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Abstract: This paper aims to develop a hierarchical risk assessment model using the newly-developed
evidential reasoning (ER) rule, which constitutes a generic conjunctive probabilistic reasoning
process. In this paper, we first provide a brief introduction to the basics of the ER rule and
emphasize the strengths for representing and aggregating uncertain information from multiple
experts and sources. Further, we discuss the key steps of developing the hierarchical risk assessment
framework systematically, including (1) formulation of risk assessment hierarchy; (2) representation
of both qualitative and quantitative information; (3) elicitation of attribute weights and information
reliabilities; (4) aggregation of assessment information using the ER rule and (5) quantification
and ranking of risks using utility-based transformation. The proposed hierarchical risk assessment
framework can potentially be implemented to various complex and uncertain systems. A case study
on the fire/explosion risk assessment of marine vessels demonstrates the applicability of the proposed
risk assessment model.
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1. Introduction

Risk assessment plays a vital role in the whole risk management cycle from identifying, assessing,
analyzing, reporting and manipulating to monitoring risks. It helps decision makers to prioritize and
manage risks in order to avoid potential threats and better utilize limited sources. Traditionally, risk is
defined as a combination of likelihood and consequence. However, as many real-world systems are
becoming increasingly complicated, along with the appearance of unexpected events and dramatic
changes, the two high-level measurements of likelihood and consequence are unable to completely
capture the entire characteristics of a risk [1]. In the past decades, a range of risk assessment methods,
including preliminary hazard analysis, fault tree analysis, event tree analysis, and relevant quantitative
techniques have been proposed to support risk management [2,3].

Compared with qualitative risk assessment techniques, which mainly focus on risk identification
and evaluation, quantitative risk assessment techniques put more emphasis on the quantification as
well as ranking of risks to support better decision making. Under the umbrella of quantitative risk
assessment methods, risk matrix has been widely accepted as a convenient and effective tool for risk
assessment [4–6]. Both qualitative and quantitative assessment can be incorporated into a risk matrix,
where qualitative information, such as from questionnaires and interviews, can be used to identify
potential improvements, while quantitative information, such as historical data, can help to evaluate
countable costs or benefits. In line with the definition of risks, the probability of occurrence and the
severity of impact can be expressed as two input variables in the risk matrix. Their combination
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formulates an index to classify and discriminate different risks, and it can also be logically interpreted
as “IF probability is p and severity is s, THEN risk is r” [5]. Usually, both input and output variables
are described by qualitative scales in the risk matrix. For example, the probability of occurrence can be
split into five levels, such as remote, unlikely, likely, high likely and almost certain, while the severity
of impact can be categorized as negligible, minor, moderate, serious and critical.

As discussed above, risk matrix measures each risk mainly from two dimensions. However,
many real-world systems are more complicated, and we may need to take into consideration more
risk attributes and components in the risk evaluation process. It is difficult for the risk matrix to
provide a holistic view from multiple aspects. Thus, multiple criteria decision analysis (MCDA)
techniques can be employed to fill up the gap. MCDA provides a systematic process to formulate
the hierarchical assessment model, aggregate assessment information and support better decision
making [7]. It can also be useful to select potential risks, categories risks with similar characteristics
and prioritize risks in terms of historical data and decision maker (DM)’s domain knowledge [8].
The evidential reasoning (ER) methodology among a series of MCDA techniques has attracted a lot
of attention due to the capability of modelling qualitative and quantitative information in a unified
way, aggregating probabilistic information rigorously and producing final distributed assessment
results [9,10]. Furthermore, the ER methodology was initially proposed in the context of MCDA, and
it consists of three key components or features, specifically, belief structure for modelling various
types of uncertainty [9], rule and utility based information transformation techniques [11], and the
ER algorithm for information aggregation [12]. The ER methodology has been widely applied to
a wide range of decision and risk analysis problems [13,14]. The ER rule further improves the ER
methodology, and it constitutes a generic conjunctive probabilistic reasoning process and combine
multiple pieces of independent evidence conjunctively with taking into account both weights and
reliabilities [15,16].

