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Abstract: The planning and design process of manufacturing factory layouts is commonly performed
using digital tools, enabling engineers to define and test proposals in virtual environments before
implementing them physically. However, this approach often relies on the experience of the engineers
involved and input from various cross-disciplinary functions, leading to a time-consuming and
subjective process with a high risk of human error. To address these challenges, new tools and
methods are needed. The Industry 5.0 initiative aims to further automate and assist human tasks,
reinforcing the human-centric perspective when making decisions that influence production environ-
ments and working conditions. This includes improving the layout planning process by making it
more objective, efficient, and capable of considering multiple objectives simultaneously. This research
presents a demonstrator solution for layout planning using digital support, incorporating a virtual
multi-objective optimization approach to consider safety regulations, area boundaries, workers’
well-being, and walking distance. The demonstrator provides a cross-disciplinary and transparent
approach to layout planning for an assembly station in the context of battery production. The demon-
strator solution illustrates how layout planning can become a cross-disciplinary and transparent
activity while being automated to a higher degree, providing results that support decision-making
and balance cross-disciplinary requirements.

Keywords: multi-objective; optimization; simulation; Industry 5.0; factory layout

1. Introduction

Digital tools, such as computer-aided technologies (CAx), are widely used to plan,
design, and simulate factory layouts in virtual environments before they are physically
constructed [1]. These tools enable engineers and designers to identify potential issues
and make necessary modifications to ensure that the planned design aligns with the re-
quirements of different stakeholders [2]. The concept of the digital factory encompasses
a range of planning activities that enhance product and production design, such as ex-
pansion possibilities, material flow and handling, area utilization, safety measures, work
environment, and production capacity [3]. Due to the diverse nature of these activities,
a variety of software tools are used to perform the different planning activities [4]. The
various planning activities are interlinked as the output of one activity often serves as an
input for another planning activity and vice versa [5].

However, despite the interdependencies among the various planning activities, they
are often executed in isolation and sequentially, leading to slow progress and problematic
iterations [6]. The Industry 4.0 initiative aims to automate and assist this kind of manual
work, with digitalization to overcome the challenges, and the Industry 5.0 concept extends
this initiative to reinforce the human-centric perspective and enable the human workforce to
focus on complex tasks [7]. These digitalization concepts are expected to have a significant
impact on smart industry and its connected systems [8].
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Factory layout planning involves creating a planned description of the arrangement of
resources and equipment within a factory, including the spatial positions of artifacts such
as resources, equipment, and products that collectively define the factory setup [2].

In many companies, the planning and design of factory layouts is typically assigned
to specific expert roles/staff and performed subjectively [9]. This is due to the fact that the
staff planning the factory layout typically utilize their own experience and awareness of
how layout planning is conducted, in turn meaning that vital information is often missed,
such as achieving space claims regarding safety requirements, rules, and regulations.

The planning staff are responsible for defining the spatial positions of geometric
descriptions of resources, equipment, and products, which collectively define the configura-
tion of a factory [10]. The layout design must consider the space requirements of equipment
setups, which are crucial for realizing the production process. Further it should adhere to
design specifications, needed capacity, consumption rate, logistics capabilities, and worker
and equipment safety, among other considerations. Consequently, planning and designing
future factory setups become multi-criteria activities that require the simultaneous consid-
eration of multiple objectives. In the context of factory layout projects, numerous proposals
need to be designed, simulated, and optimized to provide decision-making material. These
activities are frequently performed in virtual environments [10].

However, generating the virtual environment and keeping it updated, simulated, and
optimal for all planning and design activities often rely on specific expert roles/staff and
software tool users, who approach these tasks subjectively, manually, and sequentially,
focusing on one objective at a time. This approach carries a significant risk of suboptimal
solutions. This way of working highlights a need to enhance today’s manual and subjective
process with digital support and multi-objective methods in the planning and design
process of factory layouts. However, it should be noted that the planning and design
activities are performed in virtual environments using virtual models, and those are meant
to replicate, but are still not equivalent to, the real-world implementation of such planned
and designed layouts. The current procedure of the real-world implementation depends
on the execution ability to follow and verify the installation drawings when setting up the
factory according to planned and designed proposals.

Positive attempts using multi-objective methods in manufacturing planning processes
have been carried out, e.g., [11], which presents an industrial demonstrator focusing on
optimizing a welding station process. However, that work does not consider changing
positions of the equipment setup, meaning the layout planning itself is not optimized.
There are few studies or demonstrators described in the research literature on the use of
multi-objective methods for the optimization of layout design based on real industrial
cases, e.g., the setup of equipment. The state-of-the-art method commonly found in
the literature for the planning and design process of factory layouts refers to systematic
layout planning (SLP) [2]. However, the way SLP is used and described in the literature
simplifies the planning and design activities of factory layouts. The focus often revolves
around optimizing the positions of rectangular or quadratic resources and equipment
in a two-dimensional (2D) environment, e.g., [12,13], and primarily aims to minimize
one or two objectives, e.g., area utilization and the distances between these rectangular-
shaped equipment.

In a factory, it is not only the actual intended processes, products, and resources
that need to claim area and space reservations. In order to be able to produce inside the
factory, there also need to be space reservations for staff (this includes the consideration
of anthropometric diversity in the workforce) and mobile equipment in order to perform
the tasks of realizing the product and manufacturing process, carrying out maintenance
tasks, and operating mobile equipment such as tugger trains and forklifts to supply the
manufacturing process with material such as parts and consumables. Such space reser-
vations extend beyond just two dimensions (2D), highlighting the need to consider three
dimensions (3D) when planning and designing factory layouts. A clear argument for the
importance of considering 3D, i.e., to also account for the height dimension, is that height
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affects the work conditions and worker well-being, e.g., with regard to lifting and picking
objects when performing work tasks.

The planning and design of factory layouts need to consider several cross-disciplinary
aspects and requirements from several stakeholders. However, there is a research gap in
utilizing a multi-objective optimization method within the virtual planning and design
process of factory layouts to simultaneously consider requirements related to safety regula-
tions, worker well-being, and worker movements. Therefore, the objective of this work is to
investigate, describe, and demonstrate, with an industrial battery production workstation
as a use case, how a simulation-based multi-objective optimization method can be used
for factory layout planning, by which requirements related to safety regulations, worker
well-being for workers of different anthropometry, and distances walked by workers in the
layout, can be considered simultaneously. By achieving this, the research seeks to bridge
the gap between cross-discipline objectives, handled by different engineering roles, and
provide decision-makers with optimized factory layout proposals that comply with rules
and regulations, ultimately enhancing the work environment and improving the quality of
life for the workers.

2. Materials and Methods

To realize the demonstrator solution, the software Industrial Path Solutions (IPS) was
utilized to run series of simulations of differently configured virtual environments. The
IPS software is a math-based tool that offers several capabilities including rigid body path
planning [14], simulation of flexible components (soft materials capable of bending) [15],
digital human modelling (DHM) with ergonomics simulations [16], optimization of robot
and multi-robot stations [17], and surface treatment processes [18]. IPS features an appli-
cation programming interface (API) for the open-source lightweight scripting language
LUA [19]. Bespoke LUA scripts were developed to exchange information via JavaScript
Object Notation (JSON) [20] files to set up the different virtual environments and run the
simulations in IPS, and a bespoke Python (PY) program was developed to run the NSGA-II
algorithm, which is an evolutionary algorithm for multi-objective optimization [21]. The
development of the LUA and PY script series was essential to establish the communication
between the IPS software and the NSGA-II algorithm and to run the optimizations. The
NSGA-II algorithm is well-suited for multi-criteria decision-making scenarios where there
are more than two objectives that need to be optimized simultaneously. The algorithm
facilitates the generation and identification of non-dominated solutions, i.e., the Pareto
front, for the defined objectives of the multi-objective optimization [21].

