
Citation: Jha, A.; Song, H.; Zinchenko,

Y. Resilient Network Design: Disjoint

Shortest Path Problem for Power

Transmission Application. Systems

2024, 12, 117. https://doi.org/

10.3390/systems12040117

Academic Editors: Randy Buchanan

and Gregory S. Parnell

Received: 10 December 2023

Revised: 12 March 2024

Accepted: 27 March 2024

Published: 31 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Resilient Network Design: Disjoint Shortest Path Problem for
Power Transmission Application
Amit Jha 1, Haotian Song 2 and Yuriy Zinchenko 1,3,*

1 Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada;
amit.jha@alumni.ucalgary.ca

2 School of Management, Zhejiang University, Hangzhou 310058, China; hasong@zju.edu.cn
3 Gurobi Optimization, LLC, Beaverton, OR 97008-7105, USA
* Correspondence: yzinchen@ucalgary.ca; Tel.: +1-403-220-4044; Fax: +1-403-282-5150

Abstract: Path redundancy is essential for safety and reliability in many real-world routing problems,
such as the design of networks for power transmission, transportation, etc. These problems are
typically posed to find the shortest path on a weighted graph. For the shortest path with path
redundancy, particularly in the Disjoint Shortest 2-Path (DS2P) problem, two disjoint paths are
desired such that the combined weight of the two paths is minimized while a minimum distance
path separation is maintained. The conventional formulation of the above requires a large-scale
mixed-integer programming (MIP) model. However, this approach is practically intractable due to
the model’s complexity and extremely long run-time. We demonstrate why DS2P is NP-complete
and propose an efficient heuristic to find an approximate solution to the problem in a much shorter
time frame. We demonstrate the approach on a realistic dataset for power transmission routing,
integrating the computational methodology with a visualization interface using Google Maps. The
resulting prototype software is freely available through GitHub and can be deployed on a cloud
platform, such as Amazon AWS.

Keywords: resilient and survivable networks; path redundancy; disjoint shortest paths; optimization

1. Introduction

Catastrophic changes in operational and natural environments present huge risks and
uncertainties in supply chains. A common solution to make a system more resilient to such
catastrophic changes is to build in some redundancy. Redundancy in power transmission
lines as a protective measure is recommended by the IEEE Power System Relaying and
Control Committee (PSRC) and is regulated by the North American Electric Reliability
Corporation (NERC). According to [1], the physical separation of designated groups in a
redundancy protection system should be maintained to ensure failure resilience in case of
catastrophic events. The recommendation of physical separation is a part of bulk power
system protection criteria in some North American regional electricity organizations. A
natural question arises: how can we add the necessary level of redundancy for the least
possible cost?

Transmission line routing is a classical applied optimization problem. Numerous ap-
proaches, such as the raster-based GIS approach, genetic algorithms, and graph-theoretical
methods, have been proposed to identify the shortest or least-cost path or paths over a
given locale, demonstrating varying degrees of success largely dependent on the com-
plexity of the underlying model. Our work is motivated by a practical question—optimal
transmission powerline routing (with redundancy constraint)—as further described in
Section 1.2.

A common abstraction of the routing problem is to model the system as a graph. Many
utility metrics are reduced to graph properties, such as the shortest path between two

Systems 2024, 12, 117. https://doi.org/10.3390/systems12040117 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems12040117
https://doi.org/10.3390/systems12040117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://doi.org/10.3390/systems12040117
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems12040117?type=check_update&version=2

Systems 2024, 12, 117 2 of 28

vertices, etc. A basic illustration of a classical shortest (here, least-cost) path is given in
Figure 1, where the path is depicted in red.

Figure 1. An example of a shortest path.

The effective solution techniques for the shortest path problem stand out as a set of
notable achievements of classical Operations Research stemming from the original work of
Dijkstra in the late 1950s [2]. To date, the shortest path problem has found many applications
in network design, GPS routing, etc. Although the shortest path has been shown to be com-
putationally easy, some of its innocent-looking variants present incomparable challenges.

We study a variant of the shortest path problem, which we refer to as the Disjoint
Shortest 2-path Problem (DS2P), in which two disjoint paths need to be determined instead
of one, and in addition, the paths have to conform to some minimum-distance constraints.
By distance constraints, we mean that the two paths have to be at least a certain distance
apart from each other. The DS2P problem variant is poorly understood.

Our main contribution is the proposal of a novel method to account for distance
constraints that, under certain assumptions, guarantee optimal two-path recovery in a
very modest run-time. If the assumptions are not met, our method can be regarded as
a heuristic. The method is based on a geometric embedding of a two-path problem in a
higher-dimensional graph, followed by the shortest-path computation. In the embedding
model, hard geometric constraints are converted to the graph’s connectivity with the
associated cost structure. The computational run-time requirements to recover an optimal
set of two geometrically distinct paths grow moderately as compared to all the other known
alternatives, resulting in an efficient numerical procedure. Along the way, we classify the
hardness of DS2P and give an exact 0-1 integer programming formulation of the two-path
problem, and we demonstrate the comparative advantages of our embedding approach.
Our method can be generalized to accommodate distinct origin–destination pairs and more
complicated geometric constraints.

Shortest path routing is often one of the most important aspects of infrastructure
projects such as roads, pipelines, or power transmission lines. Conventional ways to find
the shortest/most economical paths mostly rely on survey data and available maps. Other
digital technologies like remote sensing, image processing, drone surveys, geographical
information systems (GIS), etc., have made the task less daunting and more precise in
terms of data availability. Due to these technologies, huge amounts of data are, in principle,
available to facilitate good decision-making. However, the challenge lies in how to use
the available information effectively. We illustrate how the novel DS2P methodology can
be embedded into a data-driven decision-making cycle for optimal powerline routing,
including integration with Google Maps and cloud deployment.

The manuscript is organized as follows: in Section 2, we first formulate the problem
on a graph and then present a corresponding 0-1 MIP model formulation; in Section 3,
we discuss some basic properties of the exact models, including the complexity of the
graph-based model and the linear programming relaxation of the 0-1 programming model;
in Section 4, we introduce our novel approximation scheme; and in Section 5, we further
illustrate how the new approach can be used for practical data-driven decision-making.

1.1. Literature Review and Related Works

In many applications, a necessity arises to determine a set of alternative paths be-
tween some source–sink pair. For example, a multi-path concept was applied for network
robustness in the context of transit design in [3]. In [4], the authors studied a related

Systems 2024, 12, 117 3 of 28

path diversification problem with an application to a transportation network. The authors
presented an experimental approach reliant on network and path penalization and eval-
uated various trade-offs for a Washington DC area case study. An interesting approach
to road path diversification (without geometric constraints) is presented in [5] and relies
on a physical analogy to electric power flow and its formal analysis. In [6], the authors
studied the survivability of low-cost communication networks. Some of the proposed
models fall within the domain of so-called bilevel programming, while others pursue
a graph-theoretic approach.

Transmission line routing and planning have long drawn attention as an application
of the shortest path problem as well; see, for example, [7,8]. Much work in the literature
focuses on expansion planning, where the routes are well documented by transmission
owners or regulators [9]. Classical engineering reliability aspects of power systems are al-
ready well covered in the literature; for example, see [10,11]. In [12], the authors considered
the question of re-configuring the power network following a natural disaster, including
better locations for transformers and maintenance holes in the grid, proposing a hybrid
optimization-based heuristic approach. The optimal placement of the new transmission
lines corresponds to the topological design of a very specialized unorthodox “supply chain”,
where multiple power lines serve to increase the system’s resilience to catastrophic failures.

The shortest-path application in transmission line routing has drawn collaborative
attention from industry and academia. Ref. [13] used a genetic algorithm and an improved
Artificial Bee Colony algorithm in combination with a total weight surface raster map
to find the single shortest path. ArcGis is a product of ESRI and is extensively used for
preparing GIS-related input in the form of a pixelated dataset called a raster, with each cell
having a value. These datasets can be used as cost metrics for finding the shortest paths.
Ref. [14] used dynamic programming (DP) with GIS to create a raster cost map, which
includes geographic as well as non-geographic costs, to give a DP-embedded GIS-based
grid in which each cell represents the minimum cost from the origin. The economic corridor
for transmission line laying is typically defined within a boundary region that allows some
deviation from the optimal route for feasibility. Ref. [15] discusses the drawbacks of raster-
based shortest-path solutions, mainly attributed to the discretization of the continuous
space. A geometric distortion associated with the rectangular aspect of rasters is discussed
in [16]. Ref. [17] suggests two types of geometric distortions: elongation and deviation
distortions. Ref. [18] defines elongation as the ratio between the costs of the least-cost path
(LCP) and the true LCP. The deviation distortion corresponds to the absolute difference in
location between the LCP and the true LCP [19]. Further, ref. [18] introduced a third type,
proximity distortion, which is caused by ignoring the effects of neighboring cells. There are
alternative methods like vector-based graphs and GA-based approaches to overcome the
pitfalls of raster-based methods. Ref. [15] also points out the drawbacks of a GA, which
mainly results in the probabilistic heuristic nature of the solution. Thus, the raster-based
approach to the LCP is preferred over the GA approach for being exact in identifying
the LCP.

To determine the single shortest (or least-cost) path between any two nodes in the
graph, besides the classical Dijkstra algorithm [2], other efficient and specialized algorithms
exist, such as the Bellman–Ford algorithm [20,21], Fredman and Tarjan’s algorithm [22],
etc. Similarly, there are methods to efficiently compute the shortest paths between all pairs
of vertices, e.g., the Floyd–Warshall algorithm [23,24]. These algorithms are very compu-
tationally efficient and allow one to find the shortest path for very large (nonnegatively
weighted) sparse graphs with relative ease. Depending on the algorithm, one can complete
this task within a constant multiple of either |E |+ |V| ln |V| or |V|2 arithmetic operations,
where |E | and |V| denote the number of edges and vertices in the graph.

One well-studied extension of the classical shortest path problem is the so-called K
shortest path routing problem. Here, the aim is to find not only one single shortest path but
also the other (K − 1) paths in a non-decreasing order of cost. Due to its importance, the K
shortest path problem is well studied. For brevity, we give only two entry points to this

Systems 2024, 12, 117 4 of 28

field of research, namely, [25,26], where polynomial-time algorithms were given. There are
also versions of algorithms determining the existence of κ-disjoint paths between κ distinct
pairs of vertices (s1, t1), (s2, t2) . . . (sκ , tκ) in a given graph G. This variant of the κ-disjoint
path problem has also been extensively studied as well, and again, for brevity, we only
cite [27] here, where polynomial algorithms are proposed. Another notable extension is
attributed to Suurbale’s algorithm [28], which allows us to find a min-cost pair of disjoint
paths between the two vertices in a nonnegatively weighted directed graph. A good and
updated brief survey of disjoint paths in networks can be found in [29].

