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Abstract: Inspired by long-distance road transport in industrial logistics in China, this paper studies
a simultaneous loading scheduling and vehicle routing problem over a multi-workday planning
horizon. Industrial cargo often requires specialized facilities, and these facilities vary in performance
and quantity and are subject to available time constraints. Consequently, achieving coordinated
optimization of vehicle routing and loading scheduling becomes a significant challenge in practice.
We describe the studied problem as a multi-trip vehicle routing problem with time windows and
resource synchronization on heterogeneous facilities. First, we develop a mixed integer programming
model in a multi-workday setting to minimize the total travel distance and the number of vehicles.
Moreover, a three-phase heuristic approach is developed. An initial solution is constructed using
a sequential strategy in the first phase, and then an adaptive large neighbourhood search and a
post-optimization procedure based on ejection chains are, respectively, designed to optimize the
two hierarchical objective functions. Finally, extensive computational experiments are conducted
to demonstrate the effectiveness of the proposed method. Specifically, the research results indicate
that in long-distance road transport in industrial scenarios, expanding the planning horizon from a
single workday to a multi-workday period could significantly reduce logistics operational costs and
improve service quality.

Keywords: vehicle routing problem with time windows; multi-trip; heterogeneous facilities;
hierarchical objectives; three-phase heuristic

1. Introduction

This paper is motivated by a long-distance logistics practice in a prominent industrial
cigarette manufacturer in China. The manufacturer needs to arrange a fleet of vehicles
to load cargo with the help of specialized facilities at the distribution center and then
deliver them to customers with varying demands and service time windows. Given the
wide geographical dispersion of customers, the manufacturer typically adopts a strategy of
weekly scheduling, encompassing loading operations and distribution, to deliver cargo
to customers. To reduce the number of vehicles used within a week, multiple trips may
be assigned to a single vehicle, with each trip spanning 2–3 days on average. Further-
more, the scarcity of loading facilities, resulting from their limited number, significantly
impacts the subsequent distribution process. During peak logistics periods, vehicles have
to wait when all facilities are occupied. The maximum number of vehicles that can be
loaded simultaneously is restricted by the number of available facilities, described as re-
source synchronization [1]. Moreover, due to the differences in the performance of various
facilities, the facilities deployed in the distribution center are heterogeneous, indicating
they have different loading speeds. This problem can be defined as a multi-trip vehi-
cle routing problem with time windows and resource synchronization on heterogeneous
facilities (MTVRPTWRS).

Multi-trip vehicle routing permits the assignment of multiple trips to the same ve-
hicle [2]. However, most existing studies ignore the time involved in cargo handling
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associated with each trip. In addition, this problem also addresses a critical yet often over-
looked aspect of the multi-trip vehicle routing problem (MTVRP): the scarcity of loading
and unloading facilities. The above two factors should be taken into account in industrial
logistics because the loading and unloading operations are time-consuming and rely on
scarce facilities. As a result, any scheduling plan that disregards resource synchronization
is inherently suboptimal or infeasible [3]. Acknowledging the importance of these resource
constraints is essential in formulating a feasible and optimal scheduling plan.

The MTVRPTWRS problem is NP-hard as it presents a variant problem of the tra-
ditional vehicle routing problem with resource synchronization. Introducing resource
synchronization constraints implies a complex scheduling problem embedded within the
vehicle routing problem [4]. In the MTVRPTWRS problem, we need to assign multiple
trips to a single vehicle and arrange the sequences for the loading operations mapped
by each trip. Constrained by the time windows, the vehicle must depart from the depot
within a specific time interval, thereby necessitating the completion of the loading operation
within the designated timeframe. To guarantee a feasible schedule, a comprehensive check
is required to evaluate the assignment of available vehicles, the arrangement of loading
operations, and the planning of each vehicle trip. These characteristics pose challenges to
building efficient mathematical models and designing tailored algorithms.

In this study, we consider the hierarchical objectives that prioritize minimizing the
total travel distance (TTD), followed by minimizing the number of vehicles (NV). The
manufacturer’s primary focus is on minimizing TTD since the distribution cost highly
depends on TTD, which has a critical impact on improving enterprise efficiency. When
logistics costs are minimized, the manufacturer then aims to minimize the number of
dispatched vehicles. This consideration stems from the fact that each vehicle is typically
operated by a regular driver. The driver’s familiarity with the entire process, particularly
the loading operations, contributes to increased operational efficiency and higher-quality
delivery service.

The main contributions of this paper are threefold: (1) We introduce a novel variant of
VRP in the industrial logistics environment called MTVRPTWRS with hierarchical objec-
tives, which considers the impact of the availability of loading facilities on the subsequent
routing plan. By incorporating realistic factors, the established model can significantly
enhance the feasibility and quality of the scheduling plan. (2) We formulate this problem as
a mixed-integer linear programming (MILP) model, with the objectives of minimizing TTT
as the primary objective and minimizing NV as the secondary objective. Subsequently, we
devise a three-phase heuristic to solve the problem and use IRACE to adjust the parameters
of the proposed heuristic. (3) We conduct computational experiments on a new set of test
instances for the MTVRPTWRS problem, which is designed based on the classical VRPTW
test instances. The experimental results indicate that the proposed three-phase heuristic
efficiently solves the MTVRPTWRS problem and performs well on the test instances.

The remainder of this paper is organized as follows. A brief review of the relevant
literature is provided in Section 2. In Section 3, we present the problem description and
establish a corresponding MILP model. In Section 4, we develop a three-phase heuristic to
solve the MTVRPTWRS problem, and the performance is evaluated through computational
experiments in Section 5. We conclude this paper and provide some promising directions
for future research in Section 6.

2. Literature Review

Some recent studies have focused on the MTVRP and the vehicle routing problem
with resource synchronization, respectively [5,6]. However, there is a scarcity of research
that jointly addresses the features of “multi-trip” and “resource synchronization” in vehicle
routing problems. To the best of our knowledge, only Huang et al. [7] studied a variant of
MTVRP with resource synchronization related to urban waste collection. In the following
subsections, we comprehensively review relevant studies on MTVRP and the vehicle
routing problem with resource synchronization.
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2.1. Related Works on MTVRP

In the MTVRP problem, each vehicle is allowed to perform multiple trips without
exceeding the maximum working duration. Fleischmann [2] initially proposed a two-
phase framework to tackle the MTVRP. This approach began by constructing multiple
trips and then employed a bin-packing problem heuristic to distribute these trips among a
fleet of vehicles. In the allocation phase, vehicles with predetermined maximum working
durations were treated as capacity-constrained boxes, while trips with varying travel
times were regarded as items with distinct weights. Since its inception, the two-phase
framework has influenced subsequent research on solving the MTVRP. Taillard, Laporte and
Gendreau [6] introduced a two-phase heuristic that utilized a tabu search algorithm with
adaptive memory and developed MTVRP benchmark instances for evaluation purposes.
Prins [5] developed a multi-phase heuristic algorithm aimed explicitly at minimizing
overtime. Mingozzi et al. [7] employed an exact algorithm based on set partitioning to
solve the MTVRP, successfully providing optimal solutions for 42 instances of the problem.
Cattaruzza et al. [8] devised combined operators by integrating VRP neighbourhood
operators such as relocate and swap and operators capable of swapping trips between
different vehicles. These operators were embedded in a hybrid genetic algorithm for local
search, improving solutions for specific MTVRP instances.

The introduction of time windows and time-dependent travel time in the MTVRP
significantly amplifies its complexity. Battarra et al. [9] conducted a study on MTVRP with
time windows, highlighting the requirement for each trip to start within a specific interval
when assigning trips to vehicles. Failure to start a trip within the designated time interval
led to time windows violations for customers. In another study, Pan et al. [10] focused on
MTVRP with time windows and time-dependent travel time. They devised a component to
evaluate the feasibility of a trip within a short time frame, which enhanced the algorithm’s
search efficiency. This approach contributed to improved performance and streamlined the
search process.

