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Abstract: Modern industry has become very complex and requires an equally complex engineering
technology system, which includes resource utilization, energy conversion, product research and
development, technological innovation, environmental protection and industrial ecology, and other
aspects of the system. Continued development of large-scale, streamlined, and continuous processes
is critical; however, there are also problems such as data redundancy, overcapacity, redundant con-
struction, and waste of resources. Based on the system synergy theory, this paper introduces the
system analysis method from the perspective of flow structure, with the purpose of solving the man-
agement defects of complex industrial production systems. First, we analyze the complex industrial
production system as a collaborative structure of three subsystems: material flow, energy flow, and
information flow. The following concepts are clarified: “material flow is the main body, energy flow
is attached to and drives material flow, material flow and energy flow generate information flow,
and information flow reversely drives material flow and energy flow”. Secondly, the collaborative
evolution process of the complex industrial production system is divided into three periods, which are
the generation period, the stalemate period, and the maturity period, and a synergy degree evaluation
model is established, which considers the Theil index and subsystem gray correlation method, and
extends the dynamic differential equation model of three-stage collaborative evolution. Subsequently,
we used MATLAB numerical simulation to demonstrate that the collaborative evolution of production
systems is related to four aspects. They are the self-organizing ability of the system, the dominant
role of order parameters, the competition and cooperation between order parameters, and whether
mutations can become order parameters. At the same time, it was also found that it is basically
independent of other factors, such as attenuation inertia. Then, the self-organizing map network
(SOM) algorithm was used for the rapid identification of mutation data. Finally, we use the empirical
research of SG enterprises to show that their production level and management system are advanced,
but they were in a non-cooperative state from 2014 to 2021. In 2022, they had the basic conditions and
trends to enter the synergistic generation period, and a synergistic management model is required. At
the end of the article, we give a collaborative management method for complex industrial enterprises
with a good management foundation. These include the management mechanism based on flow
structure collaboration and the management path based on collaborative evolution. Of course, the
management countermeasures given in this study are also applicable to other complex process-based
industrial enterprises.

Keywords: industrial production system; flow structure; synergy theory; collaborative management;
system dynamics

1. Introduction

With the continuous improvement of technology and manufacturing, modern industry
is developing towards large-scale, complex, process-oriented, and continuous development.
In many fields, such as metallurgy, chemical industry, etc., it is no longer a single integrated
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system but is composed of many coordinated and integrated subsystems. There are
numerous contradictions within complex industrial production systems, such as frequent
dynamic fluctuations, and the operation process must consider the global performance. In
addition to external environmental interference, the system itself also has strong nonlinear
characteristics; however, the supply, use, and allocation of resources and energy, as well as
their management methods, directly determine the operational status of the production
system, which in turn affects production efficiency, product quality, product costs, and so
on. The current integrated management system has been implemented for several years.
The method is to use manufacturing platforms such as ERP and MRP to achieve information
sharing, thereby achieving order-driven production and on-time delivery, and to prevent
unexpected problems by implementing separate lean improvement projects. Although
integrated management has achieved many results, there is still a widespread problem
of overcapacity. A large amount of redundant data reduces the efficiency of management
work and has poor management accuracy. Due to the wide variety of products, frequent
batch changes, and the lack of a unified model for equipment data management, problems
of redundant construction and resource waste exist. The construction of manufacturing
platforms is still based on modular or departmental management, lacking a management
mechanism compatible with the coordinated development of enterprise informatization.

For any system in the objective world, matter is the carrier, providing tangible entities,
such as production resources; energy is the executor, providing production power; and
information is the conductor and the soul that forms the process. The static and dynamic
operational structures of production systems at different levels are closely related to mate-
rial flow, energy flow, and information flow. The same applies to enterprise production
systems; therefore, in recent years, the development of interdisciplinary cooperation within
such systems as engineering, dynamics, and management has brought new directions to
industrial production management. Many scholars analyze industrial production systems
from the perspective of flow structure to save management effort and simultaneously
achieve cost-effectiveness and environmental benefits.

In spite of this, there are many different analytical methods for production systems,
such as process flow, capital flow, value flow, green energy flow, material flow, energy flow,
information flow, capital flow, and other structures. It is worth noting that there are analysis
defects, such as inconsistent subsystem levels and unclear flow structure characteristics. For
instance, both cash flow and information flow have the functions of scheduling, controlling,
and commanding production; however, the optimization of cash flow aims to reduce costs,
while the research focus of information flow is to shorten delivery times. The fundamental
goal of both is to improve efficiency. Another issue is the lack of distinction between spatial
flow paths (material flow and energy flow, etc.) and temporal flow paths (information flow
and financial flow, etc.). Moreover, when analyzing the “potential” and “resistance” of
the “flow” structure, as well as the “drive” and “dissipation” of the system, the absence of
combining dynamic principles results in relatively single model construction and incomplete
variable analysis.

Nowadays, complex industrial production systems involve various elements, such
as humans, machines, the environment, and management. Managing these systems’ in-
ternal structure, organizational form, and functional processes is a complex task. People
are increasingly paying attention to the dynamic utilization of energy in industrial enter-
prises; however, most studies are limited to energy flow and overlook the characteristics of
complex industrial production systems, such as nonlinearity, dynamism, openness, and
orderliness. The changes in material flow parameters and the driving force of information
flow are the root causes of changes in energy flow; therefore, whether solving subsystem
problems or large-scale system problems, research should focus on the operational mecha-
nism of the overall large-scale system and the role of the relationships between subsystems
in the large-scale system. Scholars emphasize the concepts of “coordinated progress” and
“collaborative innovation”, aiming to provide a theoretical analysis and practical guidance
for industrial enterprises using the concept of synergy to improve economic efficiency.
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Starting from the research on the composition of enterprise systems, this paper innovatively
explores the connections between various subsystems within the enterprise and the external
environment and proposes new solutions for the organizational form of the enterprise.
There is limited research on the mechanism and influencing factors of subsystem synergy,
and there is no indication of the path through which this advanced concept should be imple-
mented. The research on collaborative management in industrial enterprises coincides with
the research direction of collaborative theory from the perspective of system flow structure;
therefore, it is extremely important to deepen the understanding of the collaboration among
various subsystems of the production system as a whole and to reflect the optimization
results in management decisions in order to build a management mechanism and path that
is easy to implement and promote. In the current context, industrial enterprises need to
comprehensively consider factors such as human, machine, environment, and management
to achieve efficient and collaborative operation of production systems, thereby achieving
the goal of improving economic efficiency.

This study provides a collaborative research framework for material flow, information
flow, and energy flow in complex industrial production systems. We have constructed a col-
laborative evaluation and collaborative evolution model, which can clarify the conditions
for collaborative evolution, identify the direction of enterprise collaborative management,
and take an important step towards achieving a clear path from comprehensive integrated
management to collaborative management. This method is easy to generalize to other in-
dustrial enterprises that already have advanced management system practice environments
and is especially suitable for complex nonlinear process-oriented industrial enterprises.
The main innovation points cover the following aspects:

(1) Based on the theory of synergetics, we provide a combination of system dynamics
research methods and flow structure co-evolution research.

(2) We apply system dynamics methods to analyze the collaborative evolution of flow
structures and construct evolution models. Additionally, we extend the evolution model to
a three-stage system of equations.

(3) When establishing a synergy evaluation model, we considered the Taylor index
and the system’s gray relationship. Furthermore, we utilize the self-organizing mapping
network (SOM) algorithm to identify sudden disturbance data in industrial production
systems.

The remaining content of this article is structured as follows: In Section 2, a literature
review is presented, encompassing system synergy, system flow perspective, and complex
industrial management. Section 3 outlines the construction of a collaborative model for
the flow structure within complex industrial production systems. Section 4 delves into a
collaborative model of the production system’s flow structure, employing SG enterprise as
a case study. Lastly, Section 5 provides a comprehensive summary of the entire text.

2. Literature Review
2.1. System Synergetics

Haken proposed the collaborative theory in the 1970s, which is based on system theory
and control theory, using a combination of dynamic and statistical analysis methods. Its
main focus is to study the cooperation, coordination, and synchronization mechanisms
of various components or subsystems within complex systems during operation (Haken,
2013) [1]. As an important branch of systems science theory, the research methods of
collaborative theory are applicable in various systems, especially for complex, large-scale
systems. Meng (2000) [2] pointed out that the collaboration of complex systems is a process
of achieving the overall effect of the system through internal self-organization and external
regulation and management activities. Meng emphasized that a subsystem analysis should
be conducted from a reasonable perspective. Peng (2009) [3] regards logistics and manufac-
turing as two subsystems of the modern economy. By utilizing the sequential parameter
evolution process of synergy theory, the mechanism of symbiotic evolution of these two
subsystems was explored, emphasizing that the interdependence and cooperation between
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modern logistics and advanced manufacturing are natural outcomes of industrial evolution.
Zheng et al. (2010) [4] applied the principles and methods of collaborative theory to study
the supply and demand relationship between automotive manufacturers and suppliers,
providing decision support for optimizing the automotive supply chain. Anbanadam et al.
(2011) [5] considered various variables, such as management commitment, information
sharing, cooperative trust, relationship risk, and return sharing. They constructed a supply
chain collaboration model with manufacturers and retailers as subsystems. The degree
of collaboration is measured to evaluate the degree of supply chain cooperation, while
also providing potential cooperation opportunities for other elements outside the supply
chain subsystem.

After Haken introduced the term “order parameter” into synergetics, the concept of
the order parameter was extensively expanded in fields such as management, economy, and
society. The order parameter plays a dominant and pivotal role in coevolution, exerting a
synergistic effect on the system (Leydesdorff et al., 2013) [6]; however, the order parameter
identification method based on Haken’s classical model mostly remains at the macro-level
and lacks a detailed analysis of the information in the collaborative evolution process.
Wanger (1994) [7] improved Haken’s three algorithms, and Schanz and Pelster (2012) [8]
used this method to identify the order parameters of nonlinear time-delay systems. May
et al. (2015) [9] provided an identification method and indicator system for order parame-
ters in energy systems. Hryshchuk et al. (2016) [10] updated the dynamic meaning of order
parameters: due to self-organizing processes, the system reduces its dynamic parameters
to a limited number of variables, which can maintain stability under disturbances. Xu et al.
(2017) [11] used this method to identify the system order parameters in the coevolution-
ary model. Additionally, there are the main melody analysis method based on objective
programming (Warm et al., 2011) [12], the optimized relaxation coefficient method (Zheng
et al., 2013) [13], and the order parameter identification model constructed based on the
gray system theory (Wu et al., 2017) [14]. With the expansion of the research scope, order
parameter analysis has entered more fields. Wang Haiyan et al. (2017) [15] proposed a
method for identifying order parameters in food quality chain collaborative systems based
on the gray correlation degree and attribute reduction, and provided a method for solving
order parameters considering the overlap degree. The focus of this method is to determine
the collaborative elements, establish parameters that represent the system state, and define
overlapping relationships between the parameters. Wen et al. (2020) [16] analyzed the for-
mation process of multi-order parameters from the perspective of output/input. Combined
with its impact on the system evolution process, an improved data envelopment analysis
method was applied to establish an efficiency-oriented multi-order parameter identification
model for the system evolution process.

Based on the identification of order parameters, research on system collaboration issues
is mainly conducted from two perspectives: complex system theory and economics. For
example, research covers aspects such as system collaborative optimization, collaborative
mechanisms, collaborative operational performance, and collaborative degree measure-
ment. Li et al. (2012) [17] proposed a composite system synergy model based on order
parameters and made significant progress in evaluating the synergy levels. Additionally,
Tang et al. (2010) [18] introduced the Euclidean distance method into the evaluation model
of system collaborative development and analyzed the Chinese economic and technologi-
cal system through empirical research. Cui (2016) [19] emphasized that the collaborative
level of the system cannot be simply evaluated using the general method of assessing the
development level of the system. The development level primarily measures the evolution
trajectory of the system from a vertical perspective, while the level of collaboration empha-
sizes the consistency of relationships between various elements within the system from
a horizontal perspective. Deng et al. (2016) [20] pointed out that the synergy of various
subsystems in a large system can impact the synergy of a composite system. Chen Lilan
(2016) [21] studied the integrated management of engineering project elements based on
collaboration theory and constructed a model to measure the degree of internal element
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collaboration in engineering projects. This model also calculates collaboration based on
order degree and proposes using a large sample survey method to correct the identification
results of order parameters. Luo and Dong (2017) [22] divided the synergy of regional
economic systems into three stages: primary stage (synergy degree of 0–0.4), intermedi-
ate stage (synergy degree of 0.4–0.7), and advanced stage (synergy degree of 0.7–1) and
expanded the synergy model into dynamic and static parts. Li et al. (2016) [23] believe
that the low synergy of the macroeconomic system is less than 0.3. Chen et al. (2016) [24]
studied regional intellectual property management systems and improved the traditional
collaborative evaluation model, proposing the concept of subsystem “consistency”. When
the consistency of each subsystem is high, the synergy will fall within the [0, 1] range; con-
versely, it will fall within the [−1, 0] range. Zhang et al. (2017) [25] extended the concept of
synergy to the research field of regional development, analyzing the Beijing–Tianjin–Hebei
greater system from the perspective of five subsystems and studying the spatial differences
in the order of collaborative development. Li et al. (2017) [26] also measured the level of
coordinated development between Beijing, Tianjin, and Hebei. They also discussed the
development and synergy of the system, pointing out the positive impact of development
strategies on the collaborative process. They believe that every game synergy mutation
process pushes the collaborative development of urban agglomerations to a higher level of
synergy and presents a phased pattern.

The development of systems science has expanded the range of applications for syn-
ergetics. In recent years, scholars have predominantly employed synergetics to examine
self-organizing processes in macroscopic systems. Lv Tong et al. (2002) [27] proposed that
the energy economy environment system also qualifies as a dissipative structure. During
system evolution, the influence of fluctuation mechanisms can give rise to phenomena
such as synergistic and non-synergistic spiral escalation, aligning with the fundamental
tenets of synergy theory. Bao et al. (2014) [28] devised a bilevel programming mathematical
model to optimize the allocation of resources for product customization by analyzing
collaborative manufacturing resource allocation for such customization. Employing an
optimized hybrid genetic algorithm, they attained the optimal solution for collaborative
manufacturing resource allocation in product customization. Fang (2017) [29] asserts that
the collaborative process of socio-economic systems follows a nonlinear spiral progression
involving game, collaboration, mutation, re-game, re-collaboration, and re-mutation. This
analysis, too, rests on synergy theory. Lychkina (2016) [30] delved into the collaborative
development of socio-economic subsystems and noted constraints in traditional socio-
economic models. To create effective models, interdisciplinary perspectives, such as system
dynamics and strategic decision simulation, must be applied to study cyclic collaborative
evolution phenomena from a dynamic standpoint, bridging macro- and micro-system
collaborative research. Meynhardt et al. (2016) [31] examined service ecosystems at micro-
and macro-levels utilizing synergy theory, emphasizing the value characteristics inherent
in dynamic collaborative evolution. Using nine collaborative attributes, including critical
points, stability, endogenous variables, nonlinearity, feedback, and finite prediction as
starting points, pathways for enhancing value can be identified. Zheng et al. (2017) [32]
expanded the concept of collaborative management to the realm of industrial economy,
illustrating the dual effects of supply chain collaborative management using steel enter-
prises as an illustration. These effects involve achieving both financial and ecological
performance, as well as internal and external performance for a single enterprise. Yang et al.
(2019) [33] identified that the original classical model could solely address the limitations
of static system synergy. They advanced a speed feature model based on improvements,
quantifying the quality and effectiveness of system synergy evolution through co-driving
the “evolution speed state” and “evolution speed trend”. This model integrates weight
information and accounts for the “functionality” and “coordination” of order parameters.
Guo et al. (2019) [34] employed collaborative analysis methods in the e-commerce and big
data industries. They established an e-commerce big data system (EBDS) collaborative
evolution model founded on the classic Haken model. Through quantitative evaluation of
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order and synergy, they presented managerial recommendations for the secondary industry
encompassing collaborative application, industrial chain, risk, external environment, and
ecosystem dimensions.

