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Abstract: Addressing urban traffic congestion is a pressing issue requiring efficient solutions that
need to be analyzed regarding travel time and pollutant emissions. The traffic weighted multi-maps
(TWM) method has been proposed as an efficient mechanism for congestion mitigation that enables
differential traffic routing and path diversity by strategically distributing different network views
(maps) to the drivers. Previous works have focused on TWM generation by creating optimal edge
weights, but the complexity exponentially increases with the network size and traffic group diversity.
This work describes how congestion and emissions can be addressed using TWM maps based on
the k-shortest paths for the traffic flows (instead of individuals) that are optimally assigned and
distributed to the components of the traffic flow. The map allocation strategies optimal TWM (OTV),
optimal TWM per path flow with linear constraints (LCTV), and its variant unconstrained optimal
TWM per path flow (UCTV) are described. They use maps generated from the k-shortest paths
of the traffic flows (kSP-TWM). The heuristic solution obtained is compared with the theoretical
static traffic assignment estimation baseline with different configurations, regarding congestion
reduction, total travel time enhancement, and pollutant emissions. Experiments are developed
using a synthetic traffic grid network scenario with a mesoscopic simulation. They show that
the solution provided is adequate for its proximity to the theoretical equilibrium solutions and
can generate minimum emissions patterns. The presented solution opens new possibilities for
further congestion and pollutant management studies and seamless integration with existing traffic
management frameworks.

Keywords: traffic emissions; traffic assignment; intelligent transportation systems; evolutionary
algorithms; multi-map routing; path flows

1. Introduction

Modern urban mobility management systems require ensuring the right balance be-
tween the time efficiency of movements and the emission of pollutants. In that sense,
avoiding traffic congestion is a key concern, which has led to extensive efforts to identify
cost-effective solutions to mitigate it. Congestion causes significant productivity losses,
energy and fuel wastage, and a considerable volume of gas emissions. The U.S. Envi-
ronmental Protection Agency (EPA) notes that transportation accounts for approximately
27% of total U.S. greenhouse gas emissions, making it the most significant contributor [1].
Similarly, the European Union’s (EU) Urban Transport and Cleaner Transport Directive
states that urban congestion costs a cumulative annual cost of 100 billion euros [2].

Pollutant emissions generated by urban traffic have noticeable impacts, mainly on air
quality and health, greenhouse gas emissions, and the climate and weather conditions of
the urban environment [3]. The main pollutants identified in the EMEP/EEA air pollutant
emission inventory [4] are:

• Ozone precursors (CO, NOx, NM-VOCs 1).
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• Greenhouse gases (CO2, CH4, N2O).
• Acidifying substances (NH3, SO2).
• Particulate matter mass (PM 2), including black carbon (BC) and organic carbon (OC).
• Carcinogenic species (PAHs and POPs 3).
• Toxic substances (dioxins and furans).
• Heavy metals.

Intelligent transportation systems (ITS) usually manage urban mobility, ensuring
traffic times under controlled pollution conditions. Both aspects must be considered in the
design stage of urban traffic congestion management strategies.

The traffic assignment problem (TAP) is one of the critical challenges as it is a mathe-
matically NP-hard, non-derivable, and convex problem [5], as the decisions made by each
driver at each moment affect the operational parameters of the network, which impacts
other driver decisions. Ideally, the traffic environment should evolve toward an equilib-
rium. Therefore, TAP is usually approached by heuristic methods focused on its static or
dynamic approximation, considering different equilibrium considerations [6]. Equilibrium
situations are theoretical scenarios based on user or system constraints that do not follow
or lead to any practical implementation. On the contrary, ITS heuristic implementations
attempt to demonstrate how close they are to these equilibrium conditions.

The traffic weighted multi-maps (TWM) strategies were introduced to offer an alterna-
tive approach to individual routing, either static or dynamic [7]. TWM considers generating
and distributing complementary views of the traffic network to the routing agents, pro-
moting path diversity. Path diversification is an effective strategy to reduce congestion [8].
Unlike traditional methods, TWM incorporates user utility functions, system optimum
constraints, and dynamic reactions to planned or unplanned events. TWM has two main
design pillars: how the complementary maps are created and how they are distributed.

TWM method can be easily integrated into existing ITS systems as they usually
use map servers to obtain the network views upon which they develop their planning
and operational activities. TWM can act as a map server directly integrated into their
architecture or an external map server that a traffic authority may operate.

Building on the previous works that demonstrated how traffic congestion can be
highly reduced using TWM, the challenge addressed in the research is to analyze which
strategy offers the best balance between travel time improvement and pollutant emissions.
Emissions depend mainly on the speed and travel distance, so generating alternative
routing schemas and the assignment to the traffic flows may have a considerable global
impact. Emissions also depend on factors such as (a) vehicle characteristics (fuel, age,
euro-standard, engine temperature, load, and others), (b) road characteristics (length, slope,
max speed, category—urban, rural, highway), and (c) traffic conditions in the network
links (current mean speed, peak/off-peak status) [4].

Previous works have focused on TWM generation by creating optimal edge weights,
but the complexity exponentially increases with the network size, traffic volume, and traffic
group diversity. TWM results are usually compared to the TAP-approximated classical
solutions. A new research line on TWM was outlined in a previous conference [9], which
suggested a heuristic approach for TWM consisting of (a) the generation of TWM based on
the k-shortest paths corresponding to the foreknown traffic demands (historical data) and
(b) their optimal delivery considering each individual as a part of the origin/destination
traffic flow (hereafter, we will refer to each O/D tuple as “flow”). Several optimization algo-
rithms based on evolutionary approaches were outlined for TWM allocation: optimal TWM
(OTV), optimal TWM per path flow with linear constraints (LCTV), and unconstrained
optimal TWM per path flow (UCTV). In all the cases, each routing agent makes its routing
decisions based on the network occupancy and the network view received.

