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Abstract: This research proposes a hierarchical aggregation approach using Data Envelopment
Analysis (DEA) and Analytic Hierarchy Process (AHP) for indicators. The core logic of the
proposed approach is to reflect the hierarchical structures of indicators and their relative priorities in
constructing composite indicators (CIs), simultaneously. Under hierarchical structures, the indicators
of similar characteristics can be grouped into sub-categories and further into categories. According to
this approach, we define a domain of composite losses, i.e., a reduction in CI values, based on two sets
of weights. The first set represents the weights of indicators for each Decision Making Unit (DMU)
with the minimal composite loss, and the second set represents the weights of indicators bounded
by AHP with the maximal composite loss. Using a parametric distance model, we explore various
ranking positions for DMUs while the indicator weights obtained from a three-level DEA-based CI
model shift towards the corresponding weights bounded by AHP. An illustrative example of road
safety performance indicators (SPIs) for a set of European countries highlights the usefulness of the
proposed approach.

Keywords: data envelopment analysis; analytic hierarchy process; composite indicators;
hierarchical structures; indicator weights

1. Introduction

Individual indicators are multidimensional measures that can assess the relative positions of
entities (e.g., countries) in a given area [1]. A Composite indicator (CI) is a mathematical aggregation of
individual indicators into a single score. Two simple but popular aggregation methods in the context
of multi-criteria decision-making (MCDM) are the weighted sum (WS) method and the weighted
product (WP) method [2]. Some researchers have recently pointed out that the WP method may have
some advantages over the WS method in CI construction [3–5]. However, the assignment of weights to
indicators is still a main source of difficulty in the application of these methods. Fortunately, the recent
methodological advances in operations research and management science (OR/MS) have provided us
with two powerful tools, namely data envelopment analysis (DEA) and analytic hierarchy process
(AHP), which can be used as weighting and aggregation tools in CI construction.

Data Envelopment Analysis is a nonparametric method to assess the relative efficiency of a group
of DMUs based on their distance from the best-practice frontier. In this method each DMU can freely
choose its own weights to maximize its performance [6].

The standard DEA models are formulated using multiple inputs and multiple outputs of DMUs.
The application of this group of models in CI construction can be found in [7–9]. However, in recent
years much more attention has been focused on the application of a new group of DEA models
in the field of composite indicators which is known as the “benefit of the doubt” (BOD) approach.
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In the BOD approach, all indicators are treated as outputs without explicit inputs, i.e., the property of
“the larger is the better” [10–12].

In light of the possibility of neglecting the priority of various indicators, some critics have
questioned the validity and stability of CIs obtained via DEA. Decision makers (DMs), in some
contexts, have value judgments concerning the relative priority of indicators that should be taken into
account in CI construction.

Alternatively, AHP is a systematic MCDM method to generate the true or approximate weights
based on the well-defined mathematical structures of pairwise comparison metrics.

The application of AHP in CI construction provides a priori information about the relative priority
of indicators [13–15]. AHP usually involves three basic functions: structuring complexities, measuring
on a ratio-scale and synthesizing [16]. One of the advantages of AHP is its high flexibility to be
combined with the other OR/MS techniques [17]. AHP can be combined with DEA in different ways.
The most common approach is the estimation of parameters of weight restrictions on the DEA models.
AHP estimates the appropriate values for the parameters in the absolute weight restrictions [18],
relative weight restrictions [19–23], virtual weight restrictions [24,25] and restrictions on changes of
input (output) units [26].

There are a number of other methods that do not necessarily apply additional restrictions to a DEA
model. Such as converting the qualitative data in DEA to the quantitative data using AHP [27–34],
ranking the efficient/inefficient units in DEA models using AHP in a two stage process [35–37],
weighting the efficiency scores obtained from DEA using AHP [38], weighting the inputs and outputs
in the DEA structure [39–42], constructing a convex combination of weights using AHP and DEA [43]
and estimating missing data in DEA using AHP [44].

The recent studies by Pakkar [45–50] demonstrate the effects of imposing weight bounds on
the different variants of DEA models using AHP. To this end, AHP has been applied in single-level
DEA models [47–50] and two-level DEA models [45,46]. Due to the complexity of the hierarchical
structures of indicators, this paper applies AHP into an additive three-level DEA model in the
context of CI construction. Theoretically, the approach proposed in this paper may also be considered
as the additive form of the multiplicative three-level DEA-based CI approach to constructing CIs
proposed by [51]. In a three-level hierarchy, the indicators of similar characteristics can be grouped into
sub-categories and further into categories. A three-level DEA model entirely reflects the characteristics
of a generalized multiple level DEA model developed in [52,53]. Since the proposed approach uses
AHP in an additive three-level DEA-based model, it contributes to the set of methods currently
available for CI construction.

2. Methodology

This research has been organized to proceed along the following stages (Figure 1):

1. Computing the composite value of each DMU using one-level DEA-based CI model (4).
The computed composite values are applied in three-level DEA-based CI model (6).

2. Computing the priority weights of indicators for all DMUs using AHP, which impose weight
bounds into model (6).

3. Obtaining an optimal set of weights for each DMU using three-level DEA-based CI model (6)
(minimum composite loss η).

4. Obtaining an optimal set of weights for each DMU using model (6) bounded by AHP (maximum
composite loss κ). Note that if the AHP weights are added to model (6), we obtain model (10).

5. Measuring the performance of each DMU in terms of the relative closeness to the priority weights
of indicators. For this purpose, we develop parameter-distance model (11). Increasing a parameter
in a defined range of composite loss we explore how much a DM can achieve its goals. This may
result in various ranking positions for a DMU in comparison to the other DMUs.
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Figure 1. A hierarchical aggregation approach for indicators using a three-level Data Envelopment
Analysis (DEA) and Analytic Hierarchy Process (AHP).

