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Abstract: Systems engineering is increasingly challenged by the rising complexity of projects
undertaken, resulting in increases in costs, failure rates, and negative unintended consequences.
This has resulted in calls for more scientific principles to underpin the methods of systems engineering.
In this paper, it is argued that our ability to improve systems Engineering’s methods depends on
making the principles of systemology, of which systems engineering is a part, more diverse and
more scientific. An architecture for systemology is introduced, which shows how the principles of
systemology arise from interdependent processes spanning multiple disciplinary fields, and on this
basis a typology is introduced, which can be used to classify systems principles and systems methods.
This framework, consisting of an architecture and a typology, can be used to survey and classify
the principles and methods currently in use in systemology, map vocabularies referring to them,
identify key gaps, and expose opportunities for further development. It may, thus, serve as a tool for
coordinating collaborative work towards advancing the scope and depth of systemology.

Keywords: systems philosophy; heuristic systems principles; scientific systems principles; general
systems principles; specialized systems principles; general systems theory; GST

1. Systemology: Its Rise and Challenges

Over the last few decades the systems paradigm has become ubiquitous in academia and society,
and the major fields of academic endeavour (philosophy, science, engineering, and practice) have each
developed a nascent systemic specialisation (systems philosophy, systems science, systems engineering,
and systems practice). However, the unified systems discipline we would call “systemology” is not yet
established as such in academia1. The main reason for this lack of coherence is that systems science is
still very young, and has no unifying general theory of systems. This has left systems engineering and

1 The term “Systemology” was coined by Russ Ackoff ([1], p. 669), and recently promoted by Pouvreau and Drack as an apt
translation of the German term, Systemlehre, meaning “an organized body of knowledge about systems” ([2], pp. 282–283).
The term Systemlehre was introduced by Ludwig von Bertalanffy in the 1940s. He translated Systemlehre in 1950 as
“Systems Theory” and hence his term Allgemeine Systemlehre as “General System Theory” [3], but this was an unfortunate
translation choice, as shown by his proposal in 1972 to describe “General System Theory” as embracing “systems science”,
“systems technology” and “systems philosophy”, ([4] pp. xix–xxiii). The term “Systemology” is now being widely adopted,
e.g., [5–8], and “General Systemology” has been proposed as a better translation of von Bertalanffy’s term “General System
Theory” [2].
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systems practice2 dependent on largely heuristic systems principles. As will be discussed below, the
need for fundamental progress in systems science is now acute but, happily, such research is now
gaining momentum. To support this contemporary research effort this paper presents an architecture
for systemology that can be used to understand how the components of systemology depend on,
and reinforce, each other, and on this basis proposes a typology for classifying the principles each
inherits or produces. It is hoped that this will inspire collaboration and aid co-ordination across
the facets of the systems community, and so help to accelerate scientific progress in the maturation
of systemology.

2. The Need for a Stronger Systems Science

The systems we would seek to build, govern or nurture are rapidly rising in complexity, and the
associated projects are increasingly prone to underperformance, negative unintended consequences
and even outright failure. Major US defence systems projects typically overrun by about 50% [9]
and large civil systems projects often overrun by 200% or more [10]. Two thirds of big IT projects
fail, and more than half of those that are completed under-deliver on their promised value [11].
The global cost of these failures and shortcomings is very large. In the USA, the cost of systems
engineering failures now exceeds $73 billion per annum [12], and the global cost of IT project failures
is now estimated at more $3 trillion per annum [13]. Individual projects can fail even after very large
investments: a recent US IT system project was abandoned after a spending of $100 million [14],
and a recent UK IT system project was abandoned after a spending of £9.8 billion [15].

One response to these challenges has been renewed calls for advances in systems science, to more
powerfully support the methods of systems engineering (SE) and systems practice. Such calls have
recently been made in many stakeholder organizations, including the National Science Foundation
(NSF), the International Council on Systems Engineering (INCOSE), the International Federation for
Systems Research (IFSR), and the International Society for the Systems Sciences (ISSS) [16–19].