Unlike the classical single shortest path problem, or the above K shortest path routing
problem or the κ-disjoint path problem, few practical and well-understood approaches
exist for the 2-path variant with “geometric” constraints, applicable to large networks.
An example of geometric constraints is a situation where paths are further required to be
separated by some minimum distance. Although the latter problem has many potential
applications, to our knowledge, no efficient general-purpose method exists for DS2P where
the user can specify such a geometric constraint. In [30], the authors consider a very closely
related minimum-cost pair in the D-geodiverse paths problem. Our DS2P problem is
slightly more general; it can be posed on an abstract graph and is not reliant on a specific
Euclidean embedding. The authors explored a MIP-based approach for models posed over
relatively small graphs, particularly featuring two (communication) network topologies:
Germany50 with 50 nodes and 88 links and CORONET CONUS with 75 nodes and 99 links.
The main difference between our work and [30] is the target size of the network: MIP
works well for small topologies, while for medium to large networks with thousands of
nodes or more, we quickly hit the computational wall, and other solution techniques are
required. Similarly, in [31], the authors propose an extension of the D-geodiverse problem to
K > 2 paths, relying on a similar MIP approach and, hence, subject to similar computational
limitations. In contrast, for larger networks, mostly heuristic methods lacking rigorous
analysis have been proposed. For instance, when two paths are desired, a manual search
is usually performed on a set of K-disjoint paths, instead of systematically recovering the
cheapest pair of paths. Unlike the identification of a single least-cost path, the case of the
DS2P, where we need to introduce separation constraints between the paths, does not have
commercially available software packages. In a typical powerline application, the size of
a graph representing a possible network topology is large (thousands and even millions
of nodes alone). As a consequence of using unproven heuristics, one may end up with
sub-optimal solutions, which could result in a large unrealized socio-economic potential.

1.2. Motivational Example

The northeast region of Alberta, Canada, is an area with the highest growth in elec-
tricity demand across the province. Energy and oil sand industries in the Fort McMurray
area constitute a large portion of the current and future electricity demand. On the other
hand, a large amount of hydro energy is available in the Slave River basin, which is located
at the northern border of the Alberta province. The problem is how to transmit electricity
to the Fort McMurray area. The northern region has a very sparse population, and most
of the area is covered with forests and ice; there is almost no human development in the
area. Hydro-generated power has to be transmitted via power lines to substations in the
vicinity of the facilities in Fort McMurray. Through this, it is possible to bring green energy
to energy-intensive operations and contribute to greenhouse gas reduction plans.

There are many geographical, environmental, economic, human footprint, and other
considerations in the region. To quantify these, the regional map can be discretized using
a desired resolution, and each cell in the grid can be assigned a representative “weight”
corresponding to a power line transitioning through the cell. The resulting color-wash
map is presented in Figure 2, with brighter-red colors corresponding to more expensive
regions in terms of the anticipated construction cost. The detailed map is divided into
311-by-244 cells of 1 × 1 km cell size resolution. The representative construction costs for
each cell were determined in collaboration with the Alberta Electric System Operator using

Systems 2024, 12, 117 5 of 28

the blend of automated rasterization and a manual process. The costs consider topographi-
cal features, accessibility, and other considerations. Two dark-red areas correspond to the
forbidden zones where large water bodies are located and the cost of transmission line
construction may as well be assumed to be infinite.

Figure 2. Cost color-wash map.

The objective is to find the optimal route or corridor for the power lines in northeastern
Alberta. A hypothetical northeastern Alberta powerline topology is presented in Figure 3,
with a star depicting the generator facility and a circle depicting the receiver station. When
designing a power transmission line between the generating facility and the consumer
node, a company may be legally required to build not just one but two redundant power
lines, distanced from one another by some minimum safety margin, so that if one of the
lines goes down due to an accident, there is still a high probability of power being delivered
to the destination via the second back-up line.

Figure 3. Hypothetical northeastern Alberta powerline topology with 2 transmission corridors in red.

Thus, we aim to find two separate corridors for transmission lines going from the
power plant to the substation. Because of the specific reliability standards, these two lines
must be separated by a distance of at least 50 km or, equivalently, must be 50-unit cells
apart. The latter problem may be abstracted to solving an instance of DS2P—finding the
two shortest paths on a graph subject to a geometric distance constraint with vertices

Systems 2024, 12, 117 6 of 28

representing cell centers and edges representing the cost of transitioning from any one cell
to another.

Similar to the powerline design problem, a distance-constrained 2-path problem
naturally arises in road construction, high-capacity fiber-optic cable network design for
telecom, and GPS navigation. We expect an efficient solution approach to DS2P to benefit
these application areas as well.

2. Problem Formulations

In this section, we propose two formulations of DS2P. The first formulation approaches
the problem from a graph-theoretic viewpoint. The second formulation is based on so-
called mixed-integer programming, or more specifically, 0-1 integer programming. Both
formulations may be regarded as general models in the sense that distance constraints can
take more exotic and abstract forms. However, since this work is motivated by a practical
problem, we pay the most attention to the Euclidean or counting metric measuring the
distance. The first formulation is used to establish a hardness result for the corresponding
variant of DS2P. The second model closely relates to the well-known min-cost flow problem
and provides a convenient computational baseline for comparison; see Section 5.3.1.

2.1. Graph-Based Problem Formulation

For simplicity, from now on, we assume that we are dealing with a finite, directed,
weighted graph G = (V , E) with vertices indexed by V = {1, 2, 3, . . . , η}. Let {i, j} ∈ E
represent the edge going from vertex i to j, with the associated weight cij. Note that we
work with directed graphs and, generally speaking, may have cij ̸= cji. We introduce a
special pair of vertices, where the source is denoted by s and the sink by t. A path from the
vertex u to v is an ordered collection of vertices ⟨u, v⟩ = {v0, v1, v2, . . . , vk}, v0 ≡ u, vk ≡ v
so that for every consecutive pair vi−1, vi, there exists an edge {vi−1, vi}; we say that the
path has the length k in accordance with the number of edges used, counting possible
multiplicities. An edge is a path of length 1. Between any two vertices in a graph, there
may be no path at all, a unique path, or a set of alternative paths, depending on the graph’s
configuration. The path has a cumulative cost c⟨u,v⟩ = ∑k

i=1 cvi−1vi .
We proceed with stating the classical (single) shortest path problem.

Problem 1. Given a graph G = (V , E), with terminal vertices s, t ∈ V , find a path

P = {s, v1, ..vk−1, t} so that its cumulative cost c⟨u,v⟩ =
i=k

∑
i=1

cvi−1vi is minimized, where v0 ≡ s,

vk ≡ t.

To define the 2-path variant with distance constraints between the paths, it is useful to
introduce the notions of reachability and neighborhood.

Definition 1. The vertex u is ∆-reachable from v if there exists a ⟨u, v⟩-path of length ∆ or less.

In our setup, reachability is used to determine the distance between the paths and thus
serves largely as a surrogate for the geometric distance. To this end, since the Euclidean
distance is symmetric, when referring to u as ∆-reachable from v, we understand this in the
context of using the underlying undirected version of the graph G obtained by replacing
every edge of G with a bi-directional edge.

Definition 2. A ∆-neighborhood of a vertex v denoted by Nv,∆ is a subset of V such that u ∈ Nv,∆
whenever u is ∆-reachable from v.

The main reason to introduce the notion of a neighborhood is that the distance constraint
has to be relaxed for the edges near the source and the sink; otherwise, the model ceases

Systems 2024, 12, 117 7 of 28

to be meaningful and becomes infeasible. Now, we are in a position to state our first and
rather more abstract variant of DS2P.

Problem 2. Given a directed graph G, a source s ∈ Ns ⊂ V , a sink t ∈ Nt ⊂ V , and a fixed
distance threshold ∆, find two paths from s to t, defining them by ⟨s, t⟩ and ⟨s, t⟩′, such that

(i) The two paths are at least ∆-distance apart with respect to the counting (edge) metric, i.e.,
for all v ∈ ⟨s, t⟩ \ (Ns ∪Nt)
and all v′ ∈ ⟨s, t⟩′ \ (Ns ∪Nt)
the vertex v is not (∆ − 1)-reachable from v′;

(ii) The total cost c⟨s,t⟩ + c⟨s,t⟩′ is minimized among all possible paths satisfying (i).

For simplicity, we can take Ns ≡ Ns,∆ and Nt ≡ Nt,∆ in the above, while, generally,
the neighborhoods of the source and sink can be further modified if required; see Figure 4a.

Figure 4. (a) Schematic illustration of DS2DP and (b) K3,3 example.

Generally, in what follows, when we want to emphasize graph nodes, they are depicted
with larger figure elements, e.g., labeled circles. However, when we want to emphasize
edges and cost structure, the nodes are often depicted as dots, while a color-wash scheme,
like in Figure 2, is used for the edges.

An example of a K3,3 directed graph is shown in Figure 4b with source at 1 and
sink at 6. Since K3,3 is non-planar, using the Euclidean distance between vertices to cap-
ture the distance between the paths ceases to make sense. However, the statement of
DS2P with Ns = {s},Nt = {t} and ∆ = 1 still makes sense, with the solution given by
⟨1, 6⟩ = {1, 5, 3, 6} and ⟨1, 6⟩′ = {1, 4, 2, 6}. Thus, the use of a more abstract counting metric
fits general graphs—planar or non-planar.

The scenario where ∆ = 2, Ns = {s}, and Nt = {t} is very important, and its
significance will be seen when DS2P complexity is discussed.

2.2. The 0-1 Integer Programming Model

As we have mentioned, the bulk of the 0-1 integer programming model relates to the
min-cost flow formulation of the shortest path problem. We introduce the min-cost flow
model first and then propose the 0-1 integer programming formulation for DS2P.

