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Abstract: In this paper, we present a hardware friendly binary decision tree (DT)
classifier for gas identification. The DT classifier is based on an axis-parallel decision tree
implemented as threshold networks—one layer of threshold logic units (TLUs) followed by a
programmable binary tree implemented using combinational logic circuits. The proposed DT
classifier circuit removes the need for multiplication operation enabling up to 80% savings
in terms of silicon area and power compared to oblique based-DT while achieving 91.36%
classification accuracy without throughput degradation. The circuit was designed in 0.18 µm

Charter CMOS process and tested using a data set acquired with in-house fabricated tin-oxide
gas sensors.
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1. Introduction

The last decade has witnessed an increasing interest in gas identification based on gas sensor
arrays and pattern analysis for machine olfaction applications [1]. The multivariate response of
an integrated gas sensor array can be used as a signature to detect and identify a wide range of
odors. Conventional gas identification processing would typically involve signal pre-processing,
feature extraction (dimensionality reduction) and classification [1]. Such processing is not well
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geared towards low cost compact hardware implementation because of the relative complexity involved
in feature extraction methods such as principal component analysis (PCA) and linear discriminate
analysis (LDA) and pattern recognition algorithms such as artificial neural networks (ANN), K
nearest neighbor (KNN) and support vector machines (SVM) [2]. Furthermore, various classification
algorithms such as ANN and SVM require large amounts of memory to store various coefficients
and complex non-linear computations. Efficient hardware realization of gas identification algorithms
would enable the integration of processing circuitry together with the sensor array. The fully integrated
electronic-nose-on-chip has the potential to offer significant advantages in terms of reduced power
consumption, lower manufacturing cost and increased portability for hand-held applications. A decision
tree (DT) [3] based classifier offers a number of advantages such as smaller number of coefficients
for storage and linear computation, making it a viable candidate for on-chip integration . Previously
reported hardware implementations of DTs include: not only FPGA implementations [4] but also silicon
integrations [5,6]. Only the two latter works target gas identification. Both implemented binary oblique
DTs using a combination of custom VLSI chip and complex programmable logic device (CPLD) chip.
This paper presents a compact single-chip DT classifier based on an axis-parallel DT architecture, which
completely removes the need for multiplication operations. To achieve high throughput, the DT classifier
is implemented as a layer of threshold logic units followed by a layer of combinational logic units [6].
Compared with prior works including non-DT hardware implementations [7,8], this approach provides
a good trade-off between implementation complexity and classification accuracy.

The paper is organized as follows. Section 2 introduces binary decision tree classifiers and examines
prior hardware implementations. Section 3 describes the proposed axis-parallel DT architecture and
silicon implementation. Experimental results and performance evaluation are discussed in Section 4.
Finally, a conclusion is given in Section 5.

2. Binary Decision Tree Classifiers

2.1. Overview

Decision tree is a classification model where the target function is represented by a sequence of queries
based on the attributes of input test patterns. The sequence of queries is reflected in a tree structure with
finite depth. The classification of a particular pattern begins at the root decision node and terminates
in the leaf node where a single class label is specified as the classification result. Each decision node
contains different tests involving one or more attributes of the test patterns. Depending on the output of
the decision node, only one branch of the decision node is selected and the child (descendent) node is
visited. This process is repeated until a leaf is reached.

Figure 1(a) depicts a binary decision tree diagram with 4 decision nodes A, B, C, D and three classes
F1, F2, F3. In a given node, a function can be represented in the following general format:

f(A1, A2, A3, ..., An) = 0 (1)
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where f is a function of n attributes (A1, A2, A3,...,An). Depending on the value of function f , either the
left or right branch of the node is activated. If only one attribute Ai is considered in one node, we can
simplify the function as

f = Ai + wi (2)

where wi is the threshold value of the attribute Ai. This function corresponds to the case of axis-parallel
DTs (see e.g., ID3 [9] and C4.5 [10] or J48 in Weka [11]). On the other hand, oblique DTs (OC1 [12])
are represented by the following function

f =
n∑

i=1

wi × Ai + wn+1 (3)

where wi represents the weight value of the attribute of Ai and wn+1 is the threshold value of
the function f .

