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Abstract: This paper presents a novel SRAM-based architecture of a data structure that represents a
set of multiple priority queues that can be implemented in FPGA or ASIC. The proposed architecture
is based on shift registers, systolic arrays and SRAM memories. Such architecture, called MultiQueue,
is optimized for minimum chip area costs, which leads to lower energy consumption too. The
MultiQueue architecture has constant time complexity, constant critical path length and constant
latency. Therefore, it is highly predictable and very suitable for real-time systems too. The proposed
architecture was verified using a simplified version of UVM and applying millions of instructions with
randomly generated input values. Achieved FPGA synthesis results are presented and discussed.
These results show significant savings in FPGA Look-Up Tables consumption in comparison to
existing solutions. More than 63% of Look-Up Tables can be saved using the MultiQueue architecture
instead of the existing priority queues.

Keywords: priority queue; architecture; efficiency; FPGA; SRAM; data sorting; MultiQueue

1. Introduction and Motivation

Priority queues (also known as min/max queues) are more popular for their imple-
mentation in software. Despite software implementations often being sufficient for many
applications, in some cases it is necessary to either sort/queue more data at a faster rate or
guarantee a constant response time. Real-time systems and cyber-physical systems demand
constant response times and high throughput. Real-time systems are a type of embedded
system that involves real-time interaction with the environment. Despite the highest pos-
sible performance of a controller for real-time tasks, there is still no guarantee that these
tasks will always succeed. A real-time task’s success depends not just on the computation
result, but also on its completion time. Therefore, a dedicated hardware-accelerated design
of the needed real-time functionality is typically needed for real-time systems. The constant
latency of all operations in the system, including data sorting and priority queues, is very
important for more deterministic and reliable scheduling in hard real-time systems. In
such cases, software implementations of data sorting and priority queues cannot operate in
constant time with respect to the amount of data to be sorted. An alternative to software
implementation is hardware acceleration, which is accomplished by building the priority
queues and data sorting into an integrated circuit (e.g., ASIC or FPGA) [1,2].

In the past, several hardware architectures have been developed for data sorting or
prioritizing information, but they are largely limited by their logical resources; especially
when multiple such priority queues are required, they may have overly high chip area
costs in ASIC and high LUTs consumption in FPGA technologies [2–13].

The priority queues are needed for many various reasons in many various applications.
One popular usage is task scheduling in operating systems, especially implementation
of EDF algorithm and priority-based scheduling [1–3,10–19]. Another popular usage of
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priority queues accelerated by hardware (i.e., implemented in ASIC/FPGA) is in the domain
of networking, mainly packet scheduling and switching [5–8]. Priority queues are very
popular in CPU designs too, they are needed for instruction scheduling within out-of-order
execution logic [20] or in memory management units [21] too. Another possible application
of priority queues is for accelerated solutions of graph theory problems, e.g., for Dijkstra’s
algorithm or others [22–28]. Priority queues are also used intensively in network devices
such as Ethernet switches designed for distributed real-time systems [29,30].

This paper is focused on efficiency analysis and comparison of existing priority queue
architectures implemented in FPGA as well as proposing a new architecture, with a goal
to reduce the amount of logic resources needed to implement several priority queues.
The main goal is to design a new architecture for implementation of multiple priority
queues with reduced resource costs, while maintaining the same performance and constant
response time of the queues as long as only one priority queue needs to be accessed at a
time. This new hardware architecture, called MultiQueue, is proposed and a comparison
with other existing architectures is presented in this paper.

This paper uses the following structure. Section 2 provides a detailed description
of all requirements for priority queues implemented in hardware. In Section 3, existing
solutions of priority queues are described. The novel MultiQueue architecture is presented
in Section 4. Section 5 contains a design verification of the proposed solution as well as
existing solutions, which was achieved by simulations in simulator. In Section 6, FPGA
synthesis results are presented and compared. The last section summarizes the achieved
research results.

This paper is based on our previous work published in DSD 2018 [17], with
substantial extensions.

2. Priority Queue Requirements

Research presented in this paper is focused on priority queues performing data sorting
in real-time systems, i.e., queues that prioritize top-priority items. This means that the goal
is to create either a min queue or max queue that maintains items by sorting them.

Priority queue is a data structure that can store and sort some data that are called items.
Each item consists of three parts: SORT_DATA, ID and VALID. The SORT_DATA represents
the value that is used to sort the items in the queue. Output of min queue should be the
item with the minimum SORT_DATA value. Output of max queue should be the item with
the maximum SORT_DATA value. The ID represents either a unique identification number
of the item or payload data that are relevant to the application, but not relevant for the
sorting within the priority queue. The payload has no impact on the sorting decisions.
This value can also serve as a pointer/address to memory. The VALID part is a 1-bit value
indicating whether the item is valid or empty. Logic 1 means that the item is valid. Logic 0
means that the item is invalid, i.e., the given part of the queue is empty. If the output of
the queue is not valid, then this means that the whole queue is empty. The VALID field is
optional, as it can be implicitly hidden in SORT_DATA or ID, which can use a special value
for invalid/empty entries.