2.1. DEA-Based CI Model

A DEA-based CI model can be formulated similar to a classical DEA model in which all data are
treated as outputs without explicit inputs [54]. In the following, and in line with the more common CI
terminology, we will often refer to outputs as “indicators”. In order to eliminate the scale differences
between all (output) indicators, and moreover, to ensure that all of them are in the same direction
of change the normalized counterparts of indicators, using the distance to reference method, are
computed as follows [1]:

yrj “
ŷrj

ŷrpmaxq
, ŷrpmaxq “ max tŷr1, ŷr2, ..., ŷrnu for desirable indicators (1)

yrj “
ŷrpminq

ŷrj
, ŷrpminq “ min tŷr1, ŷr2, ..., ŷrnu for undesirable indicators (2)

where yrj is the normalized value of (output) indicator r (r “ 1, 2.., s) for DMU j (j = 1, 2, . . . , n).
Now assume that all DMUs have unit input i (i “ 1, 2, ..., m). Then the fractional CCR-DEA model can
be developed as follows [55]:

Max CIk “

s
ř

r“1
uryrk

m
ř

i“1
vi

(3)

s
ř

r“1
uryrj

m
ř

i“1
vi

ď 1 @j

ur, vi ą 0 @r, i

where CIk is the composite indicator of DMU under assessment. k is the index for the DMU under
assessment where k ranges over 1, 2, . . . , n. vi and ur are the weights of input i (i “ 1, 2, ..., m) and
(output) indicator r (r “ 1, 2.., s). The first set of constraints assures that if the computed weights
are applied to a group of n DMUs, (j “ 1, 2, ..., n), they do not attain a composite score of larger
than 1. The second set of constraints indicates the non-negative conditions for the model variables.
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Introducing the constraint
m
ř

i“1
vi “ 1 and performing the operation of substitution, an equivalent

linear model can be formulated as follows:

Max CIk “

s
ÿ

r“1

uryrk (4)

s
ÿ

r“1

uryrj ď 1 @j

ur ą 0 @r.

Model (4) looks like a DEA model without inputs that extends the standard DEA methodology to
the field of CI construction.

2.2. Three-Level DEA-Based CI Model

We develop a three-level DEA model to aggregate the performance of indicators under the (sub)
category they belong to by a weighted-average method (Figure 2). Let yll1rj be the value of indicator
r (r “ 1, 2, ..., s) of sub-category l1 pl1 “ 1, 2, ..., S1q of category l pl “ 1, 2, ..., Sq for DMU j (j “ 1, 2, ..., n)
after normalizing the original data. Let ull1r be the internal weight of indicator r of sub-category l1

of category l while
s
ř

r“1
ull1r “ 1. Then the value of sub-category l1 of category l for the DMU j is

defined as yll1 j “
s
ř

r“1
ull1ryll1rj. Let pll1 be the internal weight of sub-category l1 of category l while

S1
ř

l1“1
pll1 “ 1. Then the value of category l is defined as yl j “

S1
ř

l1“1
pll1 yll1 j. Let pl be the weight of

category l. To develop a linear model, the new multiplier of indicator r of sub-category l1 of category
l is defined as: u1ll1r “ pl pll1 ull1r. Similarly, the new multiplier of sub-category l1 of category l is
defined as: p1ll1 “ pl pll1 . Consequently, a linear three-level DEA model for indicators can be developed
as follows:

Max CIk “

S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rk (5)

S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rj ď 1 @j

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1r “ pl @l

s
ÿ

r“1

u1ll1r “ p1ll1 @l, l1

u1ll1r, p1ll1 , pl ą 0 @l, l1, r.
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Figure 2. A three-level DEA framework for hierarchical indicators.

We develop our formulation based on the generalized distance model [56,57] in such a way
that the hierarchical structures of indicators, using a weighted-average approach, are taken into
consideration [52,53]. Let CI˚k (k “ 1, 2, ..., n) be the best attainable composite value for the DMU
under assessment, calculated from model (4). We want the composite value CIkpu1ll1rq, calculated
from the set of weights u1ll1r, to be closest to CI˚k . The degree of closeness between CIkpu1ll1rq and

CI˚k is measured as Dt “ rCI˚k ´ CIkpu1ll1rq
t
s
1{t

with t ě 1, where Dt is a distance measure and t
represents the distance parameter. Our definition of “closest” is that the largest distance is at its
minimum. On the other hand, the largest distance completely dominates when t “ 8. For t “ 8,
the distance measure is reduced to D8 “ max

u1
ll1r

 

CI˚k ´ CIkpu1ll1rq
(

. Hence we choose the form of the

minimax model: min
u1

ll1r

max
k“1,...,n

 

CI˚k ´ CIkpu1ll1rq
(

to minimize a single deviation which is equivalent to

the following linear model:
Min η (6)

CI˚k ´
S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rk ď η

S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rj ď CI˚j @j

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1r “ pl@l

s
ÿ

r“1

u1ll1r “ p1ll1 @l, l1

u1ll1r, p1ll1 , pl ą 0 @l, l1, r

η ě 0.

Model (6) identifies the minimum composite loss η (eta) needed to arrive at an optimal set
of weights. The first constraint ensures that each DMU loses no more than η of its best attainable
composite value, CI˚k . The second set of constraints satisfies that the composite values of all DMUs are
less than or equal to their upper bound of CI˚j .
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Two sets of constraints are added to model (6):
S1
ř

l1“1

s
ř

r“1
u1ll1r “ pl and

s
ř

r“1
u1ll1r “ p1ll1 , where u1ll1r

are indicator multipliers. This implies that the sum of weights under each (sub-) sub-category equals
to the weight of that (sub-) sub-category. It should be noted that the original (or internal) weights used
for calculating the weighted averages are obtained as ull1r “ u1ll1r{p

1
ll1 and pll1 “ p1ll1{pl .

2.3. Prioritizing Indicator Weights Using AHP

Model (6) identifies the minimum composite loss η (eta) needed to arrive at a set of weights of
indicators by the internal mechanism of DEA. On the other hand, the priority weights of indicators,
and the corresponding (sub) categories are defined out of the internal mechanism of DEA by AHP
(Figure 3).
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In order to more clearly demonstrate how AHP is integrated into the three-level DEA-based
CI model, this research presents an analytical process in which indicator weights are bounded by
the AHP method. The AHP procedure for imposing weight bounds may be broken down into the
following steps:

Step 1: A decision maker makes a pairwise comparison matrix of different criteria, denoted by A,
with the entries of alq pl “ q “ 1, 2, ..., Sq. The comparative importance of criteria is provided by the
decision maker using a rating scale. Saaty [16] recommends using a 1–9 scale.

