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Abstract: Intelligent systems are being proposed every day as advances in cloud systems are in-
creasing. Mostly, the services offered by these cloud systems are dependent only on their providers,
without the inclusion of services from other providers, specialized third parties, or individuals. This
‘vendor lock-in’ issue and the limitations related to offering tailored services could be resolved by
allowing multiple providers or individuals to collaborate through intelligent task scheduling. To
address such real-world systems’ limitations in provisioning and executing heterogeneous services,
we employed Blockchain and Deep Reinforcement Learning here; the first is used for the token-based
secured communication between parties, and the latter is to predict the appropriate task scheduling;
hence, we guarantee the quality of not only the immediate decision but also the long-term. The
empirical results show a high reward achieved, meaning that it accurately selected the candidates and
adaptably assigned the tasks based on job nature and executors’ individual computing capabilities,
with 95 s less than the baseline in job completion time to maintain the Quality of Service. The
successful collaboration between parties in this tokenized system while securing transactions through
Blockchain and predicting the right scheduling of tasks makes it a promising intelligent system for
advanced use cases.

Keywords: intelligent systems; artificial intelligence; blockchain; software architecture; cloud com-
puting systems

1. Introduction

We are currently depending on cloud computing systems for our everyday tasks,
whether it is for work, personal, commerce, financial transactions, or data storage tasks, to
name a few. Cloud services can be offered through a single provider or multiple clouds
federated as a single one with a variety of services, called federated cloud, which is the
interconnection and cooperation of multiple cloud computing environments [1]. The IEEE
2302–2021 Standard for Intercloud Interoperability and Federation (SIIF) highlights the
importance of establishing common mechanisms and APIs to enable resource sharing
among different stakeholders, fostering the testing of complex technologies in a federated
environment [2]. The need for more secured heterogeneous cloud services from federated
clouds and the demand for high efficiency in performing tasks on multiple clouds are in-
creasing nowadays, especially in cases that require high confidentiality and reliability [3–6].
As known, there are potential risks associated with cloud computing, like exposure or
leakage of data, unauthorized access to data, insider threats, regulatory violations, and
others [7–10]. Also, there are additional challenges that need to be managed to make it
more suitable for advanced use cases. For example, sensitive data or computing tasks
may require a careful selection of cloud resources to process these tasks securely and ef-
ficiently, or they might need specialized software or hardware to properly execute these
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tasks. Therefore, to minimize the centralization issue of cloud platforms on their respective
providers, we can benefit from the evolution of web 3.0, which allows us to utilize the
capabilities of emerging technologies to overcome these challenges to some extent and
achieve the desired enhancements. One of these technologies is Blockchain technology,
with its unique features that include immutability, decentralization, enhanced security, and
faster settlement through its smart contract system [11].

Blockchain is like a distributed state machine that operates over a consensus, it is a
place in which to store information, and we do not need central authorities or external
parties to ensure the integrity of that data. It is considered as a database that operates
over different kinds of technologies that allow you to store and to process data without
the intervention of third parties, where you can just trust the network itself that is going
to be completing the job [12]. Blockchain is suitable for handling reliable interactions and
secured sharing of messages between parties in the Blockchain. This distributed system
is immutable, so all transactions of all parties are recorded in a reliable way, either in a
permissioned or permissionless Blockchain. Figure 1 shows the Blockchain architecture.
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ties and capabilities for Society 5.0 and Industry 4.0 [13].
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One use case of utilizing such capabilities, which is the proposed system here in this
paper, is to split a job into multiple tasks or chunks to be processed separately through
multiple different nodes “executors” that are connected though a Blockchain network to
execute the required tasks without involving any intermediary, making use of its smart
contracts to guarantee a quick and secured settlement and transparent task execution. We
employed Blockchain technology here to immutably store all transactions to avoid the
possibility of data manipulation or the violation of Quality of Service (QoS), also to link
the service requester to the distributed executors, whether they are cloud resources or
individual service providers. This way we can achieve confidentiality through executing
fragmented sensitive tasks, perform compute-intensive tasks that are not possible using a
single machine, and execute tailored services that require specialized hardware or software,
all without the constraints of a central provider. In this case, the individual computation
capability of each executor impacts the overall execution efficiency, which will be considered
before being selected to execute the required job. Also, there should be a mechanism of
reputation to be considered before selecting an executor to ensure execution trustworthiness,
instead of randomly choosing executors or choosing them only based on stakes. It is known
that task scheduling affects the efficiency of execution, so designing their schemes properly
is an important challenge. Therefore, we want to design a mechanism that can address the
aforementioned issues in an efficient way.

It is difficult to use traditional optimization mechanisms that are based on static opti-
mization, which may not be suitable for the dynamic and complex features of distributed
environments such as cloud computing [14]. Optimizing the performance on the long
term requires designing an efficient policy that considers the challenges related to the
dynamicity of the system, like workload nature, QoS requirements, and the characteristics
of candidates (potential executors), which usually have an enormous state space. To tackle
the issue of dynamicity and complexity of the federated cloud environment, we can involve
artificial intelligence (AI) here to further enhance the proposed system. Nowadays, AI
is being utilized in many different fields, with endless applications including prediction,
Internet-of-Things (IoT), classification, detection, recognition, etc. [15–20]. The AI technique
that we employed here is Deep Reinforcement Learning (DRL), a promising approach in
handling advanced control problems [21–23]. It comprises Reinforcement Learning (RL)
and Deep Learning (DL), where RL learns to make the right decisions through taking
the best-known actions then, based on the action taken, receives penalties or rewards as
feedback. Whereas, DL approximates the complex functions where deep neural networks
learn to represent the value of actions in different states to correlate state and action that
are correspondent with the value function. The incorporation of such techniques is also
called hyper-heuristics, which are high-level search methodologies [24–26].

The decisions in DRL are made under the guidance of deep neural network (DNN),
which provides precise prediction and estimation that lead to a long-term optimal solution.
As it is not an easy-to-handle problem, we employed the Deep Q-Learning (DQL) technique,
which is a specific algorithm within DRL that specifically addresses the problem of learning
the action value for a given state to tackle the challenges of selecting the proper executor
and resource allocation, which helps in reducing the huge size of the action space. This
significant reduction resulted from applying Deep Q-Network (DQN) that eliminates the
need for a table to store Q-values for each state–action pair; instead, it utilizes the DNN to
estimate these Q-values.