This call for advances in systems science has triggered renewed interest in systems principles
and further calls for enriching the heuristic principles in current practice with more scientific ones.
For example INCOSE, in their “Systems Engineering Vision 2025”, said:

“It is therefore important to develop a scientific foundation that helps us to understand the
whole rather than just the parts, that focuses on the relationships among the parts and the
emergent properties of the whole. This reflects a shift in emphasis from reductionism to
holism. Systems Science seeks to provide a common vocabulary (ontology), and general
principles explaining the nature of complex systems”. [17]

This reiterates an earlier call by Ludwig von Bertalanffy, one of the founders of the ISSS, for the
development of a general theory of systems, saying:

“It seems legitimate to ask for a theory, not of systems of a more or less special kind, but
of universal principles applying to systems in general. In this way we come to postulate
a new discipline, called General System Theory. Its subject matter is the formulation and
derivation of those principles which are valid for ‘systems’ in general”. [20]

These calls have stimulated recent debate about the nature, role and developmental status of
systems principles, and this paper is a contribution to that discussion. In particular, I will here

2 The term “Systems Practice” refers to a professional activity involving the application of “Systems Thinking” to address
a problem or pursue an opportunity, typically (but not necessarily) in the context of management science. Systems Thinking
is a form of analysis and synthesis that emphasizes systems concepts such as stakeholder, hierarchy, emergence, feedback
and boundary. Systems thinking can enter into any phase of a project, e.g., problem structuring, research, design or
intervention, but systems practice is the application of systems thinking for the purposes of staging an intervention. In this
way Systems Practice involves the selection, deployment and operation of a systemic solution to a given issue. This may (or
might not) involve the use of technological products.
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argue that these questions should be addressed in the light of how principles are understood, used
and discovered in general, rather than exclusively building on the ideas of the founders of the
systems traditions.

3. What Are Systems Principles?

In general, a “principle” is a fundamental idea or rule that can provide guidance for making
a judgement or taking action. Principles can take the form of injunctions, beliefs, concepts, assumptions
or insights. Principles can range from fully heuristic ones (distilled from experience, intuition, belief
or convention) to fully scientific ones (distilled from scientific theories or models). Principles are
encountered in every sphere of human activity, so we have, e.g., principles relevant to ethics, aesthetics,
economics, politics, science, engineering, agriculture, etc.

Examples of principles include the heuristic principle “do as you would be done by” and the
scientific principle that “energy is conserved in all causal interactions”. Historically, principles start
out as heuristics, and over time some become more scientific, e.g., Lucretius’s heuristic principle from
75 BCE that “nothing can come from nothing (or go to nothing)” is today the scientific principle that
“energy cannot be created or destroyed but only transferred or transformed”. As principles become
more scientific, they become more useful for making apt judgements or taking effective action.

By “more scientific” principles we mean principles that more strongly reflect the scientific
approach, that is, using clear and precise concepts, expressing qualities and relationships that can
be subject to measurement, quantification, empirical verification or falsification, and so on. In this
sense scientific principles can arise in philosophy, science, engineering, and operational/service
contexts. The scientific enterprise can be viewed as aimed at making principles across these domains
increasingly scientific.

Note that we make a distinction between “scientific principles” in the sense just explained and
“science principles”, i.e., the principles underpinning science.

Both heuristic and scientific principles can be either general (applying universally, e.g.,
conservation of energy) or specialised (applying only in specific contexts, e.g., the principles of
disease prevention), as illustrated in a simplified way in Figure 1 with example principles.
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The effectiveness of science depends on having strong principles underpinning scientific research
methods at a fundamental level (e.g., the general principles that energy is always conserved or that
effects have sufficient causes) enabling scientific activities to discover specialized laws of nature
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(e.g., Boyle’s Law that states the balancing relationship between pressure and volume in an ideal gas)
and to reveal strong explanatory principles (e.g., that infections are caused by microbes).