A flow over an edge is a real number assigned to the edge. Intuitively, this can be
thought of as the quantity of goods carried on a road segment, or the amount of water
flowing through a pipe. The min-cost flow problem is the central object of study in almost
every book on network flows. Besides its theoretical importance, problems that are modeled
as min-cost flow constantly arise in industries, including manufacturing, communication,
transportation, and so on. The min-cost flow problem is typically defined over a capacitated
network; that is, in addition to the edge cost cij, there is a capacity uij for each edge {i, j},

Systems 2024, 12, 117 8 of 28

signifying that the flow along {i, j}-edge cannot exceed uij. Now, the min-cost flow model
is given as follows (see, for instance, [32], p. 296).

Problem 3. With each vertex v ∈ V = {1, 2, . . . , η}, we associate a number bv, which indicates
whether the vertex is a supply or a demand node, depending on whether bv ≥ 0 or bv < 0,
respectively. The min-cost flow problem solves the following linear programming instance, where xij
represents the flow along the {i, j}-edge:

min
x ∑

{i,j}∈E
cijxij

s.t. ∑
j:{i,j}∈E

xij − ∑
j:{j,i}∈E

xji = bi, ∀i ∈ V ,

0 ≤ xij ≤ uij, ∀{i, j} ∈ E .

In its generic form, the min-cost flow problem allows for fractional optimal flow values.
However, under certain assumptions, it yields integer flows only. Specifically, when all the
capacities uij and bv are integers, we have integer optimal flow values xij. By making clever
choices for bv and uij, we can model many situations, including the shortest path problem.

First, observe that the shortest path problem may be formulated as the following
0-1 integer programming problem:

Problem 4.
min

x ∑
{i,j}∈E

cijxij

s.t. ∑
j:{i,j}∈E

xij − ∑
j:{j,i}∈E

xji =

1, i = s

−1, i = t
0, otherwise

xij ∈ {0, 1}, ∀{i, j} ∈ E .

The binary variables xij are used to indicate whether the {i, j}-edge is used in the construc-
tion of the shortest path—set xij = 1—or not—set xij = 0. The affine constraint guarantees
the flow conservation. The source s has one unit of flow out, and the sink t has one unit
of flow in. All the other vertices always have zero-net flow since only one unit of flow is
allowed to go in and out. Next, we note that, due to the integrality property, the binary
variables may be replaced with continuous capacitated variables, 0 ≤ xij ≤ 1, ∀{i, j} ∈ E ,
thus giving us an instance of min-cost flow.

Similarly, we can easily formulate the DS2P problem by adding one more flow
corresponding to the y-variables along with the required minimum-distance constraint
δ(v, v′) ≥ ∆, where δ(·) measures the distance between the vertices (or the edges), and ∆ is
the required threshold.

Problem 5.

min
x,y ∑

{i,j}∈E
cij(xij + yij)

s.t. ∑
j:{s,j}∈E

xsj − ∑
j:{j,s}∈E

xjs = 1, ∑
j:{s,j}∈E

ysj − ∑
j:{j,s}∈E

yjs = 1,

∑
j:(t,j)∈E

xtj − ∑
j:{j,t}∈E

xjt = −1, ∑
j:{t,j}∈E

ytj − ∑
j:{j,t}∈E

yjt = −1,

∑
j:{i,j}∈E

xij − ∑
j:{j,i}∈E

xji = 0, ∑
j:{i,j}∈E

yij − ∑
j:{j,i}∈E

yji = 0, ∀i ̸= s, t

xij + yi′ j′ ≤ 1, for all i, j, i′ , j′ ∈ V \ (Ns ∪Nt) where {i, j}, {i′ , j′} ∈ E

and δ(i, i′), δ(i, j′), δ(j, i′), δ(j, j′) ≤ ∆

xij , yij ∈ {0, 1}, ∀{i, j} ∈ E

Systems 2024, 12, 117 9 of 28

Similarly to xij for the first path, binary variables yij are used to indicate whether the
edge {i, j} belongs to the second path or not. By restricting the cumulative flow xij + yi′ j′

through the {i, j}-edge to be no greater than 1 (see the fourth group of affine inequality
constraints above), we permit only one path within close proximity to the other. We
intentionally do not specify the distance function δ(·) to keep the model as flexible as
possible. In particular, δ(·) can be chosen to represent either the counting reachability
metric or the Euclidean distance based on the graph’s embedding.

The above model corresponds to solving an instance of 0-1 programming, while MIP
instances in general are notoriously difficult. A natural question arises: can we simply relax
the binary restriction on the variables into linear inequalities, as was the case for a single
shortest-path formulation? We address the hardness classification of DS2P next, before
addressing the former.

3. Basic Properties of DS2P Models
3.1. Graph-Based Problem Complexity

We show that for ∆ = 2, the decision version of DS2P is NP-hard by relating the
problem to the so-called 3SAT problem. In contrast, when ∆ = 1, DS2P is easy and can be
reduced to the standard shortest path. Since, in practice, we are most likely to be interested
in more than vertex-disjoint paths, that is, cases where ∆ ≥ 2, this turns our prospects of
solving DS2P over general graphs quite bleak.

The 3SAT problem is an important example of an NP-complete problem. We review
its statement next, along with some auxiliary definitions.

Definition 3. A Boolean expression consists of binary variables (0 means false while 1 means true),
three operations—AND (i.e., conjunction, denoted by ∧), OR (i.e., disjunction, denoted by ∨), and
NOT (i.e., negation, denoted by a bar above the variable)—and parentheses.

Definition 4. The Boolean satisfiability problem, abbreviated as SAT, is the problem of determining
whether an assignment exists to satisfy a given Boolean expression. When there exists such an
assignment, it is called a true assignment, and the given Boolean expression is satisfiable.

For example, x1 = 1, x2 = 0, and x3 = 1 with resulting negations x̄1 = 0, etc., is a true
assignment for the Boolean expression x1 ∧ (x̄1 ∨ x̄2) ∧ (x1 ∨ x2 ∨ x̄3), and consequently,
this Boolean expression is satisfiable.

To be consistent with terms in Computer Science, we introduce the following jargon:
a literal is either a variable, then called positive literal, or the negation of a variable, then
called negative literal; a clause is a disjunction of literals, or a single literal. The 3SAT
problem is a type of Boolean satisfiability problem with a specific structure, namely, that
each clause contains exactly three literals. For example, finding a true assignment for
(x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) is a 3SAT problem.

Theorem 1 ([33] p. 48). The 3SAT problem is NP-complete.

Interestingly, the behavior of DS2P varies drastically with the desired distance between
the paths. Specifically, when ∆ = 1, the problem is very easy, while for ∆ ≥ 2, DS2P
becomes very hard. We proceed to illustrate this phenomenon in detail.

Setting ∆ = 1 leads to the vertex-disjoint shortest path problem. Polynomial algo-
rithms are given for the vertex-disjoint shortest path problem in undirected graphs with
positive weights in [27,34]. The corresponding digraph can be modified so that the problem
fits the min-cost flow model [28]. We illustrate the latter modification procedure with an
example in Figure 5, where the solid lines have cost 0 and the dashed lines have cost 1.

Suppose we want to find two vertex-disjoint shortest paths from node-1 to node-4. If
we simply implement the min-cost flow model to deliver two units of flow in total—derived
from Problem 4, with xij integrality relaxed to xij ∈ [0, 1] and the non-zero RHS replaced by

Systems 2024, 12, 117 10 of 28

±2—we will obtain {1,2,3,4} and {1,3,5,4}, whose total cost is zero. However, these two paths
have a common vertex: node-3. The modification in Figure 5 guarantees that every node is
visited only once, since the edge (3, 3′) can only be used once. The min-cost flow model
has the property of having integer flow, and since the corresponding LP problem is in P, we
conclude that the problem with ∆ = 1 is in P as well.

Figure 5. Digraph modification for ∆ = 1.

When considering DS2P and related instances, it is worthwhile to mention that the
following problem (stated in [27]) is NP-complete.

Problem 6. Given a graph G with positive edge weights and two pairs of vertices (s1, t1), (s2, t2),
find whether there exist two disjoint (edge-disjoint or vertex-disjoint) paths P1 from s1 to t1 and P2
from s2 to t2 such that P1 is the shortest path.

Inspired by the reduction technique of Problem 6 in [27], we have the following
theorem:

Theorem 2. Let Ns = {s} and Nt = {t}.

If ∆ = 1, then DS2P is in P.

If ∆ ≥ 2, then DS2P is in NP-hard.

Proof. Denote the number of clauses and the number of literals in the expression by m and
n, respectively. For each clause (xi ∨ yi ∨ zi), we construct a sub-graph Ai (1 ≤ i ≤ m),
and for each pair of literals vj and v̄j, we construct a sub-graph Bj, 1 ≤ j ≤ n, as shown in
Figure 6. Ai has nine edges, and the three middle ones represent the corresponding literals
xi, yi, and zi. Bj has two sides: the left side consists of the edges of v̄j, and the right side
consists of the edges of vj. Denote the times that each literal vj appears in all Ais by |vj|, and
let the length of both sides of Bj be lj = 2 max{|vj|, |v̄j|}+ 1 so that both sides have lj edges
of vj and v̄j, respectively. This construction process is a polynomial-time transformation.

Figure 6. Sub-graphs for 3SAT reduction.

Connect each Ai (1 ≤ i ≤ m) sequentially by coinciding one’s last vertex with the
next one’s first vertex, and repeat the same process for each Bj. Then, connect each pair
of vertices that are incident with the edge of the literal vk (1 ≤ k ≤ n) in Ais to the ones
in Bjs incident with the edge of v̄k with dashed lines, respectively and sequentially. We
use solid lines to connect the source s to the initial points s1 and s2 of sub-graphs A and
B, respectively, and connect the sink t to the ending points t1 and t2 as well, and we use
dashed lines to connect s1 to t1 and s2 to t2. Set the weight of all the solid lines to 1 and

Systems 2024, 12, 117 11 of 28

the weight of all the dashed lines to 3m + ∑j lj. For example, Figure 7 is constructed for
(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x1 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4), and Figure 8 is constructed for (x1 ∨ x2 ∨
x2) ∧ (x1 ∨ x̄2 ∨ x̄2) ∧ (x̄1 ∨ x2 ∨ x2) ∧ (x̄1 ∨ x̄2 ∨ x̄2).

Figure 7. The graph constructed for (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x1 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4).

We claim that finding two disjoint shortest paths subject to the distance constraint
∆ = 2 from s to t in Figure 7 is equivalent to solving the 3SAT problem (x1 ∨ x̄2 ∨ x3) ∧
(x̄1 ∨ x1 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4). Note that Figure 7 has the following properties:

1. DS2P is always feasible: there are always two paths satisfying all the constraints, that
is, {s, s1, t1, t} and {s, s2, t2, t}, whose total cost is 2(3m + ∑j lj + 2).