The contribution of this work is to build a proof-of-concept system that allows ser-
vice requestors to benefit from broad range of services offered heterogeneously by cloud
providers and, later, individuals in a decentralized collaborative way that minimizes the
centralization issue of single cloud platforms. Also, it enhances the overall process security
in terms of immutability and integrity of all related transactions. This incentive-based
system integrates DQL and Blockchain to predict the appropriate task scheduling for ex-
ecutors that are available on federated clouds, avoiding potential vulnerabilities and taking
advantage of the smart contracts feature. This proof-of-concept system is validated on a
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federated cloud environment and successfully performs a job through choosing suitable
executors for that job by considering their computing capabilities and job type. This system
is applicable in different fields including, but not limited to, trading systems, E-commerce,
E-government, open-source intelligence (OSINT) and others.

The rest of the paper is structured as follows: Section 2 summarizes the literature
review, Section 3 describes the proposed system, Section 4 discusses the results of the
implementation, and finally, Section 5 concludes the paper and briefly mentions the planned
future work related to this topic.

2. Literature Review

Blockchain technology has recently gained significant attention, as it fits in almost
everywhere while still providing its distinct features. While investigating the related work
for this research, we found that most of the recent studies that combine Blockchain with
DRL for cloud systems were mostly applied in the two fields of Internet-of-Things (IoT) and
Industrial IoT [13,16,27–30]. On the other hand, only a few studies have been completed
combining Blockchain and DRL in the field of token-based task scheduling prediction on
federated cloud systems and for participants’ evaluation, which is our focus in this work.
Hence, we are highlighting some of this partially-completed related work that inspired us
to work on this proof-of-concept.

Xiao, H et al. [31] have proposed a decentralized architecture to develop a Blockchain-
supported Internet of Vehicles (IoV) system using an algorithm that is based on Deep
Reinforcement Learning for resource optimization. They formulated a resource optimiza-
tion problem and exploited the Deep Reinforcement Learning algorithm to determine the
allocation scheme.

Gao, S et al. [32] have also built a resource allocation and task offloading mechanism
for a video frame resolution scaling that is based on DQL, they formulated an optimization
problem of cost minimization of energy, delay, and accuracy to improve the experience
quality of the user equipment; they utilized DQN for dimensionality reduction while
selecting the action for offloading and resource allocation, resulting in an accelerated
training speed through overcoming the sparseness of single-layer reward functions.

In the field of cloud–edge–end cooperation environments, Fang, C et al. [33] have
solved the issue of the overloaded mobile traffic that is resulted from the Internet services
by designing a DRL-based optimization mechanism to allocate resources in heterogeneous
environments with cloud–edge–end collaboration, focused on improving the distribution
of content, where they schedule the tasks of the arrived content requests according to the
historical requests from users. In another study supported by edge computing, Quan, T
et al. [34] have designed a seismic data query mechanism using DQN for mobile edge
computing; they formulated a minimization optimization problem aiming to minimize
the task delay in the long-term by considering the computing capacity constraints of edge
servers, resulting in outstanding performance results.

Most of the related studies have considered their proposed ideas as optimization
problems, either minimization or maximization, to minimize the cost of any aspects: delay,
energy, resources, operating expenses, etc., or to maximize the reward, performance,
etc. Todorović, M et al. [35] have proposed a consensus mechanism based on PoUW
that assumes solving instances of optimization problems for more efficient utilization of
computational resources and provision incentives for the Blockchain participants.

In [36], they designed a multi-objective mechanism to optimize the response time for
task scheduling and energy consumption in an edge–cloud collaborative environment. This
design is based on the A3C algorithm to propose a task scheduling policy optimization
algorithm, with acceptable simulation results confirming its ability to reduce the overall
response time and the calculated energy consumption of their proposed system.

For the purpose of handling the problem of the unpredictability of tasks and QoS
requirements of users in Fog Computing, the authors in [37] have proposed three different
DRL-based solutions, with the aim of maximizing rewards with reference to resource
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utilization, designed as the Markov Decision Process, by taking into consideration the
task priority, energy consumption, and latency as the QoS factors. Another effort has been
made in [38] for a trusted supervision of federated learning and malicious node attacks by
smart contract; they proposed the concept of a decentralized trusted computing sandbox,
which is a federated learning multi-task scheduling mechanism using DRL to solve the
resource scheduling optimization problem. Both of these two studies have not incorporated
Blockchain in their proposed ideas of resolving the scheduling optimization problem. On
the other hand, ref. [39] has proposed a DRL-aware Blockchain-based task scheduling
system for healthcare applications through a solution that provides makespan efficient
scheduling to solve the issues of task scheduling, security, and the cost related to processing
tasks in the IIoT healthcare paradigms. We have also been inspired by the work carried
out in [40], where they have introduced a multi-agent collaborative DRL-based scheduling
algorithm with DQN in Mobile Edge Computing (MEC) to solve the issues of low latency,
offloading, and task scheduling in MEC using Karush–Kuhn–Tucker (KKT) to minimize
the total latency and DQN to reduce the energy consumption.

To the best of our knowledge, and compared to IoT-related contributions, a few
studies have been carried out for enhancing the utilization of federated clouds, and none of
the studies in the literature review have proposed an incentive-based system integrating
the Blockchain features with DQL in federated clouds, nor have they utilized the DRL
capabilities to select nodes (executors) reliably by predicting efficient task scheduling. In
addition, the effectiveness of Blockchain-enabled cooperative execution is not yet studied
thoroughly, and there should be more evaluation mechanisms for selecting the proper
distributed executors. Therefore, we are trying here to fill this research gap and propose
this system as a proof-of-concept applicable in use cases that minimize cloud providers’
lock-in issue by allowing for heterogeneous services from federated cloud and, later, the
individuals who offer specialized token-based services.