2.2. System Flow Perspective

In the 1960s, Reiter (1966) [35] pioneered the study of production systems, introducing
the concept of “Lot Streaming” and examining the transfer of product batches. This focus
on production batch flow and transfer modes continued with subsequent researchers, such
as Jacobs (1984) [36], Graves, and Kostreva (1986) [37], who identified batch transfer modes
in their respective fields. The 1980s saw the emergence of the just-in-time production
theory and optimal production technology. Truscott (1985) [38] utilized heuristic methods
to address continuous flow challenges in general workshops with equal sub-batches. Potts
(1989) [39] applied the method of equal quantity batch to flow shop problems and employed
heuristics for multi-batch solutions. Vickson (1995) [40] employed a fast polynomial
algorithm to solve flow shop multi-batch problems, considering the job setting time and
sub-batch transfer time. Etinkaya (2006) [41] extended this by incorporating units and
independent settings to optimize batch problems in dual-machine process workshops,
termed batch flow integration optimization. Despite these advancements, such research
mainly focuses on small-scale device environments, with limited exploration of multi-flow
integration at the production line level.

In recent years, international scholars have primarily explored complex large-scale
systems through the lens of “flow” structure, yielding extensive applications in industrial
production systems. Ruth (1995) [42] delved into the interplay between material flow,
energy flow, and information flow, utilizing the industrial balance theory. She noted that
energy propels physical state changes alongside information transmission. Simons et al.
(2003) [43] examined the production value stream, shifting from a time-centric approach to
a sustainable value stream, thus analyzing energy use and identifying the least environ-
mentally friendly links, particularly in relation to carbon dioxide emissions. This tool has
proven highly effective in energy consumption analysis through practical application. Long
et al. (2008) [44] emphasized that the analysis of “flow” primarily concerns the flow rate
and velocity, providing an initial depiction of material flow, energy flow, and information
flow characteristics and relationships within extensive systems. Bascur et al. (2009) [45]
explored production material flow and energy flow, utilizing historical data and shared
production information to foster continuous enhancement grounded in quality monitoring,
process control, and variable analysis. William et al. (2014) [46] expanded the original
value stream map by incorporating raw material utilization and energy consumption. This
comprehensive approach vividly highlights the waste and potential pollution aspects of a
company, furnishing a global perspective for enhancing the company’s sustainability.

Taulo et al. (2016) [47] analyzed the material and energy flows within the tea industry
supply chain from a collaborative stance. They argued that this approach can illuminate
environmental issues early in production and offer a basis for prioritizing factory improve-
ment projects. Suominen et al. (2016) [48] introduced a nonlinear optimization scheduling
scheme tailored for production, grounded in material and energy flow networks within
production systems. This scheme optimizes production efficiency via process simulation,
furnishing effective production conversion plans and establishing predictive mathemati-
cal models for equipment parameters. Yin (2016) [49] viewed the production process as
a multifaceted network encompassing various manufacturing processes. His emphasis
lay in addressing energy flow concerns accompanying material flow to ensure minimal
production costs. Collaborative research on flow structure, from an energy management
perspective, becomes pivotal for modern steel mills, supplying solutions and system sup-
port for energy-saving decisions. Zhang et al. (2017) [50] merged an environmental values
stream analysis with the Flexsim simulation tool, enhancing the value-added ratio of en-
ergy consumption during production. Zheng et al. (2017) [51] proposed a collaborative
approach to material and energy flows in steel enterprises. They underscored the need to
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plan the coupling of material and energy flows at unit equipment and process network
levels, supported by digitization and informatization, to optimize resource utilization.
Yu et al. (2018) [52] identified a coupling synergy between material, value, and energy
flows, calculating the synergy coefficients between them. Li et al. (2018) [53] constructed a
multi-stream collaborative model encompassing “material flow, energy flow, information
flow, and capital flow” in information physics energy systems. Their approach consid-
ered production costs, energy consumption, collaborative scheduling, and market aspects.
Huang et al. (2019) [54] analyzed the structure and attributes of “flow”, introducing a
collaborative framework for the security of the “four flows” within a system, and con-
ceptualizing a model. Collectively, these scholars’ research highlights three perspectives
within system collaboration from the flow standpoint: micro (human–machine systems),
meso (organizational systems within enterprises, encompassing various flows), and macro
(energy economy environment system synergy within social and economic systems).

2.3. Complex Industrial Management

The study of complex industrial production control management theory and industrial
system dynamics are complementary. Qi et al. (2008) [55] used the system dynamics method
(SD) to study the knowledge transitive model within industrial enterprises and obtained the
change law of knowledge potential energy under different factors. Based on the industrial sys-
tem dynamics modelling method, Jiang (2011) [56] proposed two breakthrough management
deficiency optimization paths to improve the performance level of enterprises. Wang et al.
(2012) [57] constructed a dynamics model of the logistics operation of an industrial enterprise
and proposed a simulation optimization scheme for the crafts industry, demonstrating the
feasibility and applicability of system dynamics applied to production cost control.

In the realm of industrial production’s general management methods, key solutions
encompass factors influencing management system optimization (Love et al., 2002) [58], en-
hancing efficiency and reducing costs across all production aspects (Zhang et al., 2007) [59],
employing dynamic programming for management strategies (Lee et al., 2006) [60], em-
bracing the enterprise development life cycle and self-organizational learning mode (Hu
Bin et al., 2006) [61], and more. A dynamic simulation analysis of enterprise business
model operations, conducted by Dai and Chen (2014) [62], explored developmental drivers
through an organizational structure lens. Gary et al. (2018) [63] introduced an innovative
dynamic model to investigate the cost, performance, and development strategy matters
within automotive manufacturing enterprises. Hanafi et al. (2019) [64] crafted a quantitative
system dynamics model for the smelting industry, tackling intricate production investment
competition challenges.

The energy revolution has substantially boosted productivity while inducing shifts
in industrial management and production structures (Stan et al., 2015) [65]. Larson et al.
(2004) [66] introduced the “Lean and Green” concept, highlighting their intricate interrela-
tion. Lean manufacturing, with its well-established history and widespread application in
developed countries, has yielded impressive outcomes, leading to a focus on the environ-
mental impacts of unnoticed lean practices. This initial research phase explored how lean
manufacturing, through waste elimination, enhances environmental performance (Zhang
et al., 2018) [67]. Kurdve et al. (2014) [68] devised a comprehensive bottom-up system incor-
porating value-driven and operational-driven approaches, providing an expansion path for
implementing this new system alongside existing structures. Yang (2015) [69] outlined the
evolution of enterprise management in the low-carbon era, emphasizing the integration of
energy conservation and consumption reduction into core values and developmental goals.
This involves a shift in traditional management paradigms, aiming for mutually beneficial
outcomes between energy preservation and profitability, guiding institutional innovation
through energy transformation responsibility, and aligning carbon emission mandates with
market dynamics. Modern management techniques, such as benchmarking, technology
outsourcing, standard operations, and personnel training, are believed to reduce energy
expenses for enterprises. Tetiana et al. (2018) [70] stress the significance of informed green
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lean decision-making, particularly for industries heavily reliant on conventional energy
sources. Taking power enterprises as an illustration, they present specific conditions for
implementation, including structural reformation of the energy sector and technological
transitions in the industrial realm. Jarrahi et al. (2019) [71] discussed the connection and
difference between the two production modes of “Lean manufacturing” and “Industry 4.0”.
They connected two important research fields of the industrial production management
system and provided a collaborative integration scheme of the two.

Various management methods, including system engineering, optimization theory,
lean manufacturing, sustainable development, and enterprise production, have been deeply
integrated into production management. This has led to the inclusion of input–output anal-
ysis, production energy conservation control, energy consumption analysis, and regulation
(Javied et al., 2019) [72]. Dues et al. (2013) [73] pointed out that challenges exist between
managing energy resources and production. Scholars continuously strive to introduce new
methods and modeling ideas. Lee et al. (2014) [74] introduced Six Sigma, a lean quality
management tool, into the energy plan. They pioneered the Six Sigma energy manage-
ment approach, now a part of modern production management systems. Pampanelli et al.
(2014) [75] created models for implementing environmental management based on lean
manufacturing. This integrated lean concept with environmental sustainability improves
resource use and reduces the environmental impact. Zhang et al. (2016) [76] developed an
energy demand prediction model for industrial enterprises. It considers how production
systems and energy management interact across time and space. This model was optimized
under uncertain decision-making and applied to power demand management. Li et al.
(2017) [77] built a system dynamics model with five subsystems: economic development,
primary and secondary aluminum production, carbon dioxide emission intensity, and
policy formulation. This model can analyze trends in carbon dioxide emissions from the
aluminum industry. Hilorme et al. (2019) [78] established adaptive and multiplication
models for energy technology implementation based on seasonal factors and overall energy
management trends. They used a space analysis matrix. Laura et al. (2020) [79] created a
system dynamics model combining technological advancements and economic evaluation.
This model analyzes the cost impact of implementing carbon dioxide capture technology in
cement plants. It evaluates the economic benefits of the cement industry under different
carbon capture scenarios.

In terms of modern innovation in management systems, Chang (2005) [80] and Sarin
(2008) [81] both studied production management from the perspective of flow by using
batch flow to study the comprehensive integration of just-in-time production management
methods. Zeng (2018) [82] believes that a good management system is the foundation for
the healthy development of enterprises. It helps to break down technical, institutional, and
market barriers between energy subsystems within enterprises. Hillman et al. (2018) [83]
studied the value of enterprises as drivers of low-carbon transformation, believing that the
driving force of enterprises for sustainable development in the world is currently under-
estimated. In order to address contemporary ecological challenges, industrial enterprises
should adopt a continuous improvement organizational model. Domestic and foreign
scholars have gradually constructed an effective management system based on continuous
improvement and focused on energy management, referencing the architecture of ISO. It
has been widely applied in the implementation monitoring and optimization management
of industrial production processes (Zhang et al., 2019) [84]. Until the end of the twentieth
century, innovative industrial production management ideas continued to emerge, includ-
ing total quality management, Lean Six Sigma, etc. Subsequently, enterprises all over the
world favored this low-risk organizational change mode and built an enterprise operation
management system with this as the core. In the 21st century, the production management
system centered on lean concepts has been widely applied and has evolved into a world-
class manufacturing (WCM) system. Over the past thirty years, the management system
has undergone continuous development, leading to improved technological efficiency
and a focus on achieving efficient resource utilization through production management.
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Industrial enterprises have advanced their production management thinking, progressing
from individual equipment resource management to the strategic planning and control of
production process resources.

2.4. Commentary

Based on an analysis of the existing literature, comprehensive discussions have taken
place on collaborative research within large-scale systems, both domestically and inter-
nationally. These studies encompass separate examinations of elements such as material
flow, energy flow, and information flow within large systems. They also delve into col-
laborative interactions between multiple flows of elements, spanning micro-, meso-, and
macro-levels. The existing research primarily focuses on empirical studies concerning
subsystem analyses, collaborative evaluation methods, and complex interrelationships
within large-scale systems. The synergy theory-based evaluation method emphasizes
guiding and constraining factors in system development, highlighting the significance of
order parameters and collaborative trends. This stands in contrast to traditional system
evaluation methods, which prioritize enhancing indicator systems and collecting numerical
values; however, due to the extensive data support and specialized nature required for
order parameter identification, the current models are complex and demand significant
effort. With the increasing complexity of industrial production systems and the infusion
of diverse research methods and perspectives from various disciplines, scholars have ex-
panded the application of synergy theory and flow structure. This expansion ranges from
industrial production systems to macroeconomic systems. Despite this progress, certain
challenges persist. These include inconsistent subsystem levels, unclear characteristics of
flow structures, and analytical limitations. Additionally, the current model construction
is relatively singular due to the insufficient integration of dynamic principles, resulting
in an incomplete variable analysis. It is noteworthy that several methods used to address
energy flow issues in production systems are not directly adaptable to complex industrial
production systems. The latter exhibit characteristics such as nonlinearity, dynamism, and
openness, posing unique challenges for research.

Amidst the ongoing trends of intelligent manufacturing and green manufacturing,
scholars have put forth a perspective that seeks to advance and break new ground through
comprehensive integrated management. They emphasize concepts such as “coordinated
progress” and “collaborative innovation”, with the goal of offering both a theoretical
analysis and practical guidance to industrial enterprises using the principles of synergetics.
This approach begins by examining the composition of enterprise systems and innovatively
exploring the relationships between various subsystems within the enterprise and their
external environment; however, there is currently a lack of sufficient research on the
mechanisms and influencing factors of subsystem synergy. Furthermore, there is no clear
indication of the precise path to implement this advanced concept. Correspondingly, the
research focus on collaborative management within industrial enterprises aligns with the
direction of collaborative theory from the standpoint of system flow structure. Deepening
the understanding of collaboration among diverse subsystems of the production system is
of the utmost importance. This understanding should be reflected in management decisions,
enabling the creation of management mechanisms and pathways that are both practical
and promotable.

3. Construction of Flow Structure Collaborative Model for Complex Industrial
Production Systems
3.1. Preparation of Flow Structure Modeling for Complex Industrial Production Systems
3.1.1. Analysis and Modeling Assumptions of Complex Industrial Production Systems

The complex industrial production system is an open large-scale system that has
both energy exchange and material exchange with the outside world. P represents the set
of all processes and equipment in the system, R signifies the comprehensive network of
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interrelations within the same system, and the complex industrial production system can
be simply expressed as Formula (1) [85].

∑ = 〈P, R〉 (1)

In explaining Formula (1), we can understand “R” as encompassing the storage and
transportation of raw materials and energy within the production layer of complex indus-
trial systems. This layer involves various stages, such as raw material processing, forming,
and packaging, resembling both continuous and intermittent production processes. It can
also be viewed as a system made up of different subsystems, each with distinct functions.
Encompassing dimensions of material flow, energy flow, and information flow, this pro-
cess system operates based on changes in the state and properties of matter. A complex
industrial production system fundamentally constitutes a large-scale engineering construct.
It is marked by high nonlinearity, multivariability, and limited information. Its intricate
nature comprises various components, multiple tiers, openness, nonlinearity, and dynamic
orderliness, ultimately giving rise to a significant attribute: structural complexity. Analyz-
ing its dynamic structure involves addressing three key facets. The first is the dynamic
essence of the system’s flow structure, which encompasses characteristics of propulsion
and dissipation. Second are the factors governing subsystem behavior (comprising material
flow, energy flow, and information flow). Last are the interrelations among subsystems and
their collective impact on the overall system.

Based on the situation described above, in order to construct a more scientific mathe-
matical model for evaluating the collaborative degree and dynamic collaborative evolution
of complex industrial production systems, we make the following modeling assumptions:

1© A complex industrial production system functions as an open system, facilitating
continuous exchanges of materials, energy, and information between internal and external
components. This dynamic interaction occurs not only among various subsystems within
the system itself, but also among the diverse elements within each subsystem.

2©Within a specific time and space range, the system displays a relatively stable state,
known as dynamic stability. During this state, the diverse resources of the production
system (including labor, capital, raw materials, technology, fuel, etc.) remain at a consistent
scale. A value range denoted as N characterizes the level of collaborative evolution in
production systems, and this value is positively linked to the system’s resource count.
In simpler terms, collaborative evolution does not have a final point, but it does lead to
recognizable phased results. Following a certain disturbance (such as the emergence of a
problem), the system gradually transitions to a stable and organized state, referred to as
the collaborative evolution process of the system.

3© The timing of system state reduction and feedback is allowed, as the system state is
not only related to the resource situation at a specific time, but is also influenced by factors
such as the supply chain environment, policy requirements, and management methods.

3.1.2. Determination of Order Parameters

Based on the theory of collaboration given herein, the collaborative order parameters
of complex industrial systems represent the behavior between subsystems of material
flow, energy flow, and information flow. They are also the dominant factors that cause
subsystems to compete and make large systems tend to collaboratively evolve.

In the context of identifying order parameters, Haken introduced three methodologies
in his works, “Introduction to Synergy” and “Advanced Synergy”. These methodologies
comprise the relaxation coefficient method, the maximum information entropy method, and
the adiabatic elimination method. In recent years, both domestic and international scholars
have proposed novel approaches. These include a theme analysis, identification based on
target programming, and identification rooted in the input–output analysis. Prior research
has effectively synthesized a spectrum of feasible order parameters. Furthermore, the
Ministry of Industry and Information Technology of the People’s Republic of China issued
the “Evaluation Specification for the Integration of Informatization and Industrialization of
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Industrial Enterprises” (National Standard GB/T23020) in September 2013. This standard
establishes the evaluation criteria for industrial enterprises across aspects such as materials,
information, and management, accentuating the interplay and synergy between resource
efficiency and subjective production factors. Drawing on the available data, this study has
curated an illustrative list of order parameters, as outlined in Appendix A Table A1. By
referencing the research findings of May et al. (2015) [9], Wu et al. (2017) [14], Zheng et al.
(2017) [51], and Wen et al. (2020) [16] in the domain of order parameter identification, and in
conjunction with Appendix A Table A1, a comprehensive compilation of order parameters
suited for intricate industrial production systems is presented in Table 1.