TWM optimization for TAP is developed as a mesoscopic heuristic method, as there is a
theoretical map planning based on the traffic and activity constraints that are applied to the
individuals when they make their traffic routing decisions. Any existing routing algorithm
may be used together with TWM, as it acts as a map-server. Optimization objectives for
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TWM generation and/or distribution and assignment may be single or multivariate. The
experimental results cover a mesoscopic evaluation considering static traffic assignment
based on TWM and emissions based on per-edge mean travel time.

The main contributions of this paper are:

• A proposal for integrating TWM methods, and in general, any traffic network man-
agement method, into the four stages of the trip-based demand model (TBM) [10].

• An extended detail for LCTV and UCTV strategies for TWM generation and distribution.
• A joint study of travel time and pollutant emissions, as the initial work only focused

on reducing travel time for congestion mitigation.
• A deeper insight into the original experimental results using synthetic grid-based traf-

fic networks and defining a mesoscopic approach for pollutant emissions estimation
during the static assignment process.

• A proposal for differential flow routing based on emission categories using activity-
based models (ABM) [10].

This paper is structured as follows: Section 2 describes the related works in the in-
terest areas of the research. Section 3 introduces the TWM flow-based model, hypothesis,
generation, and optimal distribution strategies. An experimental results section follows
in Section 4 describing the scenarios for traffic simulation that have been used, the charac-
terization of traffic demand, the materials and methods applied, and the results obtained.
Finally, a conclusions Section 6 discusses the main findings and future works.

2. Related Work

The traffic assignment problem (TAP) has been addressed for a very long time, both
in static and dynamic traffic assignment perspectives (STA and DTA, respectively), where
the DTA provides the time-varying dimension [5,11]. Traffic planners and ITS platforms
commonly use them to create effective and efficient traffic scenarios, trying to achieve the
equilibrium status for both the system and the user. References [6,12] provide a thorough
description of the different approaches and methods.

Diversifying routes plays a crucial role in alleviating congestion within traffic assign-
ments. In [13], an ITS redirects traffic from the freeway to city streets when the marginal
cost on the freeway surpasses that of the streets, illustrating the impact of the vehicle
routing strategy on the performance and utilization of the traffic network concerning the
system optimum.

The primary goal of implementing alternative routing is to alleviate traffic congestion
resulting from increases in path cost attributed to link occupancy. Li et al. [14] delineate
three critical strategies for computing alternative routes: (a) Edge-penalty: iteratively
increment link weights for each shortest path until k paths are identified [14,15]. (b) Link
plateaus: This strategy leverages the plateaus formed by the intersections of k-shortest paths
obtained from direct and reverse routing between the source and destination. Alternative
paths are derived by routing from the source and destination to these plateaus [16–18].
(c) PPath disjoint level (dissimilarity): In this method, semi-disjoint k-shortest paths (Dj-kSP)
are obtained by iteratively removing edges from the calculation graph [8,19]. (d) another
method for route diversification and achieving system optimality involves modifying edge
costs through toll design [20].

It is essential to strike a balance in synthetic route cost modification by the intelligent
transportation systems (ITS) by considering the driver’s experience. The driver’s decision-
making process is influenced by available network status information, past experiences,
and subjective concerns, which need to be considered, as highlighted in [21,22].

Traffic weighted maps (TWM) were introduced in [7], proposing a new routing method
based on the separation of the physical traffic network from its logical representation,
enabling the distribution of diverse views tailored to different user requirements. TWM
encompasses a set of maps distinguished by edge/link weights adjusted according to
a specific cost function. A cost function typically alters the minimum edge weight (the
free-flow travel time) according to the constraints related to different factors such as traffic
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type (buses, taxis, and others), emission-free zones, restricted areas, stochastic distributions,
time of day, and more.

An inherent advantage of TWM is its practicality, aligning with most existing traffic
management systems by selectively delivering maps to vehicles. These TWM maps can be
utilized in either server-side routing or vehicle-side routing.

TWM is a heuristic method for the TAP. While considering the static traffic assignment
scenario, its results may be compared to those delivered by the TAP approximate solution
methods, such as the UE-CAM (cumulative assignment method), UE-MSA (successive
averages method), or Bellman–Ford algorithm [11]. These approximate methods do not
lead to a practical application in an ITS, unlike TWM. The lower TAP bound is provided in
the free-flow scenario where each driver would have the entire network as its disposal, and
the upper bound is provided by the all-or-nothing routing criteria, where drivers use the
shortest path regardless of the road load or status.

Evaluation of TWM has been conducted through microscopic simulation, employing
tools like SUMO [23], ranging from synthetic networks to real urban districts and wide
urban areas, such as the Alcala de Henares network. The identified use cases include
congestion avoidance, dynamic incident management, and emergency corridor clearance.

TWM can be seamlessly integrated into traffic planning systems mainly based on
the trip-based demand model (TBM) or activity-based models (ABM) outlined by the
USA Transportation Research Board [10]. The traffic network representation combines
a physical view (how nodes and edges are connected) and a logical view (the operation
and usage policies used) that is shared by all the users. This logic view may be operated
between the inter-modal traffic split and the traffic assignment stage where the users
are routed. Multiple views may be generated and distributed with differentiated traffic
planning criteria so that the routing phase can be evaluated using them. For instance,
electric cars may receive a different network than commercial distribution light-weight
vehicles, scholar buses during certain times, or any other case. This approach also links
with the activity-based models.

A new network management activities group would be required between the inter-
modal split and the traffic assignment steps, as shown in Figure 1: TWM map generation,
TWM map assignment policies to the routing agents, TWM map distribution strategies,
and TWM usage models (utility models).

Emissions Models

Emissions estimation models can be mainly classified as microscopic or macroscopic
(a complete review can be found in [24]). Microscopic models such as PHEM (Passenger
Car and Heavy-Duty Emission Model) [25] allow a higher granularity based on speed
changes, lane changes, and route and driving patterns. They also have a higher spatial and
temporal resolution, identifying time-based hotspots. Their use is primarily suitable for
small localized scenarios (intersections, roundabouts, and others), as they require higher
computational effort and may be ineffective for large-scale scenarios.

