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Abstract: Social activities have a significant impact on the rainstorm flood disaster risk. It is cru-
cial to explore the dynamic changes of urban rainstorm flood disaster risk caused by crowd ac-
tivities. In this study, a risk simulation method of urban rainstorm flood disasters is proposed,
composed of an urban rainstorm flood model based on SWMM and LISFLOOD-FP and a crowd
activities model based on ABM. Taking the Futian District of Shenzhen as an example, the temporal
and spatial changes in rainstorm flood disaster risk for buildings and roads are analyzed under
three scenarios: midnight, morning peak, and evening peak. The results show that: (1) Although the
overall risk of urban rainstorm flood disasters increases as the inundation area expands, the average
risks of roads and buildings increase rapidly and then stabilize during the morning peak due to
commuting activities, while the average risk of roads remains high level during the evening peak due
to commuting activities, while; (2) The risk of urban rainstorm flood varies significantly at different
time periods. The average risk of buildings is the largest during the morning peak, about twice that
during the evening peak. The number of high-risk roads during the evening peak is much higher
than in the morning peak, and both buildings and roads have the least risk during midnight; (3) The
spatial distribution of urban rainstorm flood disaster risk changes with the crowd activities, shifting
from residential areas to industrial areas, schools, shopping malls, etc., during the morning peak,
while the evening peak shows the reverse.

Keywords: urban rainstorm flood; risk simulation; crowd activities; agent-based model

1. Introduction

Rainstorm flood disasters have become a prominent problem affecting urban public
safety. Exploring the temporal and spatial variation law of exceptionally heavy rainstorm
flood disaster risk is of great significance for emergency response plans for rainstorm
flood disasters, which contributes to optimizing and improving the emergency handling
capacity of urban rainstorm flood disasters and ensuring urban public safety. With the
acceleration of urbanization, the urban water cycle processes have undergone drastic
changes, and the “heat island effect” and “rain island effect” are prominent, resulting in
more and more frequent urban rainstorm flood disasters. At the same time, a large number
of people have poured into the city, and the lives and work of humans have undergone
tremendous changes. Due to activities such as life, work, and entertainment, the frequency,
intensity, and scale of people shuttling between work and their homes, neighborhood parks,
crowded markets, and busy streets is increasing. The frequent spatial movement of the
population increases the exposure of the disaster-bearing body, further enhances the risk of
rainstorm and flood disasters, and aggravates the threat degree of urban rainstorms and
flood disasters to human society. Taking the “July 20” heavy rainstorm in Zhengzhou in
2021 as an example, the central urban area of Zhengzhou suffered a serious urban rainstorm
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flood disaster in a short period of time, which seriously affected people’s work, shopping
and commuting, especially the serious irrigation incident of Metro Line 5, resulting in
14 deaths and heavy losses [1]. The huge population size and complex crowd activities in
cities have further posed enormous challenges to the emergency management of urban
rainstorm flood disasters.

In the field of urban rainstorm flood disaster risk research, scholars have mainly
focused on two aspects: probability-based studies and impact-consequence studies [2–4].
The former defines risk as the probability of disasters occurring due to the interaction of
natural or man-made hazards with vulnerability conditions [5]. The latter assesses the
risk of disasters by analyzing potential hazards and evaluating existing exposure and
vulnerability conditions [6,7]. The Hazard–Exposure–Vulnerability framework is widely
used to assess urban rainstorm flood risk [8–10], which is comprehensive, clear and has
great operability. At the same time, flood risk studies have changed from static risk maps to
dynamic risk simulations. There are a large number of studies based on hydrological and
hydrodynamic models to simulate flood processes under different rainstorm recurrence
periods [11,12]. Studies on flood risk management and assessment are carried out by
drawing flood risk maps of submerged water depth and inundation range [13–16]. Where
only the dynamic evolution of the urban flood process has been considered, there is a lack
of research on the vulnerability of the rainstorm environment and the dynamic exposure of
the bearer.

However, flood disasters are complex systems formed by the interaction of natural
disaster systems and human social systems [17,18]. Rainstorm flood disaster risk is shaped
by the inundation process formed by heavy rainfall runoff and the interaction of social
crowd activities. Studies have suggested that the complex spatial activities of urban crowds
will further enhance the risk of rainstorm flood disasters and aggravate the losses of urban
rainstorm flood disasters [19,20]. With the advancement of technology and the availability
of spatiotemporal geographic big data, scholars have begun simulating urban crowd
activities using Agent-Based Model (ABM) [21–23] and tried to study the risk of rainstorm
flood disasters. For example, Lai et al. [24] constructed an agent-based risk assessment
system according to the dynamic and complex characteristics of rainstorm flood house
exposure, which verified the feasibility of introducing the Agent-Based Model theory for
the dynamic assessment of rainstorm flood disaster risk; Dawson et al. [25] and Li et al. [26]
coupled crowd dynamic activities, constructed a population risk assessment model of
rainstorm flood based on ABM; Dai et al. [27] proposed a human–disaster coupled urban
model (HazardCM) to analyze the exposure of population in flood disaster environment.
Although the above scholars have tried to incorporate crowd activities into flood risk
systems to study the vulnerability and exposure characteristics of rainstorm flood disasters,
flood disaster risk studies under different crowd activity scenarios are still relatively lacking
and need to be further explored.