Table 1. Order parameter of industrial production system (comprehensive identification).

Number Parameter Unit

1 Yield of finished products %

2 Production reliability ND

3 Comprehensive heat production rate %

4 Equipment production efficiency %

5 Wastewater recycling capacity m3

6 Information management index ND

7 Production plan completion rate %

8 Unrecognized energy loss kgce/t

9 Water consumption per unit product L/m3

10 Product one-time qualification rate %

11 Production defect loss ratio %

12 Energy cost loss ratio %

13 Comprehensive energy consumption per unit product MWh/m2

14 Air pollution per unit product kg/m3

15 Cost proportion of information technology construction %

16 Manage controllable OEE ratios %

17 Product fragment recycling rate %

18 Flexibility (inventory turnover days) d

19 Equipment overall efficiency (OEE) %

3.2. Collaborative Evaluation Model Based on Order Parameters
3.2.1. Collaborative Evaluation Considering the Taylor Index

Synergy is a dynamic indicator that is difficult to measure at all times. Based on the
Haken model and referring to the synergy measurement model proposed by Meng et al.
(2000) [2] and Li et al. (2016) [23], it refers to the use of the order degree at a certain moment
to measure the collaborative development results of the system from the initial moment
to that moment. Assuming that the production system is S, the material flow subsystem,
energy flow subsystem, and information flow subsystem are S1, S2, and S3, respectively;
then, S = (S1, S2, S3), where Sij represents the j-th element in the i-th system, such as S21
representing the first element in the energy flow subsystem. The order parameters of the
material flow subsystem, the energy flow subsystem, and the information flow subsystem
are represented by µM, µE, and µI , respectively:

µM = (µ1, µ2, . . . , µm); the corresponding value is qM = (q1, q2, . . . , qm);
µE = (µm+1, µm+2, . . . , µm+n); the corresponding value is qE = (qm+1, qm+2, . . . , qm+n);
µI = (µm+n+1, µm+n+2, . . . , µm+n+l); the corresponding value is qI = (qm+n+1, qm+n+2,

. . . , qm+n+l).
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According to the index characteristics, the order parameters can be divided into three
types. The larger the value, the more favorable the system synergy is. For example, the
overall efficiency of equipment, yield, etc., are called positive effect order parameters, and
their effect value is expressed as ODij

+. Another thought is that the smaller the value is, the
more favorable the system synergy is. For example, the comprehensive energy consumption
per unit product is called the negative effect order parameter, and its effect value is expressed
as ODij

−. Another is that the closer its value is to a certain target value, the more beneficial
it is to the system synergy. In other words, it is not the greater the better or the smaller the
better, for example, the proportion of wastewater recycling and information construction
costs, whose effect value is expressed as ODij

*. This type of order parameter is called a
moderate order parameter. We define αi as the minimum value of order parameters for each
subsystem, and βi as the maximum value of order parameters for each subsystem. Based on
the information above, calculate the fffect size of the three order parameters according to
Formula (2): 

OD+
ij =

q′ij−αi
βi−αi

OD−ij =
βi−q′ij
βi−αi

OD∗ij =
|qij−q∗i ||qij−q∗i |max
|qij−q∗i ||qij−q∗i |minmax

,
αi = min

{
q′i1, q′i2, . . . , q′ik

}
βi = max

{
q′i1, q′i2, . . . , q′ik

}
(2)

The number of subsystems is expressed in m relative to the long coevolution process,
and there can be n order parameters in each subsystem. Indeed, during infinitesimal time
intervals, each subsystem possesses only one order parameter. The effect value of the order
parameter is expressed as xij. If the number of order parameters in a subsystem is less than
n, the lesser part of the effect value is expressed as 0, then the order parameter eigenvector
matrix of the system can be expressed as Formula (3):

X =


X1
X2
...

Xm

 =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
... · · ·

...
xm1 xm2 · · · xmn

,
i = 1, 2, . . . , m
j = 1, 2, . . . , n

(3)

The standardization of the data in the matrix is performed according to Formula (4):

x′ij =
xij

∑n
j=1 xij

(4)

After obtaining the new transformation matrix
[
X′i
]
, considering that the order pa-

rameters of each subsystem play different roles in the collaborative development process
of the dominant system, it is necessary to calculate the weights of the order parameters
of each subsystem. Since the numerical value of the order parameter represents a type of
information about the state of the subsystem, the Thiel index is introduced here, which
is an indicator based on the information entropy calculation method to measure the gap
between objects. The larger the Thiel index, the greater the amount of information provided
by the order parameter (symbol). We calculate the Theil index according to Formula (5) to
convert the negative effect size to a positive value.

T′i = ln(n)−
n

∑
j=1

x′ij ln
1

x′ij
i = 1, 2, . . . , m; x′ij = lim

σ→0
x′ij + σ; x′ij = 0 (5)

The weight of the order parameter is defined as Formula (6):

ωi =
T′i

∑m
i=1 T′i

, ωi > 0 (6)
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The greater the effect size of the order parameter in each subsystem is, the greater is the
contribution value of the order parameter to the coordinated order state of the subsystem.
Here, we define the contribution of the three subsystems to the coordination degree of
the large system as the order degree. At any time t, the order degree of the material
flow subsystem, energy flow subsystem, and information flow subsystem is calculated as
Formula (7):

ODt
j =



ODt
1(S1) =

m
∑
i

ωiODt
i ,

m
∑
i

ωi = 1

ODt
2(S2) =

m+n
∑
m

ωiODt
i ,

m+n
∑
m

ωi = 1

ODt
3(S3) =

m+n+l
∑

m+n
ωiODt

i ,
m+n+l

∑
m+n

ωi = 1

, j = 1, 2, 3 (7)

The order degree of the large system is:

ODt =
3

∏
j=1

ODt
j (8)

According to the order degree of the three subsystems and the order degree of the
large system, the synergy degree of the large system is calculated as:

SDµ = ± 4

√√√√∣∣∣∣∣
[

3

∏
j=1

(
ODt+1

j −ODt
j

)]
∗ (ODt+1 −ODt)

∣∣∣∣∣, t, t + 1 ∈ {1, 2, . . . , k} (9)

Among them, when ODt+1
1 > ODt

1, ODt+1
2 > ODt

2, ODt+1
3 > ODt

3 is simultaneously
valid, SDµ takes a positive value, otherwise it takes a negative value. The larger the value
of SDµ ∈ [−1, 1] is, the higher is the level of coevolution, and vice versa. The extremely
non-coevolutive state when SDµ is −1 and the extremely cooperative state when SDµ is 1
are relatively rare. The value of SDµ reflects the collaborative state of the system at a certain
time, displaying the static state of the system’s collaborative measure and the evolution
results during a certain period. Formula (14) takes into account the comprehensive situation
of all subsystems. Even if the degree of order of a certain subsystem increases significantly,
it cannot eliminate the impact of the decrease in the degree of order of other subsystems.
This is reflected in SDµ ∈ [−1, 0], which means that the collaboration of a large system is
based on the cooperation of two subsystems, and the large system is ultimately in a stable
and orderly state.

3.2.2. Collaborative Analysis Considering Gray Correlation

The collaborative evaluation method for large systems is based on the calculation of the
following two factors: subsystem order degree and Thiel index weighting. For situations
where there is both clear and unclear information in production, the evolution process and
trend should be clarified, and the collaborative mechanism between subsystems should also
be studied. Wu Yuying et al. (2017) [14] and Wang Haiyan et al. (2017) [15] both used a gray
correlation analysis when studying collaborative problems, but it is limited to identifying
the order parameters of subsystems, that is, clearly identifying the order parameters that
dominate the trend of subsystems based on the gray relationship between the subsystems.
In this study, the gray synergy analysis is carried out for the subsystem. First, the original
data are dimensionally removed and standardized, such as in Formula (10), and then the
data are normalized according to Formula (11).

x′i = 1− |xi − xbest|
max{|xi − xbest|}

(10)



Systems 2023, 11, 453 14 of 45

aijt =
xijt −min

t
xijt

max
t

xijt −min
t

xijt
(11)

The Taylor index method is still used to calculate the weight ωij, and the subsystem
information balance is calculated according to Formula (12).

zit =
m

∑
j=1

ωijaijt (12)

Use a+im to represent positive ideal points and a−im to represent negative ideal points; the
positive ideal points are ideal programming values for each order parameter, negative ideal
points are the worst values for each order parameter, A+ is the set of positive ideal points,
and A− is the set of negative ideal points. According to the ideal collaborative state, the
equilibrium value of the information intensity of each subsystem is used as the evaluation
variable, and the ideal value is equal to the actual value of the information equilibrium
degree of another subsystem (in fact, the information equilibrium degree of one subsystem
is used as the ideal value of another subsystem). For example, take Formula (13):(

a+1t, a+2t
)T

= (z2t, z1t)
T , A+ =

(
a+i1, a+i2, . . . , a+im

)
, A− =

(
a−i1, a−i2, . . . , a−im

)
(13)

The distance between the subsystem and the positive and negative ideal points is
calculated by Formula (14):

X+
it =

√√√√ m

∑
j=1

(
a+ij − aijt

)2
; X−it =

√√√√ m

∑
j=1

(
a−ij − aijt

)2
(14)

X+
it and X−it represent the distance between subsystem i and the positive and negative

ideal points during period t, which is the j-th value of the A+ and A− vectors. Taking the
effect of each order parameter of the energy flow subsystem on the material flow subsystem
as an example, we can calculate the correlation coefficient so that:

a = min
i

min
t
{XMt − XEit}, i = 1, 2, 3; b = max

i
max

t
{XMt − XEit}, i = 1, 2, 3 (15)

Define the correlation coefficient:

φ(M, Ei) =
a + ρb

|xM − xEi|+ ρb
(16)

ρ is the resolution coefficient, usually taken as 0.5, defining the gray correlation degree:

ϕ(M, Ei) =
1
t

t

∑
1

φ(M, Ei) (17)

We calculate the absolute correlation between the subsystems. The larger the value is,
the higher is the correlation level. Formula (18) is as follows:

µij =
1 + |ϕi|+

∣∣ϕj
∣∣

1 + |ϕi|+
∣∣ϕj
∣∣+ ∣∣ϕi − ϕj

∣∣ , 0 ≤ µij ≤ 1 (18)

Based on the evaluation of system synergy, we can combine the gray correlation
coefficient to clarify such a relationship, the interaction relationship between the subsystems.
We can also learn how the subsystems achieve pairwise collaboration through competition
and collaboration, and then drive the overall system’s collaboration.
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3.3. Dynamically Based Collaborative Evolution Model

We can use Formula (19) to concisely describe the state of the entire process of collabo-
rative co-evolution of the system [44]:

dx(t)
dt

= rx(t) (19)

Formula (19) sets the level of system coevolution as a function of time x(t). When no
resistance is considered, the growth rate of the system coevolution level is r. The level of
system coevolution will continue to increase over time, indicating that dx(t) > 0. It can be
seen that the overall trend of system coevolution shows an exponential curve growth trend,
and further analysis of its evolution state curve is needed.

3.3.1. Explanation of Coevolutionary Variables

Based on the dynamic analysis of the flow structure of the three subsystems of material
flow, energy flow, and information flow, as well as the analysis of collaborative evolution,
we considered the factors that affect the collaborative evolution process and set them as
variables when modeling. The dynamic and practical significance of these variables are
shown in Table 2.

Table 2. The dynamic significance and practical significance of each variable.

Number Variable Dynamic Significance Realistic Meaning

1 Si Subsystem (status) Substance flow, energy flow, information flow
subsystem states

2 xi Subsystem order parameter Key production indicators for leading system
collaboration trends

3 y Large system status Collaborative evolution status of production systems

4 a Status parameters Collaborative evolution speed of production systems

5 b Action coefficient 1 The effect of the relationship between two subsystems on
another subsystem

6 µ Action coefficient 2 Feedback or reverse effect of b

7 α Trend index The driving effect of key indicators on
production collaboration

8 η Damping coefficient Non-collaborative factors, such as production and
operation obstacles

9 β Correlation coefficient Production correlation or resource allocation contradiction
between subsystems

10 ε Attenuation coefficient The degree of attenuation of key indicators on production
driving effects

11 γi Impact coefficient 1 The comprehensive driving effect of key indicators on
production collaboration

12 γi Impact coefficient 2 The role of subsystem competitive behavior in collaborative
evolution process

13 ϕ Random variable Conflicts between subsystems or non-directional interference
from external environments

14 γi Impact coefficient 3 The impact of cooperative behavior between subsystems on
evolutionary results

15 γi Impact coefficient 4 The impact of competitive behavior between subsystems on
evolutionary results
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Table 2. Cont.

Number Variable Dynamic Significance Realistic Meaning

16 γi Impact coefficient 5 The impact of collaboration between subsystems on
large-scale system collaboration

17 γi Self-feedback coefficient Collaborative self-organization capability of
production systems

18 mi Ideal evolution result Ordered state of collaborative evolution of
production systems

19 εi Coevolution bias Deviation between actual evolution stage results and
ideal results

In the process of co-evolution, the system exhibits distinct characteristics that allow for
the division of evolutionary stages. For instance, it can be segmented into the initial phase,
competitive phase, cooperative phase, and coordinated phase based on the transformation
of entities from micro- to macro-levels. Alternatively, it can be categorized into an indepen-
dent stage, integrated stage, and intelligent collaborative stage based on the progression of
informationization in production. Similar classification methods have also been proposed
by other scholars. For example, Zhou (2013) [86] divided the evolution of manufacturing
integration and industrialization based on informationization into the starting stage, single
coverage stage, integrated enhancement stage, and innovative breakthrough stage. Draw-
ing inspiration from the research achievements of Long (2008) [44], Miao et al. (2013) [87],
and Li et al. (2018) [53], this study presents an evolutionary process description model and
an evolutionary self-organizing control model. The co-evolution process is categorized
into the collaborative generation phase, collaborative equilibrium phase, and collaborative
maturity phase based on the different sources of dynamics in each stage. As depicted in
Figure 1, during the initial system state, material and energy flows jointly generate informa-
tion flow, and interactions among three subsystems lead to competition and cooperation,
driving the system away from an ordered state and establishing the initial conditions for
evolution. In this stage, exchange occurs between matter, energy, and information with the
external environment, which introduces disruptive factors influencing the ordered state.
With the enhancement of energy utilization efficiency, material and energy flows enter the
equilibrium phase, where the critical point order parameter determines whether the system
progresses toward an ordered structure. Subsequently, material, energy, and information
flows harmonize to form a coordinated operational mechanism, marking the transition into
the collaborative maturity phase. In the subsequent steps, we will establish a model based
on a set of dynamic equations to describe these three stages of the co-evolution model.
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3.3.2. Equations for the Generation Period of Collaborative Evolution

Let S1, S2, and S3 represent the three subsystems of material flow, energy flow, and
information flow, respectively. The relationship between the subsystems during the evolu-
tionary generation period is shown in Formula (20).

dS1
dt = −a1t + b1(S1, S2, S3)

dS2
dt = −a2t + b2(S1, S2, S3) + ϕ(t)

dS3
dt = −a3t + b3(S1, S2, S3)

(20)

ai is the state parameter of Si that changes over time; b1 represents the impact of the
interaction between the material flow subsystem, energy flow subsystem, and information
flow subsystem on the material flow subsystem itself, b2, b3, and so on; and ϕ(t) represents
the impact of random sudden disturbances, during which the system continuously under-
goes energy conversion with the outside world, thus the random disturbances act more
directly on the energy flow. Since the order parameter is the leader of the behavior of the
subsystem, which determines the competition and cooperation state among the subsystems,
and then determines the trend and result of the system’s co evolution, Equation (20) can
also be regarded as the equation of state of the order parameter of the three subsystems.
The action state of order parameters of each subsystem is analyzed in detail below, and the
system dynamics equation of state is constructed as Equation (21).

dS1
dt = −η1x1 + α1x1 − ε1x2

1 + µ1x2x3
dS2
dt = −η2x2 + α2x2 + β1x1 − ε2x2

2 + µ2x1x3 + ϕ(t)
dS3
dt = −η3x3 + α3x3 + β2x1x2 − ε3x2

3 + µ3x1x2
dy
dt = γ1x1 + γ2x2 + γ3x3 + γ4x1x2x3 + ϕ(t)

(21)

x1 is the order parameter of the material flow subsystem, x2, x3, and so on; η1, η2 is the
damping coefficient; α1 is the synergistic trend index of the material flow subsystem, which
is the contribution of x1 to the ordered trend of the system (α2, α3 analogies); this index
includes the dual effects of cooperation and competition. Note that the difference between
competition and damping is that competition is the behavior between the subsystems (the
fundamental reason is the behavior of order parameters between subsystems), which plays
a positive role in the orderly trend of the system, while damping plays a negative role. β1
is the driving effect of the material flow subsystem on the energy flow subsystem, β2 is
the generation effect of material flow and energy flow on information flow, ε1 represents
the degree of attenuation of x1’s effect on the ordered tendency of the system (ε2, ε3
analogies), µ1 represents the impact of the interaction intensity between the energy flow
order parameter and the information flow order parameter on the material flow (µ2, µ3
analogies), γ1 represents the degree of influence of S1 subsystem on the collaborative
evolution process (γ2, γ3 analogies), γ4 represents the impact of the competing behavior
of each subsystem on the overall system during the collaborative evolution process (i.e.,
α1, α2, α3 comprehensive index of action), and y represents the collaborative state of the
large system. This differential equation system describes the contributions of the three
subsystems S1, S2, and S3 to the collaborative process and ordered results at a certain
moment in the evolutionary generation period (reflected by the dominant role of the order
parameter), and the first-order derivative equation of y with respect to t illustrates how
the roles of each subsystem are carried out. In fact, the collaborative relationship between
the subsystems is very complex and may not be as ideal at every moment, but this typical
simplified state helps to identify the main influencing factors of the collaborative process.