2.1. Use Case Description

In total, four staff members (expert, process, logistic, and layout engineers) were
interviewed (semi-structured interviews) at a battery production factory. The details of the
use case, a greenfield battery assembly station, were clarified and selected.

The interviewees confirmed that the planning process of a factory layout is a multi-
objective optimization activity. For this specific targeted assembly station, several potential
simulation-based proposals had already been created for the project and discussions were
still in process to decide which of these proposals was to be selected and implemented. The
planning staff members wanted to investigate whether multi-objective optimization could
be utilized in the factory layout planning process, and in total, 3 objectives (Table 1) were de-
cided: the minimization of area utilization (AU), the minimization of musculoskeletal load
for the workers (OWASL-Index), and the minimization of distance walked by the workers
(DW). These are objectives commonly used in layout optimization, e.g., Tsarouchi et al. [22].

The assembly station includes 6 tasks (position a busbar support, mount the busbar
support with a bolt, tighten the bolt, position busbars one and two, and mount the busbars
with four bolts). To clarify, the assumption for this study is that the task list and the order
of the tasks is decided upon, i.e., it is not possible to change.
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Table 1. Objectives of the optimization.

Symbol Description Unit

AU Minimize the area utilization of the resources in the material façade. M2

OWASL-Index Minimize the musculoskeletal load for the workers. Index
DW Minimize the distance walked by the workers. M

The assembly station consists of two pallet conveyors with one pallet each and one
logistic rack containing three plastic boxes used as a material façade. In addition, a tight-
ening tool with a socket is used by the assembly staff, and the two pallet conveyors are
refilled by autonomous mobile robots (AMRs). To clarify, the assumption for this study is
that the resource description is decided upon, i.e., it is not possible to change.

By combining the resource objects and the assembly task list, the material façade/resource
descriptions of the rearrangeable objects of the assembly station were established (objects 1,
2, 3, and 4) (Figures 1 and 2). This also includes the assumed patterns of the parts’ start
positions within the rearrangeable objects. Object 1 and object 2 are pallet conveyors, object
3 is a logistic rack with 2 adjustable shelves used to provide parts for the assembly, and
object 4 is a tightening tool resource and does not require a pattern. These resources (objects
1, 2, 3, and 4) were decided by the planning staff to be rearrangeable in the assembly station
setup. To clarify, the assumption for this study is that the layout performance depends
on the spatial position setup of these four objects, i.e., the multi-objective optimization
depends on the tested spatial positions of these four objects.
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Since the use case deals with an ongoing greenfield (new factory design, development,
and construction) project, and with the assumption of a frozen, manually optimized starting
proposal of an assembly station (in this work referred to as the original solution) and that
there are other adjacent greenfield production areas, the scope was restricted so that the
area/volume claims of the potential solutions generated by the optimization algorithm
could not exceed the current area/volume claims of the original solution. This means the
equipment needs to be positioned within the block layout displayed in Figure 3.
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Figure 3. Block layout and detailed layout of the manually optimized proposal, the original solution
for the assembly station.

Given this assumption, objects 1, 2, 3, and 4 need to be spatially within the same
volume as the block layout of the original solution.

2.2. Definition of the Virtual Environment, Manikins, and Constraints

The virtual environment imported to the DHM module in IPS, i.e., IPS IMMA, consists
of the building model and individual models of the resource objects and parts spatially
positioned in relation to the building’s point of origin.

When designing a factory layout, it is not only the actual intended processes, products,
and equipment (passive and active) geometry that need to claim area/volume reserva-
tions [22]. Associated with these objects, there are often different rules, regulations, and
requirements, meaning that around the geometry of any object, a layout planner needs to
consider additional space claims, e.g., safety distances and spaces needed for equipment
to operate.

Therefore, the LUA API of IPS was utilized to create bespoke scripts for the defini-
tion and generation of additional space claims for the AMRs and humans accessing the
material façade.

With the virtual environment imported to IPS IMMA, a family of 10 manikins (digital
human models) consisting of 5 males and 5 females, representing the Swedish population
of females and males aged 18–65 [16], with a 95% accommodation level with regard to
variability in stature and body weight [16] was instantiated, as given in Table 2. This
manikin family was used to incorporate the consideration of anthropometric diversity
among workers in the context of factory layout planning.
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Table 2. Manikin family, Swedish female and male population, respectively, with 95% accommodation
level.

Manikin,
[F = Female, M = Male]

Stature,
s [mm]|Percentile

Body Weight,
w [kg]|Percentile

F1 1530|1.7 41|1.5
F2 1589|10.9 78|88.5
F3 1673|49.7 64|47.1
F4 1758|89.4 51|10.5
F5 1816|98.2 87|97.8
M1 1639|1.5 47|1.4
M2 1711|12.6 93|86.9
M3 1791|49.7 77|48.5
M4 1871|87.1 61|11.6
M5 1943|98.4 107|98.4

In the context of the original solution, as given in Figure 3, and with the assembly task
list given, an operation sequence was built into the IPS IMMA software, i.e., defining the
tasks that the manikins were to perform in the simulation. The simulation of this sequence
is presented with an online animation at https://doi.org/10.5878/gat9-m562. With this
operation sequence, the manikin family could simulate the process of collecting parts from
the material façade (objects 1, 2, and 3) as well as collecting the tightening tool (object 4)
and simulate the assembly.

2.3. Definition of Objectives

The IPS IMMA software offers the possibility to read out parameter values from the
simulation. Two values were retrieved: the distance walked (DW) by each manikin in the
manikin family and an ergonomics score, representing the workers’ well-being, of each
manikin in the manikin family. The ergonomics evaluation method Ovako Working posture
Assessment System (OWAS) [23], in combination with the Lundqvist index [24], was used
to retrieve scores for the workers’ well-being (OWASL-Index). The original OWAS method
enables the assessment of aggregated biomechanical load based on four subgroups (back,
arms, legs, and lifted weight). However, this aggregated classification is only performed
for instances in time, and therefore the OWAS was combined with the Lundqvist index to
assess the aggregated biomechanical load over time. The Lundqvist index factor L was
classified according to Table 3 [25].

Table 3. Classification of the Lundqvist index factor.

Lundqvist Index Factor Description

L = 100 to 120 very little irksome
L = 121 to 140 little irksome
L = 141 to 160 rather irksome
L = 161 to 180 irksome
L = 181 to 200 very irksome

L > 200 very very irksome

With a virtual scene and a defined operation sequence set up in IPS, the simulation of
the operation sequence can be executed. After running a simulation, the resulting values
for two of the defined objectives of the virtual scene can be retrieved. This was performed
for the original solution, and the results are given in Table 4. The retrieved values of
OWASL-Index and DW vary between the manikins because the manikins represent different
physical characteristics, such as variations in stature, leg length, and gait patterns. In turn,
these variations affect the distance that each manikin can cover while walking and what
postures each manikin assumes while performing work.

https://doi.org/10.5878/gat9-m562
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Table 4. The retrieved values of the original solution for the objectives, OWASL-Index and DW.