3. Methodology

The methodology we followed here was used to build a proof-of-concept solution
that integrates Blockchain technology with a DRL approach with the purpose of enabling
a collaboration among the distributed executors using a rewarding mechanism as an
incentive, also for the purpose of creating an evaluation mechanism for selecting the proper
executors. This methodology should allow for secured transactions on federated clouds by
taking advantage of the immutable Blockchain and the smart contract features, while also
utilizing the DRL approach to predict appropriate task scheduling.

The notations used in this section are tabulated in Table 1 below, with a description of
each notation to help readers easily understand the abbreviations and algorithms.

Table 1. Notations.

Symbol Description

FCM Federated Cloud Manager
Predictor Deep Reinforcement Learning agent

BCM Blockchain manager
RC Resource Collector
N Number of tasks
T Timeout, the assumed QoS
Q Reward (token per task)

Job N, D, and Q
n∗ Scheduling profile
f∗ Computational resource allocation profile

W∗ Task scheduling and resource allocation policy
θC Candidates set; the potential executors not yet selected
θE Executors set; the selected executors from the candidates set



Systems 2024, 12, 84 6 of 21

In the following subsections, we explain the workflow and the design of the proposed
concept and its architecture, in addition to how we defined the state space, action space,
and reward function.

3.1. Workflow of the Proposed System

The requester submits a job request with the dedicated reward and the number of
tokens Q needed to pay for the successfully executed job. This request transaction in-
cludes the workload (number of tasks N), the QoS requirement (assumed as timeout T ),
and the reward Q. To handle these transactions, as we adopted DPoS here, the block
creators (elected by the stakeholders) will generate a block and append it to the Blockchain;
then, after reaching a consensus, they will add the produced block permanently to the
Blockchain. This job request transaction is broadcasted through the BCM and received by
the Predictor, the DQL agent, which will assess the job type and perform the algorithm
to select the suitable executor set θE from the already available candidate set θC. This
selection is carried out through the evaluation process of the candidates, which evaluates
the S, V, and F values of each candidate. Ideally, any service providers or nodes on the
network who have submitted an execution availability transaction can be considered as
candidates, but here, the Predictor collects and groups all resources (including VMs as
executors) that are available in the federated cloud into a candidate set θC.

After candidate evaluation and executor selection, and based on the selected executors,
the Predictor will design the appropriate policy of task scheduling on the selected executors
and send it to the requester; the result of this selection is also appended to the Blockchain.
Considering that the selected executors in θE are VM instances, the FCM will initiate and
initialize the designated instances to be ready by uploading the related folders with scripts
to execute the workload. The requester should then dispatch the required job tasks to the
executor and send the output IDs to the Blockchain to announce job acceptance and the
executor acknowledgment for the job approval, which, in turn, will execute the job based
on the specified policy.

For the executors, to obtain the highest reward, they should allocate the related
computational resources to successfully execute the job and meet the QoS requirements
efficiently. After successful job execution, they send a completion announcement on the
Blockchain when it is completed. This process will either return true if successful (no
violations of QoS) or false if otherwise. Finally, and only if successful, the smart contract
will release the allocated tokens, and the executor will obtain the reward.

All these transactions, along with the token ledger, are secured by and immutably
recorded on the Blockchain, guaranteeing the transparency and integrity of transactions
for both the requester and executor, where all parties are connected through the Blockchain
network. Figure 3 illustrates how different parties are connected in the proposed concept.
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The workflow of the proposed system is formulated in Algorithm 1 below, whereas
Algorithm 2 explains the steps taken by the Predictor (Deep Reinforcement Learning agent)
to select the appropriate executors and build task scheduling and resource allocation policy
by solving problem P1, as shown in (9). These steps utilize a DQL (Deep Q-Network) that
employs a neural network with a pre-trained main Q-Network to predict the Q-value for a
given state, through two phases:

1. Estimating the “state-action” value function that is correspondent to an action–value
function (offline DNN construction, steps 4 to 6 in Algorithm 2);

2. Action selection and dynamic network updating (online dynamic Deep Q-Learning,
steps from 7 to 23 in Algorithm 2).

The “offline” phase here refers to setting up the DNN before the interaction with the
environment, where we decide the architecture in terms of the number of layers, the config-
ured neurons in each layer, and the applied activation functions. First, the initialization of
the Main Q-Network weights with small random values to break the symmetry and allow
for more proper learning. Then, the initialized Main Q-Network is duplicated by creating a
Target Q-Network, ensuring both have the same initial weights. The use of two networks
reduces the correlations between the Q-values being predicted and the targets used for
training to stabilize learning. The Experience Replay is also initialized in this phase, which
will store the Predictor’s experiences in terms of state, action, reward, and next state tuples.
Lastly, in this phase, we pre-trained the network using the Azure 2019 workload dataset to
speed up learning.

The “online” phase involves the actual learning process, where the Predictor interacts
with the environment and updates the DNN based on its experiences. Using an ε-greedy
strategy, the Predictor decides whether to take a random action (explore) or the action
suggested by the current policy (exploit). For each action taken, the agent receives a new
state and a reward from the environment, and the tuple (current state, action, reward,
next state) is stored in the Experience Replay. Periodically, a batch of experiences from
Experience Replay are sampled to allow the DNN to learn from a more diverse set of
experiences, reducing the correlation between consecutive learning updates and improving
stability. Using sampled experiences, the Predictor calculates target Q-values using the
Bellman equation, and these targets reflect the expected future rewards. To minimize the
loss between the predicted Q-values and the target Q-values, we use the loss function. The
weights from the DNN are copied, after several learning updates, to the Target Q-Network
to update the targets. These steps allow the DQN to effectively learn policies that map the
states to the actions to maximize the cumulative reward, accounting for both immediate
and future rewards.