While quadratic polynomial nonlinear DTs correspond to the function

f2nd = (
n∑

i=1

wi × Ai + wn+1) × (
n∑

j=1

w
′

j × Aj + w
′

n+1)

=
n∑

i=1

n∑
j=i

Wi,j × Ai × Aj +
n∑

i=1

Wi × Ai + W (4)

where either Ai or Aj refers to a single attribute and the new weight Wi,j = wi × w
′
j + w

′
i × wj;

Wi = wn+1 × wi + w
′
n+1 × wn+1 and the new threshold W = wn+1 × w

′
n+1.

Figure 1 depicts the three commonly used decision tree classification methods for the three-category
problem. The two coordinate axes represent the two attributes A1 and A2 of test patterns. The decision
boundaries of different decision tree methods have their own properties. For axis-parallel DTs, partition
lines are parallel with the attribute axes. For oblique DTs, partition lines are oblique straight lines and
the decision boundaries are curves for nonlinear DTs.

The three aforementioned DT classifiers are actually intimately related. For example, Equation (4)
can be embedded into Equation (3) by introducing a new set of attributes corresponding to the products
Ami

i × A
mj

j , with mi < 2 and mj < 2. Nonlinear DTs with polynomial hypersurfaces can be regarded
as oblique DTs in the higher-dimension attribute space. In addition, axis-parallel DT can be treated as
a special oblique tree where the weights for all attributes are zeros except for a single attribute whose
weight is 1.

Nonlinear DTs are more complex than the other two types of DTs. Oblique DTs are normally much
smaller than axis-parallel DTs due to their flexibility at each decision node. However, finding the best
oblique DT is an NP-complete problem [12].
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Figure 1. (a) DT diagram of depth 3; (b) Axis-parallel DT classification method; (c) Oblique
DT classification method; (d) Nonlinear DT classification method.

2.2. Hardware Considerations

A straightforward approach to the hardware implementation of DTs would be to implement every DT
node as a separate module as proposed in [13]. The idea is illustrated [Figure 2(a)] for the case of the
DT diagram of Figure 1(a). The disadvantage of this approach is large latency, due to the fact that a new
test pattern cannot be fed into the module before the classification output has propagated. To overcome
the large latency problem, a universal node DT architecture [Figure 2(b)], using registers to pipeline
each stage, was proposed in [14]. Although it reduces hardware cost by folding each level, it exhibits a
relatively low throughput as a result of serial processing [13,14].

A second approach [6] to the hardware implementation of DTs is based on the equivalence between
DTs and threshold networks [15]. It exhibits a relatively high throughput since the signals need only
to propagate through the threshold unit and the combinational logic layers. In the threshold network
architecture [Figure 2(d)], each decision node is implemented as a processing element in the threshold
unit layer. Each element of the output layer is adopted to obtain the class-belonging according to the
Boolean function. Obviously, this architecture requires more hardware resources to process the decision
node, in parallel, and achieves higher classification speed.

In this paper, we propose to explore axis-parallel DT based classifiers, to remove the need for
multiplication operations and enable a low cost compact implementation with a classification accuracy
comparable to prior works [6]. OC1 tool is used to find the possibly optimal weight values by using a
randomized algorithm with simulated annealing or heuristics methods [12].
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Figure 2. Reported DT hardware implementations with: (a) representing a decision tree
implemented on FPGA; (b) and (c) representing a decision tree implemented on an IP core;
(d) representing a network ensemble of decision trees implemented using a 3D chip.

3. Proposed DT Classifier Implementation

The proposed DT classifier illustrated in Figure 3 comprises two types of building blocks—threshold
logic units and programmable logic units. In Figure 3, each of the processing elements (PE) represents
a threshold logic unit (TLU). The programmable logic unit (PLU) is implemented using a compact
tree-based logic circuit. The control unit generates the synchronous control signals for both processing
elements and programmable logic units.