From this understanding of the nature of principles we can now say that systems principles are
fundamental rules, beliefs, ideas or insights about the nature or workings of systems, and hence
systems principles guide judgment and action in systemic contexts. In the case of systems science the
search for scientific systems principles (SSPs), and in particular general SSPs will be subject to the same
considerations that apply to principles in general, as outlined above.

4. Status of Systems Science

The nature and roles of principles as articulated above explains why the calls being made for
advances in systems science are framed in terms of establishing more scientific systems principles.
Without strong scientific principles reinforcing systems science it cannot be effective in explaining
the failures of systemic methods or in uncovering profound insights about the nature and workings
of systems.

The present situation is far from ideal. We currently have hundreds of methodologies for systems
practice (e.g., SSM, VSM, systems dynamics, CSTP, systemic intervention, etc.) and likewise for
systems engineering (e.g., IBM Rational Harmony for SE, OOSEM, JPL-SA, SYSMOD, Vitech MBSEM,
etc.), but typically these are only weakly grounded in scientific systems theories. We presently have
only a dozen or so scientific systems theories (e.g., control theory, network theory, hierarchy theory,
complexity theory, theory of dissipative structures etc.). We have no established general theory of
systems, and when it comes to general systems principles we have only about a dozen or so heuristic
rules (see e.g., ([21], pp. 60–71), ([22], pp. 17–30), ([23], pp. 20–21)3 and a small handful of general
concepts (e.g., wholeness, part, equifinality, closed and open system, etc. (see, e.g., ([31], pp. 91, 95)4.
These concepts are still far from settled, including even the concept of “system” [39]. Three general
scientific systems principles have recently been proposed [40] but they have yet to be formalized,
and initial projects to evaluate them are still in process [41].

To fully appreciate the nature and scope of the scientific systems principles we are looking for it is
necessary first to consider the nature and scope of system science, with a view to understanding how
principles both underpin and flow from systems science, and second to consider how systems science
and its principles relate to the other facets of systemology (systems philosophy, systems engineering,
and systems practice) and their respective principles.

5. The Nature and Scope of Systems Science

A starting point for thinking about systems science is the view that every concrete thing is
a system or part of one, and that natural systems can be arranged into a “complexity hierarchy”,
in which the “levels” represent increasingly complex systems that embed systems from the “lower”
levels, and every level corresponds to some kind of system, as shown in a simplified way in Figure 2.
A version of this perspective already occurs in Aristotle, but there is now an extensive modern literature
on this, e.g., [42,43], and, notably, in the specific context of general systems theory, a seminal paper by
Kenneth Boulding [44].

3 It should be noted that systemists have published many statements under the rubric of “general systems principles”
or “general systems laws” without these statements being actually useful for making judgements or taking action.
These typically are just witticisms or platitudes about systems, such as “today’s problems come from yesterday’s solutions”
(Senge), or “complex systems exhibit unexpected behaviour” (Gall). See, e.g., [24–26]. Others have published principles
that are useful but not general, notably [27], which lists principles for specific contexts such as architecting, design, social
systems, and political processes. For summaries of other specialised principles, see also [28–30].

4 There are very many concepts relevant to systems in the vocabulary of Systemology, e.g., there are 3807 entries in the
second edition of Charles Francois’ International Encyclopedia of Systems and Cybernetics [32]. These terms are far
from standardised, and hence many systemologists have produced their own lists, e.g., [33], ([34], pp. 21–33), ([35],
pp. 11–46), [36], ([37], pp. 13–68), ([38], pp. 353–360). However, very few of these concepts are general systems concepts, i.e.,
concepts describing universal attributes of systems as systems.
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The system levels in the complexity hierarchy correspond to the subjects of concern of the
mainstream specialised scientific disciplines, so it can be said that every specialised scientific discipline
studies some kind of system. Note, however, that this does not make these disciplines systems sciences,
since it is only trivially true that their subjects are systems. These specialised disciplines do not have
as their subject matter systems as systems but, rather, they seek to understand instances of kinds
of systems.