Algorithm 1: Workflow
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17      State transition observation 𝑇  (next decision epoch) with the new state 𝑆  
18      Store this experience (𝑆 , 𝐴 , 𝑅 , 𝑆 ) into the Experience Replay 
19      Pick samples randomly (𝑆 , 𝐴 , 𝑅 , 𝑆 ) from the Experience Replay 
20      From the Target Q-Network, calculate target Q-Value using the equation: 𝑦 = 𝑅 +  𝛾 max 𝑄(𝑆 , 𝑎 ) 
21      Use the Loss Function 𝐿(θ) = [𝑦 − 𝑄(𝑆 , 𝑎 ; θ)]  to update Target Q-Network 

every C iterations 
22    end 
23 end 
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3.2. System Design and Architecture

We designed the architecture of this system to be based on DRL to solve the complexity
of the solution and to maintain high scalability, benefitting from its distinct performance
features from RL and DNN. RL adopts a Q-table to store Q-values to determine the best
way to get the best results by adhering to a specific methodology; hence, it generates
near-optimal control actions through immediate reward feedback by interacting with its en-
vironment [41,42]. This makes RL effective for resource allocation in dynamic systems such
as the federated cloud environment. However, sometimes the decisions becom complex for
the RL approach, making it harder for the Q-table to accommodate; therefore, the DNN is
applied to help with estimating the potential states rather than mapping every solution to
determine the reward path, which reduces the action space size. The resultant approach is
DRL, which we utilized here in our system design to handle the dynamicity of tackling
advanced control problems that have high-dimensional state space [43]; particularly, we
adopted DQL for selecting actions and dynamically updating the network. The architecture
of the proposed system is shown in Figure 4.

Some of the quality attributes we can achieve through this design are the following:

• Reliability is guaranteed through the availability of multiple (redundant) executors;
• Maintainability is achieved as we can modify to improve or adapt new consensus

mechanisms, executor evaluation criteria, Predictor’s learning pattern enhancements,
included cloud, or individual service providers, etc.;

• Interoperability is also managed as we can communicate with specific providers
through their respective API, and also with participants through Blockchain;

• Security features are ensured through immutability and smart contract capabilities.
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The role of the task scheduling and resource allocation module, the Predictor, is to
perform the DQL algorithms to predict the appropriate task scheduling and resource
allocation policy. For that, we designed a mechanism of evaluation to assist in the process of
executor selection from the available candidates by considering the computation capability
of the candidates in addition to their stakes and reputation. The DQL approach is used
here to deal with the complexity of the system and the huge action space related to the
execution workloads, QoS requirements, and characteristics of the candidates, as explained
below, which requires us to design an approach to create a manageable solution space in
the decision process. To some extent, this methodology handles the enormous state space
and efficiently meets the workload adaptation and QoS requirements [43,44].

The Blockchain Manger (BCM), on the other hand, manages all Blockchain-related
transactions and appends them to the distributed ledger, including the transactions from the
Predictor and both parties, the Requestor and the executor. This makes a Blockchain-enabled
system that allows service providers to be the “executors” (for some tokens) and offers its
services to the “requesters”, who pay the tokens to avail these services or to carry out the
completion of their tasks, leading to a managed token-based economy. In this system, we
have adopted the Delegated Proof-of-Stake (DPoS) as the consensus mechanism, as it is
flexible, efficient, and fast as compared to PoW and PoS [45]. In this consensus mechanism,
stakeholders do not create the blocks themselves; they vote to elect the delegates, also
referred to as witnesses or block producers, giving them the right of creating blocks; hence,
there is no computational power consumption for the stakeholders.



Systems 2024, 12, 84 10 of 21

There is also a Federated Cloud Manager (FCM) that manages all connected clouds
in the federated cloud with their resources, of any type. It translates all actions related to
resource allocation to the respective clouds, and coordinates with BCM for a distributed
collaborative environment hosting the Blockchain ledger. The services available in the
federated cloud are collected and grouped by a module called the Resource Collector (RC).
A process diagram of these modules is simplified in Figure 5 below.
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In the following, we define the state space of the proposed solution, how we set the
action space in the simplest way, and, finally, how we formulated the reward function.

State space:
In a decision epoch Ti (i = 1, 2, 3, . . .), the state Si is the union of the following: job

workload (number of tasks Ni), QoS requirement (here, timeout T i), candidate’s stake
Si

m, candidate’s reputation value Vi
m, and computational resource Fi

m, where candidate m
belongs to the candidate set θC. Hence, the state space is represented as follows:

Si =
[

Ni, T i,
{

Si
m , Vi

m, Fi
m

}]
, UC

m ∈ θC (1)

i here, and in the rest of the paper, denotes the variable in decision epoch Ti. This is not to
be confused with T , which is the timeout as the QoS requirement. For the candidate’s stake,
Si

m, it comprises its own stake and the stake of others who delegate towards it; the higher
the stake the better, as the candidates with higher stakes technically have more influence
and a higher probability of being selected as an executor. For the reputation value, Vi

m, we
have adopted a similar concept to the reputation-based rating mechanism proposed by Liu,
G et al. [46] to determine the candidates’ reputation value.

Action space:
The Predictor here should properly select a set of executors out of the candidates

available, which will be carried out just after a job is released with a detailed workload.
While choosing the executors, it should also design the task scheduling policy for the
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selected executors, along with the resource allocation policy to execute the job successfully.
Thus, we represent the action in decision epoch Ti as:

Ai =
{

ai, ni, f i
}

(2)

Here, ai =
{

ai
m
}

, ai
m ∈ {0, 1}, UC

m ∈ θC, where ai
m = 1 indicates that the candidate

UC
m is selected as the executor, and ai

m = 0 indicates that candidate UC
m is not selected as the

executor. Once the action ai is taken, the Predictor chooses the executors set θi
E from the

available candidates set θC . This executors set is represented as

θi
E =

{
UC

m

∣∣∣ai
m = 1, UC

m ∈ θC

}
, (3)

and, therefore, θi
E has a cardinality of

∣∣∣θi
E

∣∣∣ as the number of elements inside. The execution
scheduling profile is

ni =
{

ni
j

}
, ni

j ∈ {1, 2, . . . , N}, Uc
j ∈ θi

E, (4)

and the computational resources required by the executors to perform the job are denoted
as f = { fm}, fm ≤ Fm, where F = {Fm} is the computational resources available, so the
computational resource allocation profile is

f i =
{

f i
j

}
, 0 < f i

j ≤ Fi
j , Uc

j ∈ θi
E (5)

Reward function:
The reward which executors are receiving through executing the required job col-

laboratively is what we mean by reward here. This involves two things: the income of
completing the job (which affects the executor’s reputation value), and the received block
reward as a stakeholder (which affects the executor’s stake). The function can be formed as:

