Working Logic

The working logic during the service interaction between the provider and the cus-
tomer companies is illustrated with three different types of arrows in the WebAPP-enabled
service interaction layer in Figure 2, and the interaction can be roughly separated into three
stages, as listed below.

• Generating service orders through offline interaction: This stage indicates the offline
interaction between the provider company and the customer company, and the result
is a contract that includes a structured service order (examples of the structured service
order can be found in our previous work [2]).

• Generating configuration files through the configuration system: As mentioned in
Section 2.1.1, the configuration system contains resource management WebAPPs and
resource configuration WebAPPs. Firstly, the managers from the provider company
defines and manages the service resource that the provider company has using the re-
source management WebAPPs. The resource to be managed includes the configuration
modules of the robot-based polishing processing line, different types of configurable
sensors, and the monitoring/maintenance service-related functional WebAPPs in the
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operation system. Secondly, the managers from the provider company define specific
configuration files for specific customer companies according to the service orders
generated in the previous stage. The configuration file determines which configurable
modules are contained in the processing line for a specific customer company, which
sensors are mounted, and which monitoring/maintenance service-related WebAPPs
are granted. The configuration files were generated in encrypted JSON files.

• Conducting monitoring and maintenance service through the operation system: After
being activated with the encrypted configuration file generated from the configuration
system, the operation system can be used to support monitoring and maintenance
services for the polishing processing line deployed in the customer company. During
the process, if the customer companies are not satisfied with the service provided by
the WebAPPs, they can send part of the monitoring data to the supplier company and
call for help. Correspondingly, the provider can analyze the data and provide remote
assistance if necessary.

2.2. Key Enabling Techniques

In total, 14 key enabling techniques were applied in the monitoring and maintenance
service system, and all of these techniques were contained in the functional WebAPPs in
the operation system. The classifications and the interactions among the techniques are
illustrated in Figure 3.
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2.2.1. Data Monitoring

Multi-source and heterogeneous stream data collecting/storing/transmitting tech-
nique: This technique is for providing the required data for the conventional and advanced
maintenance techniques and the visualized operation and control modeling technique.
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2.2.2. Conventional Maintenance Techniques

• Bill of material (BOM) mapping-based life cycle maintenance activity identification:
This technique is for identifying the essential maintenance activities of the processing
line through the mapping between design BOM and maintenance BOM.

• QR code-based routing inspection and reporting: Routing inspection plans of the
processing line can be established according to the graphical maintenance activity flow
model (in advanced techniques), and the QR code-based inspection reporting tech-
nique can guarantee that the inspectors complete the inspection reports at designated
times and locations.

• Fault tree-based equipment fault analysis: If any fault or anomaly situations are
detected by the routing inspection or other anomaly detection techniques, this tech-
nique can help the engineers analyze the reasons that caused the fault or the anomaly
situations. In addition, the technique can help store the analysis results in newly
established fault trees as domain knowledge for further reuse (further introduced
in the deep learning anomaly detection-based working condition/processing craft
anomaly detection technique in Section 2.2.3).

• Statistical process control and process capability index calculation: This technique is for
analyzing whether the processing line works properly (i.e., whether the carbon blocks
were polished properly) through statistical calculations and provides suggestions on
how to improve the process capability of the processing line.

• Fishbone chart-based working condition, processing craft, polishing quality anomaly
analysis: This technique, driven by deep learning anomaly detection algorithms, serves
as a supporting tool for analyzing any fault or anomaly situations. This technique can
be also helpful for domain knowledge accumulation and reuse.

2.2.3. Advanced Maintenance Techniques

• Event-state triggering mechanism-based graphical maintenance activity flow model-
ing [25]: This technique can build the graphical maintenance activity flow model of a
processing line, and the graphical model can be visually read by human engineers and
implemented with computer programs at the same time. The modeling methods can
be described in three parts, as illustrated in Figure 4.