The idea of a science of systems arises from three reflections on the complexity hierarchy:

i. First, given that systems occur on every level of the complexity hierarchy, a science
of systems must be about what is true of or possible for systems across all the levels.
This is the insight behind the claim that system science will be a transdiscipline, having
relevance across the disciplinary spectrum, and will comprise theories that are scale-free and
composition-independent. At a minimum, such a science must involve concepts and principles
that allow systems to be characterised as a category of analysis distinct from things that are not
systems, to enable instances of systems to be identified in the real world, and to explain/predict
the behaviour and potential of systems as systems. Our present notions of “systemhood” are
far from settled, but there is a rich literature on the subject [3,46–49] (see also footnote 3) and
important efforts are under way to consolidate these ideas [39,50].

ii. Second, when looking across the levels we find similar patterns recurring across multiple levels,
e.g., spiral forms in certain tropical storms, sea shells, flowers, and galaxies. Other examples
include Fibonacci sequences and Zipf’s Law regularities in natural phenomena [51–53].
Speaking metaphorically, these patterns represent solutions to design problems that systems
must solve in order to create enduring complex structures. The existence of these
isomorphically-recurring patterns across changes in scale and composition entails that
there must be transdisciplinary specialised systems principles reflecting the nature of these
“solutions”. In principle each of these patterns can be “decoded” to establish a theory
that explains the nature and function of the observed pattern, and to identify the relevant
explanatory principles. Each such theory would then be a specialised systems science theory,
and we have several of these already (e.g., control theory, hierarchy theory, network theory,
communication systems theory, theory of dissipative structures, etc.). There are still many
patterns in nature we do not theoretically understand, for example patterns of overlapping
Fibonacci spirals, and Zipf’s Law patterns. Moreover it is likely that there are further patterns
we have not yet identified.

iii. Third, the isomorphically-recurring patterns arise independently in multiple contexts involving
different scales, compositions, and developmental histories. This suggests that there are general
systems principles that provide for the possibility of the emergence of these systemic patterns
across contexts. Speaking loosely, these would be general principles about how Nature “finds”
solutions, rather than (as above) specialised principles about how specific kinds of solutions
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work. We have very limited knowledge of such general systems principles5, but, in principle,
they hold the promise of a general theory of systems that would explain both the emergence
of specialized patterns and the relationships between them. Such a “general systems theory”
(GST) would be very valuable not only for unifying the body of specialised systems knowledge
but also for opening up new routes to discovery, just as Mendeleev’s periodic table of elements
did for Chemistry and Darwin’s theory of natural selection did for biology.

From this we can infer that the theoretical aspect of systems science minimally comprises a set of
concepts used to characterise the universal attributes of systems as systems, a database of isomorphic
systems patterns6, specialised systems theories that explain the mechanisms underpinning specific
isomorphic systems patterns, and a general theory of systems that explain how the universal system
attributes arise in nature and how they support the emergence of the isomorphic system patterns.
The insights entailed by these concepts and explanations are the general and specialised principles of
systems science. In addition systems science also includes the hybrid theories where systems principles
are used or derived in the study or modelling of specialised kinds of systems, e.g., systems biology,
systems ecology, systems psychology, systems economics, and so on.

We can now paraphrase Figure 1 for the case of systems principles, as illustrated in Figure 3.
In the light of this four-fold classification system it is evident that that we know some general
heuristic systems principles, many specialised heuristic principles, a small but respectable collection of
specialised systems principles, and are almost entirely lacking in general scientific systems principles.
This pattern of available principles of course reflects both the experiential richness and the theoretical
immaturity of our knowledge of systems.
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As the following discussion will make clear, developing the principles and theories of systems
science will require the combined efforts of systems philosophers, systems scientists, systems engineers,
and systems practitioners. To explain this, I will start by looking at the general structure of disciplines
and disciplinary fields. To keep the presentation concise I will gloss over some nuances and details
but, in my view, this does not distort the models being developed, and having been pointed out can

5 Early work on general systems principles focused largely on general concepts (e.g., ([31], pp. 91, 95)), and while these
remain controversial, important progress is now being made (e.g., [39]). In addition, progress is now being made towards
establishing propositional general scientific systems principles. Two recent papers respectively presented three such
principles [40] and eight strategies for discovery projects [54].