2. Every variable admits a unique assignment: if the first path P1 goes through the edge
x1 in A1, the second path P2 cannot go through the edge x̄1 in B1 due to the distance
constraint ∆ = 2.

3. The DS2P optimum determines the satisfiability. For convenience, we denote the path
that goes through sub-graphs Ais (or Bjs) by A (or B) and otherwise by Ā (or B̄), and
by A ∪ B̄, we mean that, under the distance constraint, the two situations A and B̄
co-occur; that is, one of the two paths goes through all Ais, while the other does not
go through all Bjs. There are four scenarios:

(a) A ∪ B, and then the least cost is costa = 3m + ∑j lj + 4;
(b) A ∪ B̄, and then the least cost is costb = 6m + ∑j lj + 4;
(c) Ā ∪ B, and then the least cost is costc = 3m + 2 ∑j lj + 4;
(d) Ā ∪ B̄, and then the least cost is costd = 2(3m + ∑j lj + 2).

It is straightforward that

costa < min{costb, costc} ≤ max{costb, costc} < costd

and Scenario (a) implies that the corresponding 3SAT problem has a true assignment.

In the example shown in Figure 7, there exist two such disjoint shortest paths:

P1 : {s, s1, x1(A1), x4(A2), x̄2(A3), t1, t}
and P2 : {s, s2, x1(B1), x̄2(B2), x3(B3), x4(B4), t2, t}

(we allow for a slight abuse of notation in the above for the sake of brevity).
If we set all the literals in P2 to be true, that is,

x1 = 1, x̄2 = 1, x3 = 1, and x4 = 1,

then (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x1 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4) = 1, and we solve the 3SAT problem.

Systems 2024, 12, 117 12 of 28

In the example shown in Figure 8, there do not exist two such paths with the total
cost 3m + ∑j lj + 4 that satisfy the distance constraint. And it is not a coincidence that the
corresponding 3SAT problem (x1 ∨ x2 ∨ x2)∧ (x1 ∨ x̄2 ∨ x̄2)∧ (x̄1 ∨ x2 ∨ x2)∧ (x̄1 ∨ x̄2 ∨ x̄2)
has no true assignment, meaning it is always false.

Figure 8. The graph constructed for (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x̄2) ∧ (x̄1 ∨ x2 ∨ x2) ∧ (x̄1 ∨ x̄2 ∨ x̄2).

Considering these two examples together, we can see that, indeed, the outcome of
solving a DS2P problem implies the satisfiability of its corresponding 3SAT expression. If
the outcome shows that the cost equals 3m + ∑j lj + 4, then it has a true assignment, which
can be expressed by the path from s2 to t2; otherwise, the 3SAT expression is always false.

Graphs constructed for scenarios when ∆ ≥ 3 can be regarded as subdivisions of the graph
of the scenario when ∆ = 2. This reduction applies regardless of whether the graph is directed
or undirected; hence, for both types of graphs, the DS2P problem with ∆ ≥ 2 is NP-hard.

3.2. LP Relaxation of the DS2P 0-1 Programming Model

Recall that, in Section 2.2, we presented the 0-1 MIP formulation of the single shortest
path problem. An additional and crucial property that makes this formulation so useful is
the solution integrality of the respective LP relaxation. The latter feature of the min-cost
flow re-formulation of the classical shortest path problem is commonly referred to as the
Integrality Theorem ([32] p. 381).

Theorem 3. If all edge capacities and supplies/demands of nodes are integers, the min-cost flow
problem always has integer optimal min-cost flow values.

Thus, a reasonable question here is whether the LP relaxation of DS2P Formulation 5
has a similar favorable integrality property. Specifically, consider the following linear
programming relaxation to be the MIP equivalent to Problem 5 (here, for convenience, we
have added a spurious edge of capacity 2 between the sink and the source and forced a
unit of flow throughout x and y variables).

Problem 7.

min
x,y ∑

{i,j}∈E
cij(xij + yij)

s.t. ∑
i

xij = ∑
k

xjk , ∑
i

yij = ∑
k

yjk , ∀j ∈ V

xts = yts = 1

xij + yi′ j′ ≤ 1, for all i, j, i′, j′ ∈ V \ (Ns ∪Nt) where {i, j}, {i′, j′} ∈ E

and δ(i, i′), δ(i, j′), δ(j, i′), δ(j, j′) ≤ ∆

xij, yij ∈ [0, 1], ∀{i, j} ∈ E

Systems 2024, 12, 117 13 of 28

Unfortunately, the integrality of the LP relaxation solution is lost, as is illustrated in
the next example.

Suppose we want to solve a DS2P problem for the uniform grid graph shown in
Figure 9, where node-1 is the source, node-16 is the sink, all the solid edges have cost 1,
and dashed edges have cost ∞. Clearly, we want the paths to go along the solid lines, as,
otherwise, the total cost of the paths would be infinite. If we further require the Euclidean
distance to be strictly bigger than

√
2, with the exception of vertices immediately adjacent

to the source and sink, then there do not exist two such paths with finite cost, since the
Euclidean distance between node-8 and node-9 is exactly

√
2. However, it can be easily

verified that the LP relaxation may yield four fractional flows as a feasible solution:

x1,2 = x2,4 = x4,8 = x8,11 = x11,14 = x14,16 = 0.5,

y1,2 = y2,4 = y4,8 = y8,11 = y11,14 = y14,16 = 0.5,

x1,3 = x3,6 = x6,9 = x9,13 = x13,15 = x15,16 = 0.5,

y1,3 = y3,6 = y6,9 = y9,13 = y13,15 = y15,16 = 0.5.

A slight modification of this example, with the infinite edge cost replaced with large finite
values, gives a situation where rounding these fractional solution values provides no
additional useful information to construct an incumbent. In short, we believe that the MIP
formulation has a fairly weak LP relaxation, which is often a good predictor that solving
the MIP model (with a standard branch-and-bound approach) will be difficult.

Figure 9. Fractional-flow example.

We should also note that the cardinality of the distance constraints is expected to grow
very rapidly for practical graphs representing physical path routing. So, we may indeed
have a very hard and large instance of a 0-1 programming problem representing DS2P.

4. A Novel Approximation Scheme

It has been shown that the general version of DS2P is hard. Therefore, we make some
simplifying assumptions, starting with graph topology, that, in turn, allow us to introduce
an efficient heuristic approach. We focus on the minimum Euclidean separating distance
between the path version of the problem, while one can easily translate what follows for
the case of an edge-based counting metric between the paths.

4.1. Special “Diamond” Graph

From now on, we assume that the real-world (good) path connectivity can be well
represented using a bi-connected directed diamond graph. In other words, we fix the
path’s topology to those realizable over a diamond grid, assuming that such paths provide
enough good options for selection from a practical point. From an explanation point of
view, it is convenient to first describe a version of such a graph along with its particular
2D embedding.

Systems 2024, 12, 117 14 of 28

Geometrically, the diamond graph corresponds to a uniform square K-by-K grid, with
(K + 1)2 vertices located at the grid points and 2K(K + 1) (diagonal downward) edges, with
the source being the top-most and the sink being the bottom-most vertex; see Figure 10.

Figure 10. A 3-by-3 diamond graph.

Using such a graph configuration is motivated by simplicity and the large computa-
tional advantages it provides. From a usability point of view, albeit restrictive, we also do
not see this configuration as unreasonable. We expect that, in practice, such as in the case of
our motivating example from Section 1.2, the cost data are obtained as a set of some sample
values, e.g., a matrix of the representative cost per unit path length on a discretized regular
grid superimposed over a geographical area of interest. Assuming that the majority of
cost values are not dramatically different from cell to cell—possibly justified by the terrain
being largely homogeneous—it is reasonable to expect that “good” paths mostly proceed in
the direction from the start location toward the terminus (in our Figure 10, this is colinear
to the z-axis) and do not contain large backward loops. In other words, if we have enough
options to traverse the distance between the source and the sink, it is unlikely that making
a backward loop will decrease the overall construction cost and become economical. The
expansion of the diamond grid toward the middle as we traverse the z-axis allows for a
wide range of possible path configurations, while as we approach the terminal nodes, it is
reasonable to assume that the paths will narrow down toward the source and sink.

It is quite possible that, in the neighborhoods of the source and sink, where the
minimum-distance constraints are not applicable, permitting more flexible path trajectories
is of higher importance. In practical terms, we think of the source and sink as being in more
confined sub-regions, e.g., due to urban development. Once we depart from the respective
neighborhoods of the source and sink, the terrain becomes more homogeneous and less
restrictive. To accommodate more flexibility in the vicinity of the terminal nodes, one can
augment the diamond graph topology by replacing it with a truncated diamond graph
and adding complete sub-graphs around the source and sink; see Section 5.2. Similarly,
the graph embedding on the uniform Euclidean grid is applied out of convenience, while
other embedding variants may also be considered, including non-grid-based embedding,
and potentially represent more exotic path segments, e.g., the curvy path segments in
Figure 11b.

Systems 2024, 12, 117 15 of 28

Figure 11. Extensions with vertical edges (a) and “curved” path segments (b).

It should also be noted that the bi-connected diamond graph can be used to emulate a
higher degree of connectivity between the desired vertices. For instance, we can accommo-
date the addition of vertical edges by doubling the grid density and appropriately defining
the new edge cost, as illustrated in Figure 11a. The dotted edges represent a prohibitively
high cost—think ∞ or in excess of the sum total of the edge costs of the initial graph—and
are priced as such to prevent the “spurious” paths from cutting through the middle of each
cell; thicker solid edges have zero cost. The respective algorithmic modifications of our
scheme are quite straightforward and are deferred to later subsections. Unless mentioned
otherwise, here, we focus on a diamond graph for clarity.

To facilitate the explanation, we use three types of labels for the vertices of the diamond
graph in Figure 10, which are in one-to-one correspondence with each other:

• v[i,j] corresponds to array-like indexing along the (i, j) index axis;
• v(x,z) corresponds to vertex labeling by (x, z)-coordinates in the given embedding;
• vk is a left-to-right and top-to-bottom vertex enumeration index.