Through taking advantage of the key strengths of the ER rule in uncertainty modelling and
aggregation, this paper aims to develop a hierarchical risk assessment framework with incorporating
both qualitative and quantitative assessment information. The rest of the paper is organized as
follows: in Section 2, the basics and key features of the ER rule are briefly introduced. In Section 3,
the hierarchical risk assessment framework is presented with the key steps, (1) formulation of risk
assessment hierarchy; (2) representation of both qualitative and quantitative information; (3) elicitation
of attribute weights and information reliabilities; (4) aggregation of assessment information using the
ER rule and (5) quantification and ranking of risks using utility-based transformation. A case study on
the fire/explosion risk assessment of marine vessels is conducted to illustrate the applicability of the
proposed hierarchical risk assessment model in Section 4. Some concluding remarks are presented in
Section 5.

2. Basics and Strengths of the ER Rule in Representing and Aggregating Uncertain Information

In the ER rule, a piece of evidence or information in the context of risk and decision analysis, ei, is
profiled by the following belief distribution.

ei =
{
(θ, pθ,i), ∀θ ⊆ Θ, ∑θ⊆Θ

pθ,i = 1
}

(1)

where Θ denotes a frame of discernment consisting of a set of mutually exclusive and collectively
exhaustive hypotheses, mathematically, Θ = {θ1, . . . , θN} with θn ∩ θm = ∅ for any n, m ∈ {1, . . . , N}
and n 6= m. P(Θ) or 2Θ can be used to represent the power set of Θ with 2N subsets of Θ, i.e.,
P(Θ) = 2Θ = {∅, θ1, . . . , θN , {θ1, θ2}, . . . , {θ1, θN}, . . . , {θ1, θN−1},Θ}. Thus, pθ,i represents the belief
degree to which the evidence ei supports proposition θ being any element of P(Θ) except for the empty
set [15].

From the perspective of modelling uncertainty, the belief degree assigned exactly to the frame of
discernment Θ reflects global ignorance, to a smaller subset of Θ except for any singleton proposition
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measures local ignorance, and to any singleton can be regarded as probability [15]. Each piece of
evidence ei can also be associated with a weight wi and a reliability ri respectively. In the ER rule, the
weight wi is used to reflect the relative importance of evidence ei, while the reliability ri is regarded as
the inherent property of the evidence [15,17].

Once all the three components, namely, belief distribution, weight and reliability are given, each
piece of evidence ei can be further transformed to a weighted belief distribution with reliability [15].

mi =
{
(θ, m̃θ,i), ∀θ ⊆ Θ;

(
P(Θ), m̃P(Θ),i

) }
(2)

where m̃θ,i is calculated below to measure the degree of support for θ from ei.

m̃θ,i =


0, θ = ∅

w̃i pθ,i, θ ⊆ Θ, θ 6= ∅
1− w̃i, θ = P(Θ)

(3)

The new hybrid weight is defined as w̃i = wi/(1 + wi − ri). The residual support
m̃P(Θ),i = 1 − w̃i = 0, when the piece of evidence ei is fully reliable, i.e., ri = 1.

Further, the ER rule can be used to combine multiple pieces of evidence in a recursive way.
For illustration purpose, two pieces of independent evidence ei and ej can be combined as follows

pθ,e(2) =

{
0, θ = ∅

m̂θ,e(2)
∑D⊆Θ m̂D,e(2)

, θ ⊆ Θ, θ 6= ∅ (4)

m̂θ,e(2) =
[(

1− rj
)
mθ,i + (1− ri)mθ,j

]
+ ∑

B∩C=θ

mB,imC,j, ∀θ ⊆ Θ (5)

where pθ,e(2) denotes the combined belief degrees to which the proposition θ is jointly supported.
The first square bracket term in Equation (5) is regarded as the bounded sum of individual support on
proposition θ. Specifically, the unreliability of evidence ei, i.e., (1− ri) sets a bounded role which ej can
play. While the second term is the orthogonal sum of collective support on proposition θ.