In the aforementioned studies, the treatment of loading and unloading operation times
is typically simplified. Most of these studies primarily focus on the loading and unloading
time at the customer locations, often treating it as a fixed duration [9]. Pan, Zhang and
Lim [10] assumed that the loading time at the depot is proportionate to the total service
time required for the trip. This assumption acknowledged the impact of the routing plan
on loading time but failed to account for potential waiting time caused by limited loading
and unloading facilities.

2.2. Related Works on Vehicle Routing Problem with Resource Synchronization

Resource synchronization was defined as follows: “At any point in time, the total
utilization or consumption of a specified resource by all vehicles must be less than or
equal to a specified limit” [1]. The vehicle routing problem with resource synchronization
generally emerged from the logistics domain, where specific scarce facility resources played
a significant role in the routing process. For instance, in industrial logistics, the loading
and unloading operations heavily rely on specialized facilities such as docking stations [3],
pumps [11–15], and loaders [16,17].

In the vehicle routing problem with resource synchronization, there exist two crucial
operations: constructing optimal routes for vehicles, assigning facilities and determining
sequences for their loading and unloading operations. While cargo loading and unloading
operations may occur at the depot and each customer node visited by vehicles, the allocation
of facilities and sequences of the loading and unloading operations need to be taken into
consideration only when the number of vehicles visiting a particular node exceeds the
capacity of available facilities. Based on the distribution of facilities across nodes in the road
network, two types of deployment modes can be distinguished: multi-point single-facility,
where each node is equipped with a single facility, and single-point multi-facility, where a
single node accommodates multiple facilities.
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In a multi-point single-facility scenario, facilities are dispersed among various nodes
in the network, with each node assigned a unique facility. In other words, although mul-
tiple vehicles are allowed to access the same node, the facility can only accommodate a
single vehicle at any given time. Thus, designing a proper sequence for vehicles to access
the facilities at a specific node is critical. In a dynamic airport AGV cargo system with
multi-resource constraints, Ebben, van der Heijden and van Harten [3] designed a serial
scheduling algorithm to maximize the delivery rate. Asbach, Dorndorf and Pesch [11]
presented a novel local search approach to scheduling the routes of concrete mixer vehicles
throughout a workday, ensuring efficient transportation from concrete-producing depots
to concrete-demanding customers. Schmid, Doerner, Hartl and Salazar-González [13] pro-
posed a hybrid algorithm that combines integer multi-commodity network flow (MCNF)
and variable neighbourhood search (VNS) techniques to address the ready-mix concrete
routing problem, which involved scheduling the transportation of concrete between asphalt
concrete plants and construction sites and routing the fleet of vehicles to fulfil these trans-
portation requests. Grimault, Lehuédé and Bostel [15] developed a two-phase framework
to solve the ready-mix concrete routing problem by dividing the order first and then routing
second. The algorithm adopted in the routing phase is based on Ebben, van der Heijden
and van Harten [3]. Following that, Grimault, Bostel and Lehuédé [12] further proposed an
adaptive large neighbourhood search algorithm to address the routing problem, where the
removals in this algorithm were designed considering both routing and scheduling and the
repair framework employed aligned with the aforementioned serial scheduling algorithm.
El Hachemi, Gendreau, and Rousseau [17] studied a real-life log truck scheduling problem
that exhibited similar characteristics to the concrete delivery problem, e.g., full truckload
and resource synchronization constraints.

In a single-point multi-facility scenario, multiple facilities are deployed at a node
that serves all vehicles passing through it, such as the depot or intermediate site. In the
urban garbage collection process, garbage collected by the vehicle needs to be unloaded
and processed on limited disposal. Huang et al. [18] developed a set partition model
with two sets of mutually exclusive constraints and proposed a branch-pricing-cutting
algorithm to solve the urban garbage collection problem, which shares the same features as
the problem investigated in our study. Building upon the concept of “route first assemble
second” [19], Grangier et al. [4] studied the vehicle routing problem with cross-docking
and incorporated a resource constraint examination procedure during the route generation
phase to enhance solution quality. The results proved that the scheduling heuristic has an
excellent performance.

Existing research addresses real-life transportation problems with industry-specific
characteristics, leading to varying assumptions and constraints. Specifically, studies focus
on routing design and loading/unloading scheduling within two deployment modes. The
most complex scenario involves the loading or unloading scheduling in a multi-facility
mode, which requires a specified loading sequence and facility assignment. In our study,
the MTVRPTWRS problem considers all loading facilities located at a unique depot, which
is classified as the single-point multi-facility scenario. However, previous research oversim-
plifies practical scenarios by assuming homogeneous facilities and primarily focusing on
a single objective, disregarding hierarchical objectives and diverse management require-
ments. Therefore, there is a need to explore approaches that consider hierarchical objectives
to accommodate enterprises’ diverse needs effectively.

3. Problem Description and Formulation
3.1. Problem Description

The sets, parameters, and variables for the problem description and mathematical
formulation of the MTVRPTWRS problem are defined in Table 1.
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Table 1. List of notations.

Sets

H The set of workdays, H = {1, . . . , |H|}
V The set of vertices, V = {0, n + 1} ∪ Vc
Vc The set of customers, Vc = {1, . . . , n}
A The set of arcs, A = {(i, j)|i, j ∈ V, i 6= j}
K The set of vehicles, K = {1, . . . , |K|}
M The set of facilities, M = {1, . . . , |M|}

VM
The set of virtual replicas of loading facilities, where each facility with multiple
available periods is treated as a distinct entity with a single available period,
VM = {1, . . . , |M||H|}

R The set of trips, R = {1, . . . , |R|}, the number of trips in R does not exceed the
number of customers |Vc|

J The set of the loading operations mapped by the set of trips, J =
{

J1, . . . , J|R|
}

MS
The set of virtual trips whose mapped loading operations could be used as the first
virtual loading operation for different facilities on different workdays,
MS = {|R|+ 1, . . . , |R|+ |M||H|}

ME
The set of virtual trips whose mapped loading operations could be used as the last
virtual loading operation for different facilities on different workdays,
ME = {|R|+ |M||H|+ 1, . . . , |R|+ 2|M||H|}

KS The set of virtual trips, where each trip can be used as the first virtual trip for a
vehicle, KS = {|R|+ 2|M||H|, . . . , |R|+ 2|M||H|+ |K|}

KE The set of virtual trips, where each trip can be used as the last virtual trip for a
vehicle KE = {|R|+ 2|M||H|+ |K|+ 1, . . . , |R|+ 2|M||H|+ 2|K|}

Parameters

qi The demand of customer i
[ei, li] The service time window of customer i

si The service duration at customer i
tij The time travelled from node i to node j
cij The distances travelled from node i to node j, tij = cij numerically
TH The working duration of a workday
TM The available duration of the facilities on a workday
Q The maximum capacity of a vehicle
M A large number

Decision variables

xijr
A binary variable is equal to 1 if arc (i, j) ∈ A is travelled during trip r and 0
otherwise

yrumh
A binary variable is equal to 1 if the mapped loading operation of trip r and u are
processed sequentially on the facility m on the hth workday and 0 otherwise

zirmh
A binary variable is equal to 1 if node i is visited by trip r, and the mapped loading
operation is executed on the facility m on the hth workday and 0 otherwise

gruk
A binary variable is equal to 1 if the trip r and u are executed sequentially by
vehicle k

Dk A binary variable is equal to 1 if at least one non-virtual trip is assigned to vehicle k

br
A continuous variable represents the beginning time of the loading operation
mapped by trip r

wir A continuous variable represents the service beginning time at customer i in trip r

Auxiliary variable

Ur The set of customers visited by trip r
φr The quantity of cargo loaded by a vehicle during trip r

Lmh The working duration of facility m on the hth workday
Prm The processing time of the loading operation Jr on facility m

[ar, dr] The processing time window for the loading operation Jr
VPr The trip duration in which trip r occupies the assigned vehicle