For example, in the figure, v1 ≡ v[0,0] ≡ v(0,0) corresponds to the source, and
v16 ≡ v[4,4] ≡ v(0,6) corresponds to the sink vertex. We have

x = j − i,

z = i + j,

and

k =

{
z(z+1)

2 + j + 1, z ≤ K,
(K + 1)2 − z′(z′+1)

2 − j′, z > K

with z′ = 2K − z, j′ = K − j. Since, in some sense, the z-coordinate measures the path’s
progress toward the sink, we will occasionally refer to the z-value as a level; see Figure 10.

As a reminder, our ultimate goal is to find the optimal pair of paths that are at least ∆
units apart. We believe that the computational advantages offered by the diamond graph
topology outweigh the downsides of working with the restrictive graph class, at least in
applications to a longer-range resilient electric power supply design.

4.2. Three-Dimensional Embedding

The main idea of our approach is to embed the distance-between-the-paths constraint
within the graph structure itself, possibly by increasing the dimensionality of the embed-
ding, rather than adding the distance constraints to a planar graph model representing a
single path. Out of a planar diamond graph, we construct a 3D graph that represents two
paths simultaneously, whose vertices and edges can be carefully chosen to approximate the
minimum-distance requirement. To this end, we will use the horizontal distance between
the paths as a surrogate for the minimum distance. In the case of using a uniform Euclidean

Systems 2024, 12, 117 16 of 28

grid for the path’s metric embedding, as per Figure 10, if the two paths are d units apart in
the x-direction, the paths cannot be closer than d/

√
2 to one another; see Figure 12. The

distance approximation constant depends on the particular embedding chosen; e.g., think
of stretching or compressing the grid in the z-direction. By picking a suitably large d, one
can guarantee that the paths have a certain minimum distance in between. We also note
that by increasing d, one may inadvertently make the search space unnecessarily restrictive.
Thus, in practice, we may want to take a balanced approach when selecting a specific value
of d. In what follows, we will illustrate that, due to our scheme being particularly efficient,
such ad hoc decisions can be made in near real time.

Figure 12. Path separation on ℓ-sized uniform square grid, with two exemplary paths displayed in
thicker teal and magenta lines.

We proceed to describe how the 3D graph is constructed in the pseudo-code below,
using primarily Euclidean vertex labeling.

Input: (2D) diamond graph G2 = (V2, E2) corresponding to K × K uniform grid along
with edge cost {ce}e∈E2 , and minimum horizontal path distance threshold d.

0. Initialize V := ∅, E := ∅
% Populate the set of 3D vertices

1. for z = 0 : K
2. if z ≤ ⌈ d

2 ⌉ − 1
3. set V := V ∪ (−z, z, z) ∪ (z,−z, z)
4. else
5. for x = −z : 2 : z
6. for y = −z : 2 : z
7. if |x − y| ≥ d
8. set V := V ∪ (x, y, z)
9. for z = K + 1 : 2K
10. set z′ = 2K − z
11. if z′ ≤ ⌈ d

2 ⌉ − 1
12. set V := V ∪ (−z′, z′, z) ∪ (z′,−z′, z)
13. else
14. for x = −z′ : 2 : z′

15. for y = −z′ : 2 : z′

16. if |x − y| ≥ d
17. set V := V ∪ (x, y, z)

% Populate the set of 3D edges and respective edge cost
18. for ζ = 0 : 2K − 1
19. for all vertices v ∼= (x, y, ζ) ∈ V
20. for all (x′, y′, ζ ′) so that x′ = x ± 1, y′ = y ± 1, ζ ′ = ζ + 1
21. if vertex v′ ∼= (x′, y′, ζ ′) ∈ V

Systems 2024, 12, 117 17 of 28

22. set e := {v, v′}
23. set E := E ∪ e
24. set edge cost ce := c{(x,ζ),(x′ ,ζ ′)} + c{(y,ζ),(y′ ,ζ ′)}
Output: (3D) embedding graph G3 = (V , E) with edge cost {ce}e∈E .

where
for iterator = start_value:increment:end_value
denotes a Matlab-like for-loop, while if increment is omitted, we increment by 1, and
for all members in a set
is used to iterate over the set, and
% is used for the brief code commentary.

Geometrically, the procedure above is as follows. First, we replicate the planar dia-
mond graph twice and assign the graph realizations to two orthogonal planes, say, to axes
XZ and YZ; in the YZ-axis, the y-coordinate is just a copy of the corresponding x-value of
the graph in the XZ embedding. For each of the two graph copies, we align the correspond-
ing Z-axes with one another, with the Z-axis passing through the source and the sink; e.g.,
using a 3-by-3 grid as an illustration (Figure 10), these have the coordinates (0,0) and (0,6).
The X-axis and Y-axis are positioned in 3D space so that they are mutually orthogonal. The
vertices of the 3D graph can be labeled with (x, y, z)-coordinates, whose 2D orthogonal
projections are (x, z) in XZ and (y, z) in the YZ plane. For example, the (−2,0,2) 3D vertex
encodes a pair of vertices (−2,2) in XZ and (0,2) in the YZ plane, both of which have z = 2.
The 3D edges are projected similarly, keeping in mind that for the 2D projection, we allow at
most two downward-diagonal edges from a node. Consequently, the cumulative 3D edge
cost is set to be the sum of the costs of the two corresponding projections in 2D. In other
words, any pair of two planar paths corresponds to a path in the 3D graph, and vice versa;
given a 3D path between the 3D source (0,0,0) and the sink (0,0,2K), the corresponding two
paths can be found by simple orthogonal projections onto 2D, as illustrated in Figure 13c.

Importantly, observe that while constructing the 3D graph, we simply omit the vertices
that violate the minimum horizontal distance conditions; visually, one can think of this step
as removing a “vertical slab” of vertices from the graph of a given width (see Figure 13b).
Therefore, any 3D path between the source and the sink will satisfy the horizontal distance
constraint. Similarly, since one cannot accommodate the minimum-distance-between-
the-paths constraints within the immediate vicinity of the source and sink, we relax the
constraint in the respective neighborhoods (lines 1-2 and 11-12 in the pseudo-code); here,
we do so within the

⌊
d
2

⌋
-depth neighborhoods of the source and sink, while this choice

can be further tailored depending on the end-use scenario. An illustration with a diamond
3-by-3 grid graph and the resulting 3D embedding graph can be found in Figure 13a,b,
with brighter edge colors representing higher costs. Equivalently, instead of removing the
offending vertices, we could assign a prohibitively large cost to the edges leading to or
from such vertices or remove these offending edges.

Finally, observe that there is a natural symmetry in the newly constructed 3D graph,
which we can take advantage of to reduce the number of vertices (and edges). Namely, the
paths in the XZ- and YZ-axes are interchangeable. To break the symmetry, it suffices to
assume that one of the paths is, for example, always to the left of the other; e.g., consider
only the vertices (x, y, z) with x ≤ y. This last modification cuts the number of edges and
vertices in the 3D graph roughly by half (see Figure 13d,e), giving two alternative views on
the same 3D graph, with the 3D path superimposed.

With the 3D graph at hand, we observe that to find a pair of desired disjoint shortest paths,
it suffices to determine the single shortest path in 3D between (0,0,0) and (0,0,2K) vertices.

Systems 2024, 12, 117 18 of 28

Figure 13. The 3D embedding scheme illustrated for a 3−by−3 grid: (a) a planar diamond graph,
(b) the 3D embedding, (c) the 3D embedding with a cost map superimposed, (d) a view of the 3D
embedded path, (e) an alternative view of the same 3D embedded path, (f) the reconstructed pair of
planar paths.

4.3. Shortest Path and Solution Recovery

Several well-known shortest-path algorithms exist, which can be applied to recover an
optimal source–sink 3D path. For example, Dijkstra’s algorithm finds the shortest path on
a generic graph G = (V , E) with nonnegative edge weights in Θ(|V|2) operations. Using
Fibonacci heap min-priority queue, the theoretic run-time complexity of finding the shortest
path can be reduced to Θ(|E |+ |V| log |V|) (see [22]); however, the last algorithm is much
harder to implement efficiently.

A typical implementation of Dijkstra’s algorithm relies on having an adjacency matrix
as part of its input. For the K-by-K grid, the 3D graph G3 has 2 ∑K+1

n=1 n2 − (K + 1)2 =

(K + 1)(2K2 + 4K + 3)/3 vertices and thus
(
(K + 1)(2K2 + 4K + 3)

)2/9 entries of the pos-
sibly very large and sparse adjacency matrix. Thus, an out-of-the-box (adjacency-based)
Dijkstra’s algorithm with the run-time complexity O(|V|2) would be able to determine
the shortest path on the 3D embedding graph G3 in O(K6) arithmetic operations, since
|V| = O(K3).

Taking into account the special topology of the sparse G3 graph—as any vertex has, at
most, four incoming and four outgoing edges—we can easily adapt Dijkstra’s algorithm
to run in merely Θ(|V|). In short, the algorithm reduces to a forward propagation of
computing the shortest path to each node from the source and requires Θ(K3) operations,
reducing both the time and memory required.

To take better advantage of the 3D graph’s specific structure, firstly, we note that the
two distinct 3D vertices (x, y, z) and (y, x, z) may belong to the same pair of planar paths,
one passing through (x, z) and the other through (y, z)-coordinates. Thus, we can take
advantage of the symmetry. It is sufficient to consider only the vertices where x ≤ y.

Secondly, since the vertices of the ζ-level (where z = ζ) are reachable by a single edge
only from the ζ − 1 level, we can compute the optimal path level by level. To illustrate,
see Figure 14, where the pentagons represent vertices on level 2 and circles represent
vertices on level 3. From (−2,2,2), the path may go to (−3,1,3), (−3,3,3), (−1,1,3), or (−3,3,3).

Systems 2024, 12, 117 19 of 28

Now, suppose we have already computed all the least-cost paths from (0,0,0) to level 2. To
compute the cost of paths from (0,0,0) to vertex (−1,1,3), we only require the least-cost paths
from (0,0,0) to (−2,0,2), (−2,2,2), (0,0,2), and (0,2,2), along with the respective single-edge
costs. To obtain the least cost from (0,0,0) to (3,−1,−1), we compute the costs of the four
alternatives above and pick the minimum. Once the least-cost path to level 3 is computed,
we can proceed to the next level, and so on. Note that we consider only two consecutive
levels at a time—when processing level ζ, we can ignore the cost information for levels
above (ζ − 1)—and can access the graph’s connectivity information without forming the
adjacency matrix explicitly.

Figure 14. Levels 2 and 3.

In summary, the modified “layered” shortest-path algorithm is as follows.