Ri
(

Si, Ai
)
= ∑Uc

j ∈ θi
E

[
Si

j + ni
j

(
Vi

j

Vmax
Q

)]
(6)

where Q is the reward (token/task), wSi
j is the weight of stake, and

Vi
j

Vmax
is the reputation

value, which should be ≤1. But first, we must ensure that the executor has satisfied the
assumed QoS requirement, the timeout; so, the executer must complete the assigned ni

j job
tasks before the timeout to receive the reward. Hence, we will consider the duration D as a
constraint: ni

jD
i
j ≤ T i ∀Uc

j ∈ θE. This constraint is calculated by:

ni
j

{
ψI X

f i
j

}
≤ T i∀Uc

j ∈ θE, (7)

where ψI represents the individual size of each job task in bytes, X is the computation
intensity in CPU cycle/byte. The reward function here should represent the maximum
reward achievable while also satisfying the QoS requirements. As a result, the reward
function will be rewritten to be as follows:

Ri
(

Si, Ai
)
=

 ∑Uc
j ∈ θi

E

[
wSi

j + ni
j

(
Vi

j
Vmax

Q
)]

, i f (7) is satis f ied

0, i f (7) is not satis f ied
(8)

Task scheduling:
After determining the executor set θE that has been selected out of the candidate set

θC, the Predictor should maximize the cumulative rewards while satisfying the constrains
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related to the QoS requirements, i.e., it should build an efficient decision of task scheduling
and resource allocation, taking into consideration the constraints. This decision will be
considered as an optimization problem that should be solved to establish the best resource
allocation strategy suitable for the executors selected. Usually, the optimization problem of
the decision leads to a non-convex NP problem, meaning that determining the best strategy
for allocating resources is difficult, especially in decentralized environments [32]. If we
look at the action space Ai in (2) and the reward function Ri (Si, Ai) in (8), they form a
difficult problem to solve due to the large space size and the constrained reward function.
Hence, we formulated the scheduling problem into an optimization problem to satisfy the
constraints and to maximize the achieved reward, Q, to the highest possible, as follows:

P1 : max Q = ∑
Uc

j ∈ θE

ni
j

{
ψI X

(
f i
j

)2
}

C1 : ∑
Uc

j ∈ θE

ni
j = Ni, nj ∈

{
1, . . . , Ni}

C2 : ni
j

{
ψIx
f i
j

}
≤ T i∀Uc

j ∈ θE

C3 : 0 < f i
j ≤ Fi

j , ∀Uc
j ∈ θE

(9)

The objective function is derived from (8), where constraint C1 is the validity of the
task scheduling, as already represented in (4). C2 is the satisfaction of the QoS (the timeout
T ), as formulated in (7). Finally, C3 is the computational resource allocation, as defined
in (5). Since the problem includes constraints and involves randomness and uncertainty, it
is computationally expensive to use traditional methods to find the best option to allocate
the resources; this is because of the non-convex optimization problem [23]. For that, we
employed the Deep Q-Learning approach to address this optimization problem for task
scheduling and resource allocation. Deep Q-Learning was adopted to predict the workload
in the federated clouds. We have built on the work carried out by Ahmed, Z. et al. [47];
they used DQL to predict the workload and demonstrated a significant improvement over
popular existing scheduling methods that include Genetic Algorithm, Heteroscedastic
Gaussian Processes, Median Attribute Deviation Minimum Migration Time, and Robust
Logistic Regression Minimum Migration Time algorithms [47].

As part of this problem representation, we can see how our defined state space, action
space, and reward function encourage the desired outcome. To maximize the reward
resulting from successful task scheduling, the reward could be positive for successfully
completing tasks within the QoS constraints and negative for failing to schedule a task,
violating QoS constraints, or inefficient resource allocation. We incorporated logic in the
environment that only allows for valid actions as part of C1, and implemented checks
that verify if a task’s scheduling and execution meet its QoS requirements to satisfy C2,
in addition to ensuring that actions respect the computational resource constraints in
terms of attempts to allocate more resources than available, which should be penalized or
invalidated, to meet constraint C3.

We used the DNN here and initialized the Q-Network that takes the state as input and
outputs the predicted Q-values for all actions in the action space, which, in turn, assesses
the quality of a particular action taken in each state. This is, with the help of the initialized
experience replay to store past experiences (state, action, reward, next state), used to train
the Q-Network by sampling batches of experiences to reduce correlations in the observation
sequence, in addition to the implementation of the Epsilon-Greedy policy for exploration
and exploitation. We trained the model as described in Algorithm 2, and after sufficient
training, the policy for task scheduling and resource allocation is implicitly defined by the
Q-Network. For any given state, the action with the highest predicted Q-value is considered
the best action under the learned policy.
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As a result, the DQL can learn the optimal strategies by interacting with the envi-
ronment, adapt to dynamic changes, and learn from the consequences of its actions. This
solves the optimization problem P1 and satisfies the formulated constraints.

4. Results

We implemented and evaluated the proposed system to prove the concept and its
validity. We have four main modules in this system, the Federated Cloud Manager (FCM),
Blockchain Manager (BCM), Predictor, and Resource Collector (RC). The FCM module is
responsible for managing everything related to the federated clouds. In this experiment,
we chose clouds from three providers: Azure, Google Cloud Platform (GCP), and Amazon
Web Services (AWS). The BCM module manages all transactions related to the Blockchain.
Here, we chose Tron Blockchain, an open-source platform that supports decentralized
applications (dApps) and enables us to write Blockchain applications in a customizable and
flexible way [48]. For the test purposes, we used TronPy and the public “Testnet” network
in Tron Blockchain; we built and tested all related smart contracts for validation in this
public Testnet network. As mentioned earlier, we adopted the DPoS consensus mechanism
in this network, as it is more scalable and needs fewer computational resources [49]. The
Predictor module is where the Deep Reinforcement Learning agent acts. It performs
the DQL algorithms to predict the appropriate task scheduling and resource allocation
policy. Finally, the RC module is responsible for collecting and unifying configuration data
from the three cloud infrastructure providers, Azure, GCP, and AWS. This RC module
dynamically collects and maintains the available resources from these cloud providers
(comprising the federated cloud). Here in this experiment, there are about 1200 collected
resources; we categorized them by provider, machine type, memory (GB), max disk size
(TB), SSD availability, number of GPUs, GPU memory, GPU model, CPUs, CPU frequency
(GHz), and machine family. There are five types of machine family: memory-optimized,
compute-optimized, graphic rendering, general-purpose, and high-performance compute
(HPC) machine families. All of these 1200 resources are considered as the candidate set θC;
this set is managed dynamically by RC, which act as a manager for all API calls.