This study aims to explore the impact of complex urban crowd activities on urban
flood risk. Using a “bottom-up” modeling approach, an urban rainstorm flood disaster risk
simulation model is constructed, which includes an urban rainstorm flood model based
on SWMM and LISFLOOD-FP and a crowd activities model based on ABM. The study
explores the dynamics risk of buildings and roads under different flooding scenarios is
explored in the Futian District of Shenzhen City, China, to provide effective support for
disaster prevention and mitigation management of urban rainstorm flood disasters.

2. Methods and Data
2.1. Risk Formation and Assessment of Urban Rainstorm Flood Disasters Considering
Crowd Activity

The occurrence of a rainstorm flood event is a natural phenomenon, and the concept of
risk does not solely depend on where the storm flooding takes place. Rather, it is when the
disaster causes certain damages to human society or places of human social activities that
the risk of a rainstorm flood disaster exists. In urban areas, when rainstorm flood disasters
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occur, the social population and natural disasters interact in both time and space, forming a
complex system of urban rainstorm flood disaster risk [28]. Therefore, a systematic analysis
of the formation mechanism of disaster risk is crucial to accurately simulate the risk process
of urban rainstorm flood disasters.

According to the system theory, the rainstorm flood disaster risk system consists of
three parts: disaster-causing factors, disaster-inducing environment and disaster-bearing body:

(1) The disaster-causing factors refer to the elements that have adverse effects on
people’s life, property or various activities and may lead to disasters. For rainstorm flood
disasters, these factors mainly include the intensity of the rainstorm and the depth of
flooding. Usually, the greater the intensity and inundation depth, the more severe the
damage and loss, resulting in higher risk. The degree of influence of disaster-causing
factors is expressed by the hazard degree.

(2) The disaster-inducing environment pertains to the spatial and geographical sur-
roundings where the rainstorm occurs, particularly buildings and roads in urban areas.
Environmental sensitivity refers to the extent of response (sensitivity) to the external envi-
ronment in the area when exposed to disaster-causing factors. If the sensitivity of buildings
or roads in the affected area is higher at the same intensity of disaster-causing factors, the
resulting damage and risk of the disaster will be more severe. The degree of flood risk
influenced by the environment is expressed as sensitivity.

(3) The disaster-bearing body refers to the entities that are susceptible to various
disaster-causing factors, typically including the concentration and distribution of popu-
lation and various resources within a specific area. Generally, higher concentrations of
population and property in an area correspond to a higher risk of disasters. Exposure
quantifies the level of risk that the disaster-bearing body faces in relation to the potential of
flooding or other disaster events. It reflects the degree to which the disaster-bearing body
is vulnerable to the impact of such events.

Therefore, the complex spatial and temporal dynamics of urban rainstorm flood
disaster risk depend on the rainstorm flood event, crowd activities, and urban spatial
environment. Based on the “H-E-V” framework, as shown in Figure 1.
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Considering the interaction among disaster-causing factors, disaster-bearing bodies
and disaster-inducing environment, urban rainstorm flood disaster risk is defined as the
degree of damage that may be caused to the city or the degree of impact on human society
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after a rainstorm flood disaster occurs. The risk is considered to consist of hazard, exposure
and vulnerability:

That is, urban rainstorm flood risk = Hazard (H) × Exposure (E) × Vulnerability (V).
Hazard refers to the intensity and inundation depth of the flood disaster process, which

is used to characterize the dynamic changes in the hazard level of the causal factors during
the flooding event. Exposure refers to the degree of exposure to the risk factors affected
by flood disasters [29], and this study refers specifically to the urban population exposed
to urban rainstorm flood disasters, and the most characteristic of the exposure of the
population carrier is the spatial distribution of the population density at different moments.
Given that the population is still in a dynamic state of activity during the occurrence of
disasters, the precise location and simulation of the spatial and temporal distribution of the
population is a key element in assessing the spatial and temporal distribution of the risk of
the rainstorm flood. Vulnerability, here, specifically sensitivity, refers to the ability of the
urban geographic environment to resist the adverse effects of storm flooding [30]. In this
study, it refers to the sensitivity of two types of geographic entities, buildings and roads, to
heavy rainstorm flood disasters in the city.

Therefore, the mathematical formula for risk calculation in the simulation model of
urban rainstorm flood disaster risk for roads and buildings constructed in this study is:

Ri = Hi × Si × (Pi/Ai) (1)

Rj = Hj × Sj × (P j/Aj

)
(2)

where Ri denotes the risk of the road i; Rj denotes the risk of building j; Hi denotes the
depth of inundation of the road i; Hj denotes the depth of inundation of the building j;
Si denotes the sensitivity of the road i to heavy rainstorm flood disasters; Sj denotes the
sensitivity of the building j to rainstorm flood disasters; Pi denotes the total number of
people located on the road i; Pj denotes the total number of people located in the building j;
Ai denotes the total area of the road i; and Aj denotes the total area of the building j.

2.2. Risk Simulation Modeling of Urban Rainstorm Flood Disasters Based on ABM
2.2.1. Framework of Risk Simulation Modeling

The urban rainstorm flood disaster risk exhibits distinct spatiotemporal dynamics,
which are not only influenced by the evolution of flood hazards but also by the dynamic
movement of the urban population, intricate relationships, and non-linear interactions
between disasters and the environment. To comprehensively capture the process from
micro-individual dynamic changes to the macro-emergence of risk for each element of
urban rainstorm flood disasters, this study integrates the process of rainstorm flood and
the process of crowd activities based on the modeling method of ABM. The model su-
perimposes the flooding process on the physical spatial environment of urban buildings
and roads and then constructs three rainstorm flood disaster scenarios of morning peak,
evening peak and midnight. It updates the urban flood map in real time to dynamically
display the whole process of the dynamic evolution of rainstorm flood disasters in real
time. The framework of the urban rainstorm flood risk simulation model is constructed as
shown in Figure 2.