The first part is to define the meta-model of the graphical maintenance activity flow
modeling method. Four types of maintenance activity blocks (MABs) are defined, including
time-based maintenance (TBM), which indicates the maintenance activities arranged by
time periods; inspection-driven condition-based maintenance (ICBM), which indicates
the repairing or maintenance activities performed when anomalies are detected during
routine inspection; data-driven condition-based maintenance (DCBM), which indicates the
repairing or maintenance activities performed when anomalies are detected by monitoring
system; and breakdown maintenance (BM), which indicates the repairing or maintenance
when the processing line suddenly breaks down. Furthermore, TBM can be separated into
three statuses, including To be completed, which means that the time for the maintenance
activity has not come yet; Completed, which means that the time has come and the main-
tenance activity has been completed; and Missed, which means that the time has come
but the activity had not been completed. Each of the maintenance activities above can be
described as

MABi = {State_i, E_start, t_start, Part, FE, F_info, M_info, E_end, t_end} (1)

where MABi indicates the ith MAB for a processing line; State_i indicates whether the MAB
is a TBM, an ICBM, a DCBM, or a BM; E_start indicates an event that triggers the MAB;
t_start indicates the start time of the MAB; Part indicates the target part to be maintained or
repaired; FE indicates the field engineer who is responsible for the MAB; F_info indicates the
fault or anomaly information during the MAB; M_info indicates the detailed maintenance
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records of the MAB; E_end indicates an event that indicates the completion of the MAB;
and t_end indicates the time when the MAB is completed.

The second part is the configuration mechanism of the graphical maintenance activity
flow model. During this process, the BOM mapping-based life cycle maintenance activity
identification technique in Section 2.2.2 is used. Firstly, the generic design BOM of the
processing line is defined, based on which the generic maintenance BOM of the processing
line can be defined correspondingly. Secondly, by determining the specific design BOM
of a processing line the specific maintenance BOM can be determined correspondingly.
Thirdly, each of the maintenance activities in the specific maintenance BOM is abstracted
into a TBM MAB. Fourthly, the TBM MABs are serialized according to their cycling time
periods to initiate a graphical maintenance activity flow of the specific processing line.

Systems 2023, 11, x FOR PEER REVIEW 8 of 22 
 

 

MAB; t_start indicates the start time of the MAB; Part indicates the target part to be main-
tained or repaired; FE indicates the field engineer who is responsible for the MAB; F_info 
indicates the fault or anomaly information during the MAB; M_info indicates the detailed 
maintenance records of the MAB; E_end indicates an event that indicates the completion 
of the MAB; and t_end indicates the time when the MAB is completed. 

 
Figure 4. The technique for event-state triggering mechanism-based graphical maintenance activity 
flow modeling. 

The second part is the configuration mechanism of the graphical maintenance activity 
flow model. During this process, the BOM mapping-based life cycle maintenance activity 
identification technique in Section 2.2.2 is used. Firstly, the generic design BOM of the pro-
cessing line is defined, based on which the generic maintenance BOM of the processing line 
can be defined correspondingly. Secondly, by determining the specific design BOM of a 
processing line the specific maintenance BOM can be determined correspondingly. Thirdly, 
each of the maintenance activities in the specific maintenance BOM is abstracted into a TBM 
MAB. Fourthly, the TBM MABs are serialized according to their cycling time periods to in-
itiate a graphical maintenance activity flow of the specific processing line. 

Figure 4. The technique for event-state triggering mechanism-based graphical maintenance activity
flow modeling.



Systems 2023, 11, 376 9 of 21

Table 1. The training steps of the deep learning-based anomaly detection model (using transformer-
VAE [26] as an example).