There are 9 processing elements in the TLU layer and 3 programmable logic blocks using the
tree structure. Each processing element is here a pipelined digital comparator (subtracter). Each
programmable logic is configured for a given gas identification task. To minimize the area cost and
avoid input and output port limitation, we chose a bit-serial architecture to process elements. The digital
weight precision is important for classification performance. Research works in [6] suggests that 10 bit
precision achieves the required accuracy for data quantization. In our design, the control block generates
the data control signals and synchronizes the two layer building blocks. For one operation, 10-bit data
are serially fed into the first layer and the valid signals are transported to the following layer once every
11 clock cycles.
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Figure 3. Two layer neural network architecture to implement the axis-parallel DT classifier.
The first layer is the TLU layer to implement the decision node function. The second layer
is the PLU layer to implement the logic function for each class.

3.1. Threshold Logic Unit

For an oblique DT architecture, each node requires to realize the function given by Equation (3).
The sum of the weighted feature is compared with a stored threshold value wn+1 to make the decision
on the node. With the increase of the number of attributes n, hardware resources increase linearly.
By using pipelining and folding techniques, hardware resources can be minimized but throughput
decreases linearly.

In the proposed axis-parallel DT architecture (Figure 4), each node generates the function given by
Equation (2). The latter only requires a single digital comparator in place of the multiplication and
accumulation (MAC) circuits. The processing element associated to each DT node is thus simplified
significantly.

However due to the same classification problem, the built tree’s node number and tree’s depth are
typically much larger than that of the oblique DT structure.

3.2. Programmable Logic Unit

In prior works [5], a full custom chip was designed to implement the TLU layer for the oblique
decision tree algorithm while AND-OR array-based combinational logic in CPLD was used to implement
the output layer of the classifier. In this paper, we propose to design a tree-structure combinational logic
circuit to replace the AND-OR array-based combinational logic circuit.

As shown in Figure 5, our proposed circuit for tree-based programmable logic circuit includes four
parts: (i) a dynamic current mode tree-based decoder, (ii) two lines of transistor switches to enable
programmability, (iii) a differential dynamic comparator to amplify the low-swing signal and (iv) latches
in the input and output stages to synchronize the data with the TLU layer.
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Figure 4. The processing element of the axis-parallel decision tree. The processing element
includes 10-bit register to store the coefficients, 3 1-bit registers for pipelining, one 1-bit
adder with an invertor for the substraction operation and one tri-state buffer for controlling
the output data. Sin and Sout represent the input and output ports of the serial 10-bit
shift register.

Figure 5. Overview of the proposed tree-based programmable logic circuit.

Figure 6 shows the stacked transistor tree circuit. This tree-based structure is the same as the DT
diagram whereby only one branch will be turned on from the root to the leaf. There are two lines
of switches that group all the stacked paths to differential outputs similarly to current based logic
circuits [16]. To avoid static current consumption, the current source is controlled and the resistive
load [16] is replaced by the parasitic capacitance. The operational principle is as follows. Firstly, the
two lines of switches are configured according to the values stored in the registers. The stable input data
come from the input latches. When reset is high, the differential outputs of the stacked transistor are
pulled down to 0 (low). When reset is low and tree enable is high, one of the differential outputs is
conditionally charged.
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Figure 6. The stacked transistor tree circuit. The FF line represents a line of registers to
control the P0, P1, P2, P3 values and determine the differential outputs (out and ¯out) values.

The comparator used in our proposed circuit is illustrated in Figure 7. Because the accuracy of the
comparator plays a critical role in the proposed circuit, transistors Ms1 and Ms2 are included to avoid
hysteresis or delayed response in the resetting phase. The operational principle is as follows. When the
clock is high, the comparator is operated in the resetting mode and both outputs (out and ¯out) are pulled
to 0 (low) and the bias transistor Mb is turned off to avoid the static current. On the other hand, when the
clock is low, the circuit will execute the comparison of differential inputs. The outputs of the comparator
will be buffered and latched to the next stage.