The inundation depth of the road and the buildings are simulated based on urban
rainstorm flood modelling in Section 2.2.2. The crowd activities are simulated based on
environment construction and agent-based modelling in Sections 2.2.3 and 2.2.4, respec-
tively. The urban rainstorm flood disaster risk for roads and buildings is calculated using
Formulas (1) and (2). Three scenarios are constructed in this study: morning peak, evening
peak, and midnight. Morning peak is set during 6:00 a.m.–10:10 a.m., the period of high
population activity in the morning, typically around the rush hour when people are com-
muting to work or school. The evening peak is set from 17:00 p.m.–21:10 p.m., another
peak time of the day for the population when people return home after a day of work and
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study. The midnight scenario refers to the period between 0:00 a.m. and 4:10 a.m. when the
city’s population is almost stationary.
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2.2.2. Urban Rainstorm Flood Modelling

In this study, the generalization of the study area was carried out using the ArcGIS
platform, which involved generalizing pipe network data, delineating sub-catchments,
and determining outlets. SWMM (Storm Water Management Model) and LISFLOOD-FP
models are coupled to simulate urban surface hydrological processes and underground
pipe network hydrodynamic processes, thereby enabling the simulation of the inundation
range and depth during rainstorms and flood [27,31].

The SWMM model is a distributed hydrological and hydrodynamic model that is
composed of three main parts: hydrology, hydrodynamics, and water quality. It can
comprehensively simulate the variation of water quantity and quality in urban drainage
systems. It is used to simulate the rainfall, surface production flow, pipe network confluence
and pipe network overflow process. The drainage system is generalized into a series of
pipe sections and pipe network nodes (such as stormwater grates and inspection wells),
where the runoff transmission in the drainage pipe network obeys the conservation of
mass and momentum; The flow velocity and water depth in the pipeline are solved by
the Sanint–Venant equation system of the hydrodynamic method, that is, the continuous
equation and the momentum equation are solved simultaneously to simulate the gradual
non-constant flow and realize the pipe network convergence simulation.

The LISFLOOD-FP model is a two-dimensional hydrodynamic model based on a
square grid developed by the University of Bristol. It simulates one-dimensional river
hydraulic changes and two-dimensional floodplain hydraulic changes through continuity
equations and momentum equations. As a semi-open source model that is easy to build
and has high computational efficiency, the LISFLOOD-FP model has been widely used in
the two-dimensional simulation study of urban waterlogging and river flooding [32]. The
LISFLOOD-FP model is used to simulate the inundation process of nodal overflow and
rainfall runoff on the urban surface. Based on the DEM of the study area, the continuity
equation and the momentum equation are used to consider the water balance between
adjacent grids.
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The SWMM model is proficient in simulating confluence in underground drainage
pipe networks, but it cannot simulate the surface confluence process to obtain the inun-
dation range, water depth and the flood process of the urban surface. Meanwhile, the
LISFLOOD-FP model can simulate the surface runoff process, but it cannot simulate the
water flow of the underground pipe network. Coupled SWMM with LISFLOOD-FP can
obtain the water exchange between the surface flow runoff and the underground drainage
pipe network to simulate the urban surface hydrological process and the underground pipe
network hydrodynamic process. The exchange of water volume between the drainage pipe
network and the surface can be generalized as rainfall collects on the surface production
flow to form runoff from the pipe network node into the drainage pipe network and when
the drainage capacity of the drainage pipe network is insufficient, the amount of water
overflows through the pipe network node and flows into the surface runoff; When the
drainage network regains drainage capacity, surface runoff rejoins the drainage network.

2.2.3. Environment Construction

As a natural space susceptible to torrential rainstorm flood disasters, the geographical
environment not only provides a living space for agents in the simulation model but also
links flood disasters with crowd activities. Two types of disaster simulation environments
for buildings and roads are constructed:

a. Buildings serve as spaces for population activities and survival, providing tem-
poral and spatial constraint attributes for the urban population and rainstorm disasters.
These attributes include the area, type, sensitivity to rainstorm flood disasters, number
of people, inundation depth of the flood, and corresponding types of crowd activities.
According to the type of travel activities of urban people and land use classifications [33,34],
building types are divided into six categories: parks, residential areas, industrial areas,
shopping malls, schools, and others. According to the previous studies [35], the sensitivity
to rainstorms of each building type is set as follows: schools are classified as level 1 sensi-
tivity, shopping malls and industrial areas as level 2 sensitivity, residential areas as level 3
sensitivity, and parks and others as level 4 sensitivity.

b. Roads are another important aspect of crowd dynamic activities. The properties of
roads include the length, width, type, and sensitivity of heavy rainstorm flood disasters,
the number of residents, and the inundation depth of the flood. Roads are divided into
four categories: main roads, secondary roads, motorcycle roads and community branch
roads. According to the road design standards and traffic volume in the “Urban Road
Design Code”(CJJ37-2012), the sensitivity to rainstorms of each road type is set as follows:
community branch road as level 1 sensitive, highway as level 2 sensitive, secondary road
as level 3 sensitive, main road as level 4 sensitive. Finally, the sensitivity is assigned values
ranging from 0.1 to 1 using the natural discontinuity method.