3.3.3. Equations for the Stagnant Period of Collaborative Evolution

The contradictions, external disturbances, and other factors that arise between sub-
systems during the generation period may become factors contributing to the disorder
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of the system. During the period of coevolution and stalemate of the system, the key
factor determining whether the system can form an ordered trend is the order parameter.
Assuming that the order parameter at the end of the evolution stalemate can cause the
system to produce an ordered trend, there will be two types of order parameters interacting
with each other during this period: one is the competitive order parameter, and the other is
the cooperative order parameter. These come from the competition and cooperation of the
subsystems, promoting and coordinating each other. Using x1 to represent the cooperative
order parameter, x2 to represent the competitive order parameter, and y to represent the
collaborative state of the large-scale system, the dynamic differential equation system of
Equation (22) is formulated as follows:

dx1
dt = (α− η1)x1 + βx1x2 + ϕ(t)

dx2
dt = (η2 − α)x2 − βx1x2 − εx2

2
dy
dt = γ1x1 + γ2x2 + γ3x1x2 + γ4y

(22)

In the formula above, α represents the collaborative trend index. η1, η2 represents the
damping coefficient and β represents the mutual influence coefficient between x1 and x2.
Due to the opposing forces of x1 and x2, this influence is a resistance for both parties, but
the higher the value is, the faster is the process of system evolution. ϕ(t) represents random
factors, and we assume that random factors at the same time may affect cooperation or
competition. ε represents the attenuation coefficient of competitive power, γ1 represents the
coefficient of influence of cooperative forces on the collaborative evolution of the system, γ2
represents the coefficient of influence of competitive forces on the collaborative evolution
of the system, γ3 represents the coefficient of influence of the combined effect of the two
forces on the evolution of the subsystem, and γ4 represents the self-feedback coefficient
of the system, which represents a self-organizing ability independent of two forces and is
a characteristic of the system itself. The first two equations of Formula (22) describe the
guiding effect of two different order parameters on the evolution trend of the system, while
the third equation describes the results of the system under these two forces.

3.3.4. Equations in the Mature Stage of Collaborative Evolution

In the mature stage of collaborative evolution, the collaborative relationships between
subsystems are clearer and more stable, with mutual coordination, constraints, and cooper-
ation. At this time, the factors that affect collaborative evolution mainly come from within
the system, and according to the evolution process, external forces, such as the environment,
are difficult to produce substantial disturbances on the system. Each subsystem generates a
self-control mechanism to achieve the optimal overall goal of the entire system based on
relevant goals. Here, the system state is still described using order parameters and various
parameters, and the dynamic equation system is shown in Formula (23).

dS1
dt = A11x1 + B1µ1 + ∑3

j=2 A1jxj
dS2
dt = A22x2 + B2µ2 + ∑3

j=1,3 A2jxj
dS3
dt = A33x3 + B3µ3 + ∑2

j=1 A3jxj

(23)

Aij is the object parameter matrix, and vector µ1, µ2, µ3 represents the parameter ma-
trix of each subsystem, where the flow velocity of each flow can be used as a parameter.
Bi represents the feedback matrix of the synergistic effect on the subsystem (i = 1, 2, 3
corresponding to the material flow, energy flow, and information flow subsystems, re-
spectively). ∑3

j=2 A1jxj represents the actual synergistic relationship between the energy
flow and information flow subsystems and material flow subsystems, and other analogies.
Let the variable mi represent the ideal coevolution result, that is, the stable state of the
subsystem in the later stage of evolution. At the end of collaborative maturity, the evolution
results are analyzed as follows: we define synergy bias εi as a difference between the
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ideal collaboration relationship and the actual collaboration relationship. See Formula (24)
for details:

εi = mi −
3

∑
j 6=i

Aijxj (24)

The smaller the collaborative deviation, the more mature the collaborative evolution
stage of the system, so the minimum value of the objective function of the system can be
expressed as εi → min . It can be seen that when mi ≈ ∑3

j 6=i Aijxj, εi ≈ 0, the objective
function value can reach the minimum, and set the total objective J, then:

minJ =

(
m1 −

3

∑
j=2

A1jxj

)
+

(
m2 −

3

∑
j=1,3

A2jxj

)
+

(
m3 −

2

∑
j=1

A3jxj

)
= 0 (25)

3.4. Collaborative Disturbance Recognition Based on SOM Algorithm

According to the analysis of the collaborative evolution process, the contradictions
between the subsystems and the contradictions between the system and the outside are
the reasons for the formation of ordered new trends. Identifying the internal and external
disturbances of the flow structure allows for source management of the production system,
without the need to analyze the impact of disturbances; however, due to the nonlinear
and liquidity characteristics of complex industrial production systems, when non-surface
disturbances occur, the essence of the problem can be sorted out from the massive data,
relying on material flow. Tracing the direction of energy flow and information flow to the
source of a problem is a complex and time-consuming task, especially in the multi-stream
fusion process. We refer to the literature of Kohonen T (1982) [88], Chen (2020) [89], Li
et al. (2013) [90]. The self-organizing map (SOM) neural network algorithm can be used
to effectively identify the disturbance links and the links affected by the disturbance and
reflected in the data. The distinction depends on the characteristics and internal links of the
data themselves, without establishing an index system and preset categories. The process
is as follows:

1©When there is an unrecognizable disturbance in the production system, all links
may be affected and reflected in the data; therefore, first assign random decimals to the
weights of all the connection weights Wij from input neurons to output neurons. Assuming
the number of recognized objects is m, as the input layer dimension, in order to explore
the nonlinear relationship between the interacting links from actual production data, the
discriminant function adopts the Euclidean distance method. For each input object data
xi, the Euclidean distance between it and all output divine elements is calculated using
Formula (26).

dj(X) =
m

∑
i=1

(
xi − wij

)2, i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n} (26)

2© Compare all the distance values and assume that the neuron with the minimum Eu-
clidean distance is Nj*. As the winning neuron, adjust the weight according to Formula (27)
and output it as “1”, while other neurons output it as “0”, as shown in Formula (28).
Define the winning neighborhood as NEj*(t), and directly adjust the weights of the winning
neurons within the geometric neighborhood according to Formula (29). This ensures that
data with similar relationships can receive enhanced responses every time, and the position
of the mapping points can reflect the clustering and distance relationships among the data.
Among them, α indicates the speed of learning, and the value range is 0 < α ≤ 1, whereas
SjNj∗ represents the distance between the winning node Nj* and the nodes in its geometric
neighborhood: {

wj∗(t + 1) = ŵj∗(t) + ∆wj∗ = ŵj∗(t) + α
(
X̂− wj∗

)
wj(t + 1) = ŵj(t), j 6= j∗

(27)
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yj(t + 1) =
{

1, j = j∗

0, j 6= j∗
(28)

wjNj∗ = exp
(
−S2

jNj∗
/2σ2

)
(29)

3©When iterating the process above, the number of iteration steps can be sequentially
set to [10 50 100]. Then, determine the optimal number of iterations based on the results.
When α is attenuated over time, the magnitude of weight adjustment decreases, and the
geometric neighborhood NEj*(t) continues to contract. Finally, when α attenuates to 0,
shrink the neighborhood to 1, train only the neuron Nj* itself to achieve self-organizing
feature mapping, and the process ends.

In the application scenario of an industrial production system, although the algo-
rithm has slow rate of convergence, it has low complexity and is easy to establish. The
autonomous learning process without a mentor also corresponds well to the self-organizing
ability of the mature stage of collaborative evolution of production system flow structure.
One can quickly find the root cause of the problem and solve it without even identifying
what type of problem it is. It can also provide excellent management decision support.
For example, mutation data have the potential to become an order parameter for system
collaborative evolution, and controlling this potential can achieve the “leading” and “guid-
ing” of collaborative management. This algorithm can be used not only for rapid detection
and source finding of abnormal data, but also for rapid resolution of production random
problems, fault classification management of energy utilization equipment, and evaluation
of production data balance management.

4. Empirical Study on Collaborative Model of Production System Flow Structure
4.1. Overview of Empirical Case SG Enterprises

SG’s main business purpose is to provide environmentally friendly, innovative, and
safe automotive glass for major automobile manufacturers. It is a continuous process
chemical company, with mixed input and output processes of raw materials and fuels in
certain production stages, with a complex relationship between the material and energy
flows that are numerous and stable.

4.2. Evaluation of Collaboration Degree of Production System
4.2.1. Calculation of Collaboration Degree of SG Enterprise Production System

Considering the data availability of various parameters in the production system of
SG Enterprise, and combined with Appendix A Table A2, each subsystem selects three
parameters from Table 1 as order parameters, as shown in Table 3.

Table 3. Order parameters in SG enterprise production system.

Subsystem Name Code Order Parameter Name Unit

Material flow
subsystem

M1 Equipment overall efficiency (OEE) %
M2 Yield of finished products %
M3 Production reliability ND

Energy flow
subsystem

E1 Comprehensive energy consumption per
unit product MWh/m2

E2 Air pollution per unit product kg/m3

E3 Wastewater recycling capacity m3

Information flow
subsystem

I1 Flexibility (inventory turnover days) D

I2 Cost proportion of information
technology construction %

I3 Information management index ND
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We used the evaluation model in Section 3 to conduct a collaborative evaluation of the
production system of SG enterprise, with q∗i as its appropriate data reference value. The
final value used was the specified value in the SG enterprise standard operating instructions.
The effect size of the order parameter of each subsystem is calculated (see Appendix A
Table A3). The weight process of the order parameter and the standardized effect size of
the order parameter are calculated (see Appendix A Tables A4 and A5). The final obtained
Taylor exponents of each order parameter, the weight of the order parameter in the system,
the weight of the order parameter in the subsystem, and the weight of each subsystem in
the large system are shown in Table 4:

Table 4. Weight of order parameters in SG production system.

Order Parameter Code Theil Index Proportion to
System Weight

Proportion to
Subsystem Weight

Comprehensive Weight
of Subsystems

Order parameter of
material flow

subsystem

M1 0.2997 0.1276 0.4599
0.2776M2 0.2016 0.0859 0.3094

M3 0.1504 0.064 0.2308

Energy flow
subsystem order

parameter

E1 0.3116 0.1327 0.4015
0.3305E2 0.1596 0.068 0.2056

E3 0.305 0.1299 0.3929

Order parameter of
information flow

subsystem

I1 0.2823 0.1202 0.3067
0.3919I2 0.4969 0.2116 0.54

I3 0.1411 0.0601 0.1533

We calculate the order degree of the subsystem for each year according to Formula (7);
we calculate the order degree of the production system according to Formula (8); and we
calculate the collaboration degree of the production system according to Formula (9). The
results are shown in Table 5.

Table 5. Order degree and synergy degree of SG company’s production system.

Year

System Ordering Degree
of Material Flow

Subsystem

Order Degree of
Energy Flow
Subsystem

Ordering Degree
of Information

Flow Subsystem

Order Degree
of Production

System

Collaboration
Degree of

Production System

2013 0.481 0.411 0.210 0.041 —
2014 0.377 0.882 0.114 0.038 −0.064
2015 0.870 0.015 0.393 0.005 −0.250
2016 0.728 0.225 0.479 0.078 −0.117
2017 0.161 0.472 0.402 0.031 −0.150
2018 0.676 0.313 0.636 0.135 −0.212
2019 0.563 0.485 0.451 0.123 −0.080
2020 0.540 0.709 0.324 0.124 −0.029
2021 0.610 0.565 0.401 0.138 −0.057
2022 0.850 0.718 0.448 0.274 0.124

From Table 5, it can be observed that the material flow subsystem, energy flow subsys-
tem, and information flow subsystem of the SG enterprise production system experienced
significant fluctuations from 2013 to 2019; however, since 2020, the order of these sub-
systems has shown an upward trend, and the order of the entire production system has
gradually increased. In terms of synergy, there is a period of continuous increase and con-
tinuous decrease for several years, and from 2021 to 2022, the trend of order and synergy
became more consistent. Except for 2015, which was significantly affected by energy flow,
the orderliness of the material flow subsystem showed a similar trend to that of the overall
production system in other years, although the fluctuations were more significant. Based
on relevant research results (referring to Li and Zhang (2016) [23], Chen et al. (2016) [24],
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and Luo et al. (2017) [22]), we have classified the degree of order and synergy, as shown in
Table 6. Next, we will further analyze these levels.

Table 6. Ranking of orderliness and levels of collaboration.

Orderliness Ordered Level Synergy Collaboration Level

0~0.1 Unordered state <0 Uncooperative
0.1~0.5 Low-level order 0~0.3 Low-level collaboration
0.5~0.7 Intermediate order 0.3~0.6 Moderate synergy
0.7~1.0 Advanced order 0.6~0.8 Highly collaborative

0.8~1.0 Extreme synergy

Since 2015, except for 2017, the material flow subsystem has been in a medium-
to high-order state, while the energy flow subsystem has fluctuated between low- and
medium-order states with significant fluctuations, and the information flow subsystem
has always been in a low-order state. From 2013 to 2017, the production system remained
in a state of disorder. Starting in 2018, the production system gradually transformed
into an orderly state and improved to some extent. Until 2021, the production system
had not achieved collaboration, while in 2022, a low degree of collaboration occurred. It
is worth noting that there is a close correlation between the orderliness of the material
flow subsystem, energy flow subsystem, and information flow subsystem, as well as the
orderliness and synergy of the production system. These three factors collectively affect the
degree of collaboration in enterprise systems. More specifically:

1© The significant difference in order between the material flow and energy flow
subsystems indicates that the system is in a state of non-synergy. This phenomenon further
confirms the analysis conclusion in the previous section: the material flow subsystem plays
a dominant role in the production system, and the dynamic mechanisms of energy flow
and information flow revolve around the material flow.

2© Over the past 5 years, the orderliness of the production system of SG Enterprise
has improved. This can be attributed to the effective management measures adopted by
the enterprise; however, this trend is not stable because when any of the three subsystems
changes, it will worsen the ordered state of the entire system. For each subsystem, the
state at time “t” is usually influenced by the other two subsystems. For example, in 2015,
the orderliness of both the material flow subsystem and the information flow subsystem
increased, resulting in an increase in the orderliness of the energy flow subsystem in 2016;
however, due to their interrelationships, it is difficult to achieve an increase in the order
of the three subsystems simultaneously, and conflicts often arise. This may be one of the
reasons for the instability of the increase in order.