On the other side, macroscopic estimation models such as HBEFA (Handbook on
Emission Factors for Road Transport) [26] and the European Union “EMEP/EEA air pollu-
tant emission inventory guidebook 2023” [27] implemented in COPERT [28] work at the
aggregate level, considering average traffic characteristics. They have lower spatial and
temporal resolution than microscopic simulations but require fewer resources. They are
more suitable for significant areas, demand sizes, and temporal windows.

Traffic simulation environments such as SUMO [23] or AIMSUN [29] offer interfaces
to integrate multiple emissions models.

The macroscopic emissions modeling is suitable for the static traffic assignment.
Tsnakas et al. [30] have analyzed the accuracy of estimating traffic emissions in static
traffic models, which may be inaccurate if the congestion situations are not correctly lo-
cated. They suggest adding a post-processing with quasi-dynamic models. High-emission
scenarios are strongly correlated with congestion situations.
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Figure 1. TWM integration into the TBM four-step model [10].

3. TWM for Flow-Based Routing Strategies

This section introduces the network, demand, and TWM models. It also describes the
mesoscopic emissions model used in this study and the sub-flow decomposition proposal
for the TWM generation based on k-shortest paths (kSP-TWM) activity-based model (ABM).

Besides the models, this section covers the required details about OTV, LCTV, and UCTV
algorithms for TWM map creation using k-shortest paths and for TWM optimal distribution.

3.1. Network and Routing Model

The urban network Θ is described by a graph Θ = G(N, E) formed by N nodes and E
edges (links) {e} connecting them. Considering the traffic flow xe that traverses an edge
e, the vehicle cost of traversing an edge ce includes both the travel time te(xe) and the
eventual tolls τe that could apply (1) [11].

ce = te(xe) + τe (1)

The edge travel time te(xe) depends on (a) edge properties (length le, max speed se,)
and (b) edge occupation/capacity ratio, which depends on the road type. It is expressed by
a volume-delay function Ψ (VDF). The American Bureau of Public Roads (BPR) [31] has
defined VDF models to reflect the impact of edge occupancy being (2) the most widely used,
where We is the link capacity [32], xe is the accumulated traffic flow traversing the edge e,
and α and β are predefined constants by [31] (typical values of α = 0.15 and β = 4.0).
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te(xe) =
le
se
· (1 + α

xe

We
)β (2)

Traffic demand is composed of all the user mobility needs (vehicles {vi}) expressed
as origin/destination tuples (commodities, D) at the same time slots (O/D matrix). A
traffic flow xd comprises the vehicles belonging to the same commodity d, moving from
exact origin and destination. They may refer to network nodes, traffic area zones, or
traffic centroids.

There are Pd, (pd
i ∈ Pd) feasible paths in a traffic network connecting an O/D com-

modity. Each path is expressed as an ordered sequence of consecutive edges connecting it
with no loops. Each routing agent υa is responsible for selecting statically or dynamically
the most convenient path pd

i , which is called route ra.
According to this, the traffic flow xd can be divided into sub-flows {xd

i } called path
flows containing each one of the vehicles that have selected the same route ra (3):

xd = {xd
i }, ∀ va, vb ∈ xd

i , ra = rb (3)

The traffic flow xe traversing an edge e is formed by the addition of traffic routed
through it (4).

xe = ∑ xd
i , ∀e ∈ {pd

i } (4)

The travel time td
i over path pd

i is obtained by the aggregation of the travel time at all
the traversed edges (5), as well as its generalized cost model cd

i , which considers both the
travel time and the possible tolls associated (6) [33].

td
i = ∑ te(xe), ∀e ∈ pd

i (5)

cd
i = ∑ ce = ∑ te(xe) + ∑ τe, ∀e ∈ pd

i (6)

The route length La, number of traversed edges Ea, and number of traversed nodes
Na are additional metrics associated with the route ra .

3.2. Emissions Model

The European Union “EMEP/EEA air pollutant emission inventory guidebook 2023” [27]
proposes three estimation methods that can be applied at the mesoscopic level, depending on
the national statistics provided:

• Tier-1 method: aggregates individual emissions based on (a) fuel consumption of
vehicle category and (b) fuel consumption-specific pollutant emission factor per fuel
and category. The vehicle categories are passenger, light commercial, heavy-duty, and
L-category vehicles. The fuels to be considered include petrol, diesel, LPG, and natural
gas. It summarizes the tier-3 method.

• Tier-2 method: considers the fuel used by different vehicle categories, their technologies,
and their emission standards and control legislation (Conventional, Euro-1, ... Euro-6).

• Tier-3 method: considers mainly the operation conditions of the vehicles (hot, cold)
and the type of roads used (urban, rural, highway). They are combined with the fuel
chemical and energy properties to provide a detailed emissions model.

Our emissions evaluation model uses the tier-3 model, which proposes a generic
Equation (7) for hot emissions that provides the emissions factor E f a

e in g/km for any of
the pollutants 4 considering the individual vehicle va driving at speed sa

e on a concrete
road (edge e). Parameters {k1, k2, k3, k4, k5, k6, k7, R f1} are publicly coded in the table RTV
as {al f a, beta, gamma, delta, epsilon, zeta, eta} columns [27], where the R f1 is a reduction
factor in the row.

E f a
e (ρ) =

k1 · (sa
e )

2 + k2 · sa
e + k3 +

k4
sa

e

k5 · (sa
e )

2 + k6 · sa
e + k7

· (1− R f1) (7)
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The driving mean speed sa
e is calculated from the maximum speed of the edge and the

mean travel time in the edge once the STA has been calculated:

sa
e = min(se,

le
te(xe)

) (8)

According to this, the emissions ρa
e for pollutant ρ generated by a vehicle va driving at

speed sa
e in the edge e are:

ρa
e = E f a

e (ρ) · le (9)

The function getEmissionsFactor (10) retrieves the {k1, k2, k3, k4, k5, k6, k7, R f1} param-
eters from the vehicle properties, the emissions considered, the edge properties, and the
edge operating conditions:

• Vehicle properties vproperties include the category, fuel, segment, euro-standard, load,
and technology.