The ER rule generalizes the Bayesian inference, the seminal Dempster-Shafer (D-S) theory of
evidence [18,19] and the ER algorithm [9,10]. Each piece of evidence in the Bayesian inference is
formulated by a probability distribution, which can be regarded as a belief distribution without local
or global ignorance [15,17]. The ER rule can rigorously combine two pieces of highly or completely
conflicting evidence, where Dempster’s rule combination was found to generate counter-intuitive
results [20,21]. The original ER algorithm considers a special case where the reliability of evidence is
equal to its normalized weight [15]. As discussed above, the ER rule can deal with both qualitative
and quantitative attributes, which provides DMs with the flexibility of providing their preferences
using either numeric values or linguistic variables. In addition, a variety of other uncertainties, such as
fuzziness, interval beliefs, can also be formulated under the unified structure of belief distributions.
Compared with rough set and fuzzy set, which can also be used to handle epistemic uncertainty,
the ER rule provides a systematic and rigorous way for probabilistic information representation and
aggregation. In the context of risk analysis, these features are extremely useful in representing and
aggregating uncertain risk assessment information in different formats and from multiple experts
and sources.

3. A Hierarchal Risk Assessment Model Using the ER Rule

It is worth noting that we mainly focus on the step of risk assessment, instead of the whole process
of risk management in this section.
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3.1. Formulation of Risk Assessment Hierarchy

In risk assessment, different stakeholders, including experts and decision makers are usually
involved, and they play respective roles in identifying risk attributes or factors and providing
assessment information in terms of their domain knowledge and risk perception.

In this paper, the scheme of MCDA is employed to build up the risk assessment hierarchy.
As illustrated in Figure 1, an identified risk can be assessed by two or more dimensional parameters,
such as occurrence likelihood and consequence severity used in a risk matrix. Under each of the
top-level parameters, relevant risk attributes or factors should be identified to support reliable risk
assessment. The lower-level risk attributes or factors can further be split to a number of sub-attributes.

1 

 

 

Figure 1. Figure 1. Illustration of a hierarchal risk assessment model.

From the perspective of collecting assessment information, the bottom level risk attributes or
factors can be classified as quantitative evaluation and subjective judgment. It is rather straightforward
to collect quantitative data, while subjective judgment may involve stakeholders and experts’
perception as well as various risk guidelines.

3.2. Representation of Both Qualitative and Quantitative Assessment Information

As discussed previously, the top-level risk parameters can be assessed by linguistic variables.
Correspondingly, a set of linguistic variables can also be defined for both lower-level qualitative and
quantitative risk attributes. The set of linguistic grades can be regarded as a frame of discernment,
for example, Θ = {θ1: remote, θ2: unlikely, θ3: likely, θ4: high likely, θ5: almost certain}. Under the
frame of discernment, accurate and exclusive definition of each linguistic term should be provided in
order to facilitate rigorous risk assessment. In addition, it worth mentioning that the so-called local
ignorance of assigning belief degrees to smaller subsets of Θ except for any singleton proposition
is usually disregarded in the context of risk analysis in order to reduce the difficulty of eliciting
assessment information.

With regard to a qualitative risk attribute, subjective assessment information of assigning belief
degrees to each assessment grade can be collected from decision makers and experts directly. However,
the bias and variations from qualitative assessment is likely to result in a lack of objectivity and
consistency for risk management.

For a quantitative risk attribute ei, a set of referential values Ai = {An,i; n = 1, . . . , N} should be
defined to cover its value interval. Then the following information transformation technique can be
used to generate the corresponding belief distribution [11].

S(ei) = {(An,i, pn,i); n = 1, . . . , N} (6)
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where
pn,i =

An+1,i − ei

An+1,i − An,i
and pn+1,i = 1− pn,i, if An,i ≤ ei ≤ An+1,i (7)

pn′ ,i = 0, for n′ = 1, . . . , N and n′ 6= n, n + 1 (8)

Here, pn,i represents the belief degree to which the risk attribute is assessed as the referential
value An,i.