The planning horizon of the MTVRPTWRS problem consists of multiple workdays,
which is denoted as H. The working duration of a workday is TH and the duration of
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the planning horizon is |H| ∗ TH . The network is defined on a complete direct graph
G = (V, A). The graph consists of the node set V = {0, n + 1} ∪ Vc and the arc set A.
Node 0 represents the start of a trip, and node n + 1 represents the end of a trip. The node
set Vc represents the customer to be served. Each node i ∈ V is associated with a service
time si, a demand qi, and a time window [ei, li]. Note that q0 = qn+1 = 0, s0 = sn+1 = 0,
e0 = en+1 = 0 and l0 = ln+1 = |H| ∗ TH . Each arc (i, j) ∈ A associates with a travel time
tij and travel distance cij. Assuming that the vehicle travels at a constant speed, the two
values can be assumed to be numerically equal, i.e., tij = cij. A fleet of homogeneous
vehicles with a capacity of Q is deployed to carry out the deliveries. A group of facilities is
responsible for handling the loading operations, with each facility having a loading speed
of δm. The facility is available for a duration of TM on each workday, which is shorter than
the working duration of a typical workday, i.e., TM < TH. The available period of each
loading facility on the hth workday can be expressed as [(h− 1) ∗ TH , (h− 1) ∗ TH + TM],
h ∈ H.

The following assumptions are introduced in the MTVRPTWRS problem:

The processing time for a loading operation can be acquired by dividing the quantity of
loaded cargo by the loading speed of the assigned facility.
The number of vehicles loaded simultaneously cannot exceed the number of facilities
|M|. Vehicles need additional waiting time when all the loading facilities are occupied by
other vehicles.
Once a loading operation is initiated, it must be completed without interruptions or switch-
ing to alternative facilities.
Each loading operation must start and finish within the available period of loading facilities
in a particular workday.
The time window is a hard constraint, meaning that vehicles are only allowed to begin
service within the interval defined by the time window.
Each customer can only be visited once by a single vehicle.

Each vehicle has the flexibility to enter and exit the depot at any time during the
planning horizon but has to return to the depot before the end of the final workday.

The MTVRPTWRS problem entails developing a weekly scheduling plan that involves
identifying multiple trips for vehicles and scheduling the associated loading operations.
To enhance understanding and facilitate a comprehensive analysis of the problem, we
decompose it into three distinct levels of subproblems: routing design (lowest level), loading
scheduling (middle level), and trip scheduling (highest level).

At the lowest level, the routing design subproblem focuses on generating a routing
plan that includes multiple trips to meet customer requirements. The trips in the plan
are represented by the set R. Each trip, denoted as r, visits a set of customers, Ur, and
the amount of cargo loaded during trip r is φr, calculated as the sum of demand for all
customers in Ur. Before carrying out a trip, the corresponding loading operation must be
completed first. As a result, each trip is associated with a loading operation. Analyzing
the trip attributes enables us to derive two attributes of the mapped loading operation: the
processing time and the processing time window, which play a critical role in the loading
scheduling subproblem. Noted that mapped loading operations refer to the correspondence
between a vehicle’s trip and the corresponding loading operation performed before the
trip. All loading operations are stored in the set J. The processing time of a loading
operation Jr on facility m, denoted as Prm, depends on the loading speed and cargo quantity:
Prm = φr/δm. The processing time window is vital in connecting the routing design and
loading scheduling subproblems. It serves as an expected timeframe for the completion of
the loading operation. In other words, the processing time window establishes a specific
timeframe within which a vehicle departs from the depot, ensuring trip feasibility and
minimizing waiting time at all customer points. A trip is treated as feasible if the vehicle can
depart from the depot at time zero and reach subsequent customers within their specified
time windows. Departing earlier would lead to increased vehicle waiting time, while
departing later would violate the time window constraints for visiting some customers.
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Consequently, the loading operation is expected to be completed within this period. The
processing time window is precisely defined by Definition 1, and the detailed computation
rules can be found in Appendix A.

Definition 1. (Processing time window). The processing time window of the loading operation Jr
mapped by trip r is represented by [ar, dr] , where ar denotes the earliest expected finish time of Jr
and dr represents the latest completion time, also referred to as the due date.

In the middle level, the loading scheduling subproblem aims to assign loading operations
associated with the trip set R to different facilities. For convenience, we consider the same
facility on different working days as distinct virtual facilities and introduce a set of virtual
replicas of loading facilities. Each facility with multiple available periods is treated as a
distinct entity with a single availability period, denoted as VM = {1, . . . , |M||H|}.

By integrating the routing plan and loading scheme, we determine two crucial time
points for each trip: the beginning time of the loading operation and the time of return to
the depot. We define the vehicle utilization period VPr for trip r as the timeframe spanning
from the start of the loading operation to the vehicle’s arrival back at the depot. If trip r is
assigned to vehicle k, it will occupy the vehicle during VPr, while the remaining periods can
be scheduled for other trips. At the highest level, the trip scheduling subproblem involves
generating a trip scheme that assigns and arranges trips on different vehicles, ensuring
non-overlapping vehicle utilization periods for multiple trips assigned to the same vehicle.

3.2. Mathematical Formulation

The MTVRPTWRS model comprises two objective functions and a set of constraints.
To align with the three subproblems that form the MTVRPTWRS problem, we categorize
the constraints into three distinct parts: constraints (3)–(12) correspond to the routing
design subproblem, constraints (13)–(24) pertain to the loading scheduling subproblem,
and constraints (25)–(30) relate to the trip scheduling subproblem.

1. Objective functions

minTTD = ∑
r∈R

∑
i∈V

∑
j∈V

xijrcij (1)

min NV = ∑
k∈K

Dk (2)

Equation (1) is the primary objective, which is to minimize TTD, and Equation (2) is
the secondary objective, which is to minimize NV.

2. Constraints related to the routing design subproblem

∑
r∈R

∑
j∈V

xijr = 1(∀i ∈ Vc) (3)

∑
j∈V

∑
i∈V

xijrqi ≤ Q (∀r ∈ R) (4)

∑
j∈V

xijr = ∑
j∈V

xjir (∀i ∈ Vc, r ∈ R) (5)

∑
i∈V

x0ir = ∑
i∈V

xi(n+1)r ≤ 1 (∀r ∈ R) (6)

∑
i∈V

xi0r = ∑
i∈V

x(n+1)ir = 0 (∀r ∈ R) (7)

∑
i∈V

∑
j∈V

xijr = 0 (∀r ∈ MS ∪ ME ∪ KS ∪ KE) (8)
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∑
j∈Vs

∑
i∈Vs

xijr ≤ |Vs| − 1 (∀r ∈ R, Vs ⊆ Vc, |Vs| ≥ 2) (9)

wjr − (wir + si + tij) ≥M
(
xijr − 1

)
(∀i, j ∈ V, r ∈ R) (10)

wir +M(∑
j∈V

xijr − 1) ≤ li (∀i ∈ V, r ∈ R) (11)

wir +M(1− ∑
j∈V

xijr) ≥ ei (∀i ∈ V, r ∈ R) (12)

Constraint (3) mandates that each customer is visited exactly once. Constraint (4)
specifies the capacity of the vehicle. Constraint (5) enforces flow conservation across all
customer nodes. Constraints (6) and (7) ensure that each trip begins at node 0 and ends
at node n + 1. Constraint (8) guarantees that virtual trips have no access to customers.
Constraint (9) represents the classical sub-tour elimination constraint. Constraint (10)
considers the time continuity of adjacent arcs within a trip. Constraints (11) and (12)
impose hard time window constraints for customers and the depot.