The operation of the priority queue is controlled by providing instructions to the
interface of the queue. Priority queues are expected to support at least two basic operations:
ability to insert a new item into priority queue according to item priority/sorting value
(instruction INSERT), and ability to remove an existing item from priority queue (instruction
REMOVE). Apart from that, it is expected that there are clock cycles when neither of
these operations are used. Therefore, an instruction NOP is needed too. Furthermore,
if the priority queue is used very intensively (i.e., if high throughput is required), then
it is beneficial if the priority queue supports simultaneous (parallel) execution of both
operations, item insertion and item removal—we call this instruction INSREM. Table 1
shows the list of instructions that are usually provided by priority queues.



J. Low Power Electron. Appl. 2022, 12, 39 3 of 14

Table 1. Priority queue instructions.

Name Opcode Description

NOP 00
It is used to keep the accelerator idle. There is no
operation performed. The queue output remains
unchanged. This instruction is required.

INSERT 01

An item is added to the priority queue. It is inserted in
a way that maintains the items in the queue sorted.
This ensures that the item with the lowest/highest
SORT_DATA value remains as the item that is
retrieved from the priority queue. This instruction is
required.

REMOVE 10

Among the items in the queue, one item is removed
according to item ID. The remaining items are
rearranged so that the top priority item is the output
of the queue. This instruction is required.

INSREM 11

One item is removed from the queue and
simultaneously, one item is inserted into the queue.
This is a combination of INSERT and REMOVE
instructions. This feature is not required, but optional.
In other words, this serves just as an optimization of
performance of the priority queue so that both INSERT
and REMOVE can be performed in parallel.

Priority queues typically have some parameters defined too. These parameters can be
set in the RTL code before compilation and synthesis of the design:

• MAX—a 1-bit value indicating whether a queue is the minimum queue or the maxi-
mum queue.

• SD_W—this specifies how many bits are used for SORT_DATA representation, which
is determined by the range of values to be sorted, for example if SD_W = 10, then the
range is 1024 possible values.

• ID_W—an integer number defining the width of ID values. This indicates how many
bits should be used to represent an ID value.

• SIGNED—indicates whether the SORT_DATA values are signed or unsigned.
• CAPACITY—the maximum number of items that can be accommodated in a priority

queue, i.e., the capacity of one priority queue.

The most important design attributes of HW-accelerated priority queue (i.e., imple-
mented in ASIC or FPGA instead of software) are the following:

• Constant response time—time interval between the start of instruction and the up-
dated output of priority queue. Constant time complexity is required, which means
all instructions must provide output in a constant number of clock cycles. By constant
response time, we mean that the clock cycles number does not change regardless of
how many items are currently stored in the queue and regardless of queue capacity.
Constant response times contribute to better overall predictability and determinism of
the whole real-time system [1].

• High throughput. Based on the clock frequency multiplied by the number of clock
cycles required to use one instruction, this attribute is determined. Within the same
clock domain, clock frequency is dependent on critical path lengths of the accelerator
as well as critical paths of other components of the system. No substantial advantage
can be gained from achieving a significantly shorter critical path length of the priority
queue than the rest of the clock domain, but the critical path of the priority queue
should not be longer than the rest of the clock domain either. Using priority queue
instructions should take as low a number of clock cycles as possible—the lower,
the better.
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• Low area and energy cost. The implementation technology determines this attribute.
FPGAs are evaluated by the number of logic resources (e.g., LUTs, registers and RAM
bits) based on their device selection. ASICs are evaluated by the number of transistors
or by the dimensions of the manufactured chip.

If these parameters are applied at their minimum values, the attributes listed above
can be efficiently optimized (depending on the application requirements): ID_W, SD_W
and CAPACITY. Furthermore, these attributes are highly influenced by the priority queue
architecture. The goal of this study is therefore to reduce resource costs by developing even
more efficient architecture than the existing architectures.

3. Related Work

Many architectures exist for sorting data in priority queues while keeping instruction
response times constant. FIFO with MUX Trees [2,3], Shift Registers [4,5], DP RAM Heap-
sort [6], Systolic Array [8,9], Rocket Queue [16], and Heap Queue [17] are among the most
popular architectures.