3.3. Elicitation of Attribute Weights and Information Reliabilities

The weight wi can be assigned as a measurement of the degree of importance, where 0 ≤ wi ≤ 1
and ∑I

i=1 wi = 1 to ensure the completeness of the total I risk attributes under a parameter or a
risk category.

Apart from direct assignment techniques in weight elicitation, the analytic hierarchy process
(AHP) method can be used to generate weights for attributes [22]. DMs provide multiple pairwise
comparisons of one attribute against another by assigning subjective degree of importance, ranging
from 1 to 9, and we can exhaust I(I − 1)/2 pairwise comparisons completely. DMs also have the
flexibility to use verbal intuitive expressions, such as ‘strongly’ or ‘moderately’, to elicit relative
importance of attributes [23]. Specifically, in a pairwise comparison matrix C, an entry cij represents
how much more important attribute i is over attribute j (i, j = 1, . . . I). In principle, cij = wi/wj and thus
the diagonal entries are equal to 1. Thus the pairwise comparison matrix C can be represented as

C =

 1 · · · c1I
...

. . .
...

cI1 · · · 1

 =


w1
w1
· · · w1

wI
...

. . .
...

wI
w1
· · · wI

wI

 (9)

The normalized weights can then be estimated by the eigenvector of C. A consistency index can
be calculated to check whether the weights generated are sufficiently consistent, and it is allowed
to have a small degree of inconsistency resulting from biased judgement. However, re-examination
of the pairwise comparisons should be conducted, when the consistency index approximated from
maximum eigenvalue and eigenvector is smaller than a threshold value [24]. To overcome the order
dependency of the consistency index, a normalized consistency ratio can be calculated to measure the
degree between total consistency and total randomness [25]. Given a sufficiently acceptable level of
the consistency ratio, the AHP weights are regarded as more reliable than directly assigned weights.

Furthermore, a group of DMs or experts are usually involved in the risk assessment process, and
it is difficult for them to reach consensus on both assessing risk attributes and assigning their weights.
For a cooperative risk assessment situation, where DMs or experts share accountability, the weight
assignment process can be elicited from negotiation, brainstorming, voting schemes, etc. Alternatively,
a supra DM in the collective decision environment can potentially lead the whole process [26,27].

In the ER rule, weight and reliability need to be considered simultaneously in order to obtain
the hybrid weight w̃i = wi/(1 + wi − ri) as discussed above. However, there are lack of theoretical
research and practical solutions with regard to eliciting information reliabilities, and it has often
been linked with evidence discounting [15,28–31]. In the context of risk analysis, the reliabilities of
information sources can be obtained in terms of contextual information, experts’ domain knowledge,
and historical data.

When both weights wi and reliability ri are available, the implementation of the formula
w̃i = wi/(1 + wi − ri) produces the hybrid weight w̃i, for which w̃i < wi if ri < wi, w̃i = wi if
ri = wi, and w̃i > wi if ri > wi. Specifically, when a piece of evidence is fully reliable, i.e., ri = 1, there
will be w̃i = 1. The hybrid weight w̃i will be discounted to wi/(1 + wi), when the piece of evidence is
fully unreliable, i.e., ri = 0.
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3.4. Aggregation of Assessment Information Using the ER Rule

With the collection of the three types of risk assessment information, specifically, belief
distributions on bottom-level risk attributes, reliabilities of assessment information on bottom-level
risk attributes, and weights for all risk parameters and attributes, the ER rule is then applied to
aggregate assessment information from bottom to up. The risk level on a middle-level risk attribute
or parameter is usually aggregated from the assessment information collected from the bottom-level
risk attributes recursively. As illustrated in Figure 2, the risk parameter/attribute ei is profiled by a
belief distribution which is combined from the belief distributions of the lower-level attributes using
the ER rule. Furthermore, the overall risk level S(e) can be aggregated and profiled in the form of a
belief distribution.