Algorithm Transformer-VAE

Input: Training set X = {xt}Tx
t=1 // xt indicates a piece of training datum

Initialization: Random initialized θ0, Φ0 // θ0, and Φ0 are the predefined parameters of the encoder and decoder
Output: Transformer-VAE parameters θ*, Φ* // θ*, and Φ* are the parameters of the encoder and decoder after training
1: Repeat
2: Sample xt in the minibatch
3: Encoder: µzt←fΦ (xt) // fΦ (xt) is the encoder, µzt is a posterior probability distribution function of latent

vector zt
4: Sampling: zt←µzt+ε�σz, ε~
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5: Decoder: µxt←fθ(zt) // fθ(zt) is the decoder, µxt indicates the vector after been reconstructed
6: Compute reconstruction loss:
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The third part is the operating mechanism of the graphical maintenance activity flow
model, and it is mainly for updating the initial graphical maintenance activity flow during
the operation of the processing line. Firstly, the TBM MABs with the status of To be completed
are updated to Completed or Missed according to the real maintenance situations. Secondly,
ICBM MABs are added when anomalies are detected and corresponding maintenance
activities are conducted during routine inspection, DCBM MABs are added when anomalies
are detected by the monitoring system and corresponding maintenance activities are
conducted, and BM MABs are added if a sudden breakdown occurred and corresponding
maintenance activities are conducted. In addition, after collecting enough records of
ICBM/DCBM/BM MABs, some of these MABs can be changed to TBM MABs, and the
maintenance BOM is updated correspondingly.

• Event-state knowledge graph-based operation mechanism/maintenance status/and
maintenance data modeling: This technique is for representing the operation mecha-
nism, maintenance activity flow, working conditions, maintenance status, and histori-
cal monitoring data in the form of an event-state knowledge graph. This way, all of this
information can be visually readable to human engineers and can be directly coded
with computer programs at the same time. The implementation of this technique can
be found in our previous work [2].

• Deep learning anomaly detection-based working condition/processing craft anomaly
detection: As illustrated in Figure 5, using the working condition data (e.g., the current
of the polishing head motors) or processing craft monitoring data (e.g., the working
pressure of each polishing step) when the processing line works fine as training
data, deep learning-based anomaly detection models can be trained. The trained
anomaly detection models first encodes the input training data and then decode them
into reconstructed data, and the similarity between the input and the reconstructed
data would be high enough (e.g., fsimilarity(x) > η). The pseudo-code of the training
steps is demonstrated in Table 1. After being trained, the anomaly detection model
can detect any type of abnormal time-series data of working conditions/processing
craft, and thus it can provide a pre-alarm for more serious malfunctions. On this
basis, the fault tree-based technique in Section 2.2.2 can be used to further analyze an
abnormal situation.
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• Convolutional neural network-based polishing quality anomaly analysis: Conven-
tional statistical process control techniques can detect whether there are polishing
quality anomalies in the processing line, yet they cannot identify the types of anomalies
detected. This technique applies a convolution neural network to identify the types of
anomalies by analyzing the patterns of the statistical curves of polishing qualities.

• Bayesian network-based polishing quality anomaly reduction decision-making: After
identifying the types of polishing quality anomalies with the previous technique, this
technique can be used to identify the detailed causes of the anomalies and thus help
carry out anomaly reduction strategies.

• Knowledge graph question-and-answer system-based domain knowledge query: This
technique is used to replace commonly used user manuals. The knowledge graph
contains the domain knowledge on the operation and maintenance methods of the
processing line. Supported by a template-based question-and-answer technique, the
system can provide answers to the input queries expressed with natural language.
The technique roadmap is illustrated in Figure 6. Firstly, the ontology of the domain
knowledge for processing line maintenance was built according to the knowledge
from conventional user manuals, experts, and field experience. Secondly, the ontology
instantiation-based knowledge graph building method was used to build the domain
knowledge graph. Based on the knowledge graph, a template-based question-and-
answer system was developed to support natural language-oriented questions and
answers. The entire process for building the question-and-answer system includes
dictionary building→ dictionary-based question sentence embedding→ question tem-
plate set building→ decision tree-based question template matching→ instantiation
of the template with the question sentence→ template-based knowledge searching or
similarity-based knowledge searching.
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• Ensemble learning-based equipment reliability prediction: The reliability of the pro-
cessing line is important, because when malfunctions occur the entire production takt
is disturbed. This technique is for predicting whether malfunctions would happen in
the next production period with a stacking-based ensemble learning framework [27]
according to the inputs from routing inspection reports, statistical process control
results, working condition/processing craft anomaly detection, etc. The entire process
is illustrated in Figure 7. Firstly, the indicators that may influence the reliability of
the processing line were collected, and the corresponding dataset was built. For each
piece of the datum, the input was the indicator values and the output was the records
of malfunctions that happened in the subsequent period of time. Secondly, prepossess-
ing and feature engineering methods were applied to the raw dataset. Based on the
prepossessed training data, a stacking-based ensemble learning framework with four
base learners was trained. The pseudo-code of the training steps is demonstrated in
Table 2.
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Table 2. The training steps of the stacking-based ensemble learning framework.