In the FIFO approach, the complexity of the MUX Tree part contributes to inefficiency
due to a long critical path when higher capacity is selected. It also takes up an excessive
amount of chip area when high capacity is selected [2,3].

A more efficient approach than the previous one is the Shift Registers architecture,
but there is still a problem with the critical path length. Each cell in the Shift Registers
architecture consists of a comparator, control logic and a set of registers for storing one item.
In the queue, all cells receive the same instructions simultaneously from the input (they are
connected within the same line), so they can exchange items with their neighbors. Since an
increasing number of cells in the queue leads to a longer critical path, this architecture is only
suitable for small capacities due to the wide bus width that is available for simultaneously
sending instructions to all cells, and because of the exchange of control signals between
them. Figure 1 illustrates a four-cell example of Shift Registers architecture.
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Figure 1. Shift Registers architecture [4,5].

In DP RAM Heapsort, items are stored within a dual-port RAM, which makes it
a relatively efficient sorting architecture. In spite of this, it is not possible to perform
INSERT or POP instructions separately. This architecture can only handle POP and INSERT
instructions together, and for this reason, it cannot be used to implement priority queues [6].

A Systolic Array is similar to Shift Registers, except that the critical path problem is
solved with the use of pipelining. It consists of homogeneous cells that are interconnected
within one line. Except for the first and the last cells in the queue, each cell is neighbored by
another cell to the left and to the right. The first cell is the only one to supply its output to
the output of the whole queue and to receive instructions from the input. In the same way
that instructions are propagated through pipeline stages of pipelined CPUs, instructions
are gradually propagated from the first cell to the last cell (one cell at a time). While Shift
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Registers architecture applies instruction to all cells in parallel via shared bus, the Systolic
Array architecture gives the instruction to move sequentially, from the first cell to the last
cell, at a speed of one cell per clock cycle. Even though this sequential processing might
sound like a performance drawback, the instructions can be pipelined, maintaining high
throughput. Since the output of this priority queue is obtained from the first cell, this
output is updated already at the first cycle of instruction, providing the same instruction
latency as Shift Registers architecture (one clock cycle) [8,9].

Figure 2 illustrates the Systolic Array architecture with four cells. The first cell from
the right is the first cell in the queue, also serving as an external interface. Only clock and
reset signals are propagated in parallel [8,9].
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Figure 2. Systolic Array architecture [8,9].

In the Systolic Array, each cell represents a pipeline stage, including the pipeline
register. A single instruction propagates through the whole structure in N clock cycles,
where N refers to the total number of cells. Pipelining has the effect of executing different
instructions simultaneously in each cell due to its design. To read an updated output of the
queue, it takes only two clock cycles (one clock cycle to update the first cell and one clock
cycle to read from the updated cell) since the output of the queue is already updated at the
beginning. In this architecture, a new instruction can be added to the priority queue every
two clock cycles, which means the instruction response time for this architecture is always
two [8,9].

A newer hardware architecture of a priority queue, the Rocket Queue, is presented
in [16]. Using the Rocket Queue architecture instead of the Systolic Array architecture can
save over 41% of logic resources.

Rocket Queue is an inherited architecture that evolves from Systolic Array and DP
RAM Heapsort. Rocket Queue consists of levels, which have two types: duplicating and
merged levels. Figure 3 illustrates the Rocket Queue architecture using 11 merged levels
and 3 duplicate levels. It is possible to increase the number of duplicating levels, but more
than five duplicating levels are not recommended because the critical path would become
too long [16].
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Comparator logic consumes a large amount of resources in the queues. Instead of
using one comparator per cell (per item), Rocket Queue uses a single common comparator
for all cells within a level instead. So the Rocket Queue architecture has fewer resource
costs due to the number of comparators being determined by the number of levels, not the
number of cells [16].

As another priority queue architecture, Heap Queue can also be considered. Figure 4
shows that Heap Queue is layered into levels, in a manner similar to Rocket Queue. Each
level consists of a Control Unit (CU) and a different number of Item Storage blocks (IS). In
total, the IS can be used to preserve one item and one number, which is used to maintain
tree balance. Each successive level contains twice as many IS blocks as the previous one.
In the first three levels, IS blocks are implemented using registers due to the small size
of these memories. In all other levels, IS blocks are implemented using Dual-Port RAM
memories, which are much more area-efficient. As an interface for the whole queue, the
Control Unit of the first level provides its item as an output, which represents the item with
the top priority among all items in the queue [17].
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Every priority queue architecture has some advantages and disadvantages. The Shift
Registers architecture is the simplest, but the frequency does not scale well with increasing
numbers of items. Systolic Array solves the timing problem of Shift Registers by adding
pipeline registers into the design, making this architecture the most expensive in terms of
logic resources or chip area. Although Rocket Queue consumes fewer resources than the
previous two architectures, it is also relatively complicated to implement and also needs
to use true dual-port SRAM memories. When a large number of items must be held in
the queue, the Heap Queue architecture is the most resource-efficient to implement. On
the other hand, the Heap Queue is able to remove only the top-priority item from the
queue, not any item based on item ID, which is often required from many applications.
These priority queues are all highly efficient in terms of performance, requiring one or
two clock cycles per instruction, regardless of the current number of items in the queue or
even capacity of the queue [16,17].
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4. Proposed MultiQueue