Step 2: The AHP method obtains the priority weights of criteria by computing the eigenvector of
matrix A (Equation (7)), w “ pw1, w2, ..., wSq

T , which is related to the largest eigenvalue, λmax.

Aw “ λmaxw (7)

To determine whether or not the inconsistency in a comparison matrix is reasonable the random
consistency ratio, C.R., can be computed by the following equation:

C.R. “
λmax ´ N
pN ´ 1qR.I.

(8)

where R.I. is the average random consistency index and N is the size of a comparison matrix.
In a similar way, the priority weights of (sub-) sub-criteria under each (sub-) criterion can be computed.
To obtain the weight bounds for indicator weights in the three-level DEA-based CI model, this study
aggregates the priority weights of three different levels in AHP as follows:

ull1r “ wlell1 fll1r,
S
ÿ

l“1

wl “ 1,
s1
ÿ

l1“1

ell1 “ 1 and
s
ÿ

r“1

fll1r “ 1 (9)
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where wl is the priority weight of criterion l (l “ 1, ..., S) in AHP, ell1 is the priority weight of
sub-criterion l1 pl1 “ 1, 2, ..., S1q under criterion l and fll1r is sub-sub-criterion r (r “ 1, ..., s) under
sub-criterion l1.

In order to estimate the maximum composite loss κ (kappa) necessary to achieve the priority
weights of indicators for each DMU the following linear program is proposed:

Min κ (10)

u1ll1r “ αull1r @l, l1, r

CI˚k ´
S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rk ď κ

S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rj ď CI˚j @j

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1r “ pl @l

s
ÿ

r“1

u1ll1r “ p1ll1 @l, l1

u1ll1r, p1ll1 , pl ą 0 @l, l1, r

κ ě 0, α ą 0.

The first sets of constraints change the AHP computed weights to weights for the new system
by means of a scaling factor α. The scaling factor α is added to avoid the possibility of contradicting
constraints leading to infeasibility or underestimating the relative composite scores of DMUs [58].
The optimal solution to model (10) produces a set of weights for indicators that are used to compute
the performance of DMUs.

It should be noted that incorporating absolute weight bounds, using AHP, for indicator weights
in a DEA-based CI model is consistent with the common practice of constructing composite indicators.
According to this practice, the priority weights of indicators can be used directly in an aggregation
function to synthetize indicators’ values into composite values [1]. In addition, this form of placing
restrictions on indicator weights simply allows us to identify a specific range of variation between
two systems of weights obtained from models (6) and (10).

2.4. A Parametric Distance Model

We can now develop a parametric distance model for various discrete values of parameter θ

such that η ď θ ď κ. Let u1ll1rpθq be the weights of indicators for a given value of parameter θ, where
indicators are under sub-category l1 pl1 “ 1, 2, ..., S1q of category l (l “ 1, 2, ..., S). Let u1˚ll1rpκq be
the priority weights of indicators under sub-category l1 of category l, obtained from model (10).
Our objective is to minimize the total deviations between u1ll1rpθq and u1˚ll1rpκq with the shortest
Euclidian distance measure subject to the following constraints:
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Min Zkpθq “

˜

S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

pu1ll1r ´ u1˚ll1rpκqq
2
¸1{2

(11)

CI˚k ´
S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rk ď θ

S
ÿ

l“1

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1ryll1rk ď θ ď CI˚j @j

S1
ÿ

l1“1

s
ÿ

r“1

u1ll1r “ pl @l

s
ÿ

r“1

u1ll1r “ p1ll1 @l, l1

u1ll1r, p1ll1 , pl ą 0 @l, l1, r.

Because the range of deviations computed by the objective function is different for each DMU,
it is necessary to normalize it by using relative deviations rather than absolute ones [59]. Hence,
the normalized deviations can be computed by:

∆kpθq “
Z˚k pηq ´ Z˚k pθq

Z˚k pηq
(12)

where Z˚k pθq is the optimal value of the objective function for η ď θ ď κ. We define ∆kpθq as a measure of
closeness which represents the relative closeness of each DMU to the weights obtained from model (10)
in the range [0, 1]. Increasing the parameter pθq, we improve the deviations between the two systems
of weights obtained from models (6) and (10) which may lead to different ranking positions for each
DMU in comparison to the other DMUs. It should be noted that in a special case where the parameter
θ “ κ “ 0, we assume ∆kpθq = 1.

3. A Numerical Example: Road Safety Performance Indicators

In this section we present the application of the proposed approach to assess the road safety
performance of a set of 13 European countries (or DMUs): Austria (AUT), Belgium (BEL), Finland
(FIN), France (FRA), Hungary (HUN), Ireland (IRL), Lithuania (LTU), Netherlands (NLD), Poland
(POL), Portugal (PRT), Slovenia (SVN), Sweden (SWE) and Switzerland (CHE). The data for eleven
hierarchical indicators that compose SPIs for these countries have been adopted from [52]. The eight
SPIs related to alcohol and speed are undesirable indicators while the three SPIs related to protective
systems are desirable ones. The resulting normalized data based on Equations (1) and (2) are presented
in Table 1.

Taking the percentage of speed limit violation on rural roads as an example, Slovenia performs
the best (1.000) while Poland the worst (0.014) and all other countries’ values lie within this interval.

The results of the AHP model for prioritizing hierarchical SPIs as constructed by the author in
Expert Choice software are presented in Table 2. One can argue that the priority weights of SPIs must
be judged by road safety experts. However, since the aim of this section is just to show the application
of the proposed approach on numerical data, we see no problem to use our judgment alone.
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Table 1. Normalized data on the eleven hierarchical safety performance indicators (SPIs).