S(e) = {(θn, pn), n = 1, . . . , N; (Θ, pΘ)} (10)

where pn denotes the belief degree to which the overall risk level is assessed as the linguistic
grade θn, though taking into account all relevant risk assessment information. The remaining belief
degree pΘ > 0, when there are incomplete assessment information from the bottom-level risk
attributes. The belief distribution provides a more informative risk profile.
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It is assumed that the same number of linguistic grades is used to assess all the risk parameters
and attributes. Otherwise, rule and utility based information transformation approaches should be
implemented to match a common set of linguistic variables [11].

3.5. Quantification and Ranking of Risks Using Utility-Based Transformation

The overall belief distribution can be quantified as a risk score using utility-based transformation.
Assume that the utility of the linguistic grade θn is u(θn). The risk score R(e) can be given as

R(e) =
N

∑
n=1

u(θn)pn (11)

As discussed above, incomplete assessment information from the bottom-level risk attributes
will lead to pΘ > 0. Correspondingly, the overall risk level can be characterized by a set of minimum,
maximum and average risk scores.

Rmin(e) = u(θ1)(p1 + pΘ) +
N

∑
n=2

u(θn)pn (12)
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Rmax(e) =
N−1

∑
n=1

u(θn)pn + u(θN)(pN + pΘ) (13)

Ravg(e) =
Rmin(e) + Rmax(e)

2
(14)

The interval [Rmin(e), Rmax(e)] can capture the range of potential risk levels. If there doesn’t exist
incomplete assessment information, we can easily rank a series of risks in terms of their risk scores.
Otherwise, the above risk intervals should be considered for ranking.

4. A Case Study on the Fire/Explosion Risk Assessment of Marine Vessels

Fire/explosion is one of the major accidents or risks having the potential to cause disastrous
consequences for marine vessels [32,33]. According to the UK marine accident investigation branch
(MAIB) statistics [34], around 11% of the total 1639 accidents of UK merchant vessels (≥100 gross
tonnage) from 2001 to 2012 were resulted from fire/explosion as shown in Figure 3.
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Figure 3. Marine accident investigation branch (MAIB) statistics on fire/explosion risks of UK
merchant vessels.

Thus, a set of regulations, codes and guidelines have been issued to support the safety
management over fire/explosion and relevant risks [32]. The focus of the section is to demonstrate
how to apply the proposed hierarchical risk assessment model, rather than to formulate a complete
assessment criteria hierarchy. From this perspective, this section only picks up a small part of the
assessment criteria hierarchy, specifically, the assessment of measures to prevent the occurrence of
fire/explosion in the engine room of marine vessels as shown in Figure 4. Next, we consider the
above discussed three types of risk assessment information, which are weights, reliabilities, belief
distributions on the lower-level risk attributes categorized as managerial measures, operative measures
and technical measures respectively.

The relative importance of these prevention measures can be captured by pairwise comparisons.
As shown in Table 1, the upper diagonal entries denote how many times the row attribute is more
important than the column attribute, the diagonal entries are equal to 1 for self-comparisons, and the
lower diagonal entries are the reciprocals of the corresponding upper diagonal entries. Furthermore,
the AHP method is applied to obtain the last column of the calculated weights, where the consistency
ratio is sufficiently acceptable.
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Table 1. An example of pairwise comparison matrix.

Pairwise Comparisons Managerial Operative Technical Calculated AHP Weights
Managerial 1 2 3 0.55
Operative 1/2 1 1 0.24
Technical 1/3 1 1 0.21

It can be assumed that reliabilities are equal to weights, if both pieces of information are collected
from the same group of experts. In practice, it is always very demanding to assign weights and
reliabilities separately based on subjective judgement. However, there are potentially historical data
available to calibrate reliabilities in some applications.