Manikin OWASL-Index [Index] DW [m]

F1 126 38.5
F2 124 38.4
F3 125 37.6
F4 132 38.4
F5 129 39.3
M1 127 38.7
M2 124 38.5
M3 129 39.4
M4 133 40.1
M5 133 42.0

Since the optimization is to minimize the values of OWASL-Index and DW, the highest
value of any manikin in the manikin family was decided to represent two critical values of
each layout setup design proposal. In other words, for the original solution, manikin M4
and manikin M5 both give a max. OWASL-Index of 133, and manikin M5 gives a max. DW
of 42 m. These maximum values represent the worst-case scenario of the layout setup, and
the optimization algorithm should minimize these objectives for all iterations.

With a defined designated area and a block layout of the assembly station (Figure 4), the
third optimization objective, area claim of the layout proposal, can be calculated accordingly.
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The used area of the material façade of the layout proposal aligns with all parts of
the geometrical sizes of objects 1, 2, and 3 and all additional extra space claims around the
equipment inside the designated area of the assembly station, as given in Figure 4. The
positions of objects 1, 2, and 3 can be retrieved with LUA scripts executed with the IPS
software, and the bounding box of the different space claims, objects, and block layouts
(designated areas) can then be retrieved and used to calculate the area utilized within the
block layout. The area utilization of the original solution was calculated to 7.1 m2. Object 4
and its space claim is neglected since it is a resource (small in comparison to other objects)
hanging from a steel construction close to the actual executed assembly.

In addition, the IPS software also facilitates collision detection. LUA scripts were
developed to read out information of collision tests, checking whether objects 1, 2, or
3 collide with each other or with any adjacent equipment or fixed equipment such as the
steel construction.
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2.4. Definition of the Optimization Problem

To enable the usage of the NSGA-II algorithm, the optimization problem needs to
be defined. This involves specifying the decision variables (also referred to as the genes),
objectives, and constraints of the optimization problem. The NSGA-II algorithm also needs
parameters such as population size, number of iterations, tournament size, crossover and
mutation operation, and selection method.

There are eleven decision variables for this multi-objective optimization of the assembly
station, representing the spatial information of objects 1, 2, 3, and 4 (Table 5).

Table 5. The eleven decision variables.

Decision Variable Description Datatype

var 1 Object 1: x coordinate Float value with 3 decimals [m]
var 2 Object 1: y coordinate Float value with 3 decimals [m]
var 3 Object 2: x coordinate Float value with 3 decimals [m]
var 4 Object 2: y coordinate Float value with 3 decimals [m]
var 5 Object 3: x coordinate Float value with 3 decimals [m]
var 6 Object 3: y coordinate Float value with 3 decimals [m]
var 7 Object 3, shelf 1: z coordinate Float value with 3 decimals [m]
var 8 Object 3, shelf 2: z coordinate Float value with 3 decimals [m]
var 9 Object 4: x coordinate Float value with 3 decimals [m]
var 10 Object 4: y coordinate Float value with 3 decimals [m]
var 11 Object 4: z coordinate Float value with 3 decimals [m]

First, there are six decision variables to define the spatial positions of objects 1, 2, and 3
(Figures 1 and 2) in the xy plane of the designated area (Figure 4). This designated area
is considered as a constraint. Then, object 3 has two additional decision variables, i.e., two
shelves that are variable in height. The planning staff members (expert, process, and layout
engineers) then stated two additional constraints: shelf 1 can be allowed a variance in height
between 0.42 and 0.62 m, and shelf 2 can be allowed a variance in height between 1 and
1.2 m. This means that shelf 1 is always beneath shelf 2. Additionally, there are three more
decision variables linked to object 4 (the handheld tightening tool, see Figure 2). Object 4
can vary in a decided limited volume (decided by the planning staff member), close to
the actual product assembly, hence within the following limits/constraints per direction:
x (57.2–57.5 m), y (28.5–31.1 m), and z (1.5–2.2 m). In total, this is, then, eleven decision
variables or genes to consider for the NSGA-II algorithm.

The constraints for the NSGA-II algorithm can be summarized to only allow the
decision variables to be within set max. and min. values. For objects 1, 2, and 3, this is the
designated area (Figure 4), together with max. and min. values of shelf 1 and shelf 2 of
object 3 and the limited volume for object 4. In addition to these constraints, the IPS IMMA
software has the capability to check collisions between objects and consequently a collision
check is performed between objects 1, 2, 3, 4, and adjacent geometry, verifying both that
the objects do not collide and that the objects are within the allowed max. and min. values.

2.4.1. Population Zero P(0)

In order to utilize the NSGA-II algorithm, an initial population of candidate solutions
(parents) is required, referred to as population zero, P(0). Based on the number of decision
variables (11) and the recommendation/rule of thumb to use 10 times the decision vari-
ables [21], a population size of 110 individuals was determined. These 110 individuals were
created by random sampling via the developed PY code. In addition, one extra user-defined
solution was added; see the second and third steps in the optimization procedure flowchart
in Figure 5. The random sampling method of the PY script was set to run 1500 iterations,
and the IPS software could then compute 148 solutions fulfilling the constraints (without
errors) and the extra user-defined solution. The first 110 of the 148 feasible solutions were
selected to establish P(0).
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This resulting population P(0) then contained individuals, represented by 11 decision
variable values and their 3 corresponding objective values. These individuals were then
used as the starting point for the NSGA-II algorithm. In other words, the decision variable
values and objective values for each individual in P(0) were used as the genes for the
NSGA-II algorithm.

The PY code first read the designated area reservation (the min./max. size in the xy
plane) of the virtual environment and continued reading out geometrical sizes of objects 1,
2, 3, and 4, the defined constraints of height levels of shelf 1 and shelf 2 (object 3), and the
volume limitations for object 4. Then, the PY code used random sampling values for each of
the 11 decision variables and proceeded by calculating possible overlapping of the proposed
random sampling values of the objects, in other words checking collision detection between
proposed solutions and, if collision was detected, disregarding those solutions. If there was
no direct overlap of geometry, the 11 decision variables were sent to IPS with JSON format,
and IPS rearranged the virtual scene based on the 11 decision variables.

First, IPS rearranged the virtual scene according to the 11 decision variables and also
checked the proposed setup, meaning verifying that the objects were within the designated
area, height, and volume limits (constraints); if invalid, the simulation did not run and
the 11 decision variables were then presented with an error code in JSON format plus a
screenshot of the tested layout in PNG format, as given in Figure 6. If the objects were
within the designated area, IPS continued to also check if objects were in collision, including
the added operation space claims and workspace claims (see definition of constraints in
Section 2.2), not just testing whether the geometry collided but also making sure the
additional space claims were fulfilled. If IPS found a collision, yet again the 11 decision
variables were presented with an error code in JSON format plus a screenshot of the tested
layout in PNG format.

If the provided JSON input from PY passed the IPS checks of being within limits and
without collision, IPS started to run the simulation for the provided 11 decision variables
and computed output for the three objectives (AU, DW, and OWASL-Index) plus a screenshot
of the tested layout in PNG format. Regardless of whether decision variables are valid or
invalid, the PNG allows for visual inspection of the tested setup.