Figure 7. The dynamic comparator circuit with no static current consumption. Two
operation phases: (i) the reset phase; (ii) the comparison phase.

Figure 8 shows the timing waveform of our proposed circuit. The circuit is synchronous with the
front-end TLU, whose data is serially processed and the valid signals appearing once every 11 clock
cycles. The latches are used between the TLU and the programmable circuit to maintain the signals.
There are four control signals in our circuit, which are generated by a synchronous control block.
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Latch en signal is used to activate the latches when the output signals from TLU are valid. Next,
the reset signal turns on the two reset transistors to discharge both differential buses of stacked tree and
make them equal. After that, the root transistor turns on when Tree enable = 1, the current flows from
one specified path and charges one bus. Next, SA enable activates the sense amplifier to amplify the
low-swing signal. The latches in the output stage store the correct data for the next stage.

Figure 8. Timing diagram of the proposed programmable circuit with the four control signals
Latch enable, reset, tree enable and SA enable.

4. Results

4.1. Experiment Setup

Figure 9 shows the experimental equipment used to acquire the data from our in-house fabricated
tin-oxide gas sensor array. The gas delivery system includes four mass flow controllers (MFC), three of
which are for the target gases and one for dry air. The gas sensor array was placed into a gas chamber,
in which the gas concentration is adjusted by selecting the correct flow rate. Voltages across the sensors
are measured and stored in the data acquisition board. This data was used to evaluate the performance
of the proposed VLSI friendly DT classifier.

Figure 10 shows an example of measured voltage response across a gas sensor. A test gas with a
fixed concentration is injected periodically and the injection phase is followed by a cleaning phase by
injecting fresh dry air. After the cleaning phase, the signal will settle down at the baseline value which
is the reference value before gas injection. When the test gas is injected into the chamber, the voltage
across the sensor changes as a result of variations in its conductivity. After several minutes of gas
injection, the sensor output is sampled for concentrations ranging from 20 ppm to 200 ppm. CO, H2 and
Ethanol are chosen as the test gases. Figure 10 shows the response of a gas sensor array comprising
12 individual tin oxide gas sensors fabricated in our design house. The overlapping curves of different
gas sensors illustrate the low selectivity and non-linearity of the gas sensor array response, which adds
to the complexity of the gas classification problem.
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Figure 9. Experiment setup for gas identification.

Figure 10. Example of response of the gas sensor array.

4.2. Classification Performance

Principal component analysis (PCA) is often used to pre-process the initial data and decrease the
dimensions of the feature vector [8]. Figure 11 shows the PCA pre-processing of the gas sensor array
multivariate response for the case with two principal components—PC1 and PC2. In this section,
we compare the performance of the proposed binary decision tree classifier with and without PCA
pre-processing. 12 gas sensors are selected to build the sensor test vector. The dimensions of test
vectors are reduced to 2, 3 and 4 by using PCA program implemented in MATLAB. Both original and
PCA pre-processed data were fed into the OC1 software tool to build the axis-parallel decision tree and
the oblique decision tree for gas classification. Table 1 shows classification performance and hardware
complexity using the axis-parallel decision tree and the oblique decision tree classifiers with different
number of principal components (PC) and without PCA, respectively.
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Figure 11. PCA pre-processing of the gas sensor array multivariate response.

 

Table 1. Hardware cost and classification accuracy comparison for 3 gases (CO, H2 and
Ethanol) with a total of 600 data-sets for 10 different concentrations ranging from 20 ppm
to 200 ppm.