2.2.4. Crowd Activities Modelling Based on ABM

Agent-Based Modeling (ABM) aims to simplify complex adaptive systems into in-
dividual agents and simulate the entire system from the bottom up, thereby capturing
complex changes in the global system through the interactions and behavior of local agents
with each other and the environment. ABM offers distinct advantages in simulating and
analyzing the evolution of complex adaptive systems. Urban rainstorm flood disaster
risk is a typical complex system, and the ABM-based modelling method is well-suited to
depict the process from micro-level dynamic changes of urban rainstorm flood disaster
elements to macro-level risk emergence. This approach provides a novel research idea for
studying urban rainstorm flood disaster risk. In light of this, the current study employs
ABM to simulate the spatiotemporal changes in rainstorm flood disaster risk influenced by
time factors.

The urban population, being the main affected group during urban rainstorm flood
disasters, engages in complex spatial and temporal activities that significantly impact the
change in urban rainstorm flood risk. The construction of an Agent-Based Model can
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change its spatiotemporal coordinates based on different time drivers and more accurately
describe the complex individual heterogeneous activities of the population [36]. Using the
existing data of the urban census, the urban population is categorized into four categories
according to the different travel behaviors of the population: student population, working
population, random population and elderly population, as shown in Table 1. Subsequently,
the daily travel activities of the urban population are classified into types, such as go-
ing home, working, studying, shopping, and leisure, based on travel behavior surveys
and analyses.

Table 1. Description of urban population classification.

Type Properties

Student population Students aged 3–14 engaged in activities such as going to
school, going home and leisure

Working population
Aged 20–59 with regular jobs, part of the employed population
has children and participates in activities such as going to work,

going home, picking up children, shopping, leisure, etc.

Random population Individuals without regular jobs, involved in leisure activities,
some have children

Elderly population Seniors over 59 years old participating in activities such as
transporting children, going home, leisure, and shopping

After the classification, four different types of population agents are constructed based
on the different types of crowd activities [37]. The agents’ behavior rules are established
using a probabilistic deduction model [38]. The spatiotemporal coordinates of these agents
are modified based on various time drivers, linking the population with the spatial environ-
ment and enabling the simulation of the daily commuting activities of the urban population.
The activity rules for each of the four types of population agents are shown in Figure 3.
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a. Student population: They leave their residences for school at around 7:00 a.m. and
stay at school until around 11:30 a.m., with a 30% chance of returning home for lunch. After
that, they return to school around 1:00 p.m. to continue studying. After 5:00 p.m. in the
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afternoon, they either return home from school or go to the nearby shopping malls or parks
for leisure, and at 9:00 p.m., they end the day’s activities and return to their residences.

b. Working population: Around 30% of the working population sends their children
to primary school at 7:00 a.m. and then goes to the industrial areas to work. They stay
in the workplace until about 4:30 p.m., with a 30% chance of going to school to pick up
their children before returning home. After 5:00 p.m., there is a 40% probability of going
home directly and a 30% probability of going to the shopping malls. At 9:00 p.m., the day‘s
activities end, and all return to their residences.

c. Random population: This group includes individuals in a random state in the
population system, such as taxi drivers and tourists, who move randomly within the city
space. They start random activities away from home at 8:00 a.m., end all activities at
8:00 p.m., and return to their residences to rest.

d. Elderly population: Around 7:00 a.m. in the morning, 60% of the elderly begin
by sending their children to school and then engage in leisure, entertainment, dining, or
shopping activities. They pick up their children from school in the evening and then return
home after a day’s activities. On the other hand, 40% of the elderly go to parks, shopping
malls or other leisure and entertainment places, or some stay at home; they return home at
11:30 a.m. to rest and then continue leisure or dining and shopping activities at 2:00 p.m.
with a 50% probability All activities end at 9:00 p.m., and they return to their residences
to rest.

2.3. Study Area and Data
2.3.1. Study Area

Futian District, as shown in Figure 4, is located in the central urban area of Shenzhen.
It serves as the administrative, financial, cultural, commercial, and international exchange
center of the city. The district falls under a subtropical maritime monsoon climate with
long summers and short winters, abundant sunshine, and significant rainfall. The average
annual rainfall in the past five years (2018 to 2022) is 1926.8 mm. As a result, the area
is susceptible to extreme weather events such as rainstorms, local heavy rainstorms, or
exceptionally heavy rainstorms.
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Futian District is composed of 10 streets, including Yuanling Street, Nanyuan Street,
Futian Street, Shatou Street, Meilin Street, Huafu Street, Xiangmihu Street, Lianhua Street,
Huaqiang North Street, and Fubao Street, with a total of 95 communities and 115 neigh-
borhood committees. According to the Shenzhen Statistical Yearbook, its permanent
population is about 1,553,200 in 2021, including 247,500 individuals aged 0–14, accounting
for 15.94% of the total population. The population aged 15–59 is 1,174,700, accounting for
75.63%, while the population aged 60 and above is 131,000, accounting for 8.43%, with
approximately 85,000 individuals, or 5.47%, being aged 65 and above.

2.3.2. Data Collection

The research data mainly include basic geographic data, population data and rainstorm
flood inundation data, as detailed in Table 2. Road network data is downloaded from
the OpenStreetMap website. Buildings, drainage pipe networks, and waterlogging points
monitoring data are obtained from Shenzhen Hydrology Bureau. The population data
is collected from China’s statistical database. The inundation data is collected from the
Meteorological Bureau of Shenzhen Municipality. Waterlogging points monitoring data.