Systems 2023, 11, 395 10 of 20

Systems 2023, 11, x FOR PEER REVIEW 10 of 21 
 

 

This resulting population P(0) then contained individuals, represented by 11 decision 
variable values and their 3 corresponding objective values. These individuals were then 
used as the starting point for the NSGA-II algorithm. In other words, the decision variable 
values and objective values for each individual in P(0) were used as the genes for the 
NSGA-II algorithm. 

The PY code first read the designated area reservation (the min./max. size in the xy 
plane) of the virtual environment and continued reading out geometrical sizes of objects 
1, 2, 3, and 4, the defined constraints of height levels of shelf 1 and shelf 2 (object 3), and 
the volume limitations for object 4. Then, the PY code used random sampling values for 
each of the 11 decision variables and proceeded by calculating possible overlapping of the 
proposed random sampling values of the objects, in other words checking collision detec-
tion between proposed solutions and, if collision was detected, disregarding those solu-
tions. If there was no direct overlap of geometry, the 11 decision variables were sent to IPS 
with JSON format, and IPS rearranged the virtual scene based on the 11 decision variables. 

First, IPS rearranged the virtual scene according to the 11 decision variables and also 
checked the proposed setup, meaning verifying that the objects were within the desig-
nated area, height, and volume limits (constraints); if invalid, the simulation did not run 
and the 11 decision variables were then presented with an error code in JSON format plus 
a screenshot of the tested layout in PNG format, as given in Figure 6. If the objects were 
within the designated area, IPS continued to also check if objects were in collision, includ-
ing the added operation space claims and workspace claims (see definition of constraints 
in Section 2.2), not just testing whether the geometry collided but also making sure the 
additional space claims were fulfilled. If IPS found a collision, yet again the 11 decision 
variables were presented with an error code in JSON format plus a screenshot of the tested 
layout in PNG format. 

 
Figure 6. Illustration of generated solutions, JSON information, and top-view screenshot. 

If the provided JSON input from PY passed the IPS checks of being within limits and 
without collision, IPS started to run the simulation for the provided 11 decision variables 
and computed output for the three objectives (AU, DW, and OWASL-Index) plus a screenshot 
of the tested layout in PNG format. Regardless of whether decision variables are valid or 
invalid, the PNG allows for visual inspection of the tested setup. 

An additional remark: in order to compare OWASL-Index, the percentual change (P) 
between the original solution and the NSGA-II-generated solutions was calculated using 
Equation (1); see also results in Table 6. OWASL-Index percentual change (P) was calculated 
as follows: 

P [Solution nr] = (X2 − X1) / (b − a) * 100 (1) 

where X2 = OWASL-Index [Solution nr], X1 = OWASL-Index [Original solution]. a = 100 (min. 
value of OWASL-Index), b = 400 (max. value of OWASL-Index). 

  

Figure 6. Illustration of generated solutions, JSON information, and top-view screenshot.

An additional remark: in order to compare OWASL-Index, the percentual change (P)
between the original solution and the NSGA-II-generated solutions was calculated using
Equation (1); see also results in Table 6. OWASL-Index percentual change (P) was calculated
as follows:

P [Solution nr] = (X2 − X1) / (b − a) * 100 (1)

where X2 = OWASL-Index [Solution nr], X1 = OWASL-Index [Original solution]. a = 100 (min.
value of OWASL-Index), b = 400 (max. value of OWASL-Index).

Table 6. The values of the 3 objectives for the non-dominated individuals of P(10).

Solution Number
Area Utilization,

AU [m2]
OWASL-Index, Distance Walked,

DW [m][Index] Description

Original solution * 7.10 133 little irksome 42.0
Solution nr: 2286 7.22 (+2%) 132 (P = −0.3%) little irksome 39.8 (−5%)
Solution nr: 2358 7.48 (+5%) 129 (P = −1.3%) little irksome 36.8 (−12%)
Solution nr: 2051 7.10 (±0%) 130 (P = −1.0%) little irksome 41.0 (−2%)
Solution nr: 2110 7.23 (+2%) 131 (P = −0.7%) little irksome 28.4 (−32%)
Solution nr: 2235 7.22 (+2%) 131 (P = −0.7%) little irksome 40.6 (−3%)
Solution nr: 1501 7.10 (±0%) 133 (P = ±0.0%) little irksome 40.0 (−5%)
Solution nr: 2217 7.25 (+2%) 131 (P = −0.7%) little irksome 38.2 (−9%)
Solution nr: 2466 7.82 (+10%) 129 (P = −1.3%) little irksome 36.3 (−14%)

* Original solution in collision, therefore unfeasible.

2.4.2. Offspring, Tournament Size, Crossover Rate, and Mutation Rate

In the NSGA-II algorithm, tournament size, crossover rate, and mutation rate are three
common operators used to generate new offspring solutions from existing solutions in
the population [21]. The tournament size is the number of individuals randomly selected
from the population to compete against each other in each generation of a child for the
new offspring of the population. The tournament size used in this case was set to 7, which
corresponds to a recommended interval of 5–10% of the population size, which was 110 [21].
During the tournament selection process, pairs of individuals are randomly selected from
the tournament size, and the one with the best fitness score is selected as a parent for
the next generation of a child. The tournament selection process ensures diversity in the
creation of offspring and avoids selecting the same individuals as parents in each creation
of a child. Then, the crossover rate determines the probability that two parents will produce
an offspring with a combination of their genes. For this experiment, the crossover rate
was set to 0.8. Furthermore, the actual crossover had one limitation: the genes 2, 4, and
6 (decision variables representing the y coordinates of objects 1, 2, and 3) were selected
from one of the parents chosen to reproduce a child. This limitation was noticed after
performing initial test runs of the algorithm and, if we had not kept this limitation, the
algorithm would have produced many invalid proposals. Therefore, it was believed that
this limitation would speed up the NSGA-II algorithm because collisions would occur
less frequently. If the algorithm were to propose more mixing in the y direction, objects
would be stacked on top of each other more often. However, this does not mean that the y
variables could not be changed; the crossover allowed either of the two parents selected to
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spread the genes 2, 4, and 6; further, the mutation rate, set to 0.01, was added and could be
applied to any of the 11 genes to increase diversity in the creation of offspring.

In summary, these parameters are essential in a genetic algorithm to achieve the
balance between exploration (introducing new solutions) and exploitation (refining existing
solutions) in the population.

Then, with the tournament size, crossover rate, and mutation rate set, a PY script was
developed to create the offspring population zero Q(0) from the genes of population zero
P(0); see the third step in the flowchart of the optimization procedure in Figure 5.

This PY script started by loading the P(0) and all 110 individuals with all corresponding
11 decision variable values and all 3 objective values. Then it utilized the NSGA-II method
to select individuals from the P(0) based on tournament size and objective values, after
which it continued with crossover and mutation operators to generate children with new
genes. In addition, the PY script also cross-checked that a generated child with genes had
not yet been tested in all the already tested solutions including the 1 500 random samples.
If the gene setup had not yet been tested, it was added to the offspring list, and finally,
110 new individuals were added to the Q(0) and sent out as a comma-separated values
(Q(0).csv) file.

2.4.3. Running of the Q(0) in IPS

The Q(0).csv file contained 110 new individuals with decision variables. Then, each
individual needed to be simulated in IPS to retrieve the corresponding 3 objectives. With
a similar approach as in Section 2.4.1 Population zero P(0), the solutions were tested to
be inside the designated area and not in collision. If this criterion was met, the objective
values were calculated and the csv file was appended with the objective values. Then, the
tested individuals were added to the total list of tested individuals (total TI) 1500 + 110 new
individuals to form a total ledger of tested individuals. See also the third step in the
optimization procedure flowchart in Figure 5.