3© The ordered state of the energy flow subsystem has a significant impact on the
production system and manifests as a significant “negative impact”. For example, in 2015,
the orderliness of the energy flow subsystem was very low. Even though the orderliness
of both the material flow subsystem and the information flow subsystem increased, the
orderliness and synergy of the production system remained at a relatively low level. Simi-
larly, during the period from 2018 to 2020, although the orderliness of the material flow
and information flow subsystems decreased, the orderliness of the energy flow subsystem
increased, but this did not lead to an increase in the orderliness of the production system.

4© The orderly situation of the information flow subsystem also has a significant
impact on the production system and presents a clear “positive impact”. The order degree
of the information flow subsystem is relatively stable and has a similar fluctuation trend as
the material flow subsystem. This reflects the dependence and driving effect of information
flow on material flow. Except for 2015, the orderliness trend of the information flow
subsystem has always been consistent with that of the production system. It is worth
noting that the trend of collaboration in the production system lags behind the trend of
order in the information flow subsystem by one year, which means that during the period
from 2013 to 2022, the synergy effect of the information flow subsystem on the production
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system has always maintained a positive effect; however, during the period from 2018 to
2020, the orderliness of the information flow subsystem decreased, resulting in a slight
decrease in the orderliness and synergy of the production system in 2020. This may be
because SG Enterprise had introduced a new management information system, which is
still in the adaptation stage. However, in the long run, the benefits of this state outweigh
the costs (by observing the overall increase in order and synergy trends from 2018 to 2022).

Overall, the level of collaboration in the production system of SG Enterprises shows a
relatively chaotic trend from 2013 to 2014. Subsequently, in 2015, due to the implementation
of the new management plan, the system had the basic conditions to enter the collaborative
generation period. In the following 2015–2021 period, the conditions for co-evolution
gradually deepened. By 2022, the system showed a basic trend towards entering the collab-
orative generation phase; however, it is currently unknown whether the ideal collaborative
maturity period can be further reached, which is to form a stable collaborative state. Cur-
rently, there is still a considerable gap between the goal of collaborative management and
the highly collaborative state of the production system.

4.2.2. Analysis of Gray Collaborative Relationship between Subsystems

Assume that each order parameter in the same subsystem is an independent order
parameter, and there is no correlation. The original data in Appendix A Table A6 were
still used to calculate the gray correlation between the two subsystems. The interval is
[0, 1]. The larger the data are, the greater the correlation is. An interval of “0” means
uncorrelation, and “1” means autocorrelation of this element. The correlation coefficient is
shown in Appendix A Tables A7–A12. The variable Xij in Tables 7–9 represents the impact
of i on j, for example, in the correlation matrix of the material flow subsystem and the
energy flow subsystem. We can see that the number in the first row and fourth column of
Table 7 is 0.68. It represents the gray correlation effect size of the first order parameter M1
of the material flow subsystem to the first order parameter E1 of the energy flow subsystem,
representing the degree of synergistic influence between the two, and other analogies.

Table 7. Gray effect value between material flow and energy flow subsystems.

M-E M1 M2 M3 E1 E2 E3

M1 1 0 0 0.68 0.79 0.64
M2 0 1 0 0.67 0.78 0.67
M3 0 0 1 0.64 0.73 0.63
E1 0.81 0.66 0.75 1 0 0
E2 0.84 0.73 0.76 0 1 0
E3 0.77 0.66 0.74 0 0 1

Table 8. Gray effect value between material flow and information flow subsystems.

I-M I1 I2 I3 M1 M2 M3

I1 1 0 0 0.64 0.53 0.80
I2 0 1 0 0.66 0.59 0.82
I3 0 0 1 0.63 0.65 0.79

M1 0.65 0.67 0.65 1 0 0
M2 0.59 0.65 0.72 0 1 0
M3 0.6 0.70 0.67 0 0 1

The gray correlation coefficients of different subsystems obtained by us are all greater
than 0.5, with most of them above 0.6, indicating strong gray connections between the
order parameters among the different subsystems. When observing data greater than
0.8, it can be seen that the order parameters of the energy flow subsystem have a more
significant driving effect on the material flow subsystem, while the order parameters of
the information flow subsystem have a more significant driving effect on the material flow
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subsystem and the energy flow subsystem. We can also draw the following conclusion: M1
“equipment comprehensive efficiency” is a comprehensive management parameter that is
significantly affected by energy flow. M3 “production reliability” is an evaluative parameter
that is significantly influenced by information flow. The impact of the I3 “Information
Management Index” on the E3 “Wastewater Recycling Capacity” and the impact of E3 on
I3 are both significant, indirectly indicating the information dependence of flow and the
control power of information on flow. From the data less than 0.6, it can be seen that the
order parameters M2 “finished product yield” and E2 “air pollution per unit product” have
strong independence. In other words, they are less affected by the order parameters of the
information flow subsystem and require special attention during management.

Table 9. Gray effect value between energy flow and information flow subsystems.

I-E I1 I2 I3 E1 E2 E3

I1 1 0 0 0.70 0.56 0.79
I2 0 1 0 0.75 0.65 0.77
I3 0 0 1 0.63 0.55 0.84
E1 0.68 0.65 0.62 1 0 0
E2 0.65 0.65 0.66 0 1 0
E3 0.79 0.71 0.85 0 0 1

In Section 3, the generation relationship between the flow structure subsystems has
been clarified. Specifically, the material flow subsystem serves as the main body, and the
energy flow is dependent on the material flow. The material flow and energy flow generate
the information flow. At the same time, there is also a reverse relationship, where the
energy flow has a driving effect on the material flow, and the flow of energy usually occurs
in time before the material flow. In addition, the information flow also plays a driving
role in material flow and energy flow, and the development process of the information
flow is closely related to the demand for production and manufacturing, thus leading to
animal mass flow and energy flow. The variables in the Section 3.3.1 model can further
explain that the coefficient of action µ represents the degree to which the mutual driving
effect between two subsystems affects another subsystem, and the coefficient of action b
represents the degree to which the driving effect between a certain subsystem and the other
two subsystems affects the subsystem itself.

4.3. Evaluation of Collaboration Degree of SG Enterprise Production System
4.3.1. Collaborative Evolution Numerical Simulation

Based on the previous analysis and evaluation of the collaboration level of SG Enter-
prises, we can draw the following conclusion: during the generation period of the subsystem,
due to the dominant influence of internal order parameters, the subsystem begins to gen-
erate a competitive effect. When there is no abnormal activity inside the system and the
order parameters remain unchanged, the system is in a dynamically stable state. In a model
analysis, it is necessary to find an equilibrium point (0, 0, 0) that satisfies Equation (22),
where dx1

dt = 0, dx2
dt = 0, dy

dt = 0. This equilibrium point is of great significance for the
evolution process of the system. By analyzing this equilibrium point, we can gain a deeper
understanding of the dynamic behavior and evolution process of the system.

To simplify the expression, we can first define Formula (30) as follows: U = dx1
dt ,

V = dx2
dt , W = dy

dt . Its characteristic matrix is shown in Formula (30):
dW
dy

dW
dx1

dW
dx2

dU
dy

dU
dx1

dU
dx2

dV
dy

dV
dx1

dV
dx2

 =

γ4 γ1 + γ3x2 γ2 + γ3x1
0 α− η1 + βx2 βx1
0 −βx2 η2 − α− βx1 − 2εx2

 (30)
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The characteristic equation at the equilibrium point (0, 0, 0) is:∣∣∣∣∣∣
λ− γ4 γ1 γ2

0 λ− α + η1 0
0 0 λ + α− η2

∣∣∣∣∣∣ = 0 (31)

The eigenvalues are λ1 = γ4, λ2 = α− η1, λ3 = η2 − α, and the positive and negative
values of the eigenvalues determine the stability of the equilibrium point of the equation. If
the real parts of the eigenvalues are all negative, the system equilibrium point is stable. As
long as one real part of the eigenvalues is positive, the system equilibrium point is unstable.
η1, η2 represents the damping coefficient and −η1 is always negative; therefore:

1© γ4 < 0 and η2 < α < η1; the equilibrium point is stable;
2© γ4 ≥ 0 or α ≥ η1, or η2 ≥ α; the equilibrium point is unstable.

It can be seen that stability is determined by γ4, α, η1, η2. Assuming other unrelated
parameters are fixed values, β = 1.2, ε = 0.6, γ1 = 0.6, γ2 = 0.8, γ3 = 1.6 (obtained by multiple
adjustments for clear images for easy observation), ϕ(t) is set as a variable parameter,
indicating that the sudden disturbance is random and non-directional. The MATLAB
simulation results of this model under different numerical conditions are as follows:

1©When the equilibrium point of γ4 < 0 and η2 < α < η1 (assuming γ4 = −1, η1 = 0.6,
α = 0.48, η2 = 0.36) are stable, the solution curve for ϕ(t) = 0 and ϕ(t) 6= 0 is shown in
Figure 2.

Systems 2023, 11, x FOR PEER REVIEW 25 of 46 
 

 

evolution process of the system. By analyzing this equilibrium point, we can gain a deeper 

understanding of the dynamic behavior and evolution process of the system. 

To simplify the expression, we can first define Formula (30) as follows: 𝑈 =
𝑑𝑥1

𝑑𝑡
, 𝑉 =

𝑑𝑥2

𝑑𝑡
, 𝑊 =

𝑑𝑦

𝑑𝑡
. Its characteristic matrix is shown in Formula (30): 

[
 
 
 
 
 
 
𝑑𝑊

𝑑𝑦

𝑑𝑊

𝑑𝑥1

𝑑𝑊

𝑑𝑥2
𝑑𝑈

𝑑𝑦

𝑑𝑈

𝑑𝑥1

𝑑𝑈

𝑑𝑥2
𝑑𝑉

𝑑𝑦

𝑑𝑉

𝑑𝑥1

𝑑𝑉

𝑑𝑥2]
 
 
 
 
 
 

= [

𝛾4 𝛾1 + 𝛾3𝑥2 𝛾2 + 𝛾3𝑥1
0 𝛼 − 𝜂1 + 𝛽𝑥2 𝛽𝑥1
0 −𝛽𝑥2 𝜂2 − 𝛼 − 𝛽𝑥1 − 2𝜀𝑥2

] (30) 

The characteristic equation at the equilibrium point (0,0,0) is: 

|

𝜆 − 𝛾4 𝛾1 𝛾2
0 𝜆 − 𝛼 + 𝜂1 0
0 0 𝜆 + 𝛼 − 𝜂2

| = 0 (31) 

The eigenvalues are 𝜆1 = 𝛾4, 𝜆2 = 𝛼 − 𝜂1, 𝜆3 = 𝜂2 − 𝛼, and the positive and negative 

values of the eigenvalues determine the stability of the equilibrium point of the equation. 

If the real parts of the eigenvalues are all negative, the system equilibrium point is stable. 

As long as one real part of the eigenvalues is positive, the system equilibrium point is 

unstable. 𝜂1, 𝜂2 represents the damping coefficient and −𝜂1 is always negative; therefore: 

① 𝛾4 < 0 and 𝜂2 < 𝛼 < 𝜂1; the equilibrium point is stable; 

② 𝛾4 ≥ 0 or 𝛼 ≥ 𝜂1, or 𝜂2 ≥ 𝛼; the equilibrium point is unstable. 

It can be seen that stability is determined by 𝛾4, 𝛼, 𝜂1, 𝜂2. Assuming other unrelated 

parameters are fixed values, 𝛽 = 1.2, 𝜀 = 0.6, 𝛾1 = 0.6, 𝛾2 = 0.8, 𝛾3 = 1.6 (obtained by mul-

tiple adjustments for clear images for easy observation), 𝜑(𝑡) is set as a variable parame-

ter, indicating that the sudden disturbance is random and non-directional. The MATLAB 

simulation results of this model under different numerical conditions are as follows: 

① When the equilibrium point of 𝛾4 < 0 and 𝜂2 < 𝛼 < 𝜂1 (assuming 𝛾4 = −1, 𝜂1 = 

0.6, 𝛼  = 0.48, 𝜂2  = 0.36) are stable, the solution curve for 𝜑(𝑡) = 0  and 𝜑(𝑡) ≠ 0  is 

shown in Figure 2. 

   

Figure 2. The solution curve of x1, x2, and y when 𝛾4 < 0 and 𝜑(𝑡) = 0, 0.01, and 0.1, respectively. 

It can be seen that when the coevolution enters the phase of stalemate from the gen-

eration phase, the solution curve will converge, regardless of whether the mutation dis-

turbance 𝜑(𝑡) is zero. When 𝜑(𝑡) is not zero, the solution curve will converge to a con-

stant, indicating that the disturbance has caused the system to deviate and affect the in-

ternal state of the system; however, this does not affect the final collaborative outcome. If 

𝜑(𝑡) increases to 10 times, the results above are still the same, indicating that sudden per-

turbations will affect the asymptotic process of the solution curve, but will not affect the 

asymptotic trend, nor will they cause the system to move from “collaborative” to “non-

collaborative”. 

Figure 2. The solution curve of x1, x2, and y when γ4 < 0 and ϕ(t) = 0, 0.01, and 0.1, respectively.

It can be seen that when the coevolution enters the phase of stalemate from the
generation phase, the solution curve will converge, regardless of whether the mutation
disturbance ϕ(t) is zero. When ϕ(t) is not zero, the solution curve will converge to a
constant, indicating that the disturbance has caused the system to deviate and affect the
internal state of the system; however, this does not affect the final collaborative outcome.
If ϕ(t) increases to 10 times, the results above are still the same, indicating that sudden
perturbations will affect the asymptotic process of the solution curve, but will not affect
the asymptotic trend, nor will they cause the system to move from “collaborative” to
“non-collaborative”.

2©When the systems of γ4 ≥ 0 and η2 < α < η1 (set as γ4 = 0.1, η1 = 0.6, α = 0.48,
η2 = 0.36) are unstable, the solution curves for the cases of ϕ(t) = 0 and ϕ(t) 6= 0 are shown
in Figures 3 and 4.



Systems 2023, 11, 453 26 of 45

Systems 2023, 11, x FOR PEER REVIEW 26 of 46 
 

 

② When the systems of 𝛾ସ ≥ 0 and 𝜂ଶ < 𝛼 < 𝜂ଵ (set as 𝛾ସ = 0.1, 𝜂ଵ = 0.6, 𝛼 = 0.48, 𝜂ଶ = 0.36) are unstable, the solution curves for the cases of 𝜑ሺ𝑡ሻ = 0 and 𝜑ሺ𝑡ሻ ≠ 0 are 
shown in Figures 3 and 4. 

 
Figure 3. The solution curve of x1, x2, and y when 𝛾ସ = 0.1, 𝜑ሺ𝑡ሻ = 0, 0.1, and 1, respectively. 

From the previous two graphs, it can be observed that when there are no or only 
small abrupt perturbations, the solution curves of the two order parameters still tend to 
converge, but the solution curves of the large system show a divergent trend. This indi-
cates that even if there are order parameters, if their guiding effect is lost, causing the 
system to develop towards dissipation, then only by generating new order parameters can 
the system be redirected towards the ordered direction, which may come from the internal 
or external environment of the system. In the third figure, the order parameter x1 shows a 
divergent trend, indicating that the system is moving towards disorder more rapidly. 
Even in situations with significant sudden disturbances, it is difficult to change this trend. 
At this point, new order parameters can only be generated within the system. 

 
Figure 4. The solution curve of x1, x2, and 𝑦 when 𝜑ሺ𝑡ሻ = 0, 𝛾ସ = 0, 0.1, and 0.5, respectively. 

When 𝛾ସ ≥ 0 and there is no random disturbance, the solution curve of the order 
parameter is convergent, while the solution curve of the large system is divergent. It can 
be seen that as long as 𝛾ସ is not less than 0, the system will not form an ordered stable 
structure, and the larger 𝛾ସ, the weaker the force of the two order parameters, and the 
easier they are to be replaced. The situation at 𝛼 ≥ 𝜂ଵ and 𝛼 > 𝜂ଶ is similar to this situ-
ation. ③ When the system is unstable at 𝛾ସ ≥ 0, 𝜂ଶ ≥ 𝛼 and 𝛼 < 𝜂ଵ (set as 𝛾ସ = 0.1, 𝜂ଵ = 
0.8, 𝛼 = 0.5, 𝜂ଶ = 0.6). At this time, the solution curves when 𝜑ሺ𝑡ሻ and t take different 
values are shown in Figure 5. 

0 1 2 3 4 5
t

0

2

4

6

8

10

x1

x2

y

0 1 2 3 4 5
t

0

2

4

6

8

x1

x2

y

0 1 2 3 4 5
t

0

5

10

15

x1

x2

y

Figure 3. The solution curve of x1, x2, and y when γ4 = 0.1, ϕ(t) = 0, 0.1, and 1, respectively.