3. Constraints related to the loading scheduling subproblem

∑
j∈V

xijr = ∑
h∈H

∑
m∈M

zirmh (∀i ∈ Vc, r ∈ R) (13)

∑
h∈H

∑
m∈M

∑
u∈R∪ ME

yrumh ≤ 1 (∀r ∈ R) (14)

∑
i∈V

∑
j∈V

xijr ≤M ∑
h∈H

∑
m∈M

∑
u∈R∪ ME

yrumh (∀r ∈ R) (15)

∑
i∈V

zirmh ≤M ∑
u∈R∪ ME

yrumh (∀r ∈ R, m ∈ M, h ∈ H) (16)

∑
i∈Vc

zirmh = 0 (∀r ∈ MS ∪ ME, m ∈ M, h ∈ H) (17)

∑
u∈R∪ ME

yrumh = ∑
u∈R∪ MS

yurmh (∀r ∈ R, m ∈ M, h ∈ H) (18)

∑
r∈MS

∑
u∈R∪ ME

yrumh = ∑
r∈ME

∑
u∈R∪ MS

yurmh = 1 (∀m ∈ M, h ∈ H) (19)

∑
r∈ME

∑
u∈R∪ MS

yrumh = ∑
r∈MS

∑
u∈R∪ ME

yurmh = 0 (∀m ∈ M, h ∈ H) (20)

w0r ≥ br + ∑
i∈V

qizirmh/δm +M( ∑
u∈R∪ ME

yrumh − 1) (∀r ∈ R, m ∈ M, h ∈ H) (21)

bu − br +M(1− yrumh) ≥ ∑
i∈V

qizirmh/δm (∀r ∈ R ∪ MS, u ∈ R ∪ ME, m ∈ M) (22)

br ≥M( ∑
u∈R∪ ME

yrumh − 1) + (h− 1) ∗ TH (∀r ∈ R ∪ MS, m ∈ M, h ∈ H) (23)

br + ∑
i∈V

qizirmh/δm ≤M(1− ∑
u∈R∪ ME

yrumh) + (h− 1) ∗ TH + TM (∀r ∈ R, m ∈ M, h ∈ H) (24)

Constraints (13)–(16) ensure that a mapped trip is assigned to a specific facility on
a given workday only if it involves delivery, and Constraints (16) and (17) establish the
relationship between decision variables xijr and yrumh, as well as zirmh and yrumh by in-
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troducing a very large positive value M. Constraint (17) prohibits virtual trips from
accessing any customers. Constraint (18) mandates that non-virtual loading operations
must have both a predecessor and a successor, ensuring proper sequencing and connec-
tivity. Constraints (19) and (20) specify that the loading sequence at each facility should
start with a virtual loading operation from the set MS and end with another virtual loading
operation from the set ME. Constraint (21) enforces that delivery can only begin after
the completion of loading operations. Constraint (22) ensures that subsequent loading
operations at any facility commence no earlier than the completion of the preceding loading
operation. Constraints (23) and (24) guarantee that each loading operation starts and ends
within the available period of facilities on a given workday.

4. Constraints related to the trip scheduling subproblem

∑
i∈V

∑
j∈V

xijr ≤M ∑
k∈K

∑
u∈R∪ KE

gruk (∀r ∈ R) (25)

∑
r∈R∪ KS

∑
u∈R∪ KE

gruk ≤MDk (∀k ∈ K) (26)

∑
u∈R∪ KS

gurk = ∑
u∈R∪ KE

gruk (∀r ∈ R, k ∈ K) (27)

∑
r∈KS

∑
u∈R∪ KE

gruk = ∑
r∈KE

∑
u∈R∪ KS

gurk = 1(∀k ∈ K) (28)

∑
r∈R∪ KE

∑
u∈KS

gruk = ∑
r∈R∪ KS

∑
u∈KE

gurk = 0(∀k ∈ K) (29)

w(n+1)r ≤ bu +M(1− gruk) ∀r, u ∈ R, k ∈ K (30)

Constraints (25) and (26) require that each non-empty trip be assigned to a single
vehicle. Constraint (27) ensures continuity between consecutive trips within the same
vehicle. Constraints (28) and (29) dictate that each vehicle begins with a virtual trip from
the set KS and ends with another virtual trip from the set KE. Constraint (30) guarantees
that the vehicle cannot be loaded with the cargo required for the next trip until it returns to
the depot from the preceding trip.

3.3. Illustration of an Example

In order to enhance understanding of the MTVRPTWRS problem, we illustrate a
small example.

Example 1: This example involves serving 11 customers within a planning horizon
spanning two workdays. The customer service information can be found in Table 2. Note
that nodes 0 and 12 correspond to the beginning and end of a trip, respectively. Each
workday has a working duration TH of 50 and an available duration TM of 30. Two facilities
are available, with loading speeds of 2 and 1, respectively.

Table 2. Information on customer requests.

1 2 3 4 5 6 7 8 9 10 11

qi 4 4 2 8 3 4 3 2 6 5 3
si 5 4 2 8 3 4 3 2 6 5 3
ei 50 60 10 20 20 20 30 10 10 20 40
li 90 90 30 40 60 80 70 20 40 90 90

The solution for the MTVRPTWRS problem comprises a routing plan, a loading
scheme, and a trip scheme. The optimal routing plan is presented in Table 3 and Figure 1.
Table 4 details the attributes of the mapped loading operations, including the processing
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time and the processing time window. Furthermore, Figure 2 visualizes the loading and trip
schemes through Gantt charts, offering a clear overview. For more detailed information,
Tables 5 and 6 present comprehensive data on the loading and trip schemes in tabular form.

Table 3. The results of the routing plan (TTD = 104).

Trip Travel Time τr Quantity of Cargo φr Trip Sequence

r1 20 4 〈0, 1, 2, 12〉
r2 27 10 〈0, 3, 4, 12〉
r3 31 10 〈0, 5, 6, 7, 12〉
r4 29 8 〈0, 8, 9, 12〉
r5 18 8 〈0, 10, 11, 12〉
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Table 5. The results of the loading scheme (NV = 3).

Facility
The First Workday The Second Workday

Sequence Working Time Pm Sequence Working Time Pm

M1 (J2) 10 (J5) 8
M2 (J4, J3) 9 (J1) 4

Table 6. The results of the trip scheme (NV = 3).

Vehicle Trip Sequence

k1 〈r2, r1〉
k2 〈r3〉
k3 〈r4, r5〉

The routing plan involves visiting 11 customers distributed across five trips. As an
example, the sequence of the trip r1 is <0,1,2,12>. The TTD is the total travel time for all
trips, totalling 104. Based on the routing plan, we derive a set of loading operations with
distinct attributes, illustrated in Table 4.

Figure 2 illustrates a Gantt chart displaying the loading scheme and trip scheme. On
the first workday, the loading operation J2 is processed at facility M1, while J4 and J3 are
sequentially handled at facility M2. On the second workday, J5 is processed at M1, and
J1 is processed at M2. Examining Table 4, we observe that the processing time window of
J4 is 0, 9, indicating that it must be completed between 0 and 9 to serve customers 8 and 9
within their requested time windows. In the current loading scheme, the loading operation
J4 is completed at time 4, aligning with the required processing time window and enabling
the subsequent trip to be feasibly executed. In the trip scheme, three vehicles are assigned
to five trips: vehicle k1 executes trips r2 and r1 sequentially, vehicle k3 executes trips r4
and r5 sequentially, and vehicle k2 exclusively handles trip r3. The routing plan depicted
in Figure 1 and the loading and trip schemes showcased in Figure 2 comprises a solution
featuring a TTD of 104 and an NV of 3.

4. Solution Approach

The MTVRPTWRS problem is NP-hard and the issue studied in this paper arises from
real-world scenarios, often characterized by large-scale instances that require obtaining feasible
solutions within a limited solving time. When using exact methods to solve the mathematical
formulation presented in Section 3, only very small problem instances can be tackled. Addi-
tionally, these exact methods typically rely on state-of-the-art commercial MIP solvers, which
may not be suitable for practitioners. Instead, heuristic algorithms and simulation methods
have become the primary approach for solving vehicle routing problems in practical scenar-
ios [20–22]. Therefore, our solution approach is based on a three-stage heuristic framework,
allowing us to efficiently handle real-world-sized instances and achieve high-quality solutions
in a reasonable amount of time without the need for an additional solver.