The following subsections show the details of the experiment, the related settings, and
the evaluation of the performance.

4.1. Experimental Details and Settings

Table 2 shows the configurations and parameters used in the implementation.
α controls the step size during the Q-value updates and how much the neural network

weights are updated during training, while γ determines the importance of future rewards,
where values close to 1 give more weight to future rewards, whereas values close to 0
focus on immediate rewards. ε determines the probability of choosing a random action
for the exploration–exploitation strategy; over time, ε is reduced to favor exploitation
using ε-decay. For the Experience Replay, its size is crucial, as it should be large enough to
store a representative set of experiences. The Minibatch Size should be chosen properly
when sampling from the Experience Replay. It specifies the number of experiences in each
Minibatch. The frequency of updating the Target Network is every 10,000 steps to avoid
instability, and the mean squared error (MSE) is used as the loss function between the
predicted and target Q-values.

These hyperparameters were experimented, fine-tuned, and adapted after gaining
insights from training and evaluation to achieve the best performance in terms of balancing
between exploration and exploitation, which, in turn, optimizes the performance of learning
and the convergence of the Deep Q-Learning algorithm.

We have configured the neural network here with four layers, where the two hidden
layers have 512 and 64 neurons, using the Rectified Linear Unit activation function and the
Epsilon-Greedy action selection algorithm to choose between exploration and exploitation
randomly [50]. We used a workload dataset, Azur workload 2019, to train the model [51].
It contains the following information: min, max, and avg CPU utilization, VM id, VM
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category, VM core count, VM memory, count VMs created, deployment size, and Timestamp
VM created and deleted. We have manipulated this dataset to merge the 1200 resources we
collected using the RC module, as per the categorization mentioned above, along with the
assumed reputation values for the experiment purpose and to prove the concept. Therefore,
the Predictor learned how to differentiate between the available candidates to select the
most appropriate one to be the executor for the job. The job here is assumed to be any of
the workloads from the dataset.

Table 2. Experimental parameter settings.

Notation Parameter Configuration

- Number of episodes 1000 episodes
α Learning rate 0.01
γ Discount factor 0.95
ε Epsilon-Greedy parameter 1.0

ε-decay Reducing factor of exploration rate 0.995
ER Experience Replay 10,000 steps
- Minibatch Size 32 experiences

TRX Native token of Tron Blockchain Tron Blockchain
Tron Blockchain network Testnet network

SR Node Blockchain super representative
node 1 node

Candidate Blockchain participant nodes 7 candidates

Q Reward of successful execution per
task 1 TRX

ψI Size of each task 500,000 bytes
x Computation intensity 5 cycles/byte

wS Weight of stake 0.05
V Reputation value 0.1

The experiment was conducted using a system with an Intel Core i7 CPU @ 2.30 GHz
processor and 16 GB RAM, and we used several technical tools and frameworks includ-
ing: Python (3.7), Tronpy (0.4.0), Azure-core (1.29.5), Google-api-core (2.12.0), AWS Boto3
(1.28.61), Gymnasium (0.29.1), Numpy (1.26.0), Pandas (2.1.1), OpenCV-python (4.8.1.78),
Mpmath (1.3.0), Pylint (3.0.1), PyCryptodome (3.19.0), Psutil (5.9.6), Pyflakes (3.1.0), cryp-
tography (41.0.4), Matplotlib (3.8.0), PyTorch (2.1.0), and others.

4.2. Performance Evaluation

Figure 6 shows the performance of the proposed Predictor, where the total reward
is noticed to be low at the beginning of learning then becomes higher as the number of
decision epochs increases. We can notice that after around 400 decision epochs, it becomes
stable. This fluctuation is a result of the changes in the environment, which is the state
space, affecting the obtained reward in different decision epochs.

We validated the proposed mechanism for selecting suitable executors θE from the
candidate set θC. We took a snapshot of θE from the available θC at one decision epoch.
Figures 7–9 show how the proposed algorithm has selected only five suitable executors
from the seven candidates available, based on the workload nature, the executors’ stake wS,
and the reputation value V. Hence, the executor selection action is a = {1, 0, 1, 1, 1, 0, 1}.
This ensures a trustworthy evaluation of the potential candidates before selecting them.

At the same decision epoch, candidate 5 is assigned with 20 tasks (chunks of the job
workload), as shown in Figure 8, and this candidate utilizes 2.8 GHz of computing power
to completely execute the job, as shown in Figure 9. The same goes for candidate 7, where
only 10 tasks were assigned to this candidate, and it utilizes 1.7 GHz of computing power.
This proves that while the Predictor aims to achieve the highest total execution reward
possible, it also carefully evaluates the candidates and schedules tasks accordingly.



Systems 2024, 12, 84 15 of 21

Systems 2024, 12, x FOR PEER REVIEW 15 of 21 
 

 

Figure 6 shows the performance of the proposed Predictor, where the total reward is 
noticed to be low at the beginning of learning then becomes higher as the number of 
decision epochs increases. We can notice that after around 400 decision epochs, it becomes 
stable. This fluctuation is a result of the changes in the environment, which is the state 
space, affecting the obtained reward in different decision epochs. 

 
Figure 6. Performance of the proposed Predictor. 

We validated the proposed mechanism for selecting suitable executors ⍬  from the 
candidate set ⍬ . We took a snapshot of ⍬  from the available ⍬  at one decision epoch. 
Figures 7–9 show how the proposed algorithm has selected only five suitable executors 
from the seven candidates available, based on the workload nature, the executors’ stake 𝑤𝑆 , and the reputation value 𝑉 . Hence, the executor selection action is 𝑎 = {1, 0, 1, 1, 1, 0, 1}. This ensures a trustworthy evaluation of the potential candidates before 
selecting them. 