All the three attributes related to prevention measures can be regarded as qualitative, and a set
of questions can be designed to collect judgement from experts. For example, the questions “Is there
any fire/explosion prevention plan?”, “Are there any rules in place for processing flammable and/or
explosive materials?” and “Whether the fire prevention and protection system is installed and tested
appropriately?” can be asked for the assessment of managerial measures; “Is there any assessment for
planned operations for fire/explosion risks?” and “Is there any regular assessment on the functionality
of fire/explosion prevention systems?” for operative measures; “What is the capability of fire/gas
detection system?” and “What is the capability of static electricity protection system” for technical
measures. Assume that the following belief distributions are obtained under the unified frame of
discernment Θ = {θ1: remote, θ2: unlikely, θ3: likely, θ4: high likely, θ5: almost certain}.

Managerial: S(e1) = {(θ1, 0.5), (θ2, 0.5), (θ3, 0), (θ4, 0), (θ5, 0)}

Operative: S(e2) = {(θ1, 0.2), (θ2, 0.5), (θ3, 0.3), (θ4, 0), (θ5, 0)}

Technical: S(e3) = {(θ1, 0.3), (θ2, 0.5), (θ3, 0), (θ4, 0), (θ5, 0)}

Here it is worth noting that there is incomplete assessment information for technical measures,
and the remaining belief degree pΘ = 1− ∑5

n=1 pn,3 = 1− (0.3 + 0.5) = 0.2. With the assumption
that reliability is equal to weight for each of the above three attributes, the belief distributions can
be transformed to weighted belief distributions with reliability respectively using the Equation (3).
Then, the ER rule formulated mathematically in the Equations (4) and (5) can be applied to combine
three pieces of belief distributions recursively, which produces the overall assessment of prevention
measures in the format of a belief distribution as shown in Figure 5.
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functionality of fire/explosion prevention systems?” for operative measures; “What is the capability 

of fire/gas detection system?” and “What is the capability of static electricity protection system” for 
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The belief distribution provides more informative fire/explosion risk assessment profile with
regard to the attribute of prevention measures, and it also covers unknown part due to incomplete
knowledge or limited information. In this context of risk analysis with a hierarchical assessment model,
sensitivity analysis can be further conducted between the quantified risk score or the belief degree on
a specific linguistic assessment grade and different types of inputs from lower-level risk attributes,
such as belief distributions and weights. For example, sensitivity analysis can be done to identify
lower-level risk attributes causing high belief degrees on certain linguistic assessment grades to be
avoided. In addition, the quantified risk core discussed in Section 3.5 can be used to rank and prioritize
the fire/explosion risk among a set of potential risks. For example, if the utilities corresponding to
the frame of discernment Θ = {θ1: remote, θ2: unlikely, θ3: likely, θ4: high likely, θ5: almost certain}
are {u(θ1) = 0, u(θ2) = 0.25, u(θ3) = 0.5, u(θ4) = 0.75, u(θ5) = 1}, the occurrence likelihood related
to fire/explosion prevention measures can be characterized by the utility interval [0.1545, 0.1786].
Given both occurrence likelihood and consequence severity are cost-type attributes, and they should
be controlled as low as possible. That is to say, risks associated with high utilities should be prioritized
for mitigation and controlling.

5. Concluding Remarks

In this paper, we proposed a hierarchical risk assessment model using the evidential reasoning
(ER) rule. The key steps from the formulation of risk assessment hierarchy to the quantification and
ranking of risks have been discussed in a systematic way. The applicability of the proposed risk
assessment model was demonstrated by a case study on the fire/explosion risk assessment of marine
vessels. In addition, the paper further takes into account the reliabilities of information sources and
expert’s judgement for risk assessment, in comparison to the previous application of the ER approach
to risk analysis. This hierarchical risk assessment model can be applicable to the risk analysis of
various complex and uncertain systems, e.g., manufacturing systems, healthcare systems and offshore
infrastructure. In order to reduce the complexity of collecting information, local ignorance isn’t
considered in the belief distributions on the bottom-level attributes. However, it can be useful to assign
belief degrees to smaller subsets of the frame of discernment for capturing local uncertainty of risk
assessment information in our future research. In addition, the mutual independence of risk attributes
also needs to be investigated in specific applications.
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