PC No. DT Type Accuracy Leaves Node Mul Add/Sub Memory (No. of Coefficients)
2 axis-parallel 88.33% 13 12 0 12 12
2 oblique 89.24% 9 8 16 16 24
3 axis-parallel 92.73% 10 9 0 9 9
3 oblique 90.30% 5 4 12 12 16
4 axis-parallel 99.55% 7 6 0 6 6
4 oblique 94.55% 3 2 8 8 10

no PCA axis-parallel 91.36% 10 9 0 9 9
no PCA oblique 92.58% 6 5 60 60 65

According to our simulation results, both decision tree based classifiers benefit from the PCA
algorithm. In particular, oblique decision tree hardware complexity can be significantly decreased by
reducing the number of attributes in the test vector by using the PCA. However, PCA requires more
hardware resources such as matrix multiplications. For example, if we want to select m principal
components from n attributes, the PCA computation includes m × n multiplications and m × (n − 1)

additions. From Table 1, one can note that with the increase of the number of principal components,
the accuracy of the classifier increases. However, the requirements for hardware resources also increase.
The axis-parallel decision tree classifier requires less computational units and memory bits compared to
the oblique decision tree classifier. The trade-off between computational units and memory bits suggests
that axis-parallel decision tree is a better choice for gas identification applications.
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4.3. VLSI Implementation

The proposed classifier was designed using Charter 0.18 µm CMOS process. The TLUs and the
control unit were modeled using verilog HDL and synthesized using Design Compiler. The generated
netlist was fed into SOC Encounter and the layout was generated through auto placement and routing
using the standard digital cell library. The tree-structure programmable unit was designed in full-custom
using Cadence tools. Figure 12 shows the layout of the complete classifier.

Figure 12. Layout of the classifier and interface circuits. Note that the PLUs are full-custom
designs whereas the TLUs are designed using standard cells.

Table 2 compares the synthesized performance of oblique DT’s Front-end TLU blocks together with
our designed TLU blocks. Compared with prior art, this work significantly improves the hardware
implementation cost in terms of power consumption, delay and silicon area as illustrated in Table 2.

Table 2. Performance of Front-end TLU blocks using Design Compiler(DC).

DT Process clk Delay Power Area
Type (ns) (ns) (mW) (103 µm2)

Reference [6] oblique 0.18 µm 5 1.61 25 100
This work axis-parallel 0.18 µm 5 0.9 3.1 8.9

Table 3 summarizes the overall performance in terms of hardware implementation cost and detection
rate. To compare with previously reported FPGA implementation of gas classifiers [8], we also
synthesized our classifier model using the same Xilinx Virtex II FPGA chip. According to our simulation
results, our proposed axis-parallel DT classifier saves more than 90% FPGA resources compared with
the committee machine method reported in [8]. It also saves up to almost 80% resources compared
with the oblique DT classifier. Our proposed classifier only consumes 3.1 mW at a clock frequency of
100 MHz.
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Table 3. Gas classification performance comparison.

Classification GMM Committee Oblique DT This Work
Method [7] Machine [8] [6] (Axis-Parallel DT)

Sensor type 2 × 2 2 × 2 4 × 4 4 × 4
SnO2 array SnO2 array SnO2 array SnO2 array

Target gas CH4,CO,H2, CH4,CO,H2, Ethanol, Ethanol,
species CO–CH4, CO–CH4, CO, CO,

CO–H2 CO–H2 H2 H2

Detection rate 92% 94% 92.58% 91.36%
FPGA Implementation

No. of Slice FF N/A 12146 1176 233
No. of 4-LUT N/A 20115 1269 160

ASIC Implementation
process 0.25 µm N/A 0.18 µm 0.18 µm

Area 1.69 mm2 N/A 0.1 mm2 0.028 mm2

Power N/A 500 mW 25 mW 3.1 mW

5. Conclusions

In this paper, a low-power single-chip binary decision tree based classifier is proposed for gas
identification applications. The classifier circuit uses an axis-parallel architecture to remove the need for
multiplication operations and enables a low cost compact implementation with a classification accuracy
comparable to prior art. Without PCA pre-processing, the proposed classifier can still achieve 91.36%
classification accuracy without throughput degradation while saving up to 80% silicon area and power
consumption. The performance of the circuit can easily be enhanced by using Boosting or Bagging
techniques [6], but this would result in larger silicon area since a larger number of processing nodes will
be required. The classifier circuit was successfully validated using 0.18 µm Charter CMOS process and
in-house fabricated tin-oxide gas sensor array.
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