Table 2. Collection of the study data.

Name Description Source

Road network
Vector geographic data, including
road type, road length, road name

and other attributes

OpenStreetMap website
(www.openstreetmap.org

(25 July 2023))

Building
Vector geographic data, including
building type (such as hospitals,

schools, industrial areas, residential
areas, etc.), building area

Shenzhen Hydrology Bureau

Drainage network
Vector geographic data, including

inspection wells, water outlets,
rainwater lines, drainage lines

Shenzhen Hydrology Bureau

Population data

Statistical data of total population
for each subdistrict, sex ratio,

proportion of elderly people and
children.

China statistical database
(http://www.shujuku.org/

shenzhen-statistical-yearbook.
html (25 July 2023))

Rainstorm flood
inundation

Inundation data on 29 August 2018,
and 11 April 2019, in Shenzhen

Shenzhen Meteorological
Bureau (http://weather.sz.gov.
cn/qixiangfuwu/qihoufuwu/

qihouguanceyupinggu/
jiancegongbao/index_2.html

(25 July 2023))

Waterlogging points
monitoring data

Monitoring data of Waterlogging
points on 29 August 2018, and 11

April 2019, in Shenzhen
Shenzhen Hydrology Bureau

2.3.3. Model Initialization

GAMA (https://gama-platform.org/wiki/Home (25 July 2023)) is an open-source
modeling and simulation environment for creating spatially explicit agent-based simula-
tions. It can also load geospatial data very well. GAMA can effectively combine time and
space to simulate urban crowd activities in the real world. In addition, GAML language
has the characteristics of a fully programmable, simple language structure, can define
unlimited agents and variables, support cross-platform, reusable, etc. So, it is especially
suitable for the modeling of urban rainstorms and flood disaster risk complex systems,
which involve multiple subject types.

In the study, the data for the study area was initialized using the GAMA platform.
This initialization process involved the following steps: Firstly, the vector geographic
data was initialized in the study area; there were 3106 buildings categorized into different

www.openstreetmap.org
http://www.shujuku.org/shenzhen-statistical-yearbook.html
http://www.shujuku.org/shenzhen-statistical-yearbook.html
http://www.shujuku.org/shenzhen-statistical-yearbook.html
http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/qihouguanceyupinggu/jiancegongbao/index_2.html
http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/qihouguanceyupinggu/jiancegongbao/index_2.html
http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/qihouguanceyupinggu/jiancegongbao/index_2.html
http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/qihouguanceyupinggu/jiancegongbao/index_2.html
https://gama-platform.org/wiki/Home
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zones, such as residential, industrial, school, shopping mall, and park buildings. The total
construction area was 386,000 square kilometers, with a total of 4598 road sections and a
cumulative mileage of 94,500 km. Secondly, according to the “The Seventh National Census
Bulletin of Shenzhen City” (http://tjj.sz.gov.cn/ztzl/zt/szsdqcqgrkpc/szrp/index.html
(25 July 2023)), the ratio of population agents of each type was set according to the gender
and age ratio data of the population of each street. The number of all kinds of agents in the
model was generated in a ratio of 1:30 and allocated to each residential building according
to the building area. Finally, the model start time was set at 0:00.

Table 3 provides a summary of the specific initialization parameters used in the
simulation model. These parameters were essential for creating a realistic and dynamic
simulation of urban rainstorm and flood disaster risks, considering the spatiotemporal
dynamics of crowd activities and their interactions with flood hazards in the study area.

Table 3. Simulation model initialization parameters.

Variables Unit Meaning Initial Value

start_date Date Assumed time for model initialization 1 July 2025
step Step length The model runs one loop corresponding to a realistic time 10

current_hour Hours Current Time 0
current_min Minutes Current Time 0

nb_workingpeople Number of initialized workforce 30,420
nb_childrenpeople Number of the initialized student population 8298

nb_oldpeople Number of elderly populations initialized 4667
nb_randompeople Number of random populations initialized 8475

flood_depth meters The current moment of torrential rain flooding 0
min_work_start Earliest start time of the working population 7
max_work_start The latest start time of the working population 8
min_work_end Earliest closing time of the working population 17
max_work_end The latest start time of the working population 20

min_speed km/h Minimum movement speed of population intelligence 5

max_speed km/h Maximum movement speed of population intelligence 15

Based on vector geographic building data, this study conducted secondary modeling
and distribution of population distribution, realized population density mapping at the
building scale, and realized spatialization of urban population data. To estimate the
population contained in each individual urban residential building, a mathematical model
was established using the building space area attribute and population density grid [39].
The calculation formula for estimating the population in building i is as follows:

POPi = α ∗ Si + e (3)

POPi is the estimated population contained in building i; Si is the total area of building
i; α is the scale coefficient value, which is 0.021; e is the error.

The population in the grid was allocated to each residential building according to
the area proportion of buildings. Next, the inundation simulation results of the once-in-a-
century rainfall in the Futian District of Shenzhen City were superimposed with the basic
geographic information data of the district. This process involved converting the rainstorm
inundation data into the inundation attribute of buildings and roads.