Systems 2023, 11, x FOR PEER REVIEW 26 of 46 
 

 

② When the systems of 𝛾ସ ≥ 0 and 𝜂ଶ < 𝛼 < 𝜂ଵ (set as 𝛾ସ = 0.1, 𝜂ଵ = 0.6, 𝛼 = 0.48, 𝜂ଶ = 0.36) are unstable, the solution curves for the cases of 𝜑ሺ𝑡ሻ = 0 and 𝜑ሺ𝑡ሻ ≠ 0 are 
shown in Figures 3 and 4. 

 
Figure 3. The solution curve of x1, x2, and y when 𝛾ସ = 0.1, 𝜑ሺ𝑡ሻ = 0, 0.1, and 1, respectively. 

From the previous two graphs, it can be observed that when there are no or only 
small abrupt perturbations, the solution curves of the two order parameters still tend to 
converge, but the solution curves of the large system show a divergent trend. This indi-
cates that even if there are order parameters, if their guiding effect is lost, causing the 
system to develop towards dissipation, then only by generating new order parameters can 
the system be redirected towards the ordered direction, which may come from the internal 
or external environment of the system. In the third figure, the order parameter x1 shows a 
divergent trend, indicating that the system is moving towards disorder more rapidly. 
Even in situations with significant sudden disturbances, it is difficult to change this trend. 
At this point, new order parameters can only be generated within the system. 

 
Figure 4. The solution curve of x1, x2, and 𝑦 when 𝜑ሺ𝑡ሻ = 0, 𝛾ସ = 0, 0.1, and 0.5, respectively. 

When 𝛾ସ ≥ 0 and there is no random disturbance, the solution curve of the order 
parameter is convergent, while the solution curve of the large system is divergent. It can 
be seen that as long as 𝛾ସ is not less than 0, the system will not form an ordered stable 
structure, and the larger 𝛾ସ, the weaker the force of the two order parameters, and the 
easier they are to be replaced. The situation at 𝛼 ≥ 𝜂ଵ and 𝛼 > 𝜂ଶ is similar to this situ-
ation. ③ When the system is unstable at 𝛾ସ ≥ 0, 𝜂ଶ ≥ 𝛼 and 𝛼 < 𝜂ଵ (set as 𝛾ସ = 0.1, 𝜂ଵ = 
0.8, 𝛼 = 0.5, 𝜂ଶ = 0.6). At this time, the solution curves when 𝜑ሺ𝑡ሻ and t take different 
values are shown in Figure 5. 

0 1 2 3 4 5
t

0

2

4

6

8

10

x1

x2

y

0 1 2 3 4 5
t

0

2

4

6

8

x1

x2

y

0 1 2 3 4 5
t

0

5

10

15

x1

x2

y

Figure 4. The solution curve of x1, x2, and y when ϕ(t) = 0, γ4 = 0, 0.1, and 0.5, respectively.

From the previous two graphs, it can be observed that when there are no or only
small abrupt perturbations, the solution curves of the two order parameters still tend to
converge, but the solution curves of the large system show a divergent trend. This indicates
that even if there are order parameters, if their guiding effect is lost, causing the system
to develop towards dissipation, then only by generating new order parameters can the
system be redirected towards the ordered direction, which may come from the internal or
external environment of the system. In the third figure, the order parameter x1 shows a
divergent trend, indicating that the system is moving towards disorder more rapidly. Even
in situations with significant sudden disturbances, it is difficult to change this trend. At
this point, new order parameters can only be generated within the system.

When γ4 ≥ 0 and there is no random disturbance, the solution curve of the order
parameter is convergent, while the solution curve of the large system is divergent. It can
be seen that as long as γ4 is not less than 0, the system will not form an ordered stable
structure, and the larger γ4, the weaker the force of the two order parameters, and the
easier they are to be replaced. The situation at α ≥ η1 and α > η2 is similar to this situation.

3©When the system is unstable at γ4 ≥ 0, η2 ≥ α and α < η1 (set as γ4 = 0.1, η1 = 0.8,
α = 0.5, η2 = 0.6). At this time, the solution curves when ϕ(t) and t take different values are
shown in Figure 5.

It can be seen that because α < η1, the solution curve of the ordinal parameter x1 in
the left panel is divergent, and the system has a convergence trend under the combined
effect of x1 and x2; however, at t = 50 in the middle panel, we observe that the solution
curve of a large system tends to change from convergence to divergence. This means that
the order parameter is guiding the orderly trend of the system structure, but due to the
instability of the order parameter itself, this orderly trend cannot be sustained in the long run,
leading to the system eventually developing into a dissipative structure. In the righthand
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figure, when ϕ(t) = 0.1, the solution curve of the large system clearly shows a divergent
trend. This indicates that in the case of unstable order parameters, even with small sudden
perturbations, the system will rapidly develop towards a dissipative structure.
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4.3.2. Analysis of Evolutionary Simulation Results

The numerical simulation solution curve above illustrates that during the collaborative
generation period, the system undergoes structural changes due to internal contradictions
or external environmental disturbances. This change may lead to the formation of a new
stable structure in the system, and the trend of this new structure may not necessarily align
with the ideal trend. In this scenario, the occurrence of sudden perturbations may affect
whether new order parameters can be established and may also influence the direction
of action of these new order parameters. In the synergistic phase holding period, when
γ4 = 0 or α = η1 = η2, a boundary point will appear in the system, indicating that it
is in a critical state of stability change. As time goes on, the trend of collaboration will
gradually become clearer, and eventually, there may be a situation where η2 > α > η1.
Under new disturbances, the system may undergo a transition towards a new, higher-level
ordered state.

The mechanism and path of collaborative evolution of complex industrial production
systems have been clarified in Section 3. This process can be further explained here: during
the generation period of collaborative evolution, the contradictions between various subsys-
tems and the internal and external contradictions of the system become factors that disturb
the system state and gradually develop into order parameters. These order parameters
govern the behavior of each subsystem and guide the development of the entire large
system. Under the influence of order parameters, there is strong competition and cooper-
ation between various subsystems, which affect each other and play a positive role in the
collaborative trend of the system. The self-organizing ability of the system itself enables it to
gradually evolve from a disordered or low-level ordered state to a high-level ordered state
during a dynamically stable evolution process, which can be referred to as the synergistic
evolution phase. At this stage, the order parameter will determine the final outcome of
system evolution. Even if a mutation occurs, it may affect the speed of evolution, but it
will not change the direction and outcome of evolution; however, if the order parameter
is not sufficient to guide the system towards an ordered state, sudden perturbations from
both internal and external environments may become new order parameters. This will
lead to a cyclic process in which new order parameters constantly emerge to guide the
evolution of the system. The least ideal scenario is that the disordered parameters and
sudden changes work together, leading the system to a dissipative disordered state. In this
case, only the appearance of new order parameters within the system can guide the further
evolution of the system. When the contradictions between the subsystems of the system
are coordinated, the competitive effect is stable, and the system moves towards a high-level
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ordered state, it enters a mature period of collaborative evolution. During this period, if new
contradictions or sudden disturbances occur, they may develop into the order parameters
of the next coevolution. This process forms a cycle that continuously guides the system
towards higher-level ordered states.

During the generation period of collaborative evolution, the system state is influenced
by the relationships between subsystems and the internal and external dynamics of the
system. During the phase of coevolution, the system state is determined by the dominant
and competing roles of order parameters, as well as the self-organizing ability of the system.
In the mature stage of collaborative evolution, the system state is primarily influenced by
the self-organizing ability of the system. Overall, once collaborative evolution begins, the
orderliness and various trends of the results are guided by order parameters and rely on
self-organization to complete autonomous evolution. Whether a random mutation affects
the system state and its participation in evolution depends on whether it becomes an order
parameter.

4.4. Demonstration of SOM Algorithm in SG Enterprise Production System

SG Enterprise has a solid management foundation and extensive data accumulation,
making it suitable for conducting simulation research on SOM neural network algorithms.
Due to the “uniqueness” of the order parameter, it cannot occur simultaneously. To ensure
the scientific validity of this empirical study, we have established the settings for the
input layer data of the SOM algorithm based on comprehensive data utilization and in
combination with Table 1. These settings are presented in Table 10.

Table 10. Data setting of SOM algorithm input layer.

Serial Number Factors Contributing to the Variability of
Production System Flow Structure Use Actual Data Unit

1 Material flow equilibrium Material processing balance time s

2 Accumulated dissipation of energy flow Loss of comprehensive energy efficiency
of equipment kpcs/s

3 Information flow, generation, and
operation time Equipment, materials, and fuel input time s

4 The synergistic efficiency of material flow
and energy flow

Comprehensive efficiency of
equipment technology %

5 Collaborative efficiency of material flow,
energy flow, and information flow

Comprehensive efficiency of
equipment management %

6 Production system random impact index Unidentified equipment
comprehensive loss kpcs/s

7 Special product production flow structure
impact index Customized product quantity per process kpcs

8 Comprehensive efficiency of production
system and flow structure Processing efficiency of each process kpcs/d

The SOM algorithm in Section 3.4 was used to identify the perturbation factors for
collaborative management, and ten major processes on the same production line were
collected for calculation. When the number of training steps is 100, each object will form
its own class, which represents overtraining; therefore, the number of training steps in the
empirical case for SG enterprises is better than 100, and the number of training steps in the
table is 50.

In Table 11, we employed fundamental data for clustering analysis, yielding the
following outcomes: processes 1, 2, 6, 7, and 9 were grouped into the same category;
processes 4, 8, and 10 were grouped together; and processes 3 and 5 were individually
categorized. It was noted when utilizing potentially problematic data for clustering analysis,
distinct outcomes emerged: process 3, 4, 5, 8, and 10 were grouped into the same category;
processes 1 and 2 were classified together; processes 7 and 9 were classified together; and
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process 6 formed an independent category. This suggests that the problematic processes
might be 5 and 3, which could potentially impact the majority of the processes.

Table 11. SOM algorithm output layer mapping point location.

Data Category
Process Number 1 2 3 4 5 6 7 8 9 10

Basic data 24 24 2 1 5 24 24 1 24 1
Problem data 5 5 24 24 24 2 1 24 1 24

Similarly, the SOM neural network algorithm can be used for the flow structure
equilibrium analysis of the production system to visualise and manage the production lines
according to the production data mapping, which facilitates collaborative management
at the plant level. Figure 6 shows the clustering of production data from production line
1 to production line 10 for SG Enterprise from January to August 2022, with a training
step count of 50; the numbers within the hexagon indicate the number of mapping points
that overlapped, with input objects where the mapping points overlap grouped into one
category. The left panel shows the production of the 10 production lines measured by
material flow, and the right panel shows the energy inputs of the 10 lines over 8 months.
The 10 production lines are docked to the same assembly line and ideally should have the
same production rhythm, i.e., they should achieve production balance, but the actual data
(see Appendix A Tables A13 and A14) are unbalanced. The graph on the left shows that the
material flow balance of the 10 production lines can be divided into 5 categories, where
production lines 5, 6, 7, and 10 have similar production profiles and can be used as a unit
for synergistic solutions to production problems. From the chart on the right, it is evident
that during the period of January to August 2022, the energy input of 10 production lines
exhibited temporal imbalances; however, this imbalance does not align with the seasonal
production variations, presenting a challenge to the management of energy flow.
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4.5. SG Enterprise Production System Collaboration Management Response

SG Enterprise follows the basic framework of traditional management and uses the
“competition–cooperation” relationship between material–energy–information flow sub-
systems as the mechanism of synergy.

The results of the synergy evaluation and coevolution simulation provide insight
into the design of the co-management mechanism: firstly, the state and characteristics of
the system should be clarified, and the coevolution should be guided by management
tools. Each flow structure subsystem must have the initial conditions for generating the
sequence parameters, and this condition needs to be generated under the guidance of the
management mechanism. Burst problems are controlled, and self-organizing mapping
network algorithms are used for the identification of burst data to avoid them becoming
a cause of system dissipation. There are two directions of control: firstly, to make it a
sequential parameter that leads the production system to a higher level of order; secondly,
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to solve the problem so that it does not have a large impact or participate in the evolution
of the system. The second approach should be used more often.

Under specific foundational conditions, in order to attain sustainable production objec-
tives, it is advisable to employ indicators, such as greening, informatization, and ecology, to
formulate order parameters. By optimizing the collaborative levels of material flow, energy
flow, and information flow within the production process at process network nodes and
circulation paths, a self-organizing evolutionary process towards a contemporary green
and ecological industrial system can be progressively realized. This study underscores that
within the production systems of industrial enterprises, collaborative evolution should
establish particular mechanisms and pathways at the management level to ensure the
system’s advancement towards a high-level and orderly structure.

4.5.1. Management Mechanism Based on System Collaboration

Drawing from the contents of Sections 3.2 and 4.2, the collaborative management
mechanism should be propelled by information flow while also emphasizing energy man-
agement and control. Within the framework of information systems architecture, enter-
prises can devise production plans and allocate production tasks based on orders. Material
flow, energy flow, and information flow are conveyed in their respective formats through
resource planning systems, manufacturing execution systems, and energy management
systems. Through the collaboration of material flow and energy flow, information flow
is integrated across various systems. By considering process limitations and product req-
uisites, a blueprint is developed for utilizing existing resources and energy, aligning the
coordination of production resources and energy with the objectives of production plan-
ning and execution scheduling. Each process is executed in accordance with the planned
instructions. The operational mechanism is visually depicted in Figure 7. In this mecha-
nism, the concept of collaborative management is primarily manifested in the following
dimensions: digital support for material and energy flows, harmonization between energy
plans and production plans (shaping resource and energy plans via production plans), and
synchronization in dynamic scheduling procedures.

Complex industrial production systems are order-oriented and customized production.
Section 3.4 proposes the ultimate goal of collaborative management: resource optimiza-
tion based on material flow, energy optimization based on energy flow, and information
optimization based on production system synergy and on material flow-energy flow–
information flow synergy for the effective allocation of production resources. Based on the
management mechanism in Figure 7, the specific implementation plan is to introduce a
new information co-optimization sub-system based on the current MES and ERP informa-
tion system architecture, combined with the process control system of the main process
equipment unit, relying on the model library and database, adding “resource planning
system, energy management system”, and other modules to establish optimized flows.
The subsystem model of material flow, energy flow, and information flow co-optimization
is driven by the information flow for the interaction and utilization of energy flow and
material flow, completing the synergy between the flow structure optimization module and
the production management system as a whole. In the collaborative management mecha-
nism, the energy control method has many advantages over the traditional project-based
energy control, as shown in Table 12. The results of improving comprehensive energy
efficiency from the energy perspective alone are limited, and according to the driving and
dissipation structure of the energy flow, with collaborative management as the control
center, the supply and demand should be consistent, and the demand and consumption
should be similar to the maximum.
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tion. Section 3.4 proposes the ultimate goal of collaborative management: resource opti-
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planning system, energy management system”, and other modules to establish optimized 
flows. The subsystem model of material flow, energy flow, and information flow co-opti-
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Table 12. Comparison between synergy management and project management in energy management
and control.

Energy Control Projects Project Management Collaborative Management

Pollution control methods Input and emission control Full process control
Energy management methods Planning, measurement, and post control Self-organizing management

Pollutant generation No changes before and after management Reduce after management
Pollutant discharge level Next cycle reduction Reduction within the cycle

Energy consumption Increased consumption of governance processes Reduce
Energy usage costs Increase Reduce

Administrative expenses Increase Reduce
Proactive implementation Passive Active

Product quality Unchanged Increase

4.5.2. Management Path Based on Collaborative Evolution

The collaborative management mechanism emphasises the integration of flow struc-
ture modules and information systems, while the collaborative management path highlights
the idea of synergy and cooperation between the elements, focusing on how to regulate the
behavior of management to achieve collaborative production management. As shown in
Figure 8, first of all, each department should complete business divestiture and reorganiza-
tion, and refocus so as to achieve resource sharing, which is more effective in allocating
resources than the traditional management method that emphasizes the division of labour,
and on the basis of rational allocation and utilization of internal resources such as human,
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financial, material, technology, and information. External resources are also included in the
scope of synergy, and the combination of internal and external meets the basic conditions
of system self-organization.
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Secondly, a comprehensive assessment of the environment in which the production
system is located and the operating conditions, etc., should be performed. The items to
be assessed include resources such as capital, raw materials, manpower, and technology,
as well as production, marketing and service capabilities, and the industry’s internal and
external environments. Market demand reflects the value of customer needs. By constantly
identifying gaps between the existing strategic orientations and market demand, compa-
nies are able to determine the direction of development, identify gaps between the current
synergy trends and synergy goals based on the synergy evaluation, and collect relevant in-
formation, a step that determines whether management wants to make synergistic changes.
If the assessment results in the need for synergistic management, the distribution of benefits
between the elements should first be harmonized, as each stream structure subsystem can
gain more benefits under improvement, but not necessarily automatically to the mutual
benefit of the other subsystems.