 
Figure 7. Selected candidates. 

At the same decision epoch, candidate 5 is assigned with 20 tasks (chunks of the job 
workload), as shown in Figure 8, and this candidate utilizes 2.8 GHz of computing power 
to completely execute the job, as shown in Figure 9. The same goes for candidate 7, where 
only 10 tasks were assigned to this candidate, and it utilizes 1.7 GHz of computing power. 
This proves that while the Predictor aims to achieve the highest total execution reward 
possible, it also carefully evaluates the candidates and schedules tasks accordingly. 

Figure 6. Performance of the proposed Predictor.

Systems 2024, 12, x FOR PEER REVIEW 15 of 21 
 

 

Figure 6 shows the performance of the proposed Predictor, where the total reward is 
noticed to be low at the beginning of learning then becomes higher as the number of 
decision epochs increases. We can notice that after around 400 decision epochs, it becomes 
stable. This fluctuation is a result of the changes in the environment, which is the state 
space, affecting the obtained reward in different decision epochs. 

 
Figure 6. Performance of the proposed Predictor. 

We validated the proposed mechanism for selecting suitable executors ⍬  from the 
candidate set ⍬ . We took a snapshot of ⍬  from the available ⍬  at one decision epoch. 
Figures 7–9 show how the proposed algorithm has selected only five suitable executors 
from the seven candidates available, based on the workload nature, the executors’ stake 𝑤𝑆 , and the reputation value 𝑉 . Hence, the executor selection action is 𝑎 = {1, 0, 1, 1, 1, 0, 1}. This ensures a trustworthy evaluation of the potential candidates before 
selecting them. 

 
Figure 7. Selected candidates. 

At the same decision epoch, candidate 5 is assigned with 20 tasks (chunks of the job 
workload), as shown in Figure 8, and this candidate utilizes 2.8 GHz of computing power 
to completely execute the job, as shown in Figure 9. The same goes for candidate 7, where 
only 10 tasks were assigned to this candidate, and it utilizes 1.7 GHz of computing power. 
This proves that while the Predictor aims to achieve the highest total execution reward 
possible, it also carefully evaluates the candidates and schedules tasks accordingly. 

Figure 7. Selected candidates.

Systems 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 8. Scheduled tasks per candidate. 

 
Figure 9. Allocated resources per candidate. 

We can also interpret from this snapshot that because of the different computing 
capabilities of the different executors, the resource allocation policy is not uniform. Table 
3 summarizes the snapshot and shows how executors are selected based on the 
assessment of individual candidates’ capabilities, showing how dynamic and selective the 
Predictor is and that its policies are not uniform. 

Table 3. A snapshot of ⍬  from the available ⍬  at one decision epoch. 

Candidate Selection of Candidate Number of Scheduled Tasks Resource Allocation 
1 1 8 1.5 
2 0 0 0 
3 1 2 2 
4 1 13 2.3 
5 1 20 2.8 
6 0 0 0 
7 1 10 1.7 

To test the computational resource allocation capability of the Predictor and the effect 
of the QoS requirements, we examined the performance in terms of the total consumed 
computational resources. Figure 10 depicts how the Predictor managed to save the 
consumed computational resources with varying timeout 𝒯 constraints. Evidently, fewer 
computing resources are usually required when we increase the timeout and have a 
flexible QoS. 

Figure 8. Scheduled tasks per candidate.



Systems 2024, 12, 84 16 of 21

Systems 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 8. Scheduled tasks per candidate. 

 
Figure 9. Allocated resources per candidate. 

We can also interpret from this snapshot that because of the different computing 
capabilities of the different executors, the resource allocation policy is not uniform. Table 
3 summarizes the snapshot and shows how executors are selected based on the 
assessment of individual candidates’ capabilities, showing how dynamic and selective the 
Predictor is and that its policies are not uniform. 

Table 3. A snapshot of ⍬  from the available ⍬  at one decision epoch. 

Candidate Selection of Candidate Number of Scheduled Tasks Resource Allocation 
1 1 8 1.5 
2 0 0 0 
3 1 2 2 
4 1 13 2.3 
5 1 20 2.8 
6 0 0 0 
7 1 10 1.7 

To test the computational resource allocation capability of the Predictor and the effect 
of the QoS requirements, we examined the performance in terms of the total consumed 
computational resources. Figure 10 depicts how the Predictor managed to save the 
consumed computational resources with varying timeout 𝒯 constraints. Evidently, fewer 
computing resources are usually required when we increase the timeout and have a 
flexible QoS. 

Figure 9. Allocated resources per candidate.

We can also interpret from this snapshot that because of the different computing
capabilities of the different executors, the resource allocation policy is not uniform. Table 3
summarizes the snapshot and shows how executors are selected based on the assessment
of individual candidates’ capabilities, showing how dynamic and selective the Predictor is
and that its policies are not uniform.

Table 3. A snapshot of θE from the available θC at one decision epoch.

Candidate Selection of Candidate Number of Scheduled Tasks Resource Allocation

1 1 8 1.5
2 0 0 0
3 1 2 2
4 1 13 2.3
5 1 20 2.8
6 0 0 0
7 1 10 1.7

To test the computational resource allocation capability of the Predictor and the effect
of the QoS requirements, we examined the performance in terms of the total consumed com-
putational resources. Figure 10 depicts how the Predictor managed to save the consumed
computational resources with varying timeout T constraints. Evidently, fewer computing
resources are usually required when we increase the timeout and have a flexible QoS.
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To validate the proposed idea in a real-world federated cloud environment, we as-
sumed the required job is related to “dataset processing”, which is resource-intensive and
requires high memory. The dataset used in this test case was the Titanic Dataset [52], as a
CSV file contains all passengers’ data with the purpose of processing and analyzing by
pulling out different fields and calculating the average of different subfields, so multiple
mathematical operations were required on the data. We evaluated the performance here
by just completing the job successfully on a federated cloud that included AWS, GCP, and
Azure cloud providers, as this proves that the Predictor has chosen suitable executors
(here, VMs) for the job by considering their computing capabilities and job type, ensuring a
successful job execution to minimize the possibility of increased execution time that might
violate the assumed QoS requirement, here T ≤ 600 s, hence avoiding aborting the job
before completion. So, here we initialized 15 VMs as candidates θC, with hypothetical wS
and V values for each, 5 VMs from each cloud provider, and all being participants in Tron
Blockchain with the help of a tool called Kaleido [53] to securely manage and share files
in Blockchain. We measured the total completion time for the job and compared it with a
flexible case as a baseline where there is no constraint on the timeout.