Our solution approach comprises three phases. In the first phase, we utilize a se-
quential strategy to address the routing design and loading scheduling subproblems and
construct the initial routing plan and loading scheme. In the second phase, we employ
the Adaptive Large Neighborhood Search (ALNS) algorithm to minimize the TTD and
acquire an optimized routing plan alongside a feasible loading scheme. To enhance the
exploration capabilities of ALNS, we integrate a strategy enabling it to search in infeasible
regions, complemented by an augmented cost function with penalty terms. Notably, the
trip scheduling subproblem is not considered during the first and second phases, and trips
are individually assigned to vehicles by default.

The feasible routing plan and loading scheme obtained in the second phase become
the input for the third phase. In this final phase, we adopt a post-optimization procedure
based on ejection chains to construct a trip scheme and further optimize the loading scheme
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correspondingly to improve the objective NV. To streamline the third phase, we incorporate
the processing time window to swiftly evaluate the feasibility of each trip within different
loading and trip schemes.

For a comprehensive overview of our proposed three-phase heuristic approach, please
refer to Figure 3.
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4.1. First Phase: Initial Solution Construction

In the initial phase, we adopt a sequential strategy inspired by the “route first assemble
second” method proposed by Froger, Jabali, Mendoza and Laporte [19]. This strategy
entails two key steps: firstly, constructing a set of trips R using a basic greedy heuristic,
and secondly, assigning the corresponding loading operations to different facilities and
workdays based on scheduling rules. The scheduling rule, derived from the parallel
machine scheduling rule introduced by Dogramaci and Surkis [23], aims to minimize
total tardiness. The rule prioritizes unscheduled loading operations with the earliest due
date and assigns them to facilities with minimum slack. In this context, minimum slack
represents the difference between the due date and the completion time of a loading
operation on different facilities.

Sequential Strategy:

Step 1. Employ a basic greedy heuristic to generate a set of trips, denoted as R. This
heuristic starts with an empty route and systematically inserts customers by
considering the minimized insertion costs. A new empty trip is created if no
customers can be feasibly inserted. This iterative process continues until all
customers are successfully inserted. The customer insertion cost is determined by a
linearly weighted combination of the increased distance and the delayed arrival
time of the successor node after inserting the candidate customer.

Step 2. Generate the set of mapped loading operations J from the set of trips R obtained in
Step 1. Compute the processing time Prm and processing time window [ar, dr] of
each mapped loading operation based on the attributes of the trip r.

Step 3. Sort the loading operations in non-decreasing order according to their due dates and
obtain a list of unscheduled loading operations, denoted as CJ.

Step 4. Assign the loading operations in CJ to the different facilities with minimum slack
time in turn. The slack time SLj

mh of the loading operation Jr on the facility m and

the hth workday is defined as SLj
mh = br + Prm − dr. A negative value of slack time

indicates that the loading operation is completed later than the due date. If the slack
time on all the facilities is negative, assign the loading operation to the facility and
order with the largest value of slack time; otherwise, assign it to the facility with the
smallest positive slack time.
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4.2. Second Phase: TTD Minimization

In the second phase, we employ ALNS to improve the initial routing plan and loading
scheme obtained in the first phase, to minimize TTD. We aim to identify the routing plan
with minimal TTD and a corresponding feasible loading scheme. To enhance the search
performance of the algorithm, we enable exploration within the infeasible solution space
and introduce an associated augmented cost function incorporating penalty terms.

ALNS is a powerful metaheuristic algorithm that has gained widespread popularity
for its efficiency and effectiveness in solving various variants of vehicle routing problems.
It starts with an initial solution and iteratively operates based on the principle of destroying
and repairing solutions to find better-quality solutions. The algorithm’s adaptive nature
allows it to dynamically adjust its search strategy during the optimization process based
on the encountered solution quality and problem characteristics, achieving a balance
between exploration and exploitation to escape local optima and improve solution quality.
Meanwhile, we also incorporate the Metropolis criterion from Simulated Annealing to
enhance the algorithm’s exploration ability.

4.2.1. An Augmented Cost Function with Penalty Terms

In the second phase, both feasible and infeasible solutions are permitted, and a solution
is evaluated using an augmented cost function:

f (S) = TTD + α ∑
i∈Vc

∑
r∈R

max{wir − li, 0}+ β ∑
h∈H

∑
m∈M

(Lmh − TM), (31)

In the above equation, the first term represents the primary objective TTD, the second
term is the penalty cost function for violating the customer time window constraints, and
the third is the penalty cost function for violating the available duration of facilities. Lhm
denotes the total working duration of facility m on the hth workday, which is the sum of
the processing times of all loading operations assigned to facility m on that workday. The
parameters α and β correspond to different penalization factors.

An adaptive learning mechanism is employed to effectively guide the search process
and generate a high-quality feasible solution by the end of the second phase. The penal-
ization parameters α and β are initially set to α0 and β0, respectively, and their values
are constrained within the intervals (amin, αmax) and (βmin, βmax). The search process is
divided into segments consisting of 100 iterations each, with the penalization coefficients
remaining constant throughout each segment. At the end of every segment, the value of α
is updated based on the following criteria: if the number of infeasible solutions obtained
within the segment exceeds the threshold ρ1, α is multiplied by 1 + λ; if the number falls
below the threshold ρ2, α is divided by 1 + λ. The adjustment of parameter β follows
the same rules as α. For the setting of the above parameter values, please refer to the
experimental part of Section 5.

4.2.2. Removal and Repair Operators

In each iteration of ALNS, the removal operators remove nq customers and put them
into requests bank B temporarily. Subsequently, the repair operators select customers from
requests bank B and reinsert them into the current partial solution. The value of nq is
randomly determined within the intervals of (εmin ∗ |Vc|, εmax ∗ |Vc|), where εmin and εmax
represent the minimum and maximum percentages of customers to be removed, respectively.

For the removal operator, we employ the following five operators.

1. Random customer removal: This operator randomly removes nq customers.
2. Random route removal: This operator bears similarities to the random customer

removal operator; however, it removes all the customers in the selected trip simulta-
neously rather than individual customers. The process involves randomly selecting a
trip. If removing all customers along the trip exceeds nq, a random subset of nodes
within the trip is selected for removal. Conversely, if the removal of all customers in
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the trip is within the limit, all customers along the trip are removed. This process is
repeated until the desired number of customers nq, is reached.

3. Related customer removal: This operator attempts to improve the solution by remov-
ing a set of customers with high relatedness and rearranging their insertion positions.
The relatedness RL(i, j) between the customer i and j consists of distance and time
terms, defined as follows RL(i, j) = cij +

∣∣wi − wj
∣∣, where wi and wj denote the start

time of service at customer i and j. The process begins by selecting a customer at
random. Subsequently, a customer is randomly chosen from the request bank for
comparison. The remaining unremoved customers are then sorted in non-decreasing
order based on the relatedness with the compared customer, giving higher preference
to the candidate with lower relatedness. The process is repeated until the desired
number of nodes nq have been removed.

4. Worst removal: This operator aims to enhance the solution by identifying a
new insertion position for the customer with the high customer insertion cost.
The customer insertion cost of customer i, denoted as cost(i, S)−, is calculated as
cost(i, S)− = f (S)− f−i(S), where f (S) and f−i(S) denote the augmented cost func-
tion before and after removing customer i from the current solution S, respectively.
The remaining unremoved customer are then sorted in non-increasing order according
to customer insertion cost, giving higher priority to the candidate customer with the
higher customer insertion cost. The process is repeated until the desired number of
nodes nq have been removed.