6 Len Troncale and colleagues have over 40 years made an important contribution to the development of such a database of
systemic isomorphisms, and extended this by also analysing the linkages between isomorphisms [51–53,55,56].
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safely await elaboration at a later time. Moreover, the focus will be on disciplines that are, or aspire to
be, scientific, and I will not here attempt to adequately reflect other kinds of disciplines. However, by
focusing on disciplines that are or try to be scientific in their approach we can include consideration
of disciplines from various branches of philosophy and practice, in addition to those from (“hard”)
science and engineering.

6. The General Architecture of Disciplinary Fields

For present purposes I will use the term “scientific endeavour” to refer to the typical activity
sequence of disciplines that are or try to be scientific in their approach.

In general we can view scientific endeavours as motivated by some perceived personal or social
problem, challenge, concern, opportunity or interest, and aimed at resolving, mitigating or satisficing
that issue. The activities that underpin such endeavours come in several kinds, which form a general
pattern of stages as illustrated in Figure 4. We can view this as the stages or phases of a typical project.
For each of the stages I indicated terms often used to characterize the activities of that stage.
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In order to simplify the discussion I will subsume the various terms used in each stage under ones
I will take to stand for the “essence” of each stage, proposing that the essence of stage 1 is “reflection”,
stage 2 is “research”, stage 3 is “design”, and stage 4 is “intervention”. Each of these stages of activity
leads to outputs specific to that type of activity as shown in Figure 5.

Systems 2018, 6, x  7 of 17 

 

that are, or aspire to be, scientific, and I will not here attempt to adequately reflect other kinds of 
disciplines. However, by focusing on disciplines that are or try to be scientific in their approach we 
can include consideration of disciplines from various branches of philosophy and practice, in 
addition to those from (“hard”) science and engineering.  

6. The General Architecture of Disciplinary Fields 

For present purposes I will use the term “scientific endeavour” to refer to the typical activity 
sequence of disciplines that are or try to be scientific in their approach.  

In general we can view scientific endeavours as motivated by some perceived personal or social 
problem, challenge, concern, opportunity or interest, and aimed at resolving, mitigating or 
satisficing that issue. The activities that underpin such endeavours come in several kinds, which 
form a general pattern of stages as illustrated in Figure 4. We can view this as the stages or phases of 
a typical project. For each of the stages I indicated terms often used to characterize the activities of 
that stage.  

 
Figure 4. The basic activity stages of a scientific endeavour. 

In order to simplify the discussion I will subsume the various terms used in each stage under 
ones I will take to stand for the “essence” of each stage, proposing that the essence of stage 1 is 
“reflection”, stage 2 is “research”, stage 3 is “design”, and stage 4 is “intervention”. Each of these 
stages of activity leads to outputs specific to that type of activity as shown in Figure 5.  

 
Figure 5. The typical outputs of stages of a scientific endeavour. 

The type of activity in each stage is supported by methods and principles that are similar 
whatever the discipline under which the project is being done. The cross-disciplinary similarity of 
the principles, methods and outputs of each type of stage has resulted in disciplinary specializations 
that each have of one of the “essences” as their central concern, and we can group such disciplines 
together under the “disciplinary fields” of philosophy, science, engineering, and practice. These 
fields each lead the way in developing the principles and methods of their essential focus, but it 
should be remembered that every scientific discipline engages all the stages of activity. For example, 

Figure 5. The typical outputs of stages of a scientific endeavour.