Algorithm Stacking

Input: training data D = {xi, yi}m
i=1 (xi∈Rn, yi∈Y) // D is the training set, xi is the data feature, yi is the data label, m is the

number of training data
Output: an ensemble classifier H
1: Step 1: Train the first-level classifiers // the base learners in the first level of the stacking model were trained independently
2: For t← 1 to T do // T is the number of base learners
3: Train base classifier ht based on D // ht is the t th base learner
4: End for
5: Step 2: Construct new data sets from D // construct the training set for the meta model
6: For i←1 to m do
7: Construct a new data set that contains {x’i,yi}, where x’i= {h1(xi), h2(xi),. . ., hT(xi)}

// x’i in the newly built training set is determined by the prediction results from h1 to ht
8: End for
9: Step 3: Train the second-level classifier // training the meta-model
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2.2.4. Visualized Operation and Control Modeling Technique

• Multi-layer/multi-modal event-state dynamic digital twin modeling: This technique
was established to support the construction of the dynamic digital twin models for
the processing line, and it emphasizes not only the visualization of the working
condition/processing craft/polishing quality of the processing line but also its opera-
tion/maintenance mechanisms and status.

3. Industrial Application Case

The software of the monitoring and maintenance service system introduced in Section 2
was developed by YX and deployed in YX and QTX (a carbon block production company,
which is a customer company in this case) for industrial applications. The software system
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was developed based on browser/server architecture, and the users can access the software
through browsers. The back end of the system was developed with the Python language,
Django frameworks, and the PostgreSQL database. The front-end pages were developed
based on the Vue framework using HTML5, CSS3, and JavaScript, and the interaction be-
tween the front end and the back end is supported by the Django REST framework. The
software was developed for the Linus operating system, and Docker-based installation
packages were also developed for the deployment of the software in the Windows operating
system. As mentioned in Section 2.1, the software was developed with a separated con-
figuration/operation architecture; therefore, the configuration and operation systems are
two different software systems. However, the core functions of both of the systems were
developed in the form of relatively independent WebAPPs. Therefore, the running logic of
the two systems can be introduced by showing the working relations among the WebAPPs,
as introduced in the following two subsections.

3.1. Configuration System

As mentioned in Section 2.1.1, the configuration system was deployed in the provider
company (i.e., YX), and it was designed for generating an encrypted configuration file for
the customer company (i.e., QTX) to activate the operation system deployed at QTX. The
core workflow of the configuration system can be separated into the three steps below.

3.1.1. Resource Management

This step is for the provider company to manage its template processing lines, sensor
networks, and functional WebAPPs in the operation system. The step can be completed by
following the five WebAPPs below, as shown in Figure 8.

• General BOM management: This WebAPP is for managing the general design BOM
and its corresponding maintenance BOM of the processing line. The specific design
BOM and its corresponding maintenance BOM for a specific processing line are subsets
of the general design BOM and general maintenance BOM, respectively.

• Template processing line filing: This WebAPP is for establishing the profiles of all the
template processing lines.

• Template processing line management: After establishing the profiles of the template
processing lines, this WebAPP is for configuring the contents of each template based
on the general BOM. By reducing the unrequired components in the general BOM and
defining the alternative parts for each remained component, the specific design BOM
for a template processing line can be defined. Consequently, the specific maintenance
BOM for the template processing line can be determined correspondingly. In addition,
the user needs to upload the 3D files of the template processing line for further use in
the digital twin WebAPP.