Countries

Alcohol Speed Protective Systems

% of
Drivers

above Legal
Alcohol
Limit In

Roadside
Police Tests

% of
Alcohol
Related

Fatalities

Mean Speed Speed Limit Violation (%) Seat Belt Child
Restraint

Motorways Rural
Roads

Urban
Roads Motorways Rural

Roads
Urban
Roads

Daytime
Seatbelt
Wearing
Rate in

Front Seats
of Light

Vehicles (%)

Daytime
Seatbelt
Wearing

Rate in Rear
Seats of

Light
Vehicles (%)

Daytime
Usage Rate

of Child
Restraints

(%)

AUT 0.116 0.463 0.938 0.781 0.802 0.766 0.051 0.254 0.904 0.699 0.863
BEL 0.068 0.654 0.846 0.743 0.768 0.348 0.029 0.222 0.799 0.488 0.729
FIN 0.593 0.136 0.963 0.729 0.907 0.409 0.023 0.323 0.911 0.922 0.716
FRA 0.263 0.123 0.933 0.787 0.838 0.505 0.037 0.318 1.000 1.000 0.937
HUN 0.279 0.283 0.955 0.793 0.817 0.362 0.033 0.230 0.727 0.501 0.433
IRL 0.237 0.119 0.945 0.762 0.724 1.000 0.032 0.223 0.901 0.914 0.857
LTU 0.555 0.321 1.000 0.713 0.714 0789 0.025 0.318 0.609 0.366 0.404
NLD 0.081 1.000 0.899 0.740 0.881 0.454 0.020 0.234 0.959 0.890 0.758
POL 0.091 0.438 0.806 0.697 0.647 0.290 0.015 0.165 0.799 0.589 0.905
PRT 0.137 0.610 0.847 0.618 0.919 0.302 0.014 0.360 0.881 0.574 0.591
SVN 0.122 0.078 0.964 1.000 0.713 0.480 1.000 0.163 0.874 0.551 0.672
SWE 1.000 0.357 0.883 0.717 0.870 0.241 0.019 0.259 0.973 0.927 1.000
CHE 0.277 0.230 0.943 0.757 1.000 0.710 0.043 1.000 0.887 0.805 0.895

Table 2. The AHP hierarchical model for SPIs.

Objective Level Criteria Level Sub-Criteria Level Sub-Sub-Criteria Level

Prioritizing road
user behavior

Alcohol
w1 “ 0.2727

% of drivers above
legal alcohol limit

e11 “ 0.333

% of drivers above legal alcohol limit
f111 “ 1.000

% of alcohol-related
fatalities

e12 “ 0.667

% of alcohol-related fatalities
f121 “ 1.000

Speed
w2 “ 0.5454

Mean speed
e21 “ 0.60

Mean speed of vehicles on motorways
f211 “ 0.081

Mean speed of vehicles on rural roads,
f212 “ 0.342

Mean speed of vehicles on urban roads,
f213 “ 0.577

Speed limit
violations
e22 “ 0.40

% of vehicles exceeding the speed limit
on motorways

f221 “ 0.081

% of vehicles exceeding the speed limit on
rural roads
f222 “ 0.342

% of vehicles exceeding the speed limit on
urban roads
f223 “ 0.577

Protective systems
w3 “ 0.1818

Seat belt
e31 “ 0.40

Daytime seatbelt wearing rate in front
seats of light vehicles (%)

f311 “ 0.60

Daytime seatbelt wearing rate in rear
seats of light vehicles (%)

f312 “ 0.40

Child
Restraint
e32 “ 0.60

Daytime usage rate of child restraints (%)
f321 “ 1.000

Solving model (6) for the country under assessment, we obtain an optimal set of weights with
minimum composite loss pηq. Since the raw data are normalized, the weights obtained from this model
are meaningful and have an intuitive explanation. As a result, we can later set meaningful bounds
on the weights in terms of the relative priority of indicators. Taking Austria as an example in Table 3,
with the composite value of one obtained from model (4), we can observe that the alcohol-related
fatality rate is 26 times less important than the mean speed of vehicles on motorways and about
3.2 times less important than the daytime usage rate of child restraints. Clearly, the other indicators
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are ignored in this assessment by assigning zero weights which are equivalent to excluding those
indicators from the analysis. This kind of situation can be remedied by including the opinion of experts
in defining the relative priority of indicators.

Table 3. Optimal weights of hierarchical SPIs obtained from model (6) for Austria.

Weights of Categories Weights of Sub-Categories Weights of Sub-Sub-Categories

p1 “ 0.0361 p111 “ 0.0000 u1111 “ 0.0000
p112 “ 0.0361 u1121 “ 0.0361

p2 “ 0.9415

p121 “ 0.9415
u1211 “ 0.9415
u1212 “ 0.0000
u1213 “ 0.0000

p122 “ 0.0000
u1221 “ 0.0000
u1222 “ 0.0000
u1223 “ 0.0000

p3 “ 0.1160 p131 “ 0.0000 u1311 “ 0.0000
u1312 “ 0.0000

p132 “ 0.1160 u1321 “ 0.1160

η “ 0.0000

It should be noted that the composite value of all countries calculated from model (6) is identical
to that calculated from model (4). Therefore, the minimum composite loss for the country under
assessment is η “ 0 (Table 4). This implies that the measure of relative closeness to the AHP weights
for the country under assessment is ∆kpηq “ 0. On the other hand, solving model (10) for the country
under assessment, we adjust the priority weights of hierarchical SPIs obtained from AHP in such
a way that they become compatible with the weights’ structure in the three level DEA-based CI models.
Table 5 presents the optimal weights of hierarchical SPIs as well as its scaling factor for all countries.

Table 4. Minimum and maximum losses in composite values for each country.

Countries CIk
˚ η κ

AUT 1.000 0.000 0.158
BEL 0.938 0.000 0.127
FIN 1.000 0.000 0.173
FRA 1.000 0.000 0.184
HUN 1.000 0.000 0.284
IRL 1.000 0.000 0.254
LTU 1.000 0.000 0.270
NLD 1.000 0.000 0.023
POL 0.955 0.000 0.224
PRT 0.978 0.000 0.139
SVN 1.000 0.000 0.208
SWE 1.000 0.000 0.040
CHE 1.000 0.000 0.000
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Table 5. Optimal weights of hierarchical SPIs obtained from model (10) for all countries.

Weights of Categories Weights of Sub-Categories Weights of Sub-Sub-Categories

p1 “ 0.4089 p111 “ 0.1362 u1111 “ 0.1362
p112 “ 0.2727 u1121 “ 0.2727

p2 “ 0.8178

p121 “ 0.4907
u1211 “ 0.0397
u1212 “ 0.1678
u1213 “ 0.2831

p122 “ 0.3271
u1221 “ 0.0265
u1222 “ 0.1119
u1223 “ 0.1888

p3 “ 0.2726 p131 “ 0.1090 u1311 “ 0.0654
u1312 “ 0.0436

p132 “ 0.1636 u1321 “ 0.1636

α “ 1.4993

Note that the priority weights of AHP used for incorporating weight bounds on indicator weights

in model (10) are obtained as ull1r “
u1ll1r

α
. Similarly, the priority weights of AHP at criteria level

can be obtained as wl “
pl
α

while
S1
ř

l1“1

s
ř

r“1
u1ll1r “ pl and

s
ř

r“1
u1ll1r “ p1ll1 . In addition, The priority

weights of AHP at sub-criteria and sub-sub-criteria levels can be obtained as ell1 “ p1ll1{pl and
fll1r “ u1ll1r{p

1
ll1 , respectively.