2.4.4. Generation of P(1)

There were solutions in the Q(0) with collisions, and the objectives were set to “inf” by
IPS for these solutions. The unfeasible solutions would have been disregarded with the
NSGA-II method, but instead they were exchanged with the feasible solutions from the
remaining/unused feasible solutions from the initial random sampling of 1500 iterations
and the extra user-defined solution. Thus, the Q(0) was modified to *Q(0), adding not yet
used solutions from the random sampling + one extra user-defined solution.

With the list of P(0) and *Q(0), a PY script was developed, following the NSGA-
II algorithm, combining all individuals and ranking them into Pareto fronts, with the
non-dominated solutions, based on the three objectives, in rank 1 and with a calculated
crowding distance to keep track of the diversity of the population. The final list of the best
110 individuals from P(0) and *Q(0) was passed to P(1), which then presented iteration
one of the NSGA-II method. This is presented in the fourth step in the flowchart of the
optimization procedure in Figure 5.

2.4.5. NSGA-II Iterations

The PY scripts described were then reused to generate N iterations of populations
with offspring, using the NSGA-II approach, where combining P(N-1) and Q(N-1) will
present P(N). If an offspring had unfeasible children after a simulation run in IPS, the extra
solutions (148/1500) from the random sampling were mixed into the offspring until all the
extra solutions were considered in the NSGA-II evaluation (Figure 5).

Also worth noticing is that the total number of previously tested individuals (total
TI) grows by 110 new individuals with each offspring, and consequently, each offspring
checked that the genes had not already been tested with the 1500 random samples or
the tested offspring, the extra user-defined solution, or previous feasible and unfeasible
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offspring solutions (in other words, checking that new offspring has not already been tested
in the total TI).

3. Results

With the collision detection function of the IPS software it was observed that the
original solution was in fact in collision, hence not a feasible solution. Object 3 (the logistics
rack where logistics staff are to refill components) in the original solution is positioned
so that the additional operation space claim of the AMRs collides with the logistics rack.
Therefore, the original solution setup would not enable the AMRs to operate; they would
stop before refilling the pallet conveyors (objects 1 and 2).

The NSGA-II algorithm ran for 10 iterations, meaning that 10 populations were created
and a total of 2601 solutions (1500 solutions run with random sampling to create the P(0)
of the NSGA-II algorithm) were simulated with the IPS software. The developed LUA
scripts for IPS read and wrote out (on request by the PY script) in JSON format the tested
setup (the 11 genes) and corresponding three objectives values. In addition, the LUA script
first checked that objects 1, 2, and 3 were positioned within the designated area (the block
layout; this area can be remodelled by user request and therefore the script is generic).
Additional LUA scripts then read the collision detection between objects 1, 2, 3, and 4 with
regard to each other as well as the surrounding geometry. If any of these constraints were
not fulfilled, the LUA script made sure no simulation run/time was spent on calculating
the objective values (since violation of these constraints is unfeasible); rather, the objective
of such a solution was set to “inf”.

The developed PY scripts could create a JSON file, readable by IPS, with input values
of the 11 decision variables. The JSON file was created either with random sampling (the
first 1500 solutions) or by utilizing the NSGA-II algorithm to create ranked populations
and compute new offspring (solutions) to send via JSON to IPS one solution at a time.

The developed scripts and the DHM tool demonstrate that it is possible to use a
simulation-based multi-objective optimization method for factory layout planning, where
requirements related to safety regulations, worker well-being for a family of manikins, and
distances walked by workers are considered simultaneously.

While the NSGA-II algorithm achieved identifying solutions dominating the original
solution, there is no guarantee the real Pareto front has been achieved due to the complexity
of the optimization problem. The NSGA-II algorithm includes a sorting process, which
checks the current tested individuals (parents and children) and from this individual list
sorts out individuals based on dominance; the solutions that are non-dominated are listed
with rank 1 and presented as a Pareto front for the ranked solutions.

Population, P(10)

In Figure 7, a 3D plot displays the Pareto front of P(10) as a surface, formed by the
eight non-dominated solutions considering the three optimization objectives. In addition,
in the 3D plot, the dominated solutions of P(10) are scattered together with a red dot, the
original solution (which is not feasible). It is worth pointing out that, if the original solution
is not considered to be an unfeasible solution and instead its objective values are tested
against the produced Pareto front, the original solution is dominated by two solutions in
the Pareto front (solution 1501 and solution 2051 dominated the original solution).

With each iteration/population created with the NSGA-II algorithm, the population
was ranked. Then, to test whether convergence was reached with P(10), the best, average,
and worst values of the three objectives of the non-dominated solutions of each population
were compared (Figure 8). The best produced value for each objective was stable across all
populations, the worst non-dominated solution had decreased for the objectives, and for
the area utilization it was not possible to reach a lower area utilization than 7.1 m2 within
the designated area since then the objects sit next to the aisle for the AMRs.
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population are compared.

Overall, in a minimization optimization problem, the objective is to find solutions
that have lower values for all three objectives. In Figure 9, the box plots visualize the
distribution of solutions across all iterated populations and provide insights into the central
tendency, spread, outliers, and range of solution performance. A lower median value
and smaller box indicates that the NSGA-II algorithm test has better-performing solutions
considering the objectives.

From P(10), there were eight solutions defining the Pareto front. These solutions, with
their solution numbers, are presented with their values of objectives and the percentage
change compared with the original solution in Table 6.

In Table 6, it can be seen that two solutions dominate the original solution, meaning
they have better or equal performance for all three objectives. All solutions on the Pareto
front have shorter walking distance than the original solution. One solution reduced the
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distance walked by 32%. Furthermore, all solutions on the Pareto front have an OWASL-Index
better than or equal to the original solution. Further, the Pareto front solutions have values
between 120 and 140, which indicates a work situation being little irksome, Table 3. However,
it should be noted that the observed percentual decrease in OWASL-Index is not equal to a
significant improvement in the workers’ work situation. A qualitative evaluation of the
actual index and the classifications of the Lundqvist index in Table 3 represents a clearer
understanding of the workers’ work situation for each solution.
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The NSGA algorithm was not able to find any solution with lower area utilization than
the original invalid solution (however, it is not possible to reach a lower area utilization
than 7.1 m2 due to the sizes of the objects and the designated area; when a solution reaches
7.1 m2, the objects are positioned next to the aisle for the AMRs). Two solutions on the
Pareto front had the same area utilization as the original solution.

All the solutions listed in the Pareto front of P(10) are considered optimal. This
means that each solution in the Pareto front represents an optimal solution regarding the
optimization objectives while also fulfilling the constraints defined. Hence, the findings
in Table 6 present possible solutions for which one can proceed with further analyses, in
order to better investigate and understand the consequence of the layout proposals and
then make informed decisions based on objective values.

The performed multi-objective optimization considers the constraints of the assembly
station to position the equipment (objects 1, 2, 3, and 4) within a designated area together
with the requirements of workspace and additional operation space claim in front of, behind,
and around the equipment. Then, the multi-objective optimization successfully creates
solutions and executes simulations to retrieve the specific values for the defined objectives.