• Pollutant ρ.
• Road (edge) properties eproperties include the slope, min/max speed, and type (urban,

rural, highway).
• Road (edge) operating conditions econds describe the traffic status in the link: peak/off-

peak status.

getEmissionsFactor : vproperties, ρ, eproperties, econds → {k1, . . . , k7, R f1} (10)

Once the ρa
e emissions per vehicle and edge are obtained, it is straightforward to obtain

the total emissions per vehicle, per edge and per path flow, and also the total emissions in
the traffic network.

It is also important to set when an edge should be considered in the “Urban Peak”
status [27]. A 9 km/h limit will be considered, as any minor disturbance could stop the link
completely. When the mean link speed after the assignment is below this threshold, we
consider the edge as “Urban Peak”; otherwise, it will be in the “Urban Off-Peak”, “Rural”,
or “Highway”.

3.3. Sub-Flow Decomposition on Emissions Categories

Activity-based traffic assignment models (ABM) [34] consider an individual’s util-
ity functions and driving constraints. For our study, we consider emissions categories
instead of these utility functions, so the vehicles are grouped fleets based on the emission
parameters for specific routing policies using TWM.

Following the EU Tier-3 directives, the vehicles may be grouped into Q categories (or
traffic groups) according to their emissions category, sub-type, fuel type, euro-standard,
and operative age (usage). In our study, we will consider exclusively the fuel type, the
parameter closest to the vehicle user. Adding new features is a straightforward process.
Traffic flows X = {xq}, ∀q ∈ Q are also classified depending on the emissions model.

Table 1 shows an example of traffic flow decomposition for six commodities and
six fleets.

3.4. kSP-TWM Generation Strategies

A traffic weighted multi-map TWM [µm] is an M-dimensional set of different views of
a traffic network Θ. Each map µm is a complementary representation of the traffic network
Θ (the m view) that is created using Π functions (11). They receive as input the original
network Θ, the Q traffic group (fleet) constraints, and the time constraints (temporal rules)
Γm. Temporal rules state the time validity constraints for each map, as they can be applied
only for certain periods. [βm

e ] represent the collection of specific edge weights designed for
the TWM map m. TWM could be distributed as simple alternative network maps where
some links have modified costs [β∗e ] or internally used in the ITS as [βm

e ] matrices.
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Table 1. Traffic emissions sub-flow decomposition for 6 commodities and fuel types [4].

Commodity (O/D Pair)

Fu
el

d1 d2 d3 d4 d5 d6

Petrol x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

Diesel x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

CNG x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

LPG x4,1 x4,2 x4,3 x4,4 x4,5 x4,6

Electric x4,1 x4,2 x4,3 x4,4 x4,5 x4,6

Hybrid x5,1 x5,2 x5,3 x5,4 x5,5 x5,6

Other x6,1 x6,2 x6,3 x6,4 x6,5 x6,6

Π : Θ, Q, [Γm], Φ→ [µm] (11)

µm = {[βm
e ], Γm}

TWM cardinal is a fundamental choice. In the flow-path approach for
OTV/UCTV/LCTV, numPF maps are generated depending on the number of commodi-
ties (F) and the number of kSP (K) used to route each one, as described in [9]. The
TWM cardinality will be: numPF = card([µm]) = F · K. If we additionally consider the
emissions grouping (Q) as described in the previous section, then the cardinality will be
numPF = card([µm]) = F · K ·Q.

TWM [µm] maps are created using Π functions (11) that receive as input the original
network Θ, the Q traffic group (fleet) constraints, and the time constraints (temporal rules)
Γm. Temporal rules state the time validity constraints for each map, as they can be applied
only for certain periods. [βm

e ] represent the collection of specific edge weights designed for
the TWM map m.

A transformation function Υ is applied to the weight of the µm map edges that are part
of the kSP rd

i to obtain TWM maps that encourage using the different kSP obtained for each
commodity. The ΥStretch function (12) implements a weighted strategy, where each map
µm uses a αm scaling factor depending on a global scaling factor αe and the relative cost
influence (stretch) of the path flow rd

i over the total path flows {rd
i } available for the same

flow. It is normalized using total travel-time f f cd
i under the free-flow conditions, which is

the minimum route cost.
[

βd,i
e

]
represents the collection of edge weights for the TWM map

created using the route rd
i . ωe represents the free-flow cost at the edge e.

ΥStretch : Θ, rd
i ,
[

f f cd
i

]
, αe →

[
βd,i

e

]
= [ωe] · αm, ∀e ∈ {rd

i } (12)

αm = αe ·
min( f f cd

i )

f f cd
m

Figure 2 shows an example of a 3-TWM generation for a basic traffic network with
three kSP and αe = 0.5 factor.

When the routing agent uses the TWM map µd
i based on the path flow rd

i , the route
costs are calculated with the new edge weights. The occupancy/capacity link-cost model
described by (2) evolves to (13), also described as the edge volume-delay function Ψ(xe)
using the TWM map.

tTWM
e (xe) = βd,i

e · (1 + α
xe

We
)β (13)
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Figure 2. Example of a 3-TWM distribution for a basic network with non-overlapping kSP using
αe = 0.5.

3.5. kSP-TWM Optimal Distribution Strategies

Once the TWM maps have been generated based on the kSP, the question to be solved
is what will be their best allocation to achieve the system’s optimum, measured as the
minimum mean travel time. Several optimization algorithms were described in [9] based
on evolutionary approaches:

1. Random Assignment (RA). It considers distributing randomly the TWM maps.
2. Optimal Assignment of TWM (OTV), focused on obtaining the optimal TWM map-

to-vehicle assignment from an individual perspective. The objective is to minimize
travel time by creating an optimal map assignment. The optimization process in-
volves calculating the index n ∈ [1 . . . K] to determine the application of the

[
µd

i

]
from the TWM for each vehicle, as illustrated in Figure 3. The genetic algorithm
(GA) function generates a chromosome ℵ0 consisting of the indices representing the
corresponding map in the TWM, which are directly assigned to the vehicles. The OTV
fitness function is shown in Algorithm 1. It receives the chromosome ℵ0 to evaluate,
the VDF function Ψ, the physical network map µ0, the traffic flows

{
xd

i

}
, the path

flows
{

rd
i

}
, and the TWM [µi]. OTV presents some major issues: The chromosome

size in OTV is directly tied to the number of vehicles in the network, requiring a
substantial amount of computational resources. Even in small traffic scenarios, it can
be unaffordable. Secondly, this approach may not accurately reflect traffic planning,
as it relies on specific trips, thus losing the mesoscopic perspective of routing traffic
demand as flows.