The maximum composite loss for each country to achieve the corresponding weights in model
(10) is equal to κ (Table 4). As a result, the measure of relative closeness to the priority weights of SPIs
for the country under assessment is ∆kpκq = 1. Going one step further to the solution process of the
parametric distance model (11), we proceed to the estimation of total deviations from the AHP weights
for each country while the parameter θ is 0 ď θ ď κ. Table 6 represents the ranking position of each
country based on the minimum deviation from the priority weights of indicators for θ “ 0. It should
be noted that in a special case where the parameter θ “ κ “ 0 we assume ∆kpθq “ 1.

Table 6. The ranking position of each country based on the minimum distance to priority weights
of SPIs.

Countries Z˚pppηqqq Rank

AUT 0.332 6
BEL 0.705 11
FIN 0.438 9
FRA 0.338 7
HUN 0.591 10
IRL 0.331 5
LTU 0.381 8
NLD 0.021 2
POL 0.718 12
PRT 0.782 13
SVN 0.166 4
SWE 0.035 3
CHE 0.000 1

Table 6 shows that Switzerland (CHE) is the best performer in terms of the CI value and the relative
closeness to the priority weights of indicators in comparison to the other countries. Nevertheless,
increasing the value of θ from 0 to κ has two main effects on the performance of the other countries:
improving the degree of deviations and reducing the value of composite indicator. This, of course,
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is a phenomenon, one expects to observe frequently. The graph of ∆pθq versus θ, as shown in Figure 4,
is used to describe the relation between the relative closeness to the priority weights of indicators and
composite loss for each country. This may result in different ranking positions for each country in
comparison to the other countries (Appendix A).
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In order to clearly discover the effect of composite loss on the countries’ ranking as shown in
Appendix A, we performed a Kruskal-Wallis test. The Kruskal-Wallis test compares the medians of
rankings to determine whether there is a significant difference between them. The result of the test
reveals that its p-value is quite smaller than 0.01. Therefore, we conclude that increasing composite
loss in the whole range [0.0, 0.29] changes the countries’ ranking significantly. Note that at θ “ 0 the
countries can be ranked based on Z˚k p0q from the closest to the furthest from the priority weights of
SPIs. For instance, at θ “ 0, Sweden, Ireland and Austria with composite values of one, are ranked in
3rd, 5th and 6th places, respectively, while Belgium, Poland and Portugal with composite values of
less than one are ranked in 11th, 12th and 13th places, respectively (Tables 4 and 6). However, with
a small composite loss at θ “ 0.01, Belgium, Poland and Portugal take 3rd, 6th and 5th places in the
rankings, respectively. Using this example, as a guideline, it is relatively easy to rank the countries in
terms of distance to the priority weights of SPIs. At θ “ 0.02, Sweden moves up into 3rd place again
while Belgium drops into 4th place. It is clear that both measures, Z˚k p0q and ∆kpθq, are necessary to
explain the ranking position of a country.

4. Conclusions

We develop a hierarchical aggregation approach based on DEA and AHP methodologies to
construct composite indicators. We define two sets of weights of indicators in a three-level DEA
framework. All indicators are treated as benefit type. The first set represents the weights of indicators
with minimum composite loss. The second set represents the corresponding priority weights of
hierarchical indicators, using AHP, with maximum composite loss. We assess the performance of each
DMU in comparison to the other DMUs based on the relative closeness of the first set of weights to the
second set of weights. Improving the measure of relative closeness in a defined range of composite
loss, we explore the various ranking positions for the DMU under assessment in comparison to the
other DMUs. To demonstrate the effectiveness of the proposed approach, we apply it to construct
a composite road safety performance index for eleven hierarchical indicators that compose SPIs for
13 European countries.
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Appendix A

Table A1. The measure of relative closeness to the priority weights of hierarchical SPIs [∆kpθq ] vs. composite loss [θ] for each country.

θ AUT BEL FIN FRA HUN IRL LTU NLD POL PRT SVN SWE CHE

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Rank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1
0.01 0.0788 0.3002 0.0808 0.0595 0.0784 0.0450 0.0419 0.4367 0.1951 0.2454 0.0492 0.2521 1.0000

Rank 8 3 7 10 9 12 13 2 6 5 11 4 1
0.02 0.1479 0.4018 0.1497 0.1190 0.1295 0.0863 0.0823 0.8733 0.2640 0.3572 0.0983 0.5041 1.0000

Rank 8 4 7 10 9 12 13 2 6 5 11 3 1
0.03 0.2160 0.4852 0.2148 0.1784 0.1793 0.1269 0.1223 1.0000 0.3268 0.4286 0.1473 0.7562 1.0000

Rank 7 4 8 10 9 12 13 1 6 5 11 3 1
0.04 0.2838 0.5605 0.2797 0.2378 0.2272 0.1675 0.1624 1.0000 0.3845 0.5133 0.1963 1.0000 1.0000

Rank 7 4 8 9 10 12 13 1 6 5 11 1 1
0.05 0.3512 0.6312 0.3444 0.2970 0.2679 0.2081 0.2023 1.0000 0.4418 0.5846 0.2452 1.0000 1.0000

Rank 7 4 8 9 10 12 13 1 6 5 11 1 1
0.06 0.4185 0.7113 0.4091 0.3562 0.3073 0.2486 0.2422 1.0000 0.4832 0.6491 0.2941 1.0000 1.0000

Rank 7 4 8 9 10 12 13 1 6 5 11 1 1
0.07 0.4857 0.7813 0.4736 0.4152 0.3454 0.2891 0.2819 1.0000 0.5195 0.7121 0.3428 1.0000 1.0000