Input: 3D embedding graph G3 = (V , E) corresponding to K × K grid, edge cost
{ce}e∈E .

0. Initialize from-source-to-vertex min-cost and precursor arrays,
ξ(0,0,0) := 0, ξv := ∞, πv := ∅, ∀v ∈ V \ (0, 0, 0),
and the shortest path (list) P := ∅
% Forward propagation to compute the least cost

1. for ζ = 1 : 2K
2. for all vertices v ∼= (x, y, ζ) ∈ V
3. for all (x′, y′, ζ ′) so that x′ = x ± 1, y′ = y ± 1, ζ ′ = ζ − 1
4. if vertex v′ ∼= (x′, y′, ζ ′) ∈ V
5. set e := {v′, v}
6. set ξ ′ := ξ(x′ ,y′ ,ζ ′) + ce

7. if ξ ′ ≤ ξ(x,y,ζ)

8. set ξ(x,y,ζ) := ξ ′, π(x,y,ζ) := (x′, y′, ζ ′)
% Backward look-up to extract the shortest path

9. set v := (0, 0, 2K)
10. append v to P
11. for ζ = 2K : −1 : 1
12. set v := πv
13. append v to P
Output: The shortest path P (in backward order) from (0,0,0) to (0, 0, 2K).

The Θ(K3) run-time complexity is a direct consequence of the algorithm visiting every
node in G3 only once, with O(K3) nodes in total. Due to its purely sequential nature, this
method is easy to implement efficiently.

In Table 1, we compare the run-times of out-of-the-box Dijkstra’s algorithm with
an explicitly formed adjacency matrix against our streamlined layered approach. Larger
graphs are of particular interest, as they correspond to higher practical model resolution.

Systems 2024, 12, 117 20 of 28

The comparison was made on the same Surface Pro 3 laptop with a modest Intel Core
i7-4650U dual-core CPU (Intel, Santa Clara, CA, USA), with the approach implemented
in Matlab.

Table 1. Average run-time in seconds for 3D least-cost path: out-of-the-box vs. layered approach.

K 100 150 200 250 300

Building 3D adjacency matrix 5.27 25.21 51.03 151.74 270.61
Dijkstra’s algorithm 1.36 10.25 31.18 79.64 284.01
Layered approach 3.05 5.85 8.86 19.55 29.23

In the experiments, as expected, the run-time of the layered approach grew at a
roughly cubic rate, while the adjacency-Dijkstra-based approach experienced a higher-
degree polynomial growth in run-time with K.

Further speed-up can be obtained with parallel implementation, to which our approach
is very well suited. Typical run-times of the layered approach coded with OpenMP in
C++, run on a quad-core Intel Q9550 2.83 GHz machine (Intel, Santa Clara, CA, USA), are
presented in Table 2.

Table 2. Layered approach run-time in seconds with OpenMP.

K 500 600 700 800 900 1000

Run-time 4.85 8.22 12.87 19.12 31.80 37.84

We observe that the experimental run-time increases at a roughly cubic rate in relation
to the grid size K, and this pattern remains consistent across various hardware configura-
tions. Thus, in a sense, the run-times remain robust and predictable even when using quite
different hardware. The latter is important, as we envision a possibility of deployment on
various architectures, including cloud-based platforms, while Table 2 shows that a good
speed-up can be obtained just by switching to modestly more powerful hardware.

For the expected applications, where one also needs to balance out the realistically
obtainable accuracy of the edge costs against the grid resolution, we indeed expect the grid
sizes to be in the mid-hundreds. This makes our approach to the least-cost disjoint path
recovery run in near real time.

The individual planar shortest paths are recovered from those of the 3D graph as
simple projections, obtained by omitting the extra coordinate; see Figure 13 with two pro-
jections of the same 3D graph and the shortest path in (d) and (e), along with the least-cost
pair of the disjoint paths recovered and displayed in (f).

4.4. When Is the Scheme Provably Optimal?

Another natural question to ask is whether, under some additional assumptions,
the approach is guaranteed to generate a provably optimal solution. We can answer
this affirmatively.

Note that, in the uniform diamond grid, the edges have the Euclidean length
√

2. It is
more convenient to present the streamlined statement below using a re-scaled version of
the same grid where all the edges have unit lengths instead. With a slight abuse of notation,
we refer to such an embedding as 1√

2
G2, where the axes are scaled by a factor of 1/

√
2.

With this in mind, we can state the following.

Theorem 4. For 1√
2
G2, if d = 1, 2, 3, then the approximation scheme produces an optimal least-cost

pair of paths separated by at least d with respect to both the Euclidean distance and edge-based
counting metrics.

Systems 2024, 12, 117 21 of 28

To prove the above, it suffices to observe that d = 2, 3 guarantees that, on the scaled
diamond grid 1√

2
G2, the two paths have at least one and two vertices between them in the

horizontal direction. In the closest-possible-paths configuration, where the two run parallel
and diagonally to one another, this gives Euclidean distances of 2 and 3, respectively. The
case of d = 1 corresponds to vertex-disjoint paths, and the edge-based counting metric
is analyzed similarly. See Figure 12 for an illustration with ℓ = 1, d = 3. The respective
3D embedding procedure, as described in Section 4.2, can be easily modified by using
a
√

2 multiple of the target d horizontal distance threshold in lines 2,7,11,16 and then
re-scaling G3.

In turn, this shows that deciding whether there exists a pair of d-distant paths on
a diamond grid with a given maximum total cost is solvable in polynomial time for
d = 1, 2, 3. Thus, indeed, restricting our attention to the special diamond graphs gives us a
large computational advantage, as compared to a more general problem statement.

If d ≥ 4, if the resulting pair of paths violates the d-minimum-distance constraint, one
option is to gradually increase d until the minimum-distance requirement is met, potentially
sacrificing the least-cost pair optimality. Another alternative is to extend our approach to a
branching scheme, in a spirit similar to how one constructs the branch-and-bound tree for
MIP, to facilitate the search for an optimal path pair. Namely, if the d-minimum-distance
constraint is violated, we can easily identify at least one pair of vertices, one on the path in
XZ and the other in the YZ-axis. Consequently, we can consider two branches separately:
one where we remove the offending vertex in XZ, and the other where we remove the
offending vertex in YZ. After running the 3D embedding and the shortest-path algorithm on
the resulting (reduced) graphs, if neither of the branches gives us the d-minimum-distance
path pair, we can apply the offending vertex removal process to each of the branches, and
so on. Since the number of possible branches may grow quickly, we cannot readily produce
a good worst-case estimate of the branching scheme run-time to optimality. In practice,
one may opt to proceed with a more aggressive “bulk” vertex removal (i.e., instead of a
single offending vertex, remove the whole neighborhood of such a vertex) in an attempt
to improve the scheme’s efficiency. We anticipate that a combination of varying d and
aggressive branching, streamlined with good data structure implementation, may lead to
the best results while attempting to recover the least-cost d-distant pair of paths.

We also want to highlight one advantage of our scheme over a more traditional greedy
approach. The greedy approach corresponds to first computing the single shortest path
between the source and the sink, then removing a d-distance neighborhood around that
path from consideration, and computing the second cheapest path over the remaining
domain. It is relatively straightforward to imagine a situation where the greedy approach
may perform arbitrarily poorly as compared to our scheme. Namely, consider a situation
where the cost of laying a path is proportional, say, to an elevation; for example, we aim to
build two d-distant paths along a river-bed in a valley surrounded by a mountainous area;
see Figure 15b for a topographical example. For simplicity, assume that the cross-section of
the valley has the shape as in Figure 15a. Now, the greedy approach will result in one of the
two paths being assigned to the very bottom of the valley, while the second path will have
no other option than to be placed at the mountaintop, and thus, the resulting pair of paths
will potentially have a very large cumulative cost; the cross-sections of the corresponding
paths are indicated with white circles in the figure. In contrast, our scheme will permit the
generation of the two paths near the bottom of the valley, depicted in red.

For now, we restrict our efforts to working with a single 3D embedding scheme
instance (i.e., we do not consider branching) and illustrate how our approach may be
integrated within the specific application.

Systems 2024, 12, 117 22 of 28

Figure 15. Greedy vs. 3D embedding scheme illustration, with paths depicted in red and blue,
respectively: (a) simplified cross-sectional view, (b) top view.

5. Toward More Practical Computational Framework
5.1. From User Inputs to Good Routing

In this section, we phrase the problem of finding a pair of physically separated least-
cost paths from a user’s perspective. Additionally, we break down the problem into a
sequence of smaller self-contained tasks and formulate a mathematical counterpart for each
of these tasks. Figure 16 shows the design process flow chart.

Figure 16. Flow chart for transmission line routing via DS2P approach.

A starting point could be to use a regular uniform diamond grid with a source and
sink at the top and bottom vertices, as discussed in the previous section. This is not the
only possible choice for the 2D graph embedding. For example, compressing the grid in
Figure 10 along the vertical z-axis would allow more remote points to be reached in the
x-direction, while making a narrower diamond grid would increase the accuracy with
which the x-distance between the paths approximates the minimum path separation. In
other words, the user has to decide on a suitable diamond graph embedding—assigning
graph vertices geographical coordinates—balancing out the ability to capture reasonable

Systems 2024, 12, 117 23 of 28

paths against the ability to use the “horizontal” diamond distance as a surrogate for the
minimum distance between the paths.

There is no guarantee that the user will provide the sample construction costs at
exactly the points corresponding to the diamond graph vertices. Instead, the user may have
access to some scattered sample points’ latitude–longitude and construction cost estimates
in the vicinity of these points.

For concreteness, assume the user input indeed consists of some scattered
latitude–longitude set of points along with the cost “density” as the average cost per
km of the power line to be constructed near a point. We want to derive a good approxi-
mation of the diamond graph edge cost from the available scattered data points, which
can essentially be thought of as two inter-connected interpolation tasks. To distinguish
between the diamond graph vertices and the user input points, we refer to the former as
control points.

Using the user input, we approximate the cost density at control points. Here, we need
a moderate number, on the order of K2, of such approximations made. To accomplish this
approximation task-1, we implement inverse distance weighting [35], which is a popular
choice in geomatics applications and is well suited for parallel implementation if further
speed-up is desired, e.g., [36]. Let the n known user input points around the control point
and (x, z, f) be points {(χi, ζi, κi)}1,..,n representing the (latitude, longitude, cost)-triple.
Then, given (x, z), we determine f as

f =
n

∑
i=1

κiwi, wi =
di

∑n
j=1 dj

, dj =
1√

(x − χj)2 + (z − ζ j)2
.