The type of activity in each stage is supported by methods and principles that are similar whatever
the discipline under which the project is being done. The cross-disciplinary similarity of the principles,
methods and outputs of each type of stage has resulted in disciplinary specializations that each have
of one of the “essences” as their central concern, and we can group such disciplines together under the
“disciplinary fields” of philosophy, science, engineering, and practice. These fields each lead the way
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in developing the principles and methods of their essential focus, but it should be remembered that
every scientific discipline engages all the stages of activity. For example, the discipline of medicine
has a practice element (e.g., via doctors working in hospitals), an engineering element (e.g., doctors
working on medical device development in industry), a science element (e.g., doctors researching
disease aetiology in laboratories), and a philosophy element (e.g., doctors developing or enforcing
standards in medical ethics), so a disciplinarian can specialise in any of the field dimensions. However,
in general every disciplinarian engages with all of the dimensions on every project, as illustrated in
Figure 2, so, e.g., an engineering project will typically involve reflection, research, product development
and product deployment. These “field dimensions” represent different kinds of hats the same person
can wear on the same project without leaving their discipline. That said, the activity level of each
discipline is different in the different field dimensions, tapering off away from the essential focus,
as illustrated in Figure 6.
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Figure 6. A scientific discipline’s typical activity level per field dimension.

If we keep in mind the important observation that all disciplines cut across all the field dimensions,
we can shift our analysis to looking at the fields, and so analyse the nature and evolution of the
principles underlying each field of activity. This shift is helpful because we can learn from the
aggregate progress in a field dimension, and the fields have overall roles from which we can learn
lessons valuable for the evolution of the specialized disciplines, as will be shown below.

Figure 7 identifies the empirical disciplinary fields, and shows that they have similar structures for
producing their typical outputs (in each case, methods that support activity that produce an output),
but for each field the output is something different, analogous to the outputs shown in Figure 5.
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In addition, we can generalize over the outputs to associate the fields with distinct roles, as also shown
in the lower section of Figure 7. These roles are systemically connected, as indicated7.Systems 2018, 6, x  9 of 17 
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Figure 7. The basic structure and roles of disciplinary fields.

In practice, the fields are connected via common grounds, and this is indicated by the overlaps
shown in Figure 7. On inspection it becomes clear that this connection happens via shared principles,
as follows. The methods that underpin each field’s activities operationalize principles, which
(by definition) are guidelines for making judgements and taking action. Given how the phases
of a scientific endeavour follow on each other, it is clear that each phase rests on the achievements of
the preceding one. The natural way for this to work is for the detailed findings of one phase to be
distilled into principles that can be used to develop methods for the next phase. For example, from
the explanatory theories of the sciences we can distil “explanatory principles” that can not only be
used to help explain further empirical phenomena, but also be interpreted as “design principles” that
engineers can use for creating systems that will exhibit similar behaviours or qualities. In this way the
same principles can be referred to using different vocabularies but really represent the same thing.

We can illustrate this progression in the distillation and operationalization of shared principles as
shown in Figure 8. The indicated ways in which principles are referred to by differently specialised
disciplinarians are indicative only, and not intended to be exhaustive.

7 For brevity I will gloss over the distinction between methods and methodologies, and for simplicity I will for now ignore
the conceptual fields such as Mathematics and Logic. Moreover I will take the sciences to embrace the social and human
sciences in addition to the so-called “hard” sciences. For pragmatic reasons I will treat Practice as if it is an integrated field,
but of course in reality it is usually presented in academia as disciplinary extensions of specialized disciplines. Nevertheless
the practices do fall under common regulatory frameworks, and have similar roles. Likewise for brevity I will here use the
term “Philosophy” to refer only to branches of philosophy that adopt the scientific attitude as discussed earlier.
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Figure 8. The scientific development of principles across disciplinary fields.

Of course philosophy methods also depend on principles, and the existence of real-world solutions
can be translated into principles too, as also shown in Figure 8. These principles connect the disciplinary
endeavours with society, in which reflective agents uncover the concerns that motivate the whole
spectrum of scientific endeavours, and in which the delivered solutions resolve, ameliorate, or satisfice
the concerns. This connection is suggested via the dashed circle segment at each end of the sequence,
echoing the symbolism used in Figure 4.

Apart from the flow indicated by the solid arrows, it is important to realize that each field
inherits not only the principles resulting from the previous one but also the principles and methods
that produced that field’s output, so we get a cumulative build-up of principles and methods from
left to right. This development represents an ‘inheritance’ pathway, where everything becomes
increasingly scientific.