5. Facility tardiness removal: This operator aims to decrease the overtime value of
a facility by removing customers in the trip associated with the loading operation
assigned to the facility. If the total processing time of assigned loading operations on
a facility surpasses the available duration of the facility for a given workday, it will
be considered overtime. The process is repeated until either the number of removed
customers reaches nq or all facilities across all workdays are within the designated
available period. Generally, there is a higher possibility of removal for customers with
greater demand.

For the repair operator, we propose the following two operators.

1. Greedy insertion: this operator always selects customer i from requests bank B with
the smallest insertion cost Cost(i, s)+, and inserts it into the corresponding trip and
position. The process is repeated until all customers stored in requests bank B are
successfully inserted into the trip. The value of the change in the augmented cost
function f (S), represented by ∆ fi,r, indicates the impact of inserting customer i into
trip r. If inserting customer i into trip r would violate the vehicle capacity constraint,
then ∆ fi,r is set to +∞. The insertion cost Cost(i, s)+ of customer i is defined as the
minimum ∆ fi,r among all possible trips, denoted as Cost(i, s)+ = min

r∈R
∆ fi,r.

2. Two-regret insertion: The operator prioritizes customer i with the highest regret value
RVi. The process is repeated until all customers stored are reinserted into the solution.
Firstly, compute the value ∆ fi,r for inserting customer i in all candidate trips and
sort them in non-decreasing order. If the index of ∆ fi,r among all candidate trips is
j, denote it as ∆ fi,rj . Then the regret value RVi represents the difference between the
insertion cost of the best trip ∆ fi,r1 , and the second-best route ∆ fi,r2 , calculated as
RVi = ∆ fi,r2 − ∆ fi,r1 .

4.2.3. Adaptive Weight Mechanism

In each iteration of the ALNS algorithm, we employ a roulette wheel mechanism
to select a pair of removal and repair operators from the candidate operators and recre-
ate the solution. Each operator is assigned a weight, with higher weights indicating a
greater possibility of selection. As operators’ performance can differ depending on the
problem structure, we follow the practice proposed by Ropke and Pisinger [24] and utilize
an adaptive weight mechanism to enhance the selection of operators better suited for
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the MTVRPTWRS problem. This approach dynamically updates the weights of opera-
tors based on their historical performance, increasing the possibility of selecting more
effective operators.

Considering 100 iterations as a segment, the weight of each operator remains constant
within the segment and is uniformly updated at the segment’s end. Let wj,p represent
the weight of operator j in segment p. The weight of operator j in segment p + 1 is then
calculated as follows:

wj,p+1 = (1− γ)wj,p + γ
ϕj,p

max
{

1, σj,p
} , (32)

where ϕj,p denotes the score accumulated by operator j in segment p, σj,p represents the
cumulative times that operator j is selected in segment p, and γ ∈ (0, 1) controls the speed
of weight adjustment. Following the approach presented by Ropke and Pisinger [24], we
set γ = 0.1.

Within the segment p, if the operator i is selected in a given iteration, the cumulative
times θj,p of its selection is incremented by one, and the cumulative score ϕj,p is updated
based on the following three cases:

ϕj,p =


ϕj,p + ξ1, i f f (Snew) < f (Sbest),
ϕj,p + ξ2, i f f (Sbest) < f (Snew) < f (S),
ϕj,p + ξ3, i f f (S) < f (Snew) but be accepted,

(33)

where Sbest indicates the globally best solution found so far, S represents the current solution
being compared, Snew denotes the newly recreated solution. In the first case, when a new
globally best solution is generated, then the scores of the removal and repair operator
involved are increased by ξ1. In the second case, when a new solution better than the
current solution is found, then the scores are increased by ξ2. In the third case, a new
solution inferior to the current solution is constructed but is accepted with the probability
e−( f (Snew)− f (S))/TP, then the scores are increased by ξ3. The third solution acceptance
criterion is derived from the simulated annealing algorithm, known as the Metropolis
criterion. This criterion prevents the algorithm from getting stuck in local optima and
enhances its exportation. The temperature parameter, TP, is initially set to TPinitial and
gradually decreases as TP = TP ∗ cooling, where 0 < cooling < 1. We set the TPinitial to
a value that ensures a 50% probability of accepting a solution 5% worse than the current
solution, as described in Ropke and Pisinger [24].

The pseudocode of the ALNS algorithm for the second phase is described as shown in
Algorithm 1.

Algorithm 1 ALNS algorithm

1: Sbest = S0; S = S0; TP = TPinitial //S0 denote the initial solution
2: while termination conditions are not met do:
3: select removal and repair operators adaptively
4: Snew = RemovalAndRepair(S)
5: if f (Snew) < f (Sbest) then:
6: Sbest = Snew; S = Snew;
7: end if
8: if f (Snew) < f (S) then:
9: S = Snew

10: else if f (Snew) > f (S) then:
11: accepted S = Snew with probability e−( f (Snew)− f (S))/TP

12: end if
13: update the scores of operators and penalty coefficient, TP = TP ∗ cooling
14: end while
15: return Sbest
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4.3. Third Phase: NV Minimization

In the second phase, we obtain a routing plan with a minimized TTD and a corre-
sponding feasible scheduling scheme. Note that in the second phase, each vehicle performs
a separate trip by default, and the number of trips is the number of vehicles dispatched. In
the third phase, we further attempt to assign multiple trips to the same vehicle to reduce the
number of vehicles while maintaining the original routing plan, which involves optimizing
the loading and trip scheduling subproblems. Under different loading and trip schemes,
vehicles leave the depot at different times, which subsequently affects the arrival time of
different customers within the trip. If the arrival time of a customer does not fall within
the required time window, the loading and the trip scheme are viewed as infeasible. Con-
sidering that the trip sequence is fixed, we utilize the processing time window to examine
whether the customer time window constraint is violated under different loading schemes
and trip schemes in a short time.

The post-optimization procedure is designed on the ejection chain. The ejection chain
was first proposed by Glover [25] and has shown good performance in solving VRPTW
problems to minimize the number of vehicles [26,27]. In the post-optimization procedure,
we prioritize the removal of vehicles with the lowest unitization and place the trips assigned
to that vehicle into the ejection pool, then sequentially find feasible insertion positions for
the removed trip in the current loading and trip schemes. If a feasible insertion position
cannot be obtained for a removed trip, the removal operation for that vehicle is backtracked,
and another attempt is made to remove the vehicle with the second lowest utilization. If
all the removed trips are successfully inserted into the remaining vehicles, continue to
select the remaining removed vehicles based on the utilization of vehicles and repeat the
process until the removal operation fails for all vehicles. Vehicle utilization is the ratio of
the total duration of the vehicle utilization period for all trips assigned to that vehicle to
the planning horizon.

Post-optimization procedure

Step 1. Sequence the vehicles in the no-decreasing order based on their vehicle utilization,
and get a candidate list of removing vehicles CK.

Step 2. If the candidate list CK is empty, skip to Step 12; otherwise, remove the first vehicle
k in CK, remove all the trips assigned to vehicle k, and put them into the ejection
pool EP.

Step 3. If the EP is empty, skip to Step 1; otherwise, select the trip r with the earliest due
date dr in EP.

Step 4. Compute the deviation time of the loading operation Jr mapped by trip r in different
feasible candidate insertion positions and get a candidate insertion list ML. An
insertion position of a loading operation includes the assigned workday h, facility m,
insertion index j, and beginning time br. The deviation time serves as merit to assess
the different insertion positions, with smaller values indicating better insertion

positions. For a given facility m and hth workday, let Ahm =
{

J1, . . . , J|Ahm |
}

denotes

the loading sequence. To determine the deviation time, insert Jr into the jth position
of the sequence Ahm and record the deviation time according to the following two
cases: (1) if the loading operation can be completed within the processing time
window, then the deviation time is recorded as 0; (2) if the completing time is earlier
than the earliest desired start time, the deviation time is ar − br − pkm. Other cases
are deemed infeasible and are not recorded. Each feasible insertion position is stored
in the form of [h, m, j, br, deviation time] in ML.