And finally, the initialization interface of the simulation model was obtained, as
shown in Figure 5. This interface serves as the starting point for the simulation model,
incorporating the spatiotemporal dynamics of rainstorm flood disasters and crowd activities
in the study area, allowing for a comprehensive understanding of the urban rainstorm
flood disaster risk.

http://tjj.sz.gov.cn/ztzl/zt/szsdqcqgrkpc/szrp/index.html
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3. Results of Rainstorm Flood Disaster Risk
3.1. Result of Urban Rainstorm Flood Disaster Simulation

Using the Chicago rain pattern, the rainfall process of once-in-a-century in the study
area was calculated. Subsequently, the SWMM-LISFLOOD-FP coupling model was used to
simulate the flooding process of this once-in-a-century rainstorm in the Futian District. To
determine the optimal parameters for the coupling model, the method of multiple selection
and calculation of multiple values of the two rainstorm flood data on 29 August 2018, and
11 April 2019, was used. The results of the simulation indicate that the largest inundation
of precipitation in the Futian District during the once-in-a-century event is illustrated in
Figure 6.
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The simulation of the rainstorm flood disaster process revealed significant changes
in the composition of submerged areas with different degrees of inundation over time.
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As shown in Figure 7, during the first 30 min of the model simulation, some areas in
Futian District gradually began to produce water with a depth of 0.1 m to 1 m. As the
simulation continued for about 90 min, the flooded area with a depth of 0.1 m to 0.5 m
gradually stabilized at about 8 km2, while the flooded area with a water depth of 0.5 m to
1 m gradually stabilized at 3.3 km2. In addition, with the gradual increase of precipitation
intensity, the surface runoff in the areas affected by the rainstorm rapidly formed, and water
with a large depth began to appear in Futian District. After 120 min of model simulation,
the inundated area with water depth above 1 m continued to increase with the advance of
the simulation time.
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3.2. Temporal Changes of Urban Rainstorm Flood Disaster Risk in Building and Road

The changes in urban buildings risk under the three disaster scenarios are shown
in Figure 8, among which the average risk of buildings under the morning peak rainfall
scenario is the largest, which is 2.1 times the evening peak and 3.2 times the midnight.
In the midnight scenario, the population rest in residential buildings late at night, and
the risk of buildings shows a dynamic trend of increasing over time, which is obviously
consistent with the trend of the change of the degree of inundation of heavy rainfall, and
the trend of risk change is only related to the degree of inundation of heavy rainfall. Under
the morning peak rainfall scenario, the building risk increases greatly in the early stage of
the simulation model, which is caused by the activities of the student population and the
working population going to work and others, and then the building risk is temporarily
reduced due to the elderly population and random population stopping leisure activities
and returning home, and then the risk continues to increase slowly with the degree of
inundation of heavy rainfall. This indicates that the changing trend of risk is affected by
the evolution process of rainstorm flood disasters and the dynamic activities process of the
urban population. Under the evening peak rainfall scenario, the risk of buildings gradually
increases with the depth and extent of inundation of rainfall disasters, and then as most of
the population agents return home from a day’s commuting activities, the average risk of
urban buildings decreases slightly due to the low sensitivity of residential buildings and
gradually tends to be consistent with the risk trend under midnight rainfall scenario.

In order to explore the influence of crowd activities on the changes of road risk in
different rainfall scenarios, the risk of roads is divided into four risk levels based on the
natural discontinuity method and concludes the change trends of the number of roads
with different risk levels with rainfall time are shown in Figure 9. In the morning peak
rainfall scenario, as the total length of road flooding increases and the number of people
exposed to the road increases, the number of risky roads gradually increases, reaching a
maximum of 520. About two hours after the rainfall, with the end of the morning peak
commuting activities, the number of people exposed to the road becomes less and less,
and the number of risky roads decreases slightly; In the evening peak rainfall scenario,
the number of risky roads reaches a maximum of 603 after around two hours of rainfall
and then decreases slightly as the population ends those activities for the day. However,
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in the first 4 h of the rainfall scenario, the average number of roads with medium and
high risk in the evening peak is about 1.7 times higher than that during the morning peak,
which is speculated to be due to the fact that most of the population departs quickly to
their destination in the morning peak period, and the population is exposed to the lower
duration of the buildings. In the evening peak rainfall scenario, a large number of random
population and working populations are still busy with complex social activities, such as
shopping malls, park wandering and other travel activities, resulting in a long-term and
high level of population exposure to the road, which increases the risk of heavy rainfall
and flooding on urban roads in the evening peak rainfall scenario.
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Through a comparative analysis of the risk of urban buildings and roads under the
morning and evening peak rainfall scenarios, as shown in Figure 10, it is found that the
average roads risk is about three times the average risk of buildings because the disaster
sensitivity of the population exposed to the roads is higher than that inside the buildings.
In addition, with the expansion of the inundation area of urban rainstorm flood disasters,
the risks of buildings and roads are on the rise, but during the morning peak hours, the
risks of roads and buildings increase rapidly due to the commuting activities of the crowd
and tends to flatten; During the evening peak hours, due to the complex leisure and
entertainment activities of the crowd, the roads risk has a continuous upward trend, and
the overall buildings risk shows a downward trend, which is caused by the return of the
crowd to low-sensitivity residences.
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3.3. Spatial Changes of Urban Rainstorm Flood Disaster Risk in Building and Road