Rank 7 4 8 9 10 12 13 1 6 5 11 1 1
0.08 0.5527 0.8464 0.5379 0.4740 0.3818 0.3296 0.3215 1.0000 0.5556 0.7739 0.3913 1.0000 1.0000

Rank 7 4 8 9 11 12 13 1 6 5 10 1 1
0.09 0.6196 0.8991 0.6019 0.5325 0.4163 0.3699 0.3609 1.0000 0.5915 0.8331 0.4397 1.0000 1.0000

Rank 6 4 7 9 11 12 13 1 8 5 10 1 1
0.1 0.6861 0.9396 0.6655 0.5906 0.4497 0.4102 0.4001 1.0000 0.6273 0.8858 0.4879 1.0000 1.0000

Rank 6 4 7 9 11 12 13 1 8 5 10 1 1
0.11 0.7520 0.9692 0.7283 0.6481 0.4829 0.4504 0.4391 1.0000 0.6628 0.9290 0.5358 1.0000 1.0000

Rank 6 4 7 9 11 12 13 1 8 5 10 1 1
0.12 0.8166 0.9869 0.7896 0.7046 0.5160 0.4905 0.4778 1.0000 0.6980 0.9645 0.5833 1.0000 1.0000

Rank 6 4 7 8 11 12 13 1 9 5 10 1 1
0.13 0.8777 1.0000 0.8476 0.7596 0.5490 0.5304 0.5161 1.0000 0.7328 0.9838 0.6309 1.0000 1.0000

Rank 14 1 15 16 19 20 21 1 17 11 18 1 1
0.14 0.9271 1.0000 0.8967 0.8115 0.5818 0.5701 0.5540 1.0000 0.7669 1.0000 0.6784 1.0000 1.0000

Rank 14 1 15 16 19 20 21 1 17 1 18 1 1
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Table A1. Cont.

θ AUT BEL FIN FRA HUN IRL LTU NLD POL PRT SVN SWE CHE

0.15 0.9681 1.0000 0.9289 0.8577 0.6145 0.6096 0.5913 1.0000 0.8007 1.0000 0.7260 1.0000 1.0000
Rank 14 1 15 16 19 20 21 1 17 1 18 1 1
0.16 1.0000 1.0000 0.9592 0.8998 0.6468 0.6489 0.6279 1.0000 0.8340 1.0000 0.7735 1.0000 1.0000

Rank 14 1 15 16 20 19 21 1 17 1 18 1 1
0.17 1.0000 1.0000 0.9896 0.9409 0.6789 0.6880 0.6635 1.0000 0.8665 1.0000 0.8211 1.0000 1.0000

Rank 1 1 7 8 12 11 13 1 9 1 10 1 1
0.18 1.0000 1.0000 1.0000 0.9820 0.7104 0.7269 0.6987 1.0000 0.8973 1.0000 0.8687 1.0000 1.0000

Rank 1 1 1 8 12 11 13 1 9 1 10 1 1
0.19 1.0000 1.0000 1.0000 1.0000 0.7415 0.7655 0.7335 1.0000 0.9253 1.0000 0.9162 1.0000 1.0000

Rank 1 1 1 1 12 11 13 1 9 1 10 1 1
0.2 1.0000 1.0000 1.0000 1.0000 0.7724 0.8036 0.7677 1.0000 0.9538 1.0000 0.9638 1.0000 1.0000

Rank 1 1 1 1 12 11 13 1 10 1 9 1 1
0.21 1.0000 1.0000 1.0000 1.0000 0.8029 0.8408 0.8015 1.0000 0.9736 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 12 11 13 1 10 1 1 1 1
0.22 1.0000 1.0000 1.0000 1.0000 0.8329 0.8772 0.8349 1.0000 0.9919 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 11 12 1 10 1 1 1 1
0.23 1.0000 1.0000 1.0000 1.0000 0.8621 0.9136 0.8681 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 11 12 1 1 1 1 1 1
0.24 1.0000 1.0000 1.0000 1.0000 0.8905 0.9501 0.9013 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 11 12 1 1 1 1 1 1
0.25 1.0000 1.0000 1.0000 1.0000 0.9180 0.9865 0.9345 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 11 12 1 1 1 1 1 1
0.26 1.0000 1.0000 1.0000 1.0000 0.9432 1.0000 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 1 12 1 1 1 1 1 1
0.27 1.0000 1.0000 1.0000 1.0000 0.9669 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 1 12 1 1 1 1 1 1
0.28 1.0000 1.0000 1.0000 1.0000 0.9906 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 13 1 1 1 1 1 1 1 1
0.29 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rank 1 1 1 1 1 1 1 1 1 1 1 1 1



Systems 2016, 4, 6 15 of 17

References

1. OECD. Organisation for Economic Co-operation and Development (OECD). In Handbook on Constructing
Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008.

2. San Cristobal Mateo, J.R. Multi-Criteria Analysis in the Renewable Energy Industry; Springer: London, UK, 2012.
3. Ebert, U.; Welsch, H. Meaningful environmental indices: A social choice approach. J. Environ. Econ. Manag.

2004, 47, 270–283. [CrossRef]
4. Munda, G.; Nardo, M. Noncompensatory/nonlinear composite indicators for ranking countries: A defensible

setting. Appl. Econ. 2009, 41, 1513–1523. [CrossRef]
5. Zhou, P.; Ang, B.W. Comparing MCDA aggregation methods in constructing composite indicators using the

Shannon-Spearman measure. Soc. Indic. Res. 2009, 94, 83–96. [CrossRef]
6. Cooper, W.W.; Seiford, L.M.; Zhu, J. Handbook on Data Envelopment Analysis; Kluwer Academic Publishers:

Norwel, MA, USA, 2004.
7. Chaaban, J.M. Measuring youth development: A nonparametric cross-country “youth welfare index”.

Soc. Indic. Res. 2009, 93, 351–358. [CrossRef]
8. Murias, P.; de Miguel, J.C.; Rodriguez, D. A composite indicator for university quality assessment: The case

of Spanish higher education system. Soc. Indic. Res. 2008, 89, 129–146. [CrossRef]
9. Murias, P.; Martinez, F.; de Miguel, C. An economic wellbeing index for the Spanish provinces: A data

envelopment analysis approach. Soc. Indic. Res. 2006, 77, 395–417. [CrossRef]
10. Cherchye, L.; Moesen, W.; Rogge, N.; van Puyenbroeck, T.; Saisana, M.; Saltelli, A.; Liska, R.; Tarantola, S.