This indicates that the proposed DQL-based Predictor has optimized its selection of
θE from the 15 candidates available in θC and met the required QoS, T ≤ 600 s. As shown
in Figure 11, the time taken without considering the QoS is 648 s, and only 553 s using the
proposed mechanism that considers the QoS to complete the same job.
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As the proposed system should theoretically allow for services from third parties
like independent individual service providers, we can ensure that it is not possible for
a malicious service provider (candidate executor) to join the network by adopting the
Delegated Proof-of-Stake (DPoS) as the consensus mechanism in the Blockchain. Hence,
the executor trust is guaranteed here through the strict verification procedure of the DPoS,
which ensures that the elected nodes responsible for signing blocks are doing that in
an unbiased way. So, unlike other consensus mechanisms, there is no need to depend
on untrusted nodes to verify a transaction before confirming that transaction using the
DPoS [54]. Also, every signed block will have to verify that it is generated from a trusted
node. As per the voting system in DPoS, all voting is carried out in real-time, so any
malicious action can be immediately detected. In the implementation of this research, we
used TRON as it is a DPoS network, where Super Representatives (SRs) are responsible for
validating transactions and record keeping, and in case of inefficient or unavailable SRs,
voters can switch over their votes to a better node to guarantee network security.

4.3. Discussion

From the above results and evaluation, the proposed DQL-based mechanism in this
system has shown a high level of accuracy in predicting the proper task scheduling in
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the federated cloud where the state space is a decentralized environment; it handled this
dynamicity and achieved a high reward for executing jobs while satisfying the QoS require-
ments. Generally, the performance of hyper-heuristics depends on the nature of the problem
and the current state of the solution, meaning that in addition to the solution quality and
feedback mechanisms, the variability in problems (domain and complexity) highlight the
adaptability and flexibility of hyper-heuristics to cater to a wide array of problems.

When we tested the Predictor without BCM (ignoring wS and V values), we found
that sometimes, a set of candidates were selected as executors for specific job workloads,
but also at other times, they were not selected for the same workloads under the same
conditions and QoS requirements. This is because the candidates’ cumulative stakes and
reputation values were not evaluated before selection, and this confirms how the weight of
stake and candidate reputation affects the selection criteria while the Predictor is selecting
the executors. On the other hand, when we assumed a higher weight for wS, ranging from
0.05 to 0.9, the reward increased, as implied by Equation (8), which aims to maximize the
reward for executors while satisfying the QoS requirements.

This proof-of-concept shows how Blockchain here enabled our proposed DQL-based
system to be considered as a token-based incentive mechanism for executors to offer their
various services, hence allowing us to decentralize the processing of jobs on federated
clouds in a transparent way that is based on automated smart contracts, avoiding any
possibility of a biased selection of candidates that is not based on their reputation or stakes.

It is worth mentioning that transaction cost in Tron is very high. We noticed that
every function call to the Blockchain and smart contracts regarding any job transactions
consumes too much energy and bandwidth, causing it to run out of energy and bandwidth
so fast that it needs to stake more assets (TRX) for resources and Tron power to obtain
more energy and bandwidth. In one case, a smart contract was called only three times and
consumed the full bandwidth available, 1500B Bandwidth Points (BP), 1500/1024 KB ≈
1.46 KB, and we had to stake (freeze) at least 3000 TRX to obtain more bandwidth, with
a 3-day period for un-staking to redeem the frozen TRX. Even though the way the smart
contract is built is very memory optimized, the transaction cost is still very high. However,
this issue can be resolved, or at least minimized, by considering different platforms other
than Tron that have an acceptable transaction cost.

Other limitations encountered during the research include the significant computa-
tional resources required for training and the difficult integration of Blockchain and DQL,
which requires careful consideration of interoperability between different components.
Moreover, the complexity of task scheduling, as an NP-hard problem, is compounded here
in this tokenized system, as the Blockchain operations add another layer of operational
complexity. Although it needs a lot of configurations, integrations, and technical tools to
get this solution working in a basic form as a proof-of-concept, we can say it is promising,
and it opens the possibilities of different advanced use cases, considering that further
fine-tuning is required to get a better performance.

5. Conclusions

The proposed system of employing Deep Q-Learning with Blockchain for tokenized
task scheduling aims to combine the power of DQL with the transparent and decentralized
nature of Blockchain to enable a tokenized system that can solve, to some extent, the vendor
lock-in issue that is related to cloud providers and the potential security considerations re-
lated to heterogeneous services from third parties like individuals or other cloud providers
that offer their services based on tokens. From the discussed results of this proposed
proof-of-concept, we can conclude that it is capable of offering:

• Efficient task scheduling and resource allocation by leveraging the DQL for more
optimization; such algorithms excel at learning from interactions and making sequen-
tial decisions based on the requirements of different tasks through adapting to the
dynamic conditions, resulting in an optimized performance and utilization;
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• Tokenized incentives and rewards for independent service providers (executors) who
contribute their resources or compute power to task execution to ensure fairness;

• Transparent and trustworthy task execution through the utilization of the immutable
Blockchain technology, which helps with verifying the execution of tasks, enhancing
trust and reducing the reliance on centralized authorities and single cloud providers;

• Distributed and secured task execution responsibilities among participants by leverag-
ing Blockchain’s decentralized nature. This enhances system resilience, reduces single
points of failure, and improves security against malicious activities.

For future work, we will try to optimize the system for more specialized fields, such as
digital forensics, Decentralized Finance (DeFi), and healthcare systems. In addition, we will
try to find other Blockchain platforms with less expensive transactions that can support the
future demand for Blockchain enabled AI systems.
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