Step 5. If the list ML is empty, then the insertion is regarded as a fail and skip to Step 11;
otherwise, insert Jr into the position with the shortest deviation time.

Step 6. Compute the vehicle utilization period for trip r.
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Step 7. Compute the conflict time of trip r at different insertion positions and obtain the list
of candidate insertion position KL. The insertion position of a trip consists of the
inserted vehicle k and the inserted position j, and the conflict time is an indicator to
evaluate different insertion positions. The smaller the conflict time corresponds to a
more favourable position. The order of the executed trips of vehicle k is denoted by
Bk. Insert the trip r into the jth position of the sequence Bk. If the vehicle use period
of trip r does not overlap with the preceding line in the use period, then the
overlapping period with the succeeding trip is recorded as the conflict time. Each
insertion position is stored in the form of [k, j, con f lict time] in KL.

Step 8. If the list KL is empty, the insertion fails and skip to Step 11; otherwise, select the
insertion position with the shortest conflict time.

Step 9. If the conflict time of the insert position is zero, insert the trip into that position
directly, skip to Step 3, and initialize the number of ejections to 0; otherwise, eject the
succeeding trip, which conflicts with trip r after inserted.

Step 10. If the number of ejections reaches the maximum number, skip to Step 11; otherwise,
the current number of ejections increases by one, and the ejected trip is used as the
trip r to be inserted, and skip to Step 4.

Step 11. Restore the solution to the solution when vehicle k is not removed, remove vehicle k
from the sequence CK, and skip to Step 2.

Step 12. Output the final solution.

5. Computational Experiments

The addressed MTVRPTWRS problem originates from a tobacco manufacturing com-
pany in China, and the proposed solution is applicable to this industrial enterprise. How-
ever, due to confidentiality restrictions, we could not use the actual Tobacco Manufacturing
Instances. Thus, to assess and analyze the performance of the proposed three-phase al-
gorithm, we design test instances for the MTVRPTWRS based on Solomon’s VRPTW
benchmark and employ IRACE to tune the parameters of the algorithm. We conduct three
distinct sets of experiments, outlined as follows: (1) The first set of experiments aims to
analyze the contributions of different components to the objective. (2) The second set of
experiments compares the detailed performance across various test instances. (3) The third
set of experiments evaluates the benefits of the weekly scheduling plan compared to those
of the daily scheduling plan, particularly in long-distance logistics scenarios.

The proposed algorithm was implemented in python and executed on a powerful
desktop PC equipped with a 2.3 gigahertz Pentium processor and 512 gigabytes of RAM.
The test instances were adapted from the classical Solomon instances, which are detailed in
Section 5.1. We run the algorithm ten times for each instance to ensure reliable results. In
the case of the three-phase heuristic, the second phase concludes either after a maximum
runtime of 3600 s or if no improved solutions are obtained for 200 consecutive iterations.
After conducting preliminary testing, we established specific values for the penalization
coefficient bounds, thresholds, and renewal factor in our experiments. The lower bound
for the penalization coefficient was set at αmin = βmin = 1, and the upper bound was set
at αmax = βmax = 20. Furthermore, we assigned ρ1 = 30 and ρ2 = 60. as the respective
thresholds. Finally, we adopted a renewal factor of λ = 2.

5.1. Test Instances of the MTVRPTWRS Problem

Due to the absence of standard test instances, we made modifications to the benchmark
instances from the existing literature for our experiments. The MTVRPTWRS test instances
were derived from the VRPTW Solomon instances, with a specific focus on the R2, C2, and
RC2 instances that have wide time windows. Each test instance includes 100 customers.
These three types are chosen because other instances with narrow time windows limit
the number of possible trips a vehicle can make. The customer distribution varies across
the three types: R2 has random distribution, C2 has clustered distribution, and RC2 has a
mixed distribution.
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The original VRPTW test instances already include customer and vehicle information,
so only parameters related to the planning horizon and facilities need to be added. In
all three types of instances, the following settings are applied uniformly: the planning
horizon consists of 5 workdays, i.e., |H| = 5, there are 2 machines, i.e., |M| = 2, and the
values (δ1, δ2) are set to (8, 10). However, the working duration TH and available periods
of facilities TM differ across instances due to variations in the time windows of the depot in
different types. Detailed information can be found in Table 7.

Table 7. The parameters of TH and TM on different types.

C2 R2 RC2

TH 700 200 200
TM 560 160 160

5.2. Automatic Configuration

The IRACE package is a common automatic algorithm configuration tool which imple-
ments the Iterated Race method for tuning the most appropriate parameter settings [10,28].
In this experiment, the maximum number of runs and concurrent threads are set to 5000
and 1024, respectively, to improve the tuning speed. Three critical parameters need to be
set in this study: (1) the minimum and maximum percentage [εmin, εmax] of customers to
be removed, (2) the cooling coefficient used for controlling the temperature, and (3) the
operation reward score configuration.

Here the tuning range of εmin and εmax are set to [0.05, 0.10, 0.15] and
[0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60], respectively. The cooling coefficient is varied from 0.90
to 1.0. Noted there are three different score configurations employed from the previous
related study. Score #1 refers to the score setting [ξ1, ξ2, ξ3] = [1, 0, 5] obtained from Demir,
et al. [29]; Score #2 denotes the setting [ξ1, ξ2, ξ3] = [33, 9, 13] proposed by Ropke and
Pisinger [25]; Score #3 is [ξ1, ξ2, ξ3] = [33, 20, 13] employed from Masson, et al. [30].

The three best superior configurations obtained from IRACE are listed in Table 8. In
subsequent experiments, we use the best configuration [0.15; 0.3; 0.91; #3] as the default
parameter setting.

Table 8. Three best configurations obtained from IRACE.

Parameter Configuration 1 Configuration 2 Configuration 3

εmin 0.15 0.10 0.05
εmax 0.3 0.3 0.3

cooling 0.91 0.9 0.91
score #3 #2 #3

5.3. Contribution of Different Phases of the Heuristic

The initial solution, constructed in the first phase, undergoes successive optimization
through the ALNS in the second phase and the post-optimization procedure in the third
phase. To assess the effectiveness of the heuristic algorithm, we present the objective
functions of the solutions obtained at different phases, as detailed in Table 9. The columns
TTD and NV display the average values of TTD and NV, respectively, at each phase. The
column Gap(TTD) indicates the difference in average TTD between the first and second
phases, while the column Gap(NV) represents the difference in average NV between the
second and third phases.
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Table 9. The results of different phases.

First Phase Second Phase Third Phase

TTD NV TTD NV Gap (TTD) TTD NV Gap (NV)

C2 1741.50 13.5 1253.73 13.43 28.01% 1253.73 9.62 28.37%
R2 1745.08 8.05 990.22 8.07 43.26% 990.22 7.65 5.22%

RC2 2114.00 9 1197.04 9.72 43.38% 1197.04 9.34 3.86%
Average 1834.05 9.95 1125.23 10.19 38.65% 1125.23 8.69 14.68%

As observed from Table 9, the ALNS in the second phase effectively reduces TTD,
while the post-optimization procedure effectively reduces the number of vehicles. However,
the performance varies significantly across different instances. Upon optimization by ALNS,
the TTD objective exhibits a substantial improvement, averaging 38.65%. Notably, the
extent of improvement varies widely among different instances, ranging from a minimum
improvement of 28.01% for the cluster-distributed C2 instances to over 43% for the R2
and RC2 instances. Subsequently, the post-optimization procedure further reduces the
number of vehicles used, achieving an average reduction of 14.68%. Specifically, in the C2
instances, the average reduction in the number of vehicles amounts to 28.37%. However,
the reduction in the number of vehicles is not significant in the R2 and RC2 instances.