Creating composite indicators with DEA and robustness analysis: The case of the technology achievement
index. J. Oper. Res. Soc. 2008, 59, 239–251. [CrossRef]

11. Cherchye, L.; Moesen, W.; Rogge, N.; van Puyenbroeck, T. An introduction to “benefit of the doubt”
composite indicators. Soc. Indic. Res. 2007, 82, 111–145. [CrossRef]

12. Zhou, P.; Ang, B.W.; Poh, K.L. A mathematical programming approach to constructing composite Indicators.
Ecol. Econ. 2007, 62, 291–297. [CrossRef]

13. Arora, A.; Arora, A.S.; Palvia, S. Social media index valuation: Impact of technological, social, economic, and
ethical dimensions. J. Promot. Manag. 2014, 20, 328–344. [CrossRef]

14. Dedeke, N. Estimating the weights of a composite index using AHP: Case of the environmental performance
index. Br. J. Arts Soc. Sci. 2013, 11, 199–221.

15. Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. Development of composite sustainability performance
index for steel industry. Ecol. Indic. 2007, 7, 565–588. [CrossRef]

16. Saaty, T.S. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
17. Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169,

1–29. [CrossRef]
18. Entani, T.; Ichihashi, H.; Tanaka, H. Evaluation method based on interval AHP and DEA. Cent. Eur. J.

Oper. Res. 2004, 12, 25–34.
19. Kong, W.; Fu, T. Assessing the performance of business colleges in Taiwan using data envelopment analysis

and student based value-added performance indicators. Omega 2012, 40, 541–549. [CrossRef]
20. Lee, A.H.I.; Lin, C.Y.; Kang, H.Y.; Lee, W.H. An integrated performance evaluation model for the

photovoltaics industry. Energies 2012, 5, 1271–1291. [CrossRef]
21. Liu, C.M.; Hsu, H.S.; Wang, S.T.; Lee, H.K. A performance evaluation model based on AHP and DEA. J. Chin.

Inst. Ind. Eng. 2005, 22, 243–251. [CrossRef]
22. Takamura, Y.; Tone, K. A comparative site evaluation study for relocating Japanese government agencies out

of Tokyo. Socio-Econ. Plan. Sci. 2003, 37, 85–102. [CrossRef]
23. Tseng, W.; Yang, C.; Wang, D. Using the DEA and AHP methods on the optimal selection of IT strategic

alliance partner. In Proceedings of the 2009 International Conference on Business and Information (BAI 2009),
Kuala Lumpur, Malaysia, 23–30 June 2009; Academy of Taiwan Information Systems Research (ATISR):
Taipei, Taiwan, 2009; Volume 6, pp. 1–15.

24. Premachandra, I.M. Controlling factor weights in data envelopment analysis by Incorporating decision
maker’s value judgement: An approach based on AHP. J. Inf. Manag. Sci. 2001, 12, 1–12.

25. Shang, J.; Sueyoshi, T. Theory and Methodology—A unified framework for the selection of a Flexible
Manufacturing System. Eur. J. Oper. Res. 1995, 85, 297–315.

http://dx.doi.org/10.1016/j.jeem.2003.09.001
http://dx.doi.org/10.1080/00036840601019364
http://dx.doi.org/10.1007/s11205-008-9338-0
http://dx.doi.org/10.1007/s11205-008-9328-2
http://dx.doi.org/10.1007/s11205-007-9226-z
http://dx.doi.org/10.1007/s11205-005-2613-4
http://dx.doi.org/10.1057/palgrave.jors.2602445
http://dx.doi.org/10.1007/s11205-006-9029-7
http://dx.doi.org/10.1016/j.ecolecon.2006.12.020
http://dx.doi.org/10.1080/10496491.2014.908803
http://dx.doi.org/10.1016/j.ecolind.2006.06.004
http://dx.doi.org/10.1016/j.ejor.2004.04.028
http://dx.doi.org/10.1016/j.omega.2011.10.004
http://dx.doi.org/10.3390/en5041271
http://dx.doi.org/10.1080/10170660509509294
http://dx.doi.org/10.1016/S0038-0121(02)00049-6


Systems 2016, 4, 6 16 of 17

26. Lozano, S.; Villa, G. Multiobjective target setting in data envelopment analysis using AHP. Comput. Oper. Res.
2009, 36, 549–564. [CrossRef]

27. Azadeh, A.; Ghaderi, S.F.; Izadbakhsh, H. Integration of DEA and AHP with computer simulation for railway
system improvement and optimization. Appl. Math. Comput. 2008, 195, 775–785. [CrossRef]

28. Ertay, T.; Ruan, D.; Tuzkaya, U.R. Integrating data envelopment analysis and analytic hierarchy for the
facility layout design in manufacturing systems. Inf. Sci. 2006, 176, 237–262. [CrossRef]

29. Jyoti, T.; Banwet, D.K.; Deshmukh, S.G. Evaluating performance of national R & D organizations using
integrated DEA-AHP technique. Int. J. Product. Perform. Manag. 2008, 57, 370–388.

30. Korpela, J.; Lehmusvaara, A.; Nisonen, J. Warehouse operator selection by combining AHP and DEA
methodologies. Int. J. Product. Econ. 2007, 108, 135–142. [CrossRef]

31. Lin, M.; Lee, Y.; Ho, T. Applying integrated DEA/AHP to evaluate the economic performance of local
governments in china. Eur. J. Oper. Res. 2011, 209, 129–140. [CrossRef]

32. Ramanathan, R. Supplier selection problem: Integrating DEA with the approaches of total cost of ownership
and AHP. Supply Chain Manag. 2007, 12, 258–261. [CrossRef]

33. Raut, R.D. Environmental performance: A hybrid method for supplier selection using AHP-DEA. Int. J. Bus.
Insights Transform. 2011, 5, 16–29.