Once again, assessments should start from the breakthrough point of collaborative
management—identifying collaborative opportunities and opportunities that may generate
order parameters in the system, that is, identifying constraints or bottlenecks. Maximizing
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the value of synergy is the goal of synergy management. Assessing the value of synergy
in advance allows one to anticipate the effects of synergy management and uncover the
value of using synergy elements. As shown in Figure 9, value opportunities mainly occur
in the conversion of raw materials to products, collaborative production, and the recycling
of waste. Studying the value structure at the process level, controlling all value-added
and non-value-added activities, and identifying all opportunities for value appreciation
is critical.
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SG Enterprise production system SOM calculations compare the value of synergy with
the cost of synergy to obtain the actual value of synergy. While material and energy have
value in themselves, a traditional value stream analysis is used to describe the activities of
the material and information flows in an enterprise, visualizing both, focusing on improving
productivity and shortening production cycles, emphasizing time-based improvements,
and failing to consider the efficiency of energy and the impact of the production process on
the environment. Collaborative value identification is therefore also an improvement on
traditional value stream tools, and there is empirical evidence of the method.

Next, we need to adopt communication projects, such as two-way communication
and mutual trust. Effective communication projects can enable employees and manage-
ment entities in the enterprise to clearly understand, recognize, and accept collaborative
values, and transform them into conscious behaviors in daily work. Integration refers to
the balancing, selection, and coordination of collaborative elements. At the production
level, element coordination refers to the allocation of funds, products, technology, human
resources, etc. At the enterprise level, element coordination refers to the coordination
of subsystems, such as research and development, procurement, production, marketing,
and services. External element coordination refers to mergers and acquisitions, dynamic
alliances, and industry–university research cooperation between enterprises.

The order parametric will dominate the subsystem that caused it to be generated, while
reinforcing the order parametric itself. Whether its guidance of the system is compounded
by the trend of synergistic management requirements must also be compared to the goal
through feedback to obtain the answer. As can be seen from Figure 8, there are two types
of feedback: circular feedback and judgmental feedback. The five links from opportunity
identification to the domination path constitute circular feedback, with each step being
self-checked; the opportunity re-identified if it cannot be passed. After the synergy result
is obtained, the synergy goal is compared, and if it is inconsistent, the aforementioned
link needs to be reconsidered. This is the typical path of enterprise level collaborative
management.
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In addition, it is important to be wary of cost increases where strategic advantages
are sought from synergies. For example, SG companies have had problems with rising
overheads, and pursuing procurement synergies excessively can increase costs; strategic
differences between different businesses (e.g., tempered glass business pursues cost leader-
ship, whereas smart glass systems business pursues differentiation) may make production
and R&D synergies less effective. Insufficient understanding of the market activities of spe-
cific business enterprises (e.g., some companies may have procurement staff from different
departments or with different responsibilities, and the same type of sales channels may
not be shared because of differences in business practices) can also significantly reduce the
synergy effect, and when the interests of the various business units may conflict with those
arising from the company’s synergy, it will prevent the synergy from being effective. SG
enterprises should address the issues above in the process of identifying opportunities for
organizational collaboration, analyzing costs, and communicating and learning.

5. Conclusions

This study applies a collaborative theory to complex industrial production systems.
From the perspective of process dynamics, we have analyzed the dynamic structures of ma-
terial flow, energy flow, and information flow in detail through graphical and mathematical
forms. At the same time, we delved into the collaborative operation mechanism between
these three subsystems and the collaborative evolution process of the entire production
system. To this end, we have established a collaborative evaluation model based on order
parameters and gray relations and extended the three-stage dynamic equation system
collaborative evolution model. In our research, we also proposed a method for identify-
ing sudden disturbances in production systems using self-organizing mapping network
algorithms. We selected SG Enterprise, an international enterprise with high management
levels, as the empirical object, and conducted model calculations and result analysis to
obtain insight into the mechanism and path of collaborative management. Based on this
work, the following conclusions have been drawn from this study:

1© From the perspective of flow structure, complex industrial production systems can
be analyzed as a large system formed by the synergy of three subsystems: material flow,
energy flow, and information flow. The material flow subsystem is the main body, and
the energy flow is dependent on and drives the material flow. The information flow is
generated by and drives the material flow and energy flow. The collaborative mechanism
is the overall collaboration achieved by the three subsystems through local collaboration
in pairs.

2© “Order” is an important representation of the collaborative process of a system in
the time dimension, and the competition and cooperation between order parameters enable
the system to complete the evolution process from disorder to order. The evaluation of the
level of system collaboration is based on the ordered measurement at a certain moment,
and the introduction of the Thiel index can optimize the weight calculation method. The
self-organizing map (SOM) algorithm can be used to effectively identify production abrupt
disturbance data, which can be used as a tool for collaborative management.

3© The collaborative evolution of complex industrial production systems can be catego-
rized into three stages: the collaborative generation period, collaborative stalemate period,
and collaborative maturity period, each exhibiting distinct dynamic states. During the col-
laborative generation period, various parameters engage in robust competition, gradually
giving rise to dominant order parameters within the system. In the collaborative stalemate
period, the interplay between the subsystems evolves to reveal a blend of competition and
cooperation, ultimately reaching a harmonized state. The collaborative maturity period
showcases the system’s notable self-organization capacity, underscored by evident feedback
and self-control phenomena. The essence of constructing mathematical models for these
three stages lies in accurately grasping their evolutionary traits, judiciously defining vari-
ables, and utilizing equilibrium points to expound upon computational outcomes. From
the MATLAB simulation curve of the model, the ensuing conclusion can be drawn: during
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the coevolution generation period, the system’s state is influenced by the interrelationships
among subsystems and the internal and external dynamics of the system. In the stalemate
phase of collaborative evolution, the system’s state is collectively impacted by the pre-
dominant and competitive effects of the order parameters, alongside the system’s inherent
self-organizing prowess. In the mature stage of collaborative evolution, the system’s state
is solely intertwined with its self-organization ability. The potential influence of random
mutations on the system’s state and their role in evolution hinges on their potential to
become order parameters.

4© The collaboration degree of the production system of SG enterprise from 2014 to
2021 was less than 0, and it did not enter collaborative evolution. In 2022, a basic trend of
entering the collaborative generation period was noted. SG Enterprise should optimize
production collaboration management; otherwise, it cannot rely on a self-organization
ability to move towards a high-level, orderly, and stable state. Collaborative management
should follow clear management mechanisms and paths.

5© The key management strategy based on the synergy of material flow, information
flow, and energy flow is utilized to strengthen energy control driven by information flow,
integrate the production and operation mode of flow structure into the overall architecture,
and form a stable management mechanism, achieving resource optimization based on
material flow, energy optimization based on energy flow, and information optimization
based on system collaboration. At the enterprise level, it should follow the path of resource
restructuring, evaluating collaborative gaps, identifying collaborative opportunities, and
confirming collaborative value. Compared to traditional production management, collab-
orative management mode fully utilizes the self-organizing characteristics of the system,
grasps the evolution time point, transforms from process control to driving force control
and mutation control, simplifies repetitive work and redundant data, and reduces the
consumption of work links, resources, energy, and manpower.

This article also has the following shortcomings. First of all, in terms of the methods,
the self-organizing map network algorithm has application value for enterprises with a
good management foundation and complete data collection, but it is not the most suitable
method for small- and medium-sized enterprises for the selection of enterprise parame-
ters, identification of problems, allocation of resources, and other parts involving various
systems of enterprises. In addition, the next step of research should focus on modeling
related to the collaborative characteristics of industrial production process systems. On
the basis of achieving the synergy of material flow, energy flow, and information flow, the
collaborative management of material flow network, energy flow network, and information
flow network should be studied.
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Appendix A

Table A1. Parameter Inventory (Source Identification of Ordered Parameters).

Serial
Number Parameter Serial

Number Parameter

1 Return scrap rate 75 Failure analysis ineffective cost
2 Final scrap rate 76 Consumption rate of compressed gas
3 Comprehensive heat production rate 77 Leakage rate of compressed gas
4 Yield of finished products 78 Emission rate of compressed gas
5 Production reliability 79 Production layout safety index
6 Labor productivity 80 Production defect loss ratio
7 Error component rate 81 Energy cost loss ratio

8 Waste recycling rate 82 Comprehensive energy consumption per
unit product

9 Qualified rate of finished products 83 Air pollution per unit product

10 Thermal pollution emission rate 84 Cost proportion of information
technology construction

11 Production line downtime 85 Material scrap and defect data
12 Loss reduction index 86 Quantification of complaints and material waste
13 Device setup time 87 Deviation difference in material detection
14 Material balance index 88 Energy consumption per unit production cost
15 Special machine losses 89 Control index of residual energy
16 Defect decomposition index 90 Regulatory notice or authorization index
17 Complaint decomposition index 91 SOP review interval
18 Raw material consumption rate 92 Reporting index for major accidents
19 Rejection rate of defective products 93 Labor time used for rework

20 Air monitoring index 94 Consumption and disposal of
packaging materials

21 Equipment failure loss 95 Manage controllable OEE ratios
22 Short stop loss 96 Product fragment recycling rate
23 Safety production index 97 Flexibility (inventory turnover days)
24 Equipment production efficiency 98 Production dynamic risk assessment index

25 Input–output efficiency 99 Environmental factory boundary noise
statistical index

26 Product added scrap rate 100 Production process exhaust gas statistical index
27 Recovery and utilization rate of surplus energy 101 Energy safety isolation practice index
28 Waste heat recovery and utilization rate 102 Management risk progress assessment index
29 Progressiveness production equipment 103 Verify available material loss index
30 Wastewater recycling capacity 104 Water demand per unit production cost
31 Information management index 105 Risk assessment program coverage index
32 Reduction in production water consumption 106 Impact index of key control points

33 Quality index decline rate 107 Generation of residual heat and energy per
unit product

34 Operational index (OPI) 108 Degree of production continuity (index)
35 OEE overall efficiency 109 Equipment overall efficiency (OEE)
36 Improved production line productivity 110 Scrap quantity/high-quality product quantity
37 Machine failure reduction rate 111 Reduced product value caused by obsolescence

38 Main equipment maintenance time 112 Number of customer complaints that
generate costs

39 Key product key production 113 Number of customer complaints
expressing dissatisfaction

40 Material specification accuracy 114 Basic fuel consumption of process
auxiliary materials

41 Reduced use of natural gas 115 Volume ratio of water consumption to
water intake

42 New material safety data 116 Utilization rate of SOP and other guidance books

43 Hazardous waste exposure index 117 Consumption statistics of engine oil and
lubricating oil
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Table A1. Cont.

Serial
Number Parameter Serial

Number Parameter

44 Logistics stability index 118 Proportion of information technology cost to
output value

45 Production visualization index 119 OEE decomposition—loss failure rate

46 Isolation index of energy 120 OEE decomposition—production
conversion rate

47 Control index of energy 121 Probability of converting production indicators
into actions

48 Energy shutdown index 122 Probability of discovering defects during
regular inspections

49 Energy release index 123 Downtime caused by operator absence
50 Production plan completion rate 124 New radiation source or laser protection index
51 Unrecognized energy loss 125 Exhaust emissions per unit production cost

52 Water consumption per unit product 126 Percentage of jobs directly exposed to
hazardous waste

53 Input energy per unit product 127 Statistics of protective devices, machinery
and equipment

54 Comprehensive energy consumption per
unit product 128 Detection rate of energy utilization tools

and equipment

55 Comprehensive electricity consumption per
unit product 129 Emission rate of solid liquid waste

pollutants (sulfur)
56 Organizational structure construction level 130 Emission rate of gas waste pollutants (nitrogen)

57 Information system construction level 131 Inspection frequency of water treatment
equipment and network

58 Planned downtime gap 132 Downtime caused by insufficient
material supply

59 Hazardous waste hazard assessment index 133 Effective index of energy isolation device
for equipment

60 Production accident impact index 134 Machine protection and LOTO inspection index

61 OEE breakdown maintenance rate 135 Proportion of full-time personnel engaged in
information technology work

62 Line production gap index 136 Popularity of information technology related
production equipment

63 Supervision improvement index 137 Production time statistics for no less than
one rotation

64 Total loss due to quality issues 138 Index for incorporating new products and
procedures into the process

65 Material value range stability 139 Speed loss caused by machine operation not
reaching speed

66 Material characteristic calibration coefficient 140 Amount of waste generated per unit
production cost

67 Measurement accuracy deviation index 141 Risk assessment index for three or more
energy sources

68 Probability of chemical leakage 142 Proportion of non-recyclable waste to total waste

69 Construction of independent websites 143 Number of times discharge water quality is
measured by external agencies/year

70 Internal network application situation 144 Proportion of information security investment in
informatization investment

71 Product one-time qualification rate 145 Enterprise resource planning (ERP)
application index

72 Archive data exposure level 146 Critical area cleaning and lubrication inspection
(CIL) rate

73 Technical level evaluation index 147 Fire/explosion index caused by combustible or
flammable materials

74 Cost of undiscovered defective products 148 Complexity index of the isolation system when
there are more than three energy sources
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Table A2. Qualitative Identification of Ordered Parameters.

Serial
Number Parameter Unit Serial

Number Parameter Unit

1 Yield of finished products % 11 Production defect loss ratio %
2 Production reliability ND 12 Energy cost loss ratio %

3 Comprehensive heat
production rate % 13 Comprehensive energy

consumption per unit product MWh/m2

4 Equipment production efficiency % 14 Air pollution per unit product kg/m3

5 Wastewater recycling capacity m3 15 Cost proportion of information
technology construction %

6 Information management index ND 16 Manage controllable OEE ratios %
7 Production plan completion rate % 17 Product fragment recycling rate %

8 Unrecognized energy loss kgce/t 18 Flexibility (inventory
turnover days) d

9 Water consumption per
unit product L/m3 19 Equipment overall

efficiency (OEE) %

10 Product one-time
qualification rate %

Table A3. Effect Values of Flow Structural Subsystems in SG Enterprises.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

M1 0.5285 0.1338 1.0000 0.5165 0.0000 0.9741 0.3026 0.1649 0.2572 0.8300
M2 0.7693 0.8202 0.8642 1.0000 0.0000 0.0482 0.7048 0.8057 0.9552 0.7667
M3 0.0000 0.2683 0.6188 0.7828 0.6979 0.9253 0.8939 0.9328 0.8496 1.0000
E1 0.7273 1.0000 0.0000 0.1688 0.5407 0.0888 0.1802 0.5861 0.3129 0.3596
E2 0.5770 0.4556 0.0000 0.5164 0.3633 0.4659 0.3871 0.3936 0.4518 1.0000
E3 0.0000 0.9848 0.0389 0.1309 0.4597 0.4620 0.8468 1.0000 0.8810 0.9369
I1 0.6831 0.0000 0.2796 0.1093 0.4423 0.3555 0.1415 0.5067 0.7315 1.0000
I2 0.0000 0.0000 0.3855 0.5964 0.2410 0.6928 0.6024 0.2108 0.1205 0.0000
I3 0.0000 0.7422 0.6483 0.8021 0.8884 1.0000 0.5366 0.3592 0.7285 0.9238

Table A4. Standardized Effect Values of Flow Structural Subsystems in SG Enterprises.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