Moving on to the next task-2, to compute the edge cost, we would need to integrate
the cost density along the edge length and thus would need a cost “map”—a function
that, given the planar coordinates, returns the cost density f (x, z)—over the whole region,
whereas such a map can be queried much more frequently to compute the respective path
integrals. To construct such an interpolating cost map we use the standard bi-linear Bezier
surface (see, for instance, [37]), with 2 × 2 patches corresponding to the control points on
the diamond graph grid. Namely, to map a point inside a single (diamond graph) grid cell,
we recall that the bi-linear Bezier patch

f (u, v) : [0, 1]× [0, 1] → ℜ

with the vertex control points p0,0, p1,0, p0,1, p1,1 corresponding to a point on the line joining
p0(u) = (1 − u)p0,0 + up1,0 and p1(u) = (1 − u)p0,1 + up1,1 and lying on a hyperbolic
paraboloid surface:

f (u, v) = (1 − u)(1 − v)p0,0 + u(1 − v)p1,0 + (1 − u)vp0,1 + uvp1,1.

Given no a priori requirements for the smoothness of the cost map, and taking into account
the rapidly increasing computational cost of using higher-degree Bernstein polynomials,
we deemed the bi-linear approximation to be suitable. The edge cost in task-3 is computed
by the numeric integration of f (x, z) along the edge length using Simpson’s 3/8 rule,
assuming straight-edge trajectories between the vertices.

5.2. Further Steps to Accommodate More Flexible Path Trajectories

As was mentioned in Section 4.2, we can emulate the vertical edges of the diamond
grid by doubling the grid size. Furthermore, the modeling flexibility can be increased by
considering non-Cartesian coordinates’ embedding, such as elliptic coordinates, while still
embedding the planar graph’s vertices as points on a grid in the new coordinate system.

To accommodate a wider selection of sub-paths in the neighborhood of source and sink
nodes, we can extend the diamond graph by using a more aggressively truncated diamond
grid, as in Figure 17a. A more basic diamond grid could be replaced by the graph in the

Systems 2024, 12, 117 24 of 28

figure to form a basis for the 3D embedding model with only minor modifications. The
edges between levels 0 and 1 could either represent the cost of straight sub-paths or, in a
more elaborate setting, could represent more complicated trajectories in the neighborhoods
of the source and sink. For instance, a sub-path within a regular circular neighborhood of
the source node can be modeled as a path on a complete sub-graph with vertices embedded
on concentric (radially expanding) arcs around the source, and similarly for the sink (see
Figure 17b). The respective shortest sub-paths connecting to the vertices on the truncated
diamond grid can be computed separately and passed as (pseudo-)edge costs when forming
the 3D embedding model.

We can also accommodate distinct source and sink pairs by re-aligning the diamond
grid so that the source or sink pair corresponds to the same level of the diamond graph; see
Figure 17a with two distinct terminal nodes displayed as smaller solid circles. In the latter
case, the terminal node is simply assigned (χ, γ, ζ) for some ζ < K and χ ̸= γ rather than
(0, 0, K). Similar considerations would apply to a distinct pair of source nodes.

Figure 17. (a) Diamond graph extension using (b) the complete sub-graphs in the neighborhoods of
source and sink; note not all edges of complete sub-graphs are shown.

5.3. Computational Platform and Results
5.3.1. Baseline Comparison with the Exact Formulation with Synthetic Data

We consider how the 3D embedding scheme performs relative to the exact MIP
formulation of DS2P, as described in Section 2.2.

As we illustrate shortly, the computational requirements presented by solving the
exact MIP formulation quickly surpass the capabilities for near-real-time decision-making
offered by conventional hardware, as the grid sizes grow to the hundreds. This severely
limits the application of exact MIP models of DS2P for practical applications. As this
requirement’s scaling effect can be demonstrated for relatively small grid sizes, we rely on
a set of synthetic randomly generated data.

Both approaches were benchmarked using a Matlab environment. Since the 0-1 MIP
model sizes grow very rapidly with the size of the grid K and the prescribed minimum
distance, for simplicity, we consider only the time required to solve the underlying LP
relaxation of the MIP problem. The 0-1 MIP solution times cannot be any shorter than the
latter and are often far greater. As expected, the solution to LP relaxation has a large number
of fractional entries and cannot be readily interpreted as a pair of paths. In an attempt
to make the most equitable comparison, in both cases, we used open-source solvers only.
Namely, in the case of solving the LP relaxation, we used the well-reputed SDPT3 conic
solver [38], while when solving the shortest path problem, we used Dijkstra’s algorithm
script available from the Mathworks Matlab Bioinformatics Toolbox. To give the further

Systems 2024, 12, 117 25 of 28

benefit of the doubt to MIP, for 3D embedding, we used a simpler and slower out-of-the-box
adjacency matrix-based approach.

In Table 3, we report the run-times for the two approaches, as they scale with the grid
dimension K. The computations were completed using a Surface laptop with 8 G of RAM
and a dual-core 3.3 GHz Intel CPU. The problem instances were randomly generated, with
the cost-edge matrix sampled uniformly. We report average run-time values over a sample
of 10 problems for each dimensionality. A minimum-distance requirement of two units
between the paths was imposed.

Table 3. Average run-times in seconds for MIP- and 3D embedding-based approaches.

K 5 10 20 50 100 200

0-1 LP relaxation 0.99 1.50 5.60 43.13 422.89 4635.73
Building 3D adjacency matrix 0.0026 0.0063 0.042 0.59 5.27 51.03

Dijkstra’s algorithm 0.0007 0.0013 0.0084 0.15 1.36 31.18

Even when comparing the less computationally favorable out-of-the-box embedding
approach with solving only the linear relaxation of the DS2P MIP formulation, it is evident
that the computational requirements imposed by the latter are much more extensive. We
suspect that the number of affine constraints in the MIP formulation plays a major role here.
For more realistic problem dimensions, with K going into the hundreds, solving even a
relaxed version of the DS2P MIP formulation quickly becomes prohibitively expensive. In
contrast, the 3D embedding scheme offers a much less computationally extensive alternative
to realistic grid sizes. Recall that, in Section 4.3 Table 1, we demonstrated that a streamlined
layered approach to 3D LCP recovery scales favorably with increasing grid size.

5.3.2. Application to a Realistic Dataset

To validate our approach, we applied our framework to the cost dataset represented by
a color wash in our motivating example; see Figure 3. Here, the costs largely depend on the
terrain features, with water bodies having the highest cost, shown in yellow, and flat-land
areas having the least cost, shown in blue. To represent possible paths, a truncated diamond
grid with the concentric neighborhoods of the source and sink was used. Specifically, the
neighborhoods where the path separation requirement can be relaxed consist of two radially
expanding complete graphs as per Figure 18, and the diamond graph corresponds to
an 86-by-86 grid. The grid sizing was chosen to conform to the available data, as was
described in our motivating example; see Figure 2. The edge costs were automatically
computed using the control points and the interpolation scheme, as described at the start
of this section. The source and sink are roughly 300 km apart, and the two power lines are
required to be separated by at least 50 km.

Our integrated approach, including the data processing steps outlined in
Sections 5.1 and 5.2, was implemented in Python. To facilitate better decision-making,
the optimization engine was further integrated with Google Maps. Since we envision a
potential for the high-availability use of the disjoint path optimizer, we built and tested
the application both locally and on the Amazon Elastic Compute Cloud using Django. We
selected a free-tier service of AWS EC2, deploying a modest VM with a single CPU, 1 GB of
RAM, and up to 30 GB of storage running the Ubuntu 20.4 operating system. Django is
a free, open-source framework supporting the Model-View-Template (MVT) architecture,
which can speed up the development of a web application built in the Python programming
language. To speed up the execution times, we used a compiled Cython language, which is
a superset of Python. Despite the very modest cloud hardware choice, the computations
were completed in under 10 s.

Following the methodology discussed in the previous section, we computed and
plotted the two shortest paths, separated by at least 50 km from one another in the “hori-
zontal” direction; see Figure 18. Even though the 3D embedding scheme can be regarded
as a heuristic, here, the approach resulted in the recovery of the path pair satisfying the

Systems 2024, 12, 117 26 of 28

distance constraint with ∆ corresponding to 50 km, with no further adjustments required.
Consequently, we computed the optimal least-cost pair over all paths realizable on the
diamond grid. The aggregate total cost could not have been improved by subsequent
manual attempts.

The resulting prototype software is freely available through GitHub and can be de-
ployed on a cloud platform, such as Amazon AWS; see [39].

Figure 18. Disjoint shortest 2 paths with 50 km separation.

6. Conclusions and Future Work

We investigated the question of determining an optimal transmission line layout in the
context of a resilient power supply. Specifically, the problem of how to determine a configu-
ration for a set of two (one main and one redundant) power lines, connecting the generator
and the receiver, was addressed, where an additional minimum-distance-between-paths
requirement was imposed, and the total cost of construction was to be minimized. We
formulated the Disjoint Shortest 2-Path problem on a graph and demonstrated how DS2P
can be reformulated as a 0-1 integer programming model. We classified the hardness for
the former model, as well as briefly discussed the LP relaxation for the latter model. Along
with the two exact formulations, we presented a far more efficient and easier-to-implement
numerical scheme based on a novel 3D graph embedding, which, under some further mild
assumptions, leads to the exact solution. When the assumptions are not met, the approach
yields an effective heuristic.

We demonstrated the use of the novel approach as part of the software package for ana-
lyzing long-distance routes, where, as per industry norms, certain separation constraints are
applied on the paths. The polynomial-time computations provide a reasonable alternative
to MIP and can be integrated with Google Maps and deployed in the cloud as a web service
to facilitate better and near-real-time decision-making. Our approach can also be extended
to identifying k > 2 sets of disjoint geodiverse paths via higher-dimensional embedding.

An interesting and relevant question of identifying more efficient computational strate-
gies for solving an exact MIP-based DS2P problem remains open. Among such strategies,
one should consider devising MIP reformulations of DS2P with tighter LP relaxation, iden-
tifying efficient MIP cuts, and developing good incumbent heuristics. Concerning the last

Systems 2024, 12, 117 27 of 28

strategy, it would be intriguing to see whether the 3D embedding scheme can be used as
a heuristic to improve the otherwise extremely long run-times required by the exact MIP
approach. This is the subject of future potential research.