3. Optimal Assignment of TWM per Path Flow with Linear Constraints (LCTV): It
overrides the OTV complexity, assigning the TWM on a per-flow basis. All the vehicles
belonging to that flow receive the same TWM map. The optimization problem deals
with the number of vehicles to be assigned to each path flow to obtain the minimum
mean travel time. The problem contains linear constraints related to flow conservation
and normalization.

4. Unconstrained Optimal Assignment of TWM per Path Flow (UCTV): The optimal assign-
ment can be solved by removing the linear constraints from the GA engine and applying
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them to the optimization results. This approach expands the range of the genetic solutions
to be considered and accelerates GA convergence and computing effort.

Algorithm 1 OTV fitness function

Require: traffic assignment chromosome ℵ0, traffic network Θ, TWM map
[
µd

i

]
, vehicles

⟨va⟩, flows
〈

xd
i

〉
, path flows

〈
rd

i

〉
, volume-delay function Ψ

Ensure: mean total travel time mtts
1: for all (v in ⟨va⟩) do
2: v.map← int(ℵ0(v)) {direct map assignment}
3: end for
4:

〈
pd

i

〉
← staticAssignment(Θ, ⟨va⟩,

〈
xd

i

〉
,
[
µd

i

]
, Ψ)

5: mtts← computeMTTS(µi,
〈

pd
i

〉
, Ψ, Ψargs)

Figure 3. Optimal TWM assignment per vehicle.

The LCTV/UCTV strategy is shown in Figure 4. Each sub-flow xd
i is assigned a fixed

TWM map µd
i . The challenge now lies in solving the number of vehicles assigned to each

sub-flow, that is, how many vehicles will use each µd
i efficiently. The distribution is deter-

mined as a percentage of the traffic for every commodity d. Consequently, each vehicle will
be assigned the appropriate path flow map. The GA function generates the chromosome
ℵ1 with a numPF size. Each value represents the percentage of vehicles from each flow
allocated to a particular sub-flow xd

i . Two constraints are applied to ensure the validity of
the chromosome. Firstly, [0 . . . 1] normalization is enforced. Secondly, flow conservation is
maintained, which means that the sum of all vehicle percentages belonging to the same
flow must equal 1. Both constraints are directly incorporated into the GA algorithm.

Linear constraints applied to the GA problem-solving process create a bias in the
electable population: although better individuals are chosen, less diversity is used to search
for alternative solutions. As the experimental results show, this elimination of individuals
evaluates the algorithm longer and leads to worse results. In addition, the unconstrained
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solver UCTV applies the normalization step at the end of the process to the resulting values
to compute the corresponding TWM distribution in Algorithm 2.

Figure 4. Optimal TWM assignment per flow (LCTV and UCTV).

Algorithm 2 LCTV/UCTV fitness function

Require: traffic assignment chromosome ℵ0, traffic network Θ, TWM map
[
µd

i

]
, vehicles

⟨va⟩, flows
〈

xd
i

〉
, path flows

〈
rd

i

〉
, volume-delay function Ψ

Ensure: mean total travel time mtts
1: for all (x in

〈
xd

i

〉
) do {iterate over the flows}

2:
〈

vd
〉
← ⟨va⟩, va. f low == x) {flow population}

3: nv← count(
〈

vd
〉

) {number of flow vehicles}

4: np← count(
〈

xd
i

〉
) {number of path flows to be assigned}

5: ⟨pci⟩ ← pop(ℵ1, np) {extract np percents from ℵ1}
6: ⟨pci⟩ ← normalize(⟨pci⟩)nv {vehicle counts for each assignment}
7: ⟨mapIdx⟩ ← createMapIndexes(⟨pci⟩, x)
8: for all (v in

〈
vd
〉

) do
9: v.map← mapIdx(v)

10: end for
11: end for
12:

〈
pd

i

〉
← staticAssignment(Θ, ⟨va⟩,

〈
xd

i

〉
,
[
µd

i

]
, Ψ)

13: mtts← computeMTTS(µi,
〈

pd
i

〉
, Ψ, Ψargs)
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The mean travel time evaluation procedure computeMTTS (14) is applied. It evaluates
the MTTS for a certain traffic flow (trips)

{
pd

i

}
over a network view µi, using a certain

volume-delay function Ψ (VDF) [11] with its specific VDF arguments Ψargs. The function
considers a network loaded with the routed flow trips and computes the mean travel time
of the vehicles, considering the specific volume-delay function. The VDF is evaluated
at each edge based on the number of vehicles that are routed through it. The network
description is based on the edge weights described by the specific TWM map µi.

computeMTTS : µi,
{

pd
i

}
, Ψ, Ψargs → mtts (14)

xe ← count(e), ∀e ∈
{

pd
i

}
(15)

mtts← mean(Ψ(µi(βd,i
e ), xe, µi(We), Ψargs), ∀e ∈

{
pd

i

}
(16)

Ψ(xe) uses the volume-delay function using the TWM map described in (13).
As an example, for TWM assignment, let us consider the traffic flows x1 = 500,

x2 = 500, and x3 = 500 vehicles, using TWM based on 3-Shortest Paths (3SP). In this
scenario, the optimization chromosome for individual routing is reduced from 1500 genes
(x1 + x2 + x3,) to the path flow chromosome with 9 genes (3 f lows · 3ksp).