When the PY script and IPS do not utilize the algorithm, the decision variables for
any solution can be reloaded on request in IPS for visual inspection of such solutions. This
means that decisions can be based on both comparing objective values among the solutions
and visually comparing the differences between the layout solutions.

In Figure 10, solution 2051, part of the Pareto front of P(10) (se values of objectives,
Table 6), is presented together with the original solution. Solution 2 051 has a slightly
improved OWASL-Index, (percentual change P = −1.0%, which should correspond to a better
situation for the workers’ well-being in the planned and designed work environment); in
addition, the distance walked is also slightly decreased, by 2%, and the area utilization is
kept at the minimum value of 7.1 m2.

It is worth repeating that the NSGA-II algorithm only selects solutions for the iterated
populations that comply with rules and regulations for the requirements of the workspace
and additional operation space claims in front of, behind, and around the equipment and
therefore positions all objects within the designated area.
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4. Discussion

The activities involved in the planning and design process of factory layouts are impor-
tant and have a significant impact on various aspects of manufacturing planning, including
processes, resources, capacity, and ergonomics. Since these planning activities are interde-
pendent, the output of one planning activity often serves as an input to another, and the
lack of simultaneous consideration of all issues can lead to slow processes and suboptimal
outcomes. This paper presents a demonstrator solution that illustrates how layout planning
for an industry assembly station can be a transparent and cross-disciplinary activity. The
proposed approach utilizes a multi-objective optimization approach to facilitate objective
decision-making and display values behind proposed layout solutions.

From a production research and development perspective, the characteristics of the
demonstrator solution align with two key focus areas in Industry 4.0: simulation and
automation [7]. The approach taken in this study is to take advantage of simulation
and combine it with an automated multi-objective optimization approach to generate
several solutions and evaluate them in an automated manner. This approach is in line
with Industry 4.0 principles and adds new capabilities of industrial development beyond
Industry 4.0 potentially towards Industry 5.0 capabilities [7].

It is important to note that the concept of Industry 5.0 is still emerging and there is no
universally accepted definition for it yet. However, based on the current discourse on the
topic, it could be argued that the approach presented in this paper is in line with the general
direction and potential characteristics of Industry 5.0, which is expected to be characterized
by even greater automation, integration of digital technologies, and a stronger focus on
sustainability and human-centred design.

4.1. Consideration of Results

The multi-objective optimization approach used for the use case of the assembly
station presents promising results by providing feasible solutions to handle multiple
decision variables, constraints, and objectives simultaneously. The algorithm used can
generate several solutions in an automated manner and display corresponding results with
numerical values and visual presentations of the layout solutions, making it easier for a
development team of production engineers, logistics engineers, and ergonomists to make
informed decisions on solutions that balance conflicting objectives.

In previous research, it was observed that the planning and design activities of factory
layout areas are frequently associated with specific expert roles/staff and often performed
in a subjective manner [9]. The planning staff then utilize their own personal experience and
awareness of how to plan and design factory layouts; vital information can often be missed,
such as acquiring space claims for safety requirements, rules, and regulations. This is also
confirmed by this demonstrator and use case; the requirements for additional operation
space claims of the AMR had been missed by the planning staff, meaning that the original
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solution is unfeasible. However, this demonstrator showcases enhanced digital support to
generate and utilize these extra volumes, and by incorporating rules and recommendations
into the software, the layout planning process becomes more transparent and traceable.
The digital support provides guidance and ensures that important considerations are not
overlooked, particularly when compared with manual processes that may be prone to
human error or omission. This also enables stakeholders to understand the rationale
behind the generated layouts and provides a basis for decision-making, as the software
aligns with industry-specific guidelines and best practices.

The presented multi-objective approach encourages improvement and assists in design
decisions to find better design solutions, although it should also be noted that the planning
and design solutions are performed in virtual environments, and this is not equivalent to
the real-world implementation of such planned and designed layout solutions. In order for
engineers in the manufacturing development process to make the decision to proceed to
execute the construction/setup of real production, usually several design proposals are
generated, assessed, and discussed. Engineers typically utilize different tools in the CAx
(computer-aided technologies) toolbox, consisting of virtual simulation tools utilized to
generate the decision material.

The NSGA-II algorithm, combined with the demonstrator, exhibits advancements in
handling and evaluating the work situation of a manikin family while generating layout
proposals and rearranging rearrangeable objects within a designated area.

The virtual environments and models are meant to replicate real-world scenarios but
are still not equivalent to the real-world implementation of such planned and designed
layout. The current procedure of the real-world implementation depends on the execution
ability to follow and verify the installation drawings when setting up the factory according
to planned and designed proposals.

This approach represents an improvement over previous research that relied on per-
mutations for arranging rearrangeable objects [11]. Unlike those prior methods, the demon-
strator in this paper considers the limits of the designated area and can position the
rearrangeable objects within the selected area without predefined permutations. This
allows for more flexibility and adaptability in generating layout proposals, considering
the specific constraints and requirements of the designated area without being locked into
predefined arrangements.

Furthermore, this approach provides digital support to the layout planner by facili-
tating guidance in the planning tool to ensure that rules and regulations are not violated.
The developed scripts for this purpose are generalizable and can be used to create volumes
based on user-selected geometries in the simulation scene, making them suitable for various
use cases. Overall, this multi-objective optimization approach aligns with the trend towards
automating processes, supporting digital work with smart solutions for decision-making,
and considering large datasets [6].

4.2. Consideration of Method

In this paper, the NSGA-II algorithm was used to demonstrate and conduct a multi-
objective optimization of a simulation model of an assembly station in DHM-tool software.
The quantitative relation between decision variables and optimization objectives is typically
established through the objective function(s) and any constraints present in the problem.
However, there was no meta-model/formula of the objective function in this case. The
creation of the objective values depends on the simulation run performed by the DHM tool;
then, via PY scripts, the values of the objectives are retrieved and evaluated and actions are
taken by the NSGA-II algorithm. To complement this explanation, the NSGA-II algorithm
proposes decision variables (the spatial positions of the four objects) based on the resulting
objectives of the previous simulation runs. These decision variables are sent via PY script
and JSON format and then read into the DHM tool, which sets up the spatial positions
of the decision variables in the virtual environment and simulates the setup in order to
retrieve corresponding objective values. When the DHM tool has retrieved the objective
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values, they are sent back via JSON format to the NSGA-II algorithm in order for it to
proceed with the next decision. The objective to minimize the musculoskeletal load for the
workers was evaluated with the OWAS Lundqvist index, which required the generation of
the full motion of the manikins with the DHM tool in order to retrieve values of the index.
Therefore, the evaluation and the creation of the objectives rely on the simulation results
obtained from the DHM tool. The simulation was run in the DHM-tool software and was
executed with a developed PY and LUA script series. The simulations and executions of all
solutions were performed on a single computer, which required a significant amount of
computational power. It took approximately 10–30 min to simulate each feasible solution
and to retrieve the results; a total of 110 such solutions were required to generate one
population. To make the utilization of multi-objective algorithms more industrialized, one
could develop cluster sessions and send solutions/simulation jobs to different parallel
computers to speed up the processing time required to generate each population. The
generated offspring does not need to be run in sequence; to generate a new population, all
offspring must have values for the objectives for each gene setup, and if running these in
parallel, it would be expected that one offspring could be generated in 10–30 min for this
use case.