5.4. Analysis of Computational Results on Different Instances

In Section 5.3., we observed significant variations in the optimized performance of
the post-optimization procedure across different types of instances, and we will further
analyze the underlying reasons by examining the data metrics in this section. Table 10
presents the metrics related to vehicles and trips. The column TTP indicates the average
travel time proportion to each trip’s planning horizon, while the column PTP represents the
average proportion of processing time to the planning horizon. The VPP column signifies
the average ratio of trip duration to the planning horizon. It is important to note that
vehicles may spend some time in the depot area after completing loading operations, so
the value of VPP may slightly exceed the sum of the TTP and the PTP. The column number
of trips denotes the average number of trips performed by each vehicle, while the column
vehicle utilization indicates the average ratio of the trip duration of multiple trips to the
planning horizon for each vehicle.

Table 10. The indicators about vehicles and trips on different instances.

Vehicle Trip

Number of Trips Vehicle Utilization TTP PTP VPP

C2 1.42 62.36% 41.91% 0.46% 44.79%
R2 1.06 54.15% 46.26% 2.06% 51.23%

RC2 1.04 51.77% 44.18% 1.99% 49.76%
Average 1.17 56.20% 44.35% 1.53% 48.81%

As observed in Table 10, the C2 instance exhibits an average of 1.42 trips executed
by vehicles, with a vehicle utilization rate of 62.35%, notably higher than the R2 and RC2
instances. On average, each trip in the R2 and RC2 instances occupies 51.23% and 49.76%
of the planning horizon, respectively. Furthermore, the time window constraint requires
vehicles to initiate each trip within a specific time interval, which poses challenges in
assigning multiple trips to the same vehicle when individual trips are time-consuming.
However, in the C2 instance, the proportion of time intervals within the planning horizon
is slightly lower than in the R2 and RC2 instances, facilitating the allocation of multiple
trips to the same vehicle and improving vehicle utilization.

Lower vehicle utilization is highly undesirable. For vehicles from a third-party lo-
gistics company, lower utilization necessitates additional third-party vehicles, leading to
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increased management complexity. For company-owned vehicles, lower vehicle utilization
means that the company needs to acquire more vehicles, resulting in increased driver
salaries and maintenance expenses. Ultimately, these higher costs are passed on to the
customers’ purchasing costs, highlighting the importance of business managers develop-
ing differentiated purchasing strategies and charging varying costs based on customers’
delivery time requirements. Our work can assist companies in developing differentiated
pricing strategies to balance service quality and cost.

5.5. Comparison between the Weekly Scheduling Plan and the Daily Scheduling Plan

The weekly scheduling plan employed in this study differs from the traditional daily
scheduling plan primarily in terms of the planning horizon. The former focuses on planning
routes and scheduling loading operations for customers over a week, while the latter
encompasses route planning for all customers within a single workday. Generally, the
weekly scheduling plan offers greater flexibility and enables a more cost-effective routing
plan and loading scheme. This section compares these two scheduling plans to validate
this proposition.

Under the daily scheduling plan, the routing plan and loading scheme must be
designed based on the specific customer demand for each workday. The total distance
travelled under this plan is the cumulative distance covered by vehicles across different
working days, and the number of vehicles used is determined by merging trips that do not
conflict with the planning horizon.

As evident from Table 11, adopting the weekly scheduling plan instead of the daily
scheduling plan yields an average reduction of 34.22% in the total distance travelled and
a decrease of 33.52% in the number of vehicles used. The weekly scheduling plan offers
the advantage of enabling vehicles to visit geographically close customers on different
workdays during the same trip. This flexibility contributes to the construction of a more
efficient routing plan. Conversely, such a capability is unattainable within the constraints
of the daily scheduling plan.

Table 11. The Comparison between the weekly scheduling plan and the daily scheduling plan.

Daily Scheduling Plan Weekly Scheduling Plan
Gap (TTD) Gap (NV)

TTD NV TTD NV

C2 1607.10 14.43 1253.73 9.62 21.99% 33.33%
R2 1605.63 11.52 990.22 7.65 38.33% 33.57%

RC2 2134.34 14.00 1197.04 9.34 43.92% 33.26%
Average 1710.52 13.08 1125.23 8.69 34.22% 33.52%

6. Conclusions

This paper investigates a new variant of VRP in industrial logistics that considers time
windows, resource synchronization on heterogeneous facilities, multi-trip, and hierarchical
objectives consisting of minimizing TTD and minimizing the NV. To address this prob-
lem, we decompose it into three subproblems: routing design, loading scheduling, and trip
scheduling. We analyze the interrelation between these subproblems and adopt hierarchical
objectives, followed by proposing a MILP model and a three-phase heuristic to solve the
problem. Experimental results demonstrate the ALNS and post-optimization effectiveness
within the three-phase heuristic algorithm, which can effectively optimize TTD and NV
objectives. Furthermore, our findings reveal that the weekly scheduling plan surpasses the
traditional daily scheduling plan in long-distance logistics scenarios. It achieves significant
reductions in both TTD and NV objectives, with an average decrease of 34.22% in TTD
and 33.52% in NV. These results highlight the importance of incorporating the weekly
scheduling plan to improve efficiency in industrial logistics.

In industrial logistics scenarios, the scarcity of loading and unloading resources pro-
foundly impacts the subsequent routing process, underscoring the need for our research to
provide feasible and high-quality scheduling plans for enterprises operating under tight
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loading and unloading resource. Moreover, it is imperative to consider additional realistic
factors to enhance the practical applications of our approach. For instance, introducing lim-
itations on the maximum working duration for a single trip and the minimum interval time
for multiple trips can mitigate the risk of driver fatigue and enhance transportation safety.
Furthermore, future research should emphasize the MTVRPTWRS problem in dynamic
environments, enabling the acceptance of emergency insertion orders from customers and
updating the unexecuted weekly scheduling plan. This enhancement would significantly
improve the applicability of the model in real-life scenarios.

Author Contributions: Conceptualization, R.X.; supervision, R.X.; methodology, R.X. and J.W.;
validation: J.W.; software: J.W.; writing—original draft preparation, J.W.; formal analysis, S.L.;
resources, S.L.; data curation, S.L.; writing—review and editing, R.X., S.L. and J.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Guangdong Provincial Key Laboratory (Grant
No.2020B121201001), the National Natural Science Foundation of China (Grant No.62106098/62272210),
and the Stable Support Plan Program of Shenzhen Natural Science Fund (Grant No. 20200925154942002).

Data Availability Statement: The data presented in this study are available in [article].

Acknowledgments: The authors would like to acknowledge the support and inspiration provided
by the Business Data Laboratory at the School of Business, Hohai University. The authors are grateful
to the anonymous reviewers for greatly improving the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Inspired by the work of Battarra, Monaci and Vigo [9] in solving MTVRP with time
windows, we define the processing time window. The processing time window of the
loading operation Jr consists of a earliest desired completion time ar and a due date dr,
which can be obtained by the following derivation rules of the processing time window.

Derivation rules of processing time window
Step 1. It is assumed that the visiting sequence of trip r is σr =

〈
i0, i1, . . . , i|Ur |, in+1

〉
. Then the earliest

service start time ar,i|Ur |
and the latest service start time dr,i|Ur |

at customer node i|Ur | could be
obtained from Equations (A1) and (A2), respectively.

ar,i|Ur |
= ei|Ur |

, (A1)

dr,i|Cr |
= min

(
li|Ur |

, li|Ur+1| − ti|Ur | ,i|Ur+1| − si|Ur |

)
. (A2)

Step 2. Initialize j = |Ur | − 1

Step 3. Compute the earliest service start time ar,ij and the latest service start time dr,ij at ij according
to Equations (A3) and (A4), respectively.

ar,ij = max
(

eij , ak,i+1 − ti(j+1),ij
− sij

)
, (A3)

dk,ij
= min

(
lij , dk,i(j+1)

− tij ,i(j+1)
− sij

)
. (A4)

Step 4. If j > 0, let j = j− 1 and skip to Step3; otherwise, output the results as follows:
ar = ar,i0 ,dr = dr,i0 .
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