M1 0.1123 0.0284 0.2124 0.1097 0.0000 0.2069 0.0643 0.0350 0.0546 0.1763
M2 0.1142 0.1218 0.1283 0.1485 0.0000 0.0072 0.1047 0.1196 0.1418 0.1138
M3 0.0000 0.0385 0.0888 0.1123 0.1001 0.1328 0.1283 0.1338 0.1219 0.1435
E1 0.1835 0.2522 0.0000 0.0426 0.1364 0.0224 0.0455 0.1478 0.0789 0.0907
E2 0.1251 0.0988 0.0000 0.1120 0.0788 0.1010 0.0840 0.0854 0.0980 0.2169
E3 0.0000 0.1715 0.0068 0.0228 0.0801 0.0805 0.1475 0.1742 0.1535 0.1632
I1 0.1607 0.0000 0.0658 0.0257 0.1041 0.0837 0.0333 0.1192 0.1721 0.2353
I2 0.0000 0.0000 0.1353 0.2093 0.0846 0.2431 0.2114 0.0740 0.0423 0.0000
I3 0.0000 0.1120 0.0978 0.1210 0.1340 0.1508 0.0809 0.0542 0.1099 0.1394

Table A5. Theil Index Values of Flow Structural Subsystems in SG Enterprises.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

M1 0.2455 0.1012 0.3291 0.2420 0.0000 0.3260 0.1764 0.1174 0.1588 0.3060
M2 0.2478 0.2564 0.2635 0.2832 0.0000 0.0354 0.2362 0.2540 0.2770 0.2474
M3 0.0000 0.1254 0.2150 0.2456 0.2304 0.2681 0.2634 0.2692 0.2566 0.2786
E1 0.3111 0.3474 0.0000 0.1344 0.2717 0.0851 0.1405 0.2826 0.2004 0.2177
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Table A5. Cont.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

E2 0.2601 0.2287 0.0000 0.2452 0.2002 0.2316 0.2080 0.2101 0.2276 0.3315
E3 0.0000 0.3024 0.0339 0.0862 0.2022 0.2028 0.2823 0.3044 0.2876 0.2958
I1 0.2938 0.0000 0.1790 0.0942 0.2355 0.2076 0.1133 0.2536 0.3029 0.3405
I2 0.0000 0.0000 0.2706 0.3273 0.2089 0.3438 0.3285 0.1927 0.1338 0.0000
I3 0.0000 0.2451 0.2274 0.2555 0.2693 0.2853 0.2035 0.1580 0.2427 0.2746

Table A6. Production System Ordered Parameter Raw Data.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

M1 62.0% 49.7% 76.7% 61.6% 45.5% 75.8% 54.9% 50.6% 53.5% 71.%
M2 96.10% 96.53% 96.90% 98.04% 89.63% 90.04% 95.56% 96.41% 97.67% 96.08%
M3 6.73 10.49 15.41 17.70 16.51 19.70 19.26 19.81 18.64 20.75
E1 12.00 10.87 15.01 14.31 12.77 14.64 14.27 12.58 13.72 13.52
E2 3.79% 4.51% 7.22% 4.15% 5.06% 4.45% 4.92% 4.88% 4.53% 1.27%
E3 200.00 237.96 201.50 295.15 282.47 282.39 232.64 238.54 266.24 264.08
I1 20.55 45.77 35.45 41.73 29.44 32.64 40.54 27.06 18.77 8.85
I2 0.20% 0.50% 2.50% 3.20% 5.10% 3.60% 3.90% 5.20% 5.50% 5.90%
I3 35.64% 62.40% 59.02% 64.56% 67.68% 71.70% 54.99% 48.59% 61.91% 68.95%

Table A7. Grey Correlation Coefficients of Flow Structural Subsystems in SG Enterprises (Energy
Flow to Material Flow).

Year
Relationship E1-M1 E1-M2 E1-M3 E2-M1 E2-M2 E2-M3 E3-M1 E3-M2 E3-M3

2013 0.652 0.691 0.335 0.734 0.758 0.532 0.542 0.568 0.402
2014 0.956 0.553 0.583 0.736 1.000 0.574 0.698 0.851 0.458
2015 0.620 0.701 0.566 0.597 0.455 0.422 0.358 0.565 0.694
2016 0.843 0.858 0.994 0.843 0.836 0.778 0.644 0.652 0.737
2017 0.554 0.947 0.847 0.572 0.728 0.800 0.414 0.595 0.693
2018 0.599 0.622 0.716 0.653 0.919 0.717 0.687 0.601 0.841
2019 0.616 0.795 0.712 0.733 0.846 0.886 1.000 0.820 0.534
2020 0.713 0.780 0.488 0.670 0.872 0.824 0.726 0.861 0.523
2021 0.645 1.000 0.705 0.808 0.986 0.815 0.614 0.918 0.840
2022 0.586 0.991 0.501 0.355 0.407 0.337 0.690 0.892 0.577

Table A8. Grey Correlation Coefficients of Flow Structural Subsystems in SG Enterprises (Material
Flow to Energy Flow).

Year
Relationship M1-E1 M1-E2 M1-E3 M2-E1 M2-E2 M2-E3 M3-E1 M3-E2 M3-E3

2013 0.794 0.730 0.680 0.768 0.692 0.636 0.501 0.529 0.557
2014 1.000 0.732 0.803 0.646 0.987 0.857 0.737 0.570 0.610
2015 0.769 0.587 0.504 0.776 0.379 0.633 0.724 0.420 0.796
2016 0.931 0.845 0.763 0.899 0.782 0.707 1.000 0.772 0.824
2017 0.713 0.562 0.562 0.964 0.659 0.659 0.919 0.794 0.795
2018 0.752 0.645 0.795 0.708 0.884 0.665 0.836 0.712 0.887
2019 0.766 0.728 0.990 0.852 0.794 0.835 0.833 0.880 0.676
2020 0.842 0.663 0.823 0.840 0.825 0.865 0.656 0.819 0.667
2021 0.789 0.807 0.740 1.000 0.969 0.904 0.828 0.810 0.886
2022 0.741 0.343 0.797 0.994 0.334 0.886 0.668 0.335 0.711
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Table A9. Grey Correlation Coefficients of Flow Structural Subsystems in SG Enterprises (Information
Flow to Material Flow).

Year
Relationship I1-M1 I1-M2 I1-M3 I2-M1 I2-M2 I2-M3 I3-M1 I3-M2 I3-M3

2013 0.608 0.624 0.666 0.379 0.384 0.660 0.349 0.361 0.556
2014 0.428 0.509 0.368 0.472 0.407 0.563 0.515 0.901 0.360
2015 0.872 0.783 0.693 0.523 0.690 0.770 0.453 0.936 0.827
2016 0.596 0.600 0.633 0.905 0.897 0.837 0.818 0.833 0.995
2017 0.715 0.969 1.000 0.476 0.565 0.602 0.379 0.549 0.643
2018 0.766 0.810 0.853 0.751 1.000 0.826 0.830 0.476 1.000
2019 0.550 0.609 0.761 0.826 0.955 0.990 0.998 0.766 0.492
2020 0.933 0.849 0.644 0.500 0.591 0.740 0.937 0.549 0.377
2021 0.674 0.571 0.510 0.484 0.549 0.613 0.617 0.980 0.739
2022 0.367 0.421 0.349 0.577 0.487 0.624 0.927 0.618 0.717

Table A10. Grey Correlation Coefficients of Flow Structural Subsystems in SG Enterprises (Informa-
tion Flow to Energy Flow).

Year
Relationship I1-E1 I1-E2 I1-E3 I2-E1 I2-E2 I2-E3 I3-E1 I3-E2 I3-E3

2013 0.657 0.719 0.786 0.451 0.467 0.482 0.603 0.648 0.695
2014 0.359 0.437 0.411 0.507 0.444 0.460 0.660 0.929 0.832
2015 0.896 0.480 0.519 0.623 0.432 0.873 0.780 0.419 0.713
2016 0.560 0.464 0.665 0.803 0.965 0.712 0.984 0.746 0.833
2017 0.967 0.735 0.735 0.592 0.697 0.697 0.718 1.000 0.999
2018 1.000 0.827 0.920 0.894 0.979 0.857 0.813 0.685 0.866
2019 0.591 0.620 0.490 0.964 1.000 0.809 0.764 0.725 1.000
2020 0.925 0.685 0.899 0.572 0.652 0.578 0.789 0.624 0.772
2021 0.499 0.508 0.476 0.572 0.565 0.591 0.984 0.956 0.961
2022 0.356 1.000 0.342 0.517 0.335 0.535 0.760 0.338 0.823

Table A11. Grey Correlation Coefficients of Flow Structural Subsystems in SG Enterprises (Material
Flow to Information Flow).

Year
Relationship M1-I1 M1-I2 M1-I3 M2-I1 M2-I2 M2-I3 M3-I1 M3-I2 M3-I3

2013 0.597 0.341 0.542 0.613 0.344 0.554 0.650 0.590 0.732
2014 0.421 0.425 0.701 0.499 0.364 0.960 0.360 0.503 0.550
2015 0.854 0.470 0.646 0.770 0.621 0.978 0.677 0.690 0.912
2016 0.585 0.813 0.909 0.588 0.810 0.924 0.618 0.750 0.998
2017 0.701 0.428 0.574 0.955 0.507 0.730 0.976 0.538 0.797
2018 0.751 0.676 0.915 0.796 0.905 0.668 0.833 0.740 1.000
2019 0.540 0.743 1.000 0.598 0.863 0.884 0.743 0.889 0.678
2020 0.913 0.450 0.971 0.835 0.531 0.731 0.629 0.663 0.568
2021 0.661 0.435 0.781 0.560 0.493 1.000 0.498 0.548 0.860
2022 0.361 0.519 0.966 0.413 0.436 0.784 0.340 0.558 0.846

Table A12. Grey Correlation Coefficients of Flow Structural Subsystems in SG Enterprises (Energy
Flow to Information Flow).

Year
Relationship E1-I1 E1-I2 E1-I3 E2-I1 E2-I2 E2-I3 E3-I1 E3-I2 E3-I3

2013 0.678 0.341 0.599 0.812 0.467 0.738 0.790 0.359 0.679
2014 0.381 0.394 0.657 0.574 0.444 0.948 0.423 0.339 0.821
2015 0.904 0.512 0.780 0.615 0.432 0.527 0.530 0.810 0.697
2016 0.584 0.727 0.991 0.601 0.965 0.816 0.673 0.600 0.822



Systems 2023, 11, 453 41 of 45

Table A12. Cont.

Year
Relationship E1-I1 E1-I2 E1-I3 E2-I1 E2-I2 E2-I3 E3-I1 E3-I2 E3-I3

2017 0.970 0.480 0.716 0.823 0.697 0.994 0.741 0.582 0.999
2018 1.000 0.853 0.813 0.886 0.979 0.768 0.917 0.788 0.858
2019 0.614 0.959 0.764 0.736 1.000 0.800 0.501 0.722 1.000
2020 0.932 0.458 0.789 0.786 0.652 0.718 0.897 0.452 0.759
2021 0.524 0.458 0.991 0.641 0.565 0.966 0.487 0.465 0.958
2022 0.379 0.404 0.759 0.989 0.335 0.442 0.353 0.409 0.812

Table A13. SG Enterprise 2019 Jan-Aug 11 Production Lines Energy Input Values (Unit: €).

Production Line
Month January February March April May June July August

Line1 652,799 458,694 640,533 557,784 589,908 526,010 553,914 589,313
Line2 498,668 356,508 480,682 419,418 446,176 374,483 411,995 459,002
Line3 177,416 128,552 181,638 150,592 179,114 159,835 185,137 171,850
Line4 321,252 227,956 299,044 268,826 267,062 214,648 226,858 287,152
Line5 154,131 102,186 159,851 138,366 143,732 151,527 141,919 130,311
Line6 156,471 149,308 161,640 135,600 157,018 134,347 169,295 134,769
Line7 109,647 85,602 134,950 114,119 117,924 107,143 126,322 117,437
Line8 404,678 412,077 340,153 384,845 475,019 309,949 360,162 375,895
Line9 717,132 736,438 890,730 832,550 775,571 649,772 791,020 728,500

Line10 100,315 72,581 100,113 88,496 56,778 53,448 60,520 73,017

Table A14. SG Enterprise 2019 Jan-Aug Production Flow Structural Parameter Raw Values.

Parameter
Month January February March April May June July August

OEE 87.1% 83.8% 86.9% 86.0% 86.2% 84.5% 87.2% 88.0%
OEE SR 69.9% 67.8% 64.8% 74.2% 78.0% 77.4% 77.9% 75.6%
OEE SL 72.0% 66.5% 72.3% 72.7% 72.3% 72.2% 73.9% 72.3%
OEE Tes 59.5% 67.1% 61.1% 71.1% 81.9% 86.4% 86.0% 81.4%
Yield WS 95.1% 95.7% 95.1% 95.6% 95.2% 95.4% 94.8% 95.3%
Yield KTL 92.9% 92.7% 92.8% 92.4% 93.1% 93.1% 93.3% 93.4%
Yield BT3 96.8% 97.8% 97.7% 97.7% 97.4% 97.1% 97.7% 97.1%
PVT KTL 16.3 16.8 15.6 16.7 15.7 17.1 15.6 18.0
PVT BT3 43.5 39.1 41.0 40.5 40.9 45.0 42.1 41.0
WS Prod 35.0 26.1 52.5 35.4 43.8 26.6 35.9 59.0
KTL Prod 108.1 67.3 73.3 59.8 111.6 84.0 77.1 102.9
BT3 Prod 353.9 165.4 347.3 331.7 207.2 226.2 283.1 326.3

Table A15. Qualitative Identification of Raw Data for Ordered Parameters.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

1 96.10% 96.53% 96.90% 98.04% 89.63% 90.04% 95.56% 96.41% 97.67% 96.08%
2 6.73 10.49 15.41 17.70 16.51 19.70 19.26 19.81 18.64 20.75
3 98.5% 98.1% 97.2% 97.3% 99.4% 99.1% 98.2% 98.6% 94.3% 98.3%
4 89.6% 95.5% 91.9% 90.4% 89.6% 89.7% 97.1% 94.9% 86.4% 93.1%
5 200.00 237.96 201.50 295.15 282.47 282.39 232.64 238.54 266.24 264.08
6 35.64% 62.40% 59.02% 64.56% 67.68% 71.70% 54.99% 48.59% 61.91% 68.95%
7 99% 92% 86% 101% 92% 102% 107% 85% 101% 100%
8 887 493 311 396 305 293 234 271 189 211
9 12.9 9.3 10.4 9.7 10.2 10.8 13.4 10.4 9.2 10.8
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Table A15. Cont.

Number
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

10 89.6% 95.5% 91.9% 90.4% 89.6% 89.7% 97.1% 94.9% 86.4% 93.1%
11 5.6% 5.1% 2.0% 3.0% 9.3% 0.9% 5.5% 0.0% 1.1% 0.0%
12 1.9% 3.7% 3.1% 3.5% 0.6% 1.8% 0.5% 0.3% 0.3% 0.2%
13 12.00 10.87 15.01 14.31 12.77 14.64 14.27 12.58 13.72 13.52
14 3.79% 4.51% 7.22% 4.15% 5.06% 4.45% 4.92% 4.88% 4.53% 1.27%
15 0.20% 0.50% 2.50% 3.20% 5.10% 3.60% 3.90% 5.20% 5.50% 5.90%
16 36% 62% 59% 65% 68% 72% 55% 49% 71% 62%
17 63.4% 76.7% 83.0% 93.0% 90.0% 93.0% 80.0% 87.0% 89.0% 91.0%
18 20.55 45.77 35.45 41.73 29.44 32.64 40.54 27.06 18.77 8.85
19 62.0% 49.7% 76.7% 61.6% 45.5% 75.8% 54.9% 50.6% 53.5% 71.4%

Table A16. Original Data for SOM Identification of 10 Process in SG Enterprises.

Operation Sequence
Index Number 1 2 3 4 5 6 7 8

Process 1 2236.5 407.2 53.1 63.3% 62.4% 887.3 501 1932.5
Process 2 3172.8 971.1 920.8 71.2% 59.0% 311.4 59 2280.8
Process 3 3470.9 398.2 1317.5 85.5% 64.6% 189.3 883 2853.9
Process 4 3638.2 656.9 846.7 80.3% 67.7% 234.2 501 3365.2
Process 5 3854.6 435.7 793.0 84.1% 71.7% 292.8 166 2602.6
Process 6 2956.2 1185.6 837.8 65.1% 55.0% 396.4 993 2250.2
Process 7 2612.4 511.7 1981.2 77.0% 48.6% 270.7 669 1004.4
Process 8 3811.7 664.3 688.7 81.3% 70.9% 211.4 50 3628.7
Process 9 3328.2 428.1 1315.0 82.0% 61.9% 304.7 181 1673.2

Process 10 3706.8 315.5 1140.8 87.5% 69.0% 212.9 385 3706.8
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