If the chromosome ℵ1[(0.6, 0.25, 0.15), (0.5, 0.2, 0.3), (0.3, 0.25, 0.45)] is returned by the
GA, then the path flows assigned will be [[300, 125, 75], [250, 100, 150], [150, 125, 225]], for
instance, x1

1 = x1 · ℵ1(1, 1) = 500 · 0.6 = 300 , x1
2 = x1 · ℵ1(1, 2) = 500 · 0.25 = 125, and

so on. Each path flow will be routed accordingly with the corresponding TWM map
assignment

[
µ1

1, µ1
2, µ1

3, µ2
1, µ2

2, µ2
3, µ3

1, µ3
2, µ3

3
]
.

4. Experimental Results

The experimental scenarios are referenced to the original GRID64 and traffic demands
described in [9,21]. The emissions models are added, and the new sub-flows corresponding
to the differential routing for each vehicle fuel category are included.

On the emissions side, other contextual factors such as weather conditions, day of the
week, seasonality of demand, and similar variants have not been taken into account, as
we are considering a traffic snapshot that is studied under the different traffic assignment
strategies that have identifical context properties. Our objective is focused on comparing
the emissions produced in the different routing strategies using TWM. Also, average vehicle
occupancy and load values and a neutral slope in the route links have been considered in
the emissions models.

4.1. Materials and Methods

The experiments were developed using Matlab R23A on a Windows 11 system with
an iCore7 2.10 GHz processor and 64GB RAM.

The genetic algorithms utilized Matlab’s global optimization toolbox [35].
The resulting TWM maps are dumped in data files compatible with SUMO 1.19 [23].
The solutions use a plugin developed for TWM management through the TRACI

interface at SUMO.
Each TWM allocation strategy involving a stochastic process was repeated 100 times

for the GA execution and the random population adherence to achieve the necessary
confidence intervals in the results presented.

4.2. Synthetic Urban Scenario Grid-64

Following the previous reference works, the GRID64 network is used. Figure 5
shows the network formed by an 8 × 8-node grid network with bidirectional edges. The
node names and edge lengths are shown, and traffic demand sources are colored (red
for sources, yellow for destination). Design criteria for the scenario are taken from the
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Ortuzar–Willumsen scenario described in [11,36], where more extensive reference networks
are required for generating a relevant number of kSP.

Figure 5. Grid64 network with 6 commodities, showing link lengths.

All the edges are featured as “Urban Off-Peak”, considering a 9 km/h lower threshold
for the “Urban Peak” status.

4.3. Characterization of Traffic Demand

Six commodities are defined for the traffic demand, comprising three traffic sources
at (N73, N75, N77) and two traffic sinks at (N23, N26), described in Table 2, where traffic
volumes are also included. The STA experiment covers a total of 4500 vehicles.

Table 2. GRID64 O/D Matrix.

Source/Destination N73 N75 N77

N23 1000 500 1000

N26 500 1000 500

These vehicles must be classified according to their emissions features in terms of
category, type, emissions for euro-standards, and fuel type. Table 3 describes the vehicle
volumes corresponding to each section and their cumulative values. The distribution
follows a homogeneous structure to the traffic vehicle composition in Spain, as published
by the Spanish regulator DGT [37]. The yearly report contains the vehicle categories and
standards decomposition, following the European directives.

Several experiments are conducted over the same traffic scenario (network and traffic
demand) using different configurations of kSP-based TWM to evaluate the following indicators:

• Total travel time after assignment (data in Table 4).
• Total distance followed by the vehicles (data in Table 5).
• Number of routes that the routing agents selected. This parameter must be distin-

guished from the number of path-flows, as the latter is a consequence of the path-flow
routing algorithm, which sets its value to F·K (number of flows per number of kSP).

• Number of edges that were found in the “Urban Peak” situation (data in Table 6).
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• Total length of the “Urban Peak” edges (data in Table 7).
• Volume of hot emissions (in kg): CO, NOx, VOC, and PM will be considered (data in

Tables 8–11).

Table 3. Demand distribution for category, fuel type and emissions euro-standards.

Category Euro-Standard CNG Diesel Electric Hybrid LPG Other Petrol Total

Buses

Conventional 2 2

Euro 3 1 1

Euro 4 2 2

Euro 6 2 2

Total Buses 7 7

Heavy-Duty Trucks

Conventional 112 8 120

Euro 3 58 1 59

Euro 4 32 1 33

Euro 5 30 2 32

Euro 6 52 1 53

Total Heavy-Duty Trucks 284 13 297

L-Category
Conventional 529 529

Euro 6 8 6 14

Total L-Category 8 6 529 543

Light Commercial Vehicles

Conventional 83 28 111

Euro 3 44 2 46

Euro 4 47 1 48

Euro 5 36 3 39

Euro 6 1 91 2 2 1 9 106

Total Light Commercial Vehicles 1 301 2 2 1 43 350

Passenger Cars

Conventional 264 1 492 757

Euro 3 311 98 409

Euro 4 332 180 512

Euro 5 2 362 1 177 542

Euro 6 19 483 14 19 14 534 1083

Total Passenger Cars 21 1752 14 19 15 1 1481 3303

Total general 22 2344 24 27 16 1 2066 4500

Table 4. Experimental data for Grid64: total travel time (h).
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Table 5. Experimental data for Grid64: total distance (103 km).
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Table 6. Experimental data for Grid64: peak edges (count).
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Table 7. Experimental data for Grid64: peak edges total distance (km).
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Table 8. Experimental data for Grid64: hot emissions CO (kg).
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Table 9. Experimental data for Grid64: hot emissions NOx (kg).
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Table 10. Experimental data for Grid64: hot emissions VOC (kg).
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Table 11. Experimental data for Grid64: hot emissions PM (kg).
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median 0.50 0.89 0.89 0.78 1.53 1.44 1.12 1.10 1.12 1.27 1.08 1.11 1.42 1.16 1.12

Low-95 0.50 0.89 0.89 0.75 1.49 1.44 1.11 1.09 1.11 1.27 1.08 1.10 1.39 1.16 1.12

Up-95 0.50 0.89 0.89 0.80 1.59 1.46 1.16 1.11 1.12 1.30 1.09 1.11 1.42 1.16 1.13

Different path flows are generated for the TWM maps using kSP values of {2,3,5,7},
corresponding to {12,18,30,42} path flows, respectively.