• Alternative sensor management: This WebAPP is for firstly defining all of the optional
sensors that can be mounted on the processing lines for different monitoring and
maintenance services, and then defining the addresses of the corresponding PLCs and
the addresses of the corresponding monitoring datum in the PLCs.

• Operation system WebAPP management: This WebAPP is for defining all of the
functional WebAPPs in the operating system together with their URL addresses and
other data.

3.1.2. Resource Configuration

This step is for the provider company to define which specific resources are provided
to a specific customer in the form of an encrypted configuration file. This step can be
completed with the six WebAPPs below one by one, as shown in Figure 9.
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• Customer filing: This WebAPP is for establishing the profiles for the customer companies.
• Configuration file initiation: This WebAPP is for creating new/empty configuration

files for customers.
• Template-based specific processing line configuration: After selecting a configuration

file (for a specific customer), the suitable template processing line for the customer
can be selected and then modified according to specific requirements. This way,
the specific design BOM of the processing line for the customer can be determined.
Correspondingly, the maintenance BOM can be determined.

• Sensor network configuration: After configuring the specific design and maintenance
BOMs of the processing line for specific customers, this WebAPP can configure the
monitoring and maintenance-related sensors for the processing lines and save the
sensor information in the configuration files.

• Operation system WebAPP configuration: After configuring the design/maintenance
BOMs and sensors of the processing lines for the customers, this WebAPP can configure
the monitoring and maintenance-related functional WebAPPs in the operation system
for each customer. It is worth mentioning that there are matching constraints among
the design/maintenance BOMs, sensors, and WebAPPs. The constraints were written
in this and the previous two WebAPPs.

• Monitoring screen configuration: This WebAPP is for configuring the layout of the con-
tents displayed in the overall working condition monitoring, overall processing craft
monitoring, and overall polishing quality monitoring WebAPPs. The three WebAPPs
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(introduced in Section 3.2) are displayed on a group of TV screens mounted in the
control room of the processing line. To improve convenience during real applications,
the configuration is simplified to directly select from predefined templates, each of
which defines the contents to be displayed and the layout of the contents.
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3.1.3. Knowledge Management

This step is to prepare and manage the domain knowledge in the knowledge service-
related WebAPPs in the operating system. Currently, only one WebAPP has been developed
for this step, but the interfaces for adding new knowledge management WebAPPs remain.

• Processing line fault tree management: This WebAPP is for building the fault trees for
the typical anomalies and malfunctions that may occur during the operation of the
processing line.

3.2. Operating System

The operating system was deployed in the customer company, and it provides the
interface for the customer to acquire the monitoring and maintenance service for the
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processing line. The functional WebAPPs in the operation system have to be activated
by the encrypted configuration file, and the workflow of the WebAPPs can be separated
into four subsections. It is worth mentioning that the WebAPPs in Sections 3.2.1–3.2.3 may
operate in parallel. During the process, the WebAPPs in Section 3.2.4 can be invoked to
provide knowledge service. The details of the WebAPPs are introduced below. It is also
worth mentioning that there should be different roles in the customer company to use
these WebAPPs, and a user only has access to the WebAPPs of his/her role. The minimum
required roles should be a manager who is responsible for making all kinds of plans and
analysis, plus a field engineer who is responsible for directly conducting routine inspection,
maintenance, and repair jobs.

3.2.1. Working Condition Monitoring and Maintenance

The WebAPPs in this subsection are for the monitoring and maintenance of the work-
ing conditions of the polishing system. The working logic among them is listed below and
shown in Figure 10.

• Routine inspection planning: This is for the manager to make the plans for routine
inspection and then send the routine inspection assignments to specific field engineers.

• Routine inspection reporting: After the manager has sent the routine inspection as-
signments to specific field engineers, the field engineers receive the information about
the assignments in this WebAPP. By scanning the QR code on the target equipment,
the detailed inspection tasks can be read. After the routine inspection tasks have been
completed, the field engineer can send reports to the manager through this WebAPP.