Of course there is also a developmental pathway that flows from right to left. This is the “diffusion”
pathway, where everything is driven by prior heuristics. In this case, heuristic methods are derived by
analysing and standardising pre-established practices derived from trial-and-error activities. Heuristic
principles are distilled from those methods, and the heuristics, in turn, can inspire extensions to the
methods in the previous field. In this way “folk wisdom” and practical experience can spread from
one field to another in the right-to-left direction.

It is important to recognize that this heuristic pathway is the historically dominant route, where
people try things out first, and only afterwards try to work out better ways to do things in order to
improve consistency or effectiveness or prevent common failures or negative unintended consequences.
Of course in practice the “scientific” and “heuristic” pathways operate interactively, creating feedback
loops as shown in Figure 9. For example, a heuristic design principle used in engineering could inspire
scientific investigations leading to new explanatory theories, yielding new explanatory principles that
can “upgrade” the previously heuristic design principle to a more scientific one (e.g., make it more
exact, or explain what limits its viable application range).

To illustrate how the causal flows in the diagram follow a loop via the connection with society we
can redraw the diagram as shown in Figure 10, with “Society” included as a field of human endeavour
that connects and motivates the fields of scientific endeavour. The subjects matters of the disciplines
only arise because of our capacities as sentient members of a society, and disciplinary activities only
have value insofar as they contribute to addressing issues relevant to members of our society.
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Figure 10. Interplay of pathways driving the emergence and evolution of principles across fields.

The “uncoiled” version of the diagram is easier to work with, so that is how I will continue to
present it, but it should be kept in mind that the ends should be taken as connected.

The diagram in Figure 11 provides a general architecture for the relationships between the
disciplinary fields, and this in turn provides a basic structure for developing a typology of the
principles that they depend on or produce. I will return to this further below. For now I want to
show how this general architecture of a disciplinary field can be used to frame an architecture for
systemology and its high-level typology.
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7. Connection to the Systems Perspective

Each of the mentioned disciplinary fields has a systems specialization, in which disciplinarians
engage with the systemic aspects of their subject matter. This is demarcated in Figure 11 as systems
philosophy, systems science, systems engineering and systems practice.

I did not add “system” adjectives inside the field-circles, in order to keep the diagram visually
simpler, but such adjectives should be taken as entailed by the title over each circle, so ‘inside’ each we
have, e.g., systems research principles, systems engineering activities, systemic real-world solutions,
and so on.

Taken together, the set of these systems fields form the transdiscipline called “systemology”.
The systems fields are connected via the systems principles, the types of which can be separated by
reference to the areas of overlap as shown. These have been color-coded in Figures 9–11 to provide
a visual cue for the typology structure to be presented next.

8. Types and Sub-Types of Principles

The types of principles indicated by the overlaps shown in Figure 11 can be subdivided according
to the nature of the concerns that each field dimension would attempt to address. This can be
expressed in terms of a systematic breakdown of their areas of interest. For example, scientific research
progressively investigates questions about:

i what things are like (how they look/behave, what they do);
ii how things work;
iii why they work as they do;
iv how they develop (come about as instances); and
v how they arise in evolutionary history (come about as kinds).

The research findings produced can be distilled into “explanatory principles” respectively
characterisable as:

i classification principles;
ii design principles;
iii optimality principles;
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iv developmental principles; and
v emergence/evolutionary principles.

Engineers can use these principles to develop methods for engineering design, and they would
respectively interpret them as:

i design conceptualization principles;
ii functional design principles;
iii design optimization principles;
iv manufacturing/production principles; and
v innovation principles.

All of the main types of principles can be analysed in this way to identify subtypes. The diagram
in Figure 12 provides a schema that does this in a provisional way for each of the scientific endeavour
stages, indicating the kinds of questions addressed in each stage and the kinds of principles that are
used in or result from pursuing them. Examples of systems principles are suggested in each case.
This example has not been refined or optimised, but is only given to demonstrate the potential of this
approach. In order to correlate the structure of the typology with the architecture given above the
main types of the principles have been coloured correspondingly.