Different strategies for static traffic assignment are used to make a differential compar-
ison. Except for the free-flow approach, which provides the lower traffic bound, all of them
use the BPR VDF function described in (2), considering the links occupation after the traffic
assignment phase.

• UE-CAM (cumulative assignment method) and UE-MSA (successive averages method),
as they approximate the equilibrium situation to solve the TAP [11]. They do not
propose an implementation for ITS, but provide an estimation for the TAP, which is
used to compare how far the TWM solutions proposed are.

• The unrealistic random kSP direct selection from the routing agents. It assumes
hypothetically that the drivers would choose a k-shortest path in a random way,
without having or considering prior knowledge or the network status. Drivers do not
use TWM in this case.

• TWM random assignment, that is, when the TWM based on path-flows is generated,
they can be randomly assigned to the routing agents instead of creating an optimal
delivery with LCTV or UCTV.
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• TWM optimally assigned to the routing agents with the UCTV algorithm.
• Other mechanisms that provide upper bounds for static traffic assignments, such as

all-or-nothing or free-flow, have not been included in the study, as their solutions are
far away from those close to the equilibrium situations, distorting the quantitative
results. We preferred to exclude them.

We use for the experiments the UCTV map allocation strategy, as it allows a reduction
in computing complexity without losing accuracy, as was shown in our previous work [9].

The experiments have been repeated multiple times (20) to obtain consistent statistical
results, which are covered in Tables 4–11. They reflect the mean values, the median, and
the confidence intervals corresponding to the 0.95 level, assuming a normal distribution of
the values obtained, as there are enough experiment repetitions configured. These data
are illustrated in Figures 6–13, which reflect in box-plot diagrams the data dispersion
showing the max and min values obtained, the median, and the 25 and 75 percent boxes
for value distributions.

Figure 6. Total travel times for the GRID64 experiments for several kSP configurations and UE estimations.

Figure 7. Total travel distances for the GRID64 experiments for several kSP configurations and
UE estimations.
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Figure 8. Number of “Urban Peak” edges for the GRID64 experiments for several kSP configurations
and UE estimations.

Figure 9. Total length of “Urban Peak” edges for the GRID64 experiments for several kSP configura-
tions and UE estimations.

Figure 10. CO hot emissions for the GRID64 experiments for several kSP configurations and
UE estimations.
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Figure 11. NOx hot emissions for the GRID64 experiments for several kSP configurations and
UE estimations.

Figure 12. VOC hot emissions for the GRID64 experiments for several kSP configurations and
UE estimations.

Figure 13. PM (exhaust) hot emissions for the GRID64 experiments for several kSP configurations
and UE estimations.
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5. Discussion

Figures 6–13 reflect the statistical results obtained for each strategy and number of kSP
used; for instance, “5-TWM-UCTV” means that a 5-shortest path has been used.

UE-CAM and UE-MSA have no data dispersion, as they provide the equilibrium
baseline for the TAP estimation to compare the rest of strategies. Our target strategy is the
TWM-UCTV approach with k-shortest paths, whose optimal map distribution to the traffic
flows is compared to the theoretical random strategies offered by the random usage of kSP
and the random TWM assignment, which use a uniform data distribution for the drivers
that would make them select non-optimal routes. The optimal TWM distribution has also
some random behavior, as the solution search algorithm is based on genetic properties such
as mutation, crossover, and selection.

The discussion analyzes all the variables studied in the paper.

5.1. Differential Routing, Travel Time, and Total Distance

The number of routes used by the routing agents for the different strategies is shown
in Figure 14. Free-Flow traffic estimation uses a single shortest-path routing for each traffic
flow -6-, whilst UE_CAM and UE_MSA are just mathematical models to estimate edge
occupations for the equilibrium considering the travel time; their routing depends on the
calculus algorithm and is only relevant for the travel time estimation.

Figure 14. Number of routes selected for the GRID64 experiments for several kSP configurations and
UE estimations.

As expected, the gradual addition of new kSPs leads to a larger number of TWM maps
being generated and distributed to drivers, thus inducing the selection of new routes based
on link occupancy and new costs received. The use of 3-SP leads to the use of [17–18]
routes, and the use of 5-SP or 7-SP increases to [28–29] and [36–38] routes, respectively. The
diversity of routes also leads to a better travel time (Figure 6), which quickly approaches
the expected equilibrium values and cannot be improved further. In our scenario, 3-SP are
sufficient to reach this lower bound, and adding more alternative routes hardly improves
the travel time. Even TWM created with 2-SP per traffic flow greatly improves travel time
as a bare routing strategy.

However, when considering the total distance traveled by the vehicles, we can observe
in Figure 7 that, despite having a similar travel time in many cases, the routes differ greatly
in the distance as alternative roads with different lengths are included.

5.2. Congestion (Peak Edges)

It is not sufficient to consider the total travel time and distance traveled, but also
the congested state of the links, which is identified when their average speed exceeds the
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defined lower threshold. Figure 8 describes the number of congested links. The VDF cost
function evaluates a much higher value on these congested links, which causes the traffic
assignment to select alternative paths. The diversity of routes also favors a reduction in
the number of congested links, as we can see in Figure 8, so that by increasing the number
of TWM maps from 3-SP to 5-SP the volume of peak links is reduced by almost half. The
optimal TWM distribution is relevant to reduce the number of peak edges.

The emissions model also penalizes these congested links, applying the peak penalty
factor. The congested path distance is also relevant, as the emissions rate also depends on
the traveled distance under this traffic conditions. Figure 9 shows the cumulative travel
distance under peak conditions for the different use cases.