In order to further explore the influence of crowd activities on the spatial changes of
risk of different types of buildings in the city, this study further calculates the proportion
of buildings at risk for each type of building in the city and the risk changes trend of each
building in the morning disaster scenarios is shown in Figure 11. In the morning peak
rainfall scenario, the risk of heavy rainstorm flood is mainly distributed among 251 school
buildings and 194 shopping mall buildings. The proportion of risky buildings in schools
and shopping malls reaches more than 40%, and the risk of school buildings is the highest,
which needs to be attention. The average risk of heavy rainstorm flood for all types of
buildings is still the school, followed by industrial buildings and shopping mall buildings,
while the average risk and proportion of risk buildings for park and residential buildings
are relatively low. This is due to the high flood sensitivity level of school buildings and the
large concentration of students, which increases the risk of heavy rainstorm flood, while
due to the relatively low population density of parks and residential buildings, the risk and
proportion of heavy rainstorm flood are relatively low.
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In the evening peak rainfall scenario, the risk trend of each building type in the city is
shown in Figure 12. In the first two hours of the model run, school and industrial buildings
account for the largest proportion of risk, and then buildings with a high proportion of
rainstorm flood disaster risk gradually shifted to shopping malls and finally to residential
buildings. This is due to the fact that during the evening peak, as the population leaves
work, school, shopping and leisure activities, the urban population gradually shifts to
shopping malls, parks or residential buildings. In the evening peak rainfall scenario, the
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average risk of rainstorm flood for all types of buildings is still the highest in schools,
shopping malls and industrial areas, and then the proportion of risks in schools, shopping
malls and other buildings show a downward trend due to the return of to their residences.
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In order to further explore the distribution of high-risk roads of rainstorm flood
disasters under crowd activities in the study area, this study counts the risky roads with
high-risk levels in the morning and evening peak disaster scenarios, as shown in Table 4. It
can be seen that due to the high sensitivity level of roads, such as Xiangxuan Road, Meiting
Road, and Bagua Road, the risk level and the risk duration in the risk state are much higher
than those of main roads and secondary roads.

Table 4. High-risk sections of urban storm flooding.

Road Name Type Risk Level Average Risk Time (min)

Xiangxuan Road community branch roads High 115
Xianggang West Road secondary road High 95

Meikang Road community branch roads High 115
Meiting Road community branch roads High 100
Mintian Road community branch roads High 90
Xinzhou Road motorcycle roads High 105
Fuchai Road community branch roads High 100
Bagua Road motorcycle roads High 115

In order to further compare the spatial changes of urban rainstorm flood risk after
1 h, 2 h, and 3 h of model runs in the three rainfall scenarios, this study divides the
buildings risk, and road risk into four risk levels based on the natural discontinuity method,
and the results are shown in Figure 13. The figure indicates that the risk range of urban
rainstorm floods with daytime rainfall is much larger than that of midnight rainfall. In the
subfigure labeled “Midnight scenario simulation 3 h”, the risk of urban rainstorm flood in
the midnight rainfall scenario is only distributed in residential buildings, while the spatial
impact of urban rainstorm flood risk in the morning peak rainfall scenario is the largest, as
shown in the sub-figure labeled “Morning peak scenario simulation 3 h”. This is because
the urban population activities are wide during the day, and the sensitivity of industrial,
schools and shopping malls buildings to the risk of heavy rainfall is much higher than
that of residential buildings, so the average risk and risk range of buildings with daytime
rainfall being much greater than that of nighttime rainfall.
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As depicted in the subfigure labeled “Evening peak scenario simulation 3 h”, it is
found that the spatial distribution of risk after 3 h simulation is slightly different from
that after 3 h simulation in the midnight scenario, but it is very similar. This is because
most people have finished their evening peak commute and returned to their homes at
this time, and the spatial distribution of the population gradually approaches that of the
midnight scenario. In addition, the risk of urban rainstorm flood is related to the spatial
distribution of the urban population; in the morning and evening peak rainfall scenario,
the risk of urban rainstorm flood shows an opposite spatial transfer trend with crowd
activities. In the morning peak period, the risk of urban heavy rainstorm flood shifts from
residential buildings to industrial buildings, schools, shopping malls and other buildings.
Conversely, in the evening peak period, the risk shifts in the opposite direction compared
to the morning peak rainfall scenario, gradually shifting to residential buildings due to
crowd activities.

4. Discussion

From the perspective of complex systems, flood disaster risks are a product of the
coupling of natural processes and social activities. In this study, besides the urban flooding
process, crowd activities are included in the rainstorm flood disaster risk assessment. A
risk simulation model of urban rainstorm flood disasters based on ABM considering the
crowds’ daily activities is constructed. It is found that rainstorm flooding remains the
primary factor influencing the risk of flood disasters, but crowd activities greatly amplify
this risk and impact its spatial distribution. For instance, during midnight, the risk is
more affected by surface inundation and is mainly concentrated in urban residential areas.
However, during morning and evening peaks, increased crowd activities pose a greater
risk on roads due to commuting, and there is a shift from residential areas to industrial
areas, schools, shopping malls, etc., during the morning peak and the reverse during
the evening peak. Compared with the previous risk assessment based on the dynamic
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rainstorm flood disasters process, it can further reflect the impact of urban rainstorm flood
disasters brought by crowd activities. This can lead to a more comprehensive and accurate
assessment of urban rainstorm flood disaster risks and further reveal the mechanisms of
the impact of human activities on the changes of disaster risks, which can then be used to
provide detailed emergency prevention suggestions for urban crowd activity warnings and
rainstorm flood disaster management.