Further, the NSGA-II algorithm could be extended to also consider the degree of
constraint violation in order to determine the relative quality of infeasible solutions. By
assigning constraint-handling techniques based on constraint-violation measures in IPS,
NSGA-II can incorporate information about the proximity of solutions to feasibility. This
could enable the algorithm to prioritize solutions with less constraint violation, facilitating a
more nuanced comparison of infeasible solutions. Constraint violation will let the NSGA-II
compare infeasible solutions; it should consider the solution with less violation as better.

The initial population P(0) was selected from the first 110 feasible solutions of a
random sampling run of 1500 iterations; one extra user-defined solution was added. Then,
during the iterations of the NSGA-II, the extra feasible solutions (after the first 110) from
the initial 1500 random sampling run were mixed into the offspring and exchanged the
“inf” solutions in the offspring. It could be argued, then, that this is unorthodox and not
exclusively depending on the NSGA-II algorithm, but it could also be argued that it can be
seen as a pragmatic approach. If the users define solutions and blend them in, the NSGA-II
method should be able to rank the provided solutions, and if a user-defined solution can
be dominated by an algorithm proposal, then this presents insights for the planning and
design of the factory layout. Of course, one can rerun similar experiments and solely rely
on the NSGA-II algorithm.

One could also consider other algorithms to explore, utilize, and compare with
the NSGA-II algorithm to study the performance of algorithms when conducting multi-
objective optimization in future studies. The NSGA-II algorithm was well-suited for this
use case, which involved optimizing three objectives simultaneously [21].

In this use case, the OWASL-Index was utilized to assess workers’ well-being and evalu-
ate aggregated biomechanical load over time. However, there are other ergonomics evalu-
ation methods available that could be used, depending on the exposures being assessed.
The OWASL-Index, along with calculating the distance walked for each worker per solution,
was utilized as a system (layout) performance indicator. A shorter distance walked by each
worker decreases the process time of the action sequence, but additional objectives could
be considered in multi-objective optimization of factory layouts, e.g., minimizing material
handling costs, optimizing energy consumption, and reducing environmental impact.

Another important aspect to consider is the anthropometric diversity among workers.
In this use case, a manikin family representing the Swedish population within a 95%
confidence interval was used, which is a step towards achieving Industry 5.0 objectives of
more human-centric manufacturing systems in the future [26]. Depending on the use case,
future optimization cases could include diversity by representation of other nationalities.
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5. Conclusions

The planning and design process of a factory’s layout is a shared challenge for var-
ious experts and stakeholders across different fields, as it establishes the basis for the
manufacturing potential. Currently, the outcome of a factory layout relies heavily on the
communication and combined experience of cross-disciplinary experts, such as engineers
and ergonomists, during the design and decision-making processes. This highlights the
need for tools and methods that aid in the planning process of factory layouts, enabling
informed decisions considering multiple objectives simultaneously. The presented demon-
strator solution shows that multi-objective optimization can be utilized to plan factory
layouts, evaluate workers’ well-being, and test layout setups of the equipment within a
designated area of an assembly station. By providing digital support during the early plan-
ning phases of factory layouts, this approach can reduce risk, minimize costly retrospective
engineering, and accelerate project completion. The demonstrator also showcases a way
of promoting cross-disciplinary, transparent, and collective planning of layouts, which
facilitates better-informed decisions during the factory layout planning process.

The general trend within industry is to establish seamless information exchange
between users and activities through digitalization. This is an ongoing journey for many
companies, and there are many challenges to deal with. The concept of Industry 5.0 builds
upon previous digitalization concepts and seeks to automate and enable collaboration
between humans and machines in all types of manufacturing activities, including planning
and design activities.

This paper proposes an approach to support the users of software tools and automate
certain aspects of the planning process, specifically for layout planning. It aims to convert
the expertise and knowledge in the relevant field into “smart” solutions within the software
tools. The presented study utilizes the NSGA-II algorithm to showcase a demonstrator
solution that emphasizes the transformation of layout planning for an assembly station in a
battery production factory into a transparent and interdisciplinary activity. The solution
highlights the potential for increased automation and incorporates ergonomic evaluation
methods and area utilization, resulting in objective proposals for factory layouts that take
into account both productivity and worker well-being factors.

The algorithm generates a collection of solutions forming a Pareto front, with each
solution representing an optimal outcome based on defined optimization objectives and
constraints. However, a critical aspect for future research is addressing the challenge
of assisting decision-makers in selecting the most appropriate solution from the various
optimal choices during the decision-making process. In addition, regarding some thoughts
of repercussion of the proposed approach, there are several considerations related to
research ethics when it comes to studying the planning and design process of factory layouts.
First, it is important to ensure that the research is conducted in a way that does not disrupt
the normal planning and design activities for factory layouts. Use cases should be selected
with involvement of end users (layout planners) and with permission from the factory
management before experiments are conducted on selected use case datasets to minimize
any potential conflicts of competing interests or personal relationships that could appear to
influence the research carried out. Further, it is important to respect the way of working
of the layout engineers of today, so that proposed solutions do not provide unnecessary
workloads on the engineering side. Then, it is important to consider the potential impacts
of the research on the workers. For example, if the research involves changing the layout of
the factory, it is important to ensure that the changes do not negatively impact the safety or
well-being of the workers. Finally, it is important to consider the ethical implications of any
conclusions or recommendations that are made based on the research. Researchers should
be mindful of the potential consequences of their findings and take care to avoid making
recommendations that could have negative impacts on the workers or the factory.
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Future Research

The next step in this research is to develop additional methods and demonstrators
for various factory layout scenarios involving different manufacturing processes and
challenges, for instance in machining manufacturing, human–robot collaboration based
assembly, robotic assembly, and hybrid processes. The target is to enhance digital sup-
port to assist the planning processes of virtual factory layouts while considering several
cross-disciplinary aspects such as worker well-being, productivity, balancing, production
sequencing with several product variants, assembly lines in motion, staff safety, and regu-
lations, utilizing a multi-objective approach. Structured evaluations with end users, i.e.,
engineers potentially using this approach in their daily work, will in the future be carried
out to assess the functionality and usability of this enhanced digital support.

Additionally, future research also includes exploring alternative algorithms to assess
the effectiveness and efficiency of multi-objective optimizations and address the challenge
of assisting decision-makers in selecting the most suitable solution from the various optimal
alternatives during the decision-making process.

Author Contributions: Conceptualization: A.L., V.E. and L.H.; writing—original draft preparation,
A.L.; writing—review and editing, A.L., V.E., L.H., D.H., D.L., P.M. and A.S.; supervision, L.H., D.H.,
D.L., P.M. and A.S.; funding acquisition, D.H. and A.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Scania CB AB and the Knowledge Foundation via the
University of Skövde, the research project Virtual Factories with Knowledge-Driven Optimization
(2018-0011), and the industrial graduate school Smart Industry Sweden (20200044).

Data Availability Statement: The datasets and scripts are available on request.