34. Yang, T.; Kuo, C. A hierarchical AHP/DEA methodology for the facilities layout design problem. Eur. J.
Oper. Res. 2003, 147, 128–136. [CrossRef]

35. Ho, C.B.; Oh, K.B. Selecting internet company stocks using a combined DEA and AHP approach. Int. J.
Syst. Sci. 2010, 41, 325–336. [CrossRef]

36. Jablonsky, J. Measuring the efficiency of production units by AHP models. Math. Comput. Model. 2007, 46,
1091–1098. [CrossRef]

37. Sinuany-Stern, Z.; Mehrez, A.; Hadada, Y. An AHP/DEA methodology for ranking decision making units.
Int. Trans. Oper. Res. 2000, 7, 109–124. [CrossRef]

38. Chen, T.Y. Measuring firm performance with DEA and prior information in Taiwan’s banks. Appl. Econ. Lett.
2002, 9, 201–204. [CrossRef]

39. Cai, Y.; Wu, W. Synthetic financial evaluation by a method of combining DEA with AHP. Int. Trans. Oper. Res.
2001, 8, 603–609. [CrossRef]

40. Feng, Y.; Lu, H.; Bi, K. An AHP/DEA method for measurement of the efficiency of R & D management
activities in universities. Int. Trans. Oper. Res. 2004, 11, 181–191.

41. Kim, T. Extended Topics in the Integration of Data Envelopment Analysis and the Analytic Hierarchy Process
in Decision Making. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2000.

42. Pakkar, M.S. Using the AHP and DEA methodologies for stock selection. In Business Performance Measurement
and Management; Charles, V., Kumar, M., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK,
2014; pp. 566–580.

43. Liu, C.; Chen, C. Incorporating value judgments into data envelopment analysis to improve decision quality
for organization. J. Am. Acad. Bus. 2004, 5, 423–427.

44. Saen, R.F.; Memariani, A.; Lotfi, F.H. Determining relative efficiency of slightly non-homogeneous decision
making units by data envelopment analysis: A case study in IROST. Appl. Math. Comput. 2005, 165, 313–328.
[CrossRef]

45. Pakkar, M.S. An integrated approach based on DEA and AHP. Comput. Manag. Sci. 2015, 12, 153–169.
[CrossRef]

46. Pakkar, M.S. Using data envelopment analysis and analytic hierarchy process for multiplicative aggregation
of financial ratios. J. Appl. Oper. Res. 2015, 7, 23–35.

47. Pakkar, M.S. Measuring the efficiency and effectiveness of decision making units by integrating the DEA
and AHP methodologies. In Business Performance Measurement and Management; Charles, V., Kumar, M., Eds.;
Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2014; pp. 552–565.

48. Pakkar, M.S. Using DEA and AHP for ratio analysis. Am. J. Oper. Res. 2014, 4, 268–279. [CrossRef]
49. Pakkar, M.S. Using data envelopment analysis and analytic hierarchy process to construct composite

indicators. J. Appl. Oper. Res. 2014, 6, 174–187.
50. Pakkar, M.S. An integrated approach to the DEA and AHP methodologies in decision making. In Data

Envelopment Analysis and Its Applications to Management; Charles, V., Kumar, M., Eds.; Cambridge Scholars
Publishing: Newcastle upon Tyne, UK, 2012; pp. 136–149.

http://dx.doi.org/10.1016/j.cor.2007.10.015
http://dx.doi.org/10.1016/j.amc.2007.05.023
http://dx.doi.org/10.1016/j.ins.2004.12.001
http://dx.doi.org/10.1016/j.ijpe.2006.12.046
http://dx.doi.org/10.1016/j.ejor.2010.08.006
http://dx.doi.org/10.1108/13598540710759772
http://dx.doi.org/10.1016/S0377-2217(02)00251-5
http://dx.doi.org/10.1080/00207720903326902
http://dx.doi.org/10.1016/j.mcm.2007.03.007
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00189.x
http://dx.doi.org/10.1080/13504850110057947
http://dx.doi.org/10.1111/1475-3995.00336
http://dx.doi.org/10.1016/j.amc.2004.04.050
http://dx.doi.org/10.1007/s10287-014-0207-9
http://dx.doi.org/10.4236/ajor.2014.44026


Systems 2016, 4, 6 17 of 17

51. Pakkar, M.S. Using DEA and AHP for multiplicative aggregation of indicators. Am. J. Oper. Res. 2015, 5,
327–336. [CrossRef]

52. Shen, Y.; Hermans, E.; Brijs, T.; Wets, G. Data envelopment analysis for composite indicators: A multiple
layer model. Soc. Indic. Res. 2013, 114, 739–756. [CrossRef]

53. Shen, Y.; Hermans, E.; Ruan, D.; Wets, G.; Brijs, T.; Vanhoof, K. A generalized multiple layer data envelopment
analysis model for hierarchical structure assessment: A case study in road safety performance evaluation.
Expert Syst. Appl. 2011, 38, 15262–15272. [CrossRef]

54. Liu, W.B.; Zhang, D.Q.; Meng, W.; Li, X.X.; Xu, F. A study of DEA models without explicit inputs. Omega
2011, 39, 472–480. [CrossRef]

55. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res.
1978, 2, 429–444. [CrossRef]

56. Hashimoto, A.; Wu, D.A. A DEA-compromise programming model for comprehensive ranking. J. Oper. Res.
Soc. Jpn. 2004, 47, 73–81.

57. Mavi, R.K.; Mavi, N.K.; Mavi, L.K. Compromise programming for common weight analysis in data
envelopment analysis. Am. J. Sci. Res. 2012, 45, 90–109.

58. Podinovski, V.V. Suitability and redundancy of non-homogeneous weight restrictions for measuring the
relative efficiency in DEA. Eur. J. Oper. Res. 2004, 154, 380–395. [CrossRef]

59. Romero, C.; Rehman, T. Multiple Criteria Analysis for Agricultural Decisions, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2003.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4236/ajor.2015.55026
http://dx.doi.org/10.1007/s11205-012-0171-0
http://dx.doi.org/10.1016/j.eswa.2011.05.073
http://dx.doi.org/10.1016/j.omega.2010.10.005
http://dx.doi.org/10.1016/0377-2217(78)90138-8
http://dx.doi.org/10.1016/S0377-2217(03)00176-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Methodology 
	DEA-Based CI Model 
	Three-Level DEA-Based CI Model 
	Prioritizing Indicator Weights Using AHP 
	A Parametric Distance Model 

	A Numerical Example: Road Safety Performance Indicators 
	Conclusions 