5.3. Hot Emissions

Consistent with the different traffic assignment strategies, the evolution of the hot
emission models can be seen in Figures 10–13. The hot emissions evaluation function
described in (10) retrieves the parameters {k1, k2, k3, k4, k5, k6, k7, R f1}, which depend on
the vehicle type, road conditions, and the peak/non-peak state, as set out in the EU Tier-3
hot emissions model [4]. These parameters are specific to each vehicle type at each edge
condition and are used to assess the individual contribution per edge by applying the
average speed and edge length.

CO and NOx are aligned with the travel time. As the travel time decreases due to
the diversity of paths generated for the vehicles with the TWM maps, the model’s CO
and NOx emission estimates decrease at the same rate, stabilizing quickly on the expected
equilibrium values baseline (UE_CUM, UE_MSA). The feasible ways to reduce them would
be modifying the intermodality of travel or vehicle mix or implementing low-emission
zones (LEZs).

In the case of particle emissions, calibrated emission models reflect a strong correlation
with the number and total length of congested edges, as well as the total distance traveled
by vehicles. By offering vehicles greater route diversity, they may select longer routes than
the merely optimal shortest path; however, their lower congestion and higher speed on
their route will cause their emissions to become stable. The length of traveled trips affects
particle emissions, which stabilize at 22% over the equilibrium expected baseline. They are
mostly affected by the congestion and the randomness in the TWM allocation, as shown in
Figures 12 and 13. Optimal TWM distribution is a key factor for emissions reduction.

6. Conclusions

This paper extends the algorithm details outlined in [9] and demonstrates the potential
for reducing total travel time within a traffic network by employing ad hoc generated TWM
maps. These maps encourage the selective utilization of k-shortest paths for traffic flows,
with total travel time assessed through static traffic assignment. TWM maps are crafted
based on optimal kSP routes under free-flow conditions for each flow in the network.
A routing agent will receive a specifically designed TWM map for its routing decisions,
and it will tend to favor the use of those promoted links from a certain kSP specific to
its commodity.

Depending on the specific TAP complexity, the size of the TWM will vary. UCTV is
an efficient algorithm whose complexity depends not on the network size or the traffic
volume but on the number of traffic flows and kSP selected. It focuses on the mean travel
time optimization to create the best kSP-based TWM distribution.

The routing strategy works even if only some drivers are TWM users or decide
not to use it or in conjunction with other routing systems. Though it has not yet been
implemented in a real routing system, it can be easily integrated into existing ITS systems,
as it focuses on the traffic network map concept, leaving the routing decision to the ITS and
the routing agent.

Modern routing systems need to consider not only the user equilibrium or the system
optimum in its variants regarding travel time and congestion reduction but also creating a
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safe and sustainable environment. Governments and urban cities are protecting citizens
with increasing regulation and constraints for better air quality, so these ITSs must ensure
they provide pollution-efficient solutions.

This paper demonstrates how UCTV impacts the primary pollutant emissions, creating
safe and low-emission conditions for urban environments. UCTV provides a good solution
for mesoscopic studies using the macroscopic emissions standards, as it provides detailed
information for every edge in the network, also considering its occupation status. The
presented static approach can be easily scaled to dynamic assignment strategies.

A synthetic GRID64 network has been studied under different kSP conditions, study-
ing not only the CO, NOx, VOC, and PM main components but also an underlying indicator
such as the number of edges under the “Urban Peak” consideration and the network extent
(aggregated length) they cover.

This scenario is a benchmark testbed for real urban network simulation. Previous
works extrapolating this scenario to real traffic networks have shown that its benefits
drastically increase and positively overpass the GRID64 findings.

The TWM method can be easily integrated into existing ITS systems, as they usually
use map servers to obtain the network views upon which they develop their planning
and operational activities. TWMs can act as a map server directly integrated into their
architecture or an external map server that a traffic authority may operate.

Ethical considerations should be addressed by providing different traffic network
views to drivers based on their utility requirements and from the perspective of the traffic
system operator to achieve optimal network performance. Key aspects include fairness and
equity, safety, efficiency and network performance, data privacy and security, and trans-
parency and accountability. These considerations aim to ensure fair treatment, prioritize
safety, optimize network performance, protect privacy, and maintain transparency and
accountability in the system.

Future Works

This paper opens new possibilities for research, such as:

• Splitting flows into sub-flows for every emissions sub-group (Q). TWM maps would
extend from F · K to F · K · Q, increasing the complexity, but new multi-objective
strategies can be designed, focused on differential routing for the Q groups.

• Simulation of real urban network for emission estimations, together with the UCTV
variants using disjoint k-shortest paths.

• Usage of link plateaus as described in [17,18] to create the TWM maps, as they have
been proved to be an effective way to design alternative paths for large networks.

• Application of UCTV for low-emission zones (LEZ).
• Crafting ad hoc TWM specifically for congested areas.
• Integration with real ITS solutions.
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Abbreviations
The following abbreviations are used in this manuscript:

ABM Activity-Based Model
BPR American Bureau of Public Roads
CAM Cumulative Assignment Method
CSO Constrained System Optimum
DTA Dynamic Traffic Assignment
ETSI European Telecommunications Standards Institute
GA Genetic Algorithms
GHG Greenhouse Gas Emissions
ITS Intelligent Transportation Systems
kSP K-Shortest Paths
LCTV Strategy for Optimal Assignment of TWM per Path Flow with Linear Constraints
MSA Mean Successive Averages Method
OTV Strategy for Optimal Assignment of TWM
SO System Optimum
STA Static Traffic Assignment
TAP Traffic Assignment Problem
TBM Trip-based Demand Model
TWM Traffic Weighted Multi-Maps
UE User Equilibrium
UCTV Strategy for Unconstrained Optimal Assignment of TWM per Path Flow
VDF Volume-Delay Functions

Notes
1 NM-VOC = non-methane volatile organic compounds.
2 Particulate matter (PM2.5 and PM10).
3 PAHs = polycyclic aromatic hydrocarbons.

POPs = persistant organic pollutants.
4 Depending on the pollutant, E f d

i may express EF [g/km] or ECF [MJ/km] or volume/km or volume/kWh or g/kWh.
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