Author Contributions: A.J., H.S. and Y.Z. have equally contributed to design, research, and writing
activities. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada,
RGPIN-2019-07199.

Data Availability Statement: For the data presented in this study please contact the corresponding
author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ward, S.; Gwyn, B.; Antonova, G.; Apostolov, A.; Austin, T.; Beaumont, P.; Beresh, B.; Bradt, D.; Brunello, G.; Bui, D.-P.; et al.

Redundancy Considerations for Protective Relaying Systems. In Proceedings of the 2010 63rd Annual Conference for Protective
Relay Engineers, College Station, TX, USA, 29 March–1 April 2010; pp. 1–10. [CrossRef]

2. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
3. Laporte, G.; Marin, A.; Mesa, J.A.; Perea, F. Designing Robust Rapid Transit Networks with Alternative Routes. J. Adv. Transp.

2011, 45, 54–65. [CrossRef]
4. Cheng, D.; Gkountouna, O.; Züfle, A.; Pfoser, D.; Wenk, C. Shortest-Path Diversification through Network Penalization:

A Washington DC Area Case Study. In Proceedings of the IWCTS’19: 12th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, Chicago, IL, USA, 5 November 2019; pp. 1–10. [CrossRef]

5. Sinop, A.K.; Fawcett, L.; Gollapudi, S.; Kollias, K. Robust Routing Using Electrical Flows. ACM Trans. Spat. Algorithms Syst. 2023,
9, 24. [CrossRef]

6. Grötschel, M.; Monma, C.L.; Stoer, M. Polyhedral and Computational Investigations for Designing Communication Networks
with High Survivability Requirements. Oper. Res. 1995, 43, 1012–1024. [CrossRef]

7. El-Amin, I.; Al-Ghamdi, F. An Expert System for Transmission Line Route Selection. In Proceedings of the International
Power Engineering Conference, Singapore, 18–19 March 1993; Nanyang Technological University: Singapore, 1993; Volume 2,
pp. 697–702.

8. Shin, J.R.; Kim, B.S.; Park, J.B.; Lee, K.Y. A New Optimal Routing Algorithm for Loss Minimization and Voltage Stability
Improvement in Radial Power Systems. IEEE Trans. Power Syst. 2007, 22, 636–657. [CrossRef]

9. Donovan, J. A National Model for Sitting Transmission Lines. Electric Energy T&D Magazine 2006. Available online: https:
//electricenergyonline.com/energy/magazine/286/article/a-national-model-for-siting-transmission-lines.htm (accessed on 1
December 2023).

10. Billinton, R.; Allan, R.N. Reliability Evaluation of Power Systems; Springer: New York, NY, USA, 1996. [CrossRef]
11. Lisnianski, A.; Levitin, G. Multi-State System Reliability: Assessment, Optimization and Applications; Series on Quality, Reliability &

Engineering Statistics; World Scientific: Singapore, 2003.
12. Quintana, E.; Inga, E. Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning

Constraints. Energies 2022, 15, 5317. [CrossRef]
13. Eroglu, H.; Aydin, M. Solving Power Transmission Line Routing Problem Using Improved Genetic and Artificial Bee Colony

Algorithms. Electr. Eng. 2018, 100, 2103–2116. [CrossRef]
14. Monteiro, C.; Ramírez-Rosado, I.J.; Miranda,V.; Zorzano-Santamaría, P.J.; García-Garrido, E.; Fernández-Jiménez, L.A. GIS Spatial

Analysis Applied to Electric Line Routing Optimization. Power Deliv. IEEE Trans. 2005, 20, 934–942. [CrossRef]
15. Piveteau, N.; Schito, J.; Martin, R.; Weibel, R. A Novel Approach to the Routing Problem of Overhead Transmission Lines. In

Proceedings of the 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18, Munich, Germany, 7–9 March 2018;
pp. 798–801.

16. Tomlin, D.C. Geographic Information Systems and Cartographic Modeling; Esri Press: Seoul, Republic of Korea, 1990.
17. Goodchild, M.F. An Evaluation of Lattice Solutions to the Problem of Corridor Location. Environ. Plan. A Econ. Space 1977,

9, 727–738. [CrossRef]
18. Huber, D.L.; Church, R.L. Transmission Corridor Location Modeling. J. Transp. Eng. 1985, 111, 114–130. [CrossRef]
19. Antikainen, H. Comparison of Different Strategies for Determining Raster-Based Least-Cost Paths with a Minimum Amount of

Distortion. Trans. GIS 2013, 17, 96–108. [CrossRef]
20. Bellman, R. On a Routing Problem. Q. Appl. Math. 1958, 16, 87–90. [CrossRef]
21. Ford, L.R. Network Flow Theory; RAND Corporation: Santa Monica, CA, USA, 1956.
22. Fredman, M.L.; Tarjan, R.E. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. ACM 1984, 3,

596–615.
23. Floyd, R.W. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345. [CrossRef]

http://doi.org/10.1109/CPRE.2010.5469478
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1002/atr.132
http://dx.doi.org/10.1145/3357000.3366137
http://dx.doi.org/10.1145/3567421
http://dx.doi.org/10.1287/opre.43.6.1012
http://dx.doi.org/10.1109/TPWRS.2006.889112
https://electricenergyonline.com/energy/magazine/286/article/a-national-model-for-siting-transmission-lines.htm
https://electricenergyonline.com/energy/magazine/286/article/a-national-model-for-siting-transmission-lines.htm
http://dx.doi.org/10.1007/978-1-4899-1860-4
http://dx.doi.org/10.3390/en15155317
http://dx.doi.org/10.1007/s00202-018-0688-6
http://dx.doi.org/10.1109/TPWRD.2004.839724
http://dx.doi.org/10.1068/a090727
http://dx.doi.org/10.1061/(ASCE)0733-947X(1985)111:2(114)
http://dx.doi.org/10.1111/j.1467-9671.2012.01355.x
http://dx.doi.org/10.1090/qam/102435
http://dx.doi.org/10.1145/367766.368168

Systems 2024, 12, 117 28 of 28

24. Warshall, S. A Theorem on Boolean Matrices. J. Assoc. Comput. Mach. 1962, 9, 11–12. [CrossRef]
25. Yen, J.Y. An Algorithm for Finding Shortest Routes from All Source Nodes to a Given Destination in General Networks. Quart.

Appl. Math 1970, 27, 526–530. [CrossRef]
26. Eppstein, D. Finding the k Shortest Paths. SIAM J. Comput. 1999, 28, 652–673. [CrossRef]
27. Eilam-Tzoreff, T. The Disjoint Shortest Paths Problem. Discret. Appl. Math. J. Comb. Algorithms Inform. Comput. Sci. 1998,

85, 113–138. [CrossRef]
28. Suurballe, J.W. Disjoint Paths in a Network. Netw. Int. J. 1974, 4, 125–145. [CrossRef]
29. Iqbal, F.; Kuipers, F. Disjoint Paths in Networks. In Wiley Encyclopedia of Electrical and Electronics Engineering; Alvarado, A.,

Mitchell, J., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–14. [CrossRef]
30. de Sousa, A.; Santos, D.; Monteiro, P. Determination of the Minimum Cost Pair of D-Geodiverse Paths. In Proceedings of the

DRCN 2017—Design of Reliable Communication Networks, 13th International Conference, Munich, Germany, 8–10 March 2017;
pp. 1–8.

31. Godinho, M.T.; Pascoal, M. Implementation of Geographic Diversity in Resilient Telecommunication Networks. In Proceedings
of the Operational Research, Évora, Portugal, 6–8 November 2022; Almeida, J.P., Alvelos, F.P.E., Cerdeira, J.O., Moniz, S., Requejo,
C., Eds.; Springer: Cham, Switzerland, 2023; pp. 89–98.

32. Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B. Network Flows: Theory, Algorithms, and Applications; Prentice Hall: Upper Saddle River, NJ,
USA, 1993.

33. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,
NY, USA, 1979.

34. Ohtsuki, T. The Two Disjoint Path Problem and Wire Routing Design. In Graph Theory and Algorithms: 17th Symposium of Research
Institute of Electrical Communication, Tohoku University, Sendai, Japan, 24–25 October 1980, 1980 Proceedings; Saito, N., Nishizeki, T.,
Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 207–216. [CrossRef]

35. Shepard, D. A two-dimensional Interpolation Function for Irregularly-spaced Data. In Proceedings of the 1968 23rd ACM
National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524.

36. Wang, S.Q.; Gao, X.; Yao, Z.X. Accelerating POCS Interpolation of 3D Irregular Seismic Data with Graphics Processing Units.
Comput. Geosci. 2010, 36, 1292–1300. [CrossRef]

37. Varady, T.; Martin, R. The Handbook of Computer-Aided Geometric Design; Elsevier: Amsterdam, The Netherlands, 2002; pp. 651–681.
38. Tütüncü, R.; Toh, K.C.; Todd, M. Solving Semidefinite-Quadratic-Linear Programs Using SDPT3. Math. Program. Ser. B 2003,

95, 189–217. [CrossRef]
39. Jha, A. Disjoint_SPfinder. 2023. Available online: https://github.com/jha-amit/Disjoint_SPfinder (accessed on 1 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/321105.321107
http://dx.doi.org/10.1090/qam/253822
http://dx.doi.org/10.1137/S0097539795290477
http://dx.doi.org/10.1016/S0166-218X(97)00121-2
http://dx.doi.org/10.1002/net.3230040204
http://dx.doi.org/10.1002/047134608X.W8254
http://dx.doi.org/10.1007/3-540-10704-5_18
http://dx.doi.org/10.1016/j.cageo.2010.03.012
http://dx.doi.org/10.1007/s10107-002-0347-5
https://github.com/jha-amit/Disjoint_SPfinder

	Introduction
	Literature Review and Related Works
	Motivational Example

	Problem Formulations
	Graph-Based Problem Formulation
	The 0-1 Integer Programming Model

	Basic Properties of DS2P Models
	Graph-Based Problem Complexity
	LP Relaxation of the DS2P 0-1 Programming Model

	A Novel Approximation Scheme
	Special ``Diamond'' Graph
	Three-Dimensional Embedding
	Shortest Path and Solution Recovery
	When Is the Scheme Provably Optimal?

	Toward More Practical Computational Framework
	From User Inputs to Good Routing
	Further Steps to Accommodate More Flexible Path Trajectories
	Computational Platform and Results
	Baseline Comparison with the Exact Formulation with Synthetic Data
	Application to a Realistic Dataset

	Conclusions and Future Work
	References