The table reflects that there are four main types of principles, respectively giving guidance for
reflection, research, design, and intervention. Each type can be further subdivided into subtypes,
as illustrated, as reflecting principles for guidance regarding key questions to be asked in each kind of
activity. The sequence of these questions reflects what is effective for that kind of activity, and so may be
peculiar to each case. For example, the sequence of the research questions listed above is defended in [57].

For brevity and simplicity no general structure is given in Figure 12 for subdividing the principles,
the focus being rather on a natural sequence of questions for each type of activity. However, a general
structure can be suggested, although developing it in detail is beyond the scope of the present paper.
A short discussion of this can be given here, but for more detail please consult [58,59].
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Can we get rid of it? Dismantling Ps cut at the joints in the hierarchical structure

note:  for simplicity I here show input principles for reflection, output principles for research, input principles for design and input principles for intervention 

 Reflection  

 Research 

 Design  

 Intervention 

Figure 12. A typology for systems principles.
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Briefly, a general substructure is suggested by reflection on the variety of questions that could be
posed in each field or activity stage. This variety corresponds to the kinds of knowledge one could
wish to have about that (or indeed any) issue. The general case of this is represented by the general
structure of a worldview, which is discussed in [6,60]. If we employ this structure we can view any
particular problem as a special case of the general problem of knowing what there is, learning about it,
identifying relevant values, and motivating various actions. In this way the structure of a worldview
can provide us with a “checklist” if the kinds of questions we could ask in relation to any problem at
every project stage. A brief example of the structure of a worldview and the questions in play relative
to each worldview component is given in Table 1. Additionally, as shown in Table 1, is a matching
set of research questions suggested by the worldview questions. The same can be done for the other
fields/stages, as discussed elsewhere [58,59].

Table 1. The components of a worldview mapped to research questions.

Worldview Components Worldview Questions Research Questions
Ontology What exists? What is it? What is it like?

Metaphysics What is its nature? What does it do? How does it
work? What sustains/degrades it?

Epistemology What/How can we know? What can we (not) know about it?

Cosmology What is its origin/history/current
state/destiny?

How did it get here? How did it
get like this? What might happen
to it?

Axiology What is important and why? Why does it work this way?
Praxeology How should we live and why? How should we (not) study it?

The worldview perspective gives an additional dimension for classifying principles, one that is
applicable across all fields and project stages. In this way the principles in any field can be classified in
terms of being ontological, metaphysical, epistemological, cosmological, axiological, or praxeological.
This is, of course, an independent consideration from the distinctions identified previously. Overall this
suggests that to classify systems principles at least four typological dimensions need to be considered,
namely whether the principles are:

i Reflection, research, design, or intervention principles. This is the major division, but afterwards
they can be subdivided as needed into:

ii General or specialized principles;
iii Heuristic or scientific principles; and
iv Ontological, metaphysical, epistemological, cosmological, axiological, or praxeological principles.

With these distinctions in hand it is now possible to establish a systematic catalogue and status
assessment of systems principles and, hence, to prioritise research towards making them more
comprehensive and more scientific.

9. Conclusions

One way of addressing the challenge of complexity in systems engineering is to develop more
scientific principles for basing its methods on. In this paper, it is argued that improvement in systems
engineering’s methods depends on making the principles of systemology, of which systems engineering
is a part, more diverse and more scientific. An architecture for systemology is introduced, and this
shows how the principles of systemology arise from interdependent processes spanning multiple
fields. On this basis a typology is introduced, which can be used to classify systems principles (and
consequently the methods that operationalize them). This framework, consisting of an architecture
and a typology, can be used to survey and classify the principles and methods currently in use, map
vocabularies referring to them, identify key gaps, and expose opportunities for further development.
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It may, thus, serve as a tool for coordinating collaborative work towards advancing the scope and
depth of systemology.
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