In this study, three scenarios (midnight, morning peak, and evening peak) are set up to
explore the effect of crowd activity patterns on rainstorm flood disaster risk. It is found that
the risk of a rainstorm flood disaster is greatly different when it occurs in different periods,
influenced by the activity patterns in different periods. The average risk of urban buildings
and roads during morning and evening peak hours is much higher than during midnight
hours. Especially during the crowded morning and evening peak hours, the risk of school
and shopping mall buildings is significantly higher compared to other building types.
Additionally, the spatial distribution of risks is wider and more dispersed during morning
and evening peak hours. This is because the spatial migration activities of the urban crowd
during the morning peak and evening peak are frequent and complex, and the spatial
exposure of the urban population as the direct object of the disaster will directly affect the
size and spatial distribution of disaster risk. The findings of this study revealed how crowd
activities affect the dynamic change of rainstorm flood disaster risk from two dimensions of
time and space, which provides a new research perspective for the dynamic risk assessment
of rainstorm flood disasters based on disaster consequences. It also provides theoretical
support for government departments to set up a refined contingency plan for rainstorm
flood disasters according to the disaster consequences.

Although direct validation of the results of urban rainstorm flood disaster risk is
challenging due to the complexity and unpredictability of real-world events, the study
recognizes the importance of validating the constructed model to demonstrate its reliability.
For the urban rainstorm flood modelling simulation model, the parameters are calibrated
using real rainfall inundation data on 29 August 2018 and 11 April 2019 in Shenzhen. The
simulated results are validated by comparing them with monitoring data from waterlogging
points. The population numbers for each type are determined using data from the Shenzhen
Statistical Yearbook, ensuring that our model accurately represents the real demographic
composition. Additionally, crowd activity rules are established based on actual traffic
investigations in Shenzhen and literature summarizing the temporal and spatial activity
patterns of the urban population. These rules align with actual urban population activities
and significantly reflect the travel status of the urban population in the study area on a
typical day, providing a sound basis for the behavior rules of the agents in our model.
Furthermore, the population on the road during morning peak and evening peak are in
accordance with the actual observed situation, suggesting that our model can realistically
reflect the patterns of urban crowd activities during different time periods. After running
the urban rainstorm flood disaster risk simulation model several times, we observed that
the results have almost no deviation and are consistent with actual life experiences. This
reproducibility indicates that our model can reliably capture the dynamics of rainstorm
flood risk in urban areas. While direct validation of complex models like ours is challenging,
we believe that these validation aspects provide reasonable evidence of the credibility and
robustness of our constructed model.

5. Conclusions

Frequent human activities increase the risk of urban flood disasters. From the per-
spective of natural–social coupled systems, this research proposes a risk simulation model
of urban rainstorm flood disaster, which combines agent-based modeling (ABM) of daily
crowd activities with the SWMM-LISFLOOD urban flooding simulation mode in order to
detect the temporal and spatial changes of the rainstorm flood disaster risk of buildings
and roads. Additionally, three scenarios, midnight, morning peak and evening peak, are
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designed to explore the effects of different crowd activities models on flood disaster risk in
once-in-a-century rainstorms. The conclusions are as follows:

(1) The risk of rainstorm flood disasters is influenced by both the urban flooding
process and the activities of urban crowds. As urban inundation increases, the risk also
increases. However, crowd activities can amplify this risk. During the morning peak hours,
the risk for roads and buildings increases rapidly due to commuting activities and then
stabilizes. During the evening peak hours, there is a sustained and long-lasting upward
trend in road risks due to leisure and entertainment activities.

(2) The risk of rainstorm flood disasters for buildings and roads varies significantly
over time. The average risk for buildings is highest during the morning peak hours, more
than twice the average risk during the evening peak hours. The average risk for roads is
basically the same during morning and evening peak hours, but the number of roads at
risk is higher during the evening peak hours. Buildings and roads are at the lowest risk
during midnight rainfall scenarios. Roads have a higher average risk than buildings during
morning and evening peak hours.

(3) The spatial distribution of flood risk shifts with the social activities of urban crowds.
During the morning peak hours, the risk shifts from residential buildings to industrial
buildings, schools, shopping malls, and other areas. As crowds end their daily activities
during the evening peak hours, the risk gradually shifts back to residential buildings.

Based on the research findings, it is recommended that the government should improve
and integrate early warning systems that consider both natural factors, such as rainfall
intensity, and human factors, such as crowd activities. Providing timely and accurate
flood warnings to the public and relevant authorities will facilitate proactive responses.
Moreover, the government should develop comprehensive emergency response plans for
different risk zones that account for various rainstorm flood disaster scenarios, including
morning and evening peak hours.

While the research contributes valuable insights into the risk simulation of urban
rainstorm flood disasters, the need for further advancements in modeling crowd activities
and exploring their intricate connections with disaster dynamics is evident. The simulation
of urban crowd activities only considers the age of the population. However, in future
research, big data will be used to describe the spatiotemporal activity patterns of urban
crowd activities in a more refined manner. By improving the parameters related to the
individual characteristics of the population in the simulation model, deeper insights into the
change process of rainstorm flood disaster risk under the influence of urban crowd activities
can be gained. Additionally, the complex interaction relationship between rainstorm flood
disasters and crowd activities has not been fully explored. For instance, the activity patterns
of the urban crowd may change after receiving rainstorm information or during a disaster
event. To address this limitation, future studies will focus on investigating specific disaster
situations and early warning measures, allowing for a more comprehensive understanding
of the dynamic interactions between rainstorm flood disasters and crowd activities.
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