• Sudden failure reporting: During the operation of the processing line, any user with
any role can send a report if they suddenly find a malfunction or anomaly situation.

• Particular working condition monitoring: Users can check the detailed working con-
dition of each monitoring target through this WebAPP, and the deep learning-based
anomaly detection technique introduced in Section 2.2.3 is contained in this WebAPP
to intelligently detect whether any anomaly occurs. Reports on the detected anomalies
are automatically sent to the next WebAPP.

• Working condition anomaly analysis and dispatch: This WebAPP is for firstly col-
lecting and analyzing the reports on working condition anomalies and malfunctions
from the previous three WebAPPs and then sending maintenance task assignments to
specific field engineers to handle the anomalies and malfunctions.

• Proactive maintenance planning: When the operation system is deployed in the
customer’s server for the first time, this WebAPP automatically generates an initial-
version life cycle maintenance plan of the processing line according to the maintenance
BOMs coded in the configuration file. The manager can check the maintenance plan
and send detailed maintenance task assignments to specific field engineers through
this WebAPP.

• Working condition maintenance and repairing reporting: Field engineers can check the
detailed assignments sent to them from the previous two WebAPPs and then execute
corresponding maintenance activities or take care of the anomalies. Afterward, the
field engineers can send execution reports to the previous two WebAPPs as feedback
to the managers who gave the assignments.

• Historical maintenance records: This WebAPP is for the manager to check the mainte-
nance history of the processing line, including the maintenance activities, the names
of the field engineers who executed the maintenance activities, etc.

• Overall working condition monitoring: Different from the WebAPP for particular
working condition monitoring, this one provides the overall monitoring information
of the processing line in the form of different statistics chats (e.g., line chart of the
motor current, pie chart of the polishing quality).

• Digital twin visualization: Driven by the multi-layer/multi-modal event-state dynamic
digital twin modeling technique mentioned in Section 2.2.4, this WebAPP is used to
provide the visualized digital twin model of the processing line.
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• Polishing head lifespan data collection: This WebAPP is for collecting the lifespan
working condition data of the cutter heads in polishing heads for future data-driven
polishing head malfunction prediction applications.
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3.2.2. Processing Craft Monitoring and Maintenance

Four WebAPPs were developed for processing craft monitoring and maintenance, and
their interaction relationships are listed below and shown in the upper part of Figure 11.
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Figure 11. The workflow among functional WebAPPs for processing craft/polishing quality monitor-
ing and maintenance, and knowledge service.

• Process craft parameter management: Different batches of carbon blocks usually
have different processing crafts, and this WebAPP is for the manager to define the
processing craft parameters for different batches of carbon blocks. In addition, if the
real-time processing craft parameters are different from the predefined parameters,
reports on the anomaly are sent to the next WebAPP.

• Processing craft anomaly detection and dispatch: After collecting the reports on
processing craft anomalies from the previous WebAPP, this WebAPP is for the manager
to analyze the anomaly and assign corresponding maintenance tasks to particular
field engineers. During the process, knowledge service WebAPPs can be invoked to
support the analysis.

• Processing craft maintenance reporting: This WebAPP is for field engineers to receive
assignments on processing craft maintenance and send maintenance reports afterward.

• Overall processing craft monitoring: This WebAPP is for checking the overall process-
ing craft monitoring status.
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3.2.3. Polishing Quality Monitoring and Maintenance

Five WebAPPs were developed for polishing quality monitoring and maintenance,
and their interaction relations are listed below and shown in the middle part of Figure 11.

• Statistical process control and process capability index calculation: This WebAPP is for
monitoring the processing line by evaluating the polishing quality of the carbon blocks.
Firstly, the user can select a tool for the evaluation task (e.g., X Bar R chart [28]), then
define a quality analysis target (e.g., the electric conductivity of each carbon block) and
collect its monitoring data, and then generate the control chart and analyze whether
there are quality anomalies and calculate the process capability index of the processing
line. If there are quality anomalies, the anomalies are reported to the next WebAPP.