Acknowledgments: The authors appreciatively thank the support of Scania CV AB, the University
of Skövde, and the industrial graduate school Smart Industry Sweden.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, H.; Chen, M.; Mohamed, K.; Qu, T.; Wang, S.; Li, J. A Digital Twin-Based Flexible Cellular Manufacturing for Optimization

of Air Conditioner Line. J. Manuf. Syst. 2021, 58, 65–78. [CrossRef]
2. Muther, R.; Hales, L. Systematic Layout Planning, 4th ed.; Management & Industrial Research Publications: Marietta, GA, USA,

2015; ISBN 978-0-933684-06-5.
3. Kuhn, W. Digital Factory—Simulation Enhancing the Product and Production Engineering Process. In Proceedings of the 2006

Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006; IEEE: Monterey, CA, USA, 2006; pp. 1899–1906.
4. Zadeh, N.S.; Lindberg, L.; El-Khoury, J.; Sivard, G. Service Oriented Integration of Distributed Heterogeneous IT Systems in

Production Engineering Using Information Standards and Linked Data. Model. Simul. Eng. 2017, 2017, 9814179. [CrossRef]
5. Süße, M.; Putz, M. Generative Design in Factory Layout Planning. Procedia CIRP 2021, 99, 9–14. [CrossRef]
6. Lindskog, E.; Vallhagen, J.; Johansson, B. Production System Redesign Using Realistic Visualisation. Int. J. Prod. Res. 2017, 55,

858–869. [CrossRef]
7. Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [CrossRef]
8. Mourtzis, D. Simulation in the Design and Operation of Manufacturing Systems: State of the Art and New Trends. Int. J. Prod.

Res. 2020, 58, 1927–1949. [CrossRef]
9. Fechter, M.; Seeber, C.; Chen, S. Integrated Process Planning and Resource Allocation for Collaborative Robot Workplace Design.

Procedia CIRP 2018, 72, 39–44. [CrossRef]
10. Shafiq, S.I.; Sanin, C.; Szczerbicki, E.; Toro, C. Virtual Engineering Object/Virtual Engineering Process: A Specialized Form of

Cyber Physical System for Industrie 4.0. Procedia Comput. Sci. 2015, 60, 1146–1155. [CrossRef]
11. Iriondo Pascual, A.; Högberg, D.; Lämkull, D.; Luque, E.P.; Syberfeldt, A.; Hanson, L. Optimization of Productivity and Worker

Well-Being by Using a Multi-Objective Optimization Framework. IISE Trans. Occup. Ergon. Hum. Factors 2021, 9, 143–153.
[CrossRef] [PubMed]

12. Zuo, X.; Murray, C.C.; Smith, A.E. Solving an Extended Double Row Layout Problem Using Multiobjective Tabu Search and
Linear Programming. IEEE Trans. Automat. Sci. Eng. 2014, 11, 1122–1132. [CrossRef]

13. Wan, X.; Zuo, X.; Li, X.; Zhao, X. A Hybrid Multiobjective GRASP for a Multi-Row Facility Layout Problem with Extra Clearances.
Int. J. Prod. Res. 2022, 60, 957–976. [CrossRef]

https://doi.org/10.1016/j.jmsy.2020.07.012
https://doi.org/10.1155/2017/9814179
https://doi.org/10.1016/j.procir.2021.03.002
https://doi.org/10.1080/00207543.2016.1218085
https://doi.org/10.3390/su11164371
https://doi.org/10.1080/00207543.2019.1636321
https://doi.org/10.1016/j.procir.2018.03.179
https://doi.org/10.1016/j.procs.2015.08.166
https://doi.org/10.1080/24725838.2021.1997834
https://www.ncbi.nlm.nih.gov/pubmed/34724884
https://doi.org/10.1109/TASE.2014.2304471
https://doi.org/10.1080/00207543.2020.1847342


Systems 2023, 11, 395 20 of 20

14. Carlson, J.S. Quadratic Sensitivity Analysis of Fixtures and Locating Schemes for Rigid Parts. J. Manuf. Sci. Eng. 2001, 123,
462–472. [CrossRef]

15. Hermansson, T.; Bohlin, R.; Carlson, J.S.; Söderberg, R. Automatic Assembly Path Planning for Wiring Harness Installations. J.
Manuf. Syst. 2013, 32, 417–422. [CrossRef]

16. Hanson, L.; Högberg, D.; Carlson, J.S.; Delfs, N.; Brolin, E.; Mårdberg, P.; Spensieri, D.; Björkenstam, S.; Nyström, J.; Ore, F.
Industrial Path Solutions—Intelligently Moving Manikins. In DHM and Posturography; Elsevier: Amsterdam, The Netherlands,
2019; pp. 115–124. ISBN 978-0-12-816713-7.

17. Hermansson, T.; Carlson, J.S.; Linn, J.; Kressin, J. Quasi-Static Path Optimization for Industrial Robots with Dress Packs. Robot.
Comput.-Integr. Manuf. 2021, 68, 102055. [CrossRef]

18. Mark, A.; Bohlin, R.; Segerdahl, D.; Edelvik, F.; Carlson, J.S. Optimisation of Robotised Sealing Stations in Paint Shops by Process
Simulation and Automatic Path Planning. Int. J. Manuf. Res. 2014, 9, 4. [CrossRef]

19. Ierusalimschy, R. Programming in Lua, 2nd ed.; Lua.Org: Rio de Janeiro, Brazil, 2006; ISBN 978-85-903798-2-9.
20. Crockford, D. The Application/Json Media Type for JavaScript Object Notation (JSON). Available online: https://www.ietf.org/

rfc/rfc4627.txt (accessed on 12 January 2023).
21. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.

Computat. 2002, 6, 182–197. [CrossRef]
22. Tsarouchi, P.; Michalos, G.; Makris, S.; Athanasatos, T.; Dimoulas, K.; Chryssolouris, G. On a Human–Robot Workplace Design

and Task Allocation System. Int. J. Comput. Integr. Manuf. 2017, 30, 1272–1279. [CrossRef]
23. Karhu, O.; Kansi, P.; Kuorinka, I. Correcting Working Postures in Industry: A Practical Method for Analysis. Appl. Ergon. 1977, 8,

199–201. [CrossRef] [PubMed]
24. Lundqvist, P. Working Environment in Farm Buildings-Results of Studies in Livestock Buildings and Greenhouses; University of Uppsala:

Uppsala, Sweden, 1988.
25. Höldrich, A. Work Load Examinations at the Log Wood Production. J. Agric. Mach. Sci. 2011, 7, 133–136.
26. Ivanov, D. The Industry 5.0 Framework: Viability-Based Integration of the Resilience, Sustainability, and Human-Centricity

Perspectives. Int. J. Prod. Res. 2023, 61, 1683–1695. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/1.1365397
https://doi.org/10.1016/j.jmsy.2013.04.006
https://doi.org/10.1016/j.rcim.2020.102055
https://doi.org/10.1504/IJMR.2014.059597
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc4627.txt
https://doi.org/10.1109/4235.996017
https://doi.org/10.1080/0951192X.2017.1307524
https://doi.org/10.1016/0003-6870(77)90164-8
https://www.ncbi.nlm.nih.gov/pubmed/15677243
https://doi.org/10.1080/00207543.2022.2118892

	Introduction 
	Materials and Methods 
	Use Case Description 
	Definition of the Virtual Environment, Manikins, and Constraints 
	Definition of Objectives 
	Definition of the Optimization Problem 
	Population Zero P(0) 
	Offspring, Tournament Size, Crossover Rate, and Mutation Rate 
	Running of the Q(0) in IPS 
	Generation of P(1) 
	NSGA-II Iterations 


	Results 
	Discussion 
	Consideration of Results 
	Consideration of Method 

	Conclusions 
	References