• Polishing quality anomaly analysis and dispatch: This WebAPP is for the managers
to collect all the quality anomaly reports and assign the corresponding maintenance
tasks to particular field engineers after preliminary analysis.

• Polishing quality maintenance reporting: Field engineers can check the quality anomaly
maintenance tasks assigned to them through this WebAPP and send maintenance
reports as feedback after the maintenance tasks have been finished.

• Overall polishing quality monitoring: This WebAPP collects all the polishing quality
monitoring and maintenance information from the previous WebAPPs (including
real-time quality data, real-time anomaly status, and real-time maintenance feedback)
and displays all the information on one monitoring screen.

• Polishing quality statistical analysis: This WebAPP is for displaying different types of
statistical analysis charts for one selected quality signal based on its historical moni-
toring data (e.g., numbers of unqualified carbon blocks per week/month/season in the
form of line charts, percentage of unqualified carbon blocks in this week/month/season
in the form of pie charts).

3.2.4. Knowledge Service

Four WebAPPs were developed to provide knowledge services during the monitor-
ing and maintenance of working conditions/processing crafts/polishing quality. These
WebAPPs work in parallel, as introduced below and shown in the lower part of Figure 11.

• Fault tree: This WebAPP supports the use of the fault trees of the processing lines
established by the provider company for both qualitative and quantitative analysis
and building new fault trees if the customer company feels it is necessary.

• Fishbone chart: This WebAPP supports using the fishbone charts on different anomaly
situations prebuilt by the provider company and building new fishbone charts that
contain the knowledge and experience of the engineers of the customer companies.

• Knowledge graph question and answer: This WebAPP was developed based on
a knowledge graph that contains domain knowledge related to the operation and
maintenance of the processing line. The knowledge graph can be applied through a
node/link search and natural language-based question and answer.

• User manual: This WebAPP is mainly an electronic user manual of the processing line.
The user can upload, check, and download user manuals through the WebAPP.

4. Discussion and Conclusions

In this paper, an industrial case study on the monitoring and maintenance service
system for a robot-driven carbon block polishing service system was established. Firstly, the
background and engineering problems that the established monitoring and maintenance
service system was trying to solve were introduced. On this basis, the software/hardware
architecture of the monitoring and maintenance service system, the strategies for deploying
the system in the provider and customer companies, and the working logic among the
different sides and levels of the system were introduced. The monitoring and maintenance-
related techniques contained in the system together with the relations among the techniques
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were introduced. Finally, the configuration and operation workflows of the monitoring and
maintenance service system were illustrated.

There are mainly three characteristics of the established monitoring and maintenance
service system. Firstly, the system emphasizes comprehensive monitoring and maintenance
of the working conditions, processing craft, and polishing quality of the target IPSS (i.e., the
robot-based carbon block polishing system), rather than focusing on one or two of the
three, like most existing research [18,29]. Secondly, the configuration–operation-separated
WebAPP architecture is particularly suitable for the implementation of configurable moni-
toring and maintenance services. Thirdly, the operating system is supported by multiple
functional WebAPPs, each of which contains different maintenance techniques. This way,
both conventional and advanced maintenance techniques can be applied in the system, and
the system can be conveniently expended by adding new functional WebAPPs containing
new maintenance techniques.

The case study can provide real industrial examples for the application of remote
monitoring and maintenance service systems on IPSS under the contexts of advanced
techniques in Industry 4.0, including the Industrial Internet of Things, cyber–physical
systems, digital twins, deep learning, and edge/cloud/fog computing, etc., and this is the
main contribution of this paper.

However, the monitoring and maintenance service system in this case study also has
limitations. For example, the production takt of the processing line has not been monitored,
yet doing so is important for the polishing quality. In addition, some of the functional
WebAPPs in the system could be overly complicated for the users; therefore, integration
and simplification of the WebAPPs are within our future directions. Furthermore, some of
the advanced maintenance techniques are based on deep learning models, and they require
large numbers of training data to improve performance. Therefore, the models will be
retrained after more data have been collected during the application of the processing line.
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