We propose a new architecture, called MultiQueue, which can be used for implemen-
tation of multiple priority queues. This architecture is based on existing architectures, Shift
Registers and Systolic Array. The items within the queues are stored in SRAM memory
instead of registers. The main idea behind MultiQueue architecture is that all combinational
logic that is used in Shift Registers and Systolic Array is shared for multiple queues under
a condition that only one queue is accessed with an instruction at a time. This way, the
combinational logic is used for one queue only. All other queues are idle and do not need
the combinational logic. Thanks to the sharing of combinational logic for multiple queues,
a significant amount of logic can be saved, which should lead to significant chip area and
energy savings.

Figure 5 represents a standard approach for implementation of multiple priority
queues, where N individual priority queues are instantiated and multiplexed. This is
a typical way to provide a sufficient number of priority queues depending on system
requirements. Each priority queue works independently from the other queues and any
architecture for implementation of the priority queues can be used, e.g., Shift Registers
or Systolic Array, where one register represents data storage for one item, the same as in
Figures 1 and 2. The MUX displayed in Figure 5 is used to select one of the priority queues
for actual usage, be it an insertion of a new item into one of the queues, removal of item
from one queue or reading the output of one queue. The selection criterion depends on
application needs/requirements.
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The problem of the above mentioned approach is that the combinational logic of
the priority queues is wasted because only one priority queue is used at a time, leaving
the rest of the queues unused. In order to avoid this waste of resources, we propose a
new architecture—MultiQueue, which minimizes the amount of combinational logic by
sharing the same logic for multiple queues within the same column/register number. This
architecture is displayed in Figure 6. In this example, there are N priority queues, each with
a capacity of five items (cells 0 to 4). The MultiQueue architecture uses SRAM memories
instead of registers. While the standard approach with multiple priority queues needs M
registers for each queue, where M is the priority queue capacity, the proposed MultiQueue
uses M SRAM memories instead. Each SRAM memory is used for one column, i.e., for
a capacity of one item for all priority queues. Each column is controlled by one Sorting
Cell module. The logic of these Sorting Cell modules is almost identical to Systolic Array
Cells, except for the usage of SRAM for storing items (via standard single-port SRAM
interface) instead of using a register inside the cell. Additionally, apart from Systolic Array
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architecture, where the instruction is executed in one cell per clock cycle, the MultiQueue
architecture is able to process the instruction in multiple cells in parallel (the same way
as in Shift Registers architecture) per clock cycle. This number of cells per clock cycle is a
parameter that can be set according to critical path and clock frequency requirements—to
avoid negative slack time in Static Timing Analysis (STA) on one hand but to maximize
the number of cells used in parallel on the other hand, which minimizes the amount of
pipeline registers. The SRAM memories must have the memory depth set to the number,
which is equal to the number of priority queues (i.e., SRAM depth = N, where N is the
number of priority queues in MultiQueue).
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The total amount of registers in the original approach is N. M (i.e., number of priority
queues multiplied by the capacity of one queue). The proposed MultiQueue contains M
SRAM memories, each with depth of N. Since SRAM memories are usually implemented
as memories with depth set as a power of 2, the MultiQueue architecture can be used for
systems with 16, 32, 64, etc. priority queues only. This is the main disadvantage of the
proposed solution. Additionally, we assumed that all priority queues have the same queue
capacity, which might not be true for some applications. In that case, the priority queue
with the highest queue capacity defines the number of SRAM memories in MultiQueue,
leading to suboptimal solutions. If the priority queues are supposed to be very long, this
means that a number of SRAM memories will be needed. These SRAMs are, however,
still much less expensive than the number of registers (and LUTs) that are needed for the
ordinary/original approach without SRAMs.

For each register of the original priority queues, there is one single-port SRAM memory
used instead. The depth of each SRAM memory depends on the number of priority queues
the MultiQueue is supposed to represent. The SRAM address value depends on the number
of priority queues that are supposed to be used for the given instruction. This way, the
MultiQueue needs an amount of combination logic of one priority queue only, not N
priority queues.
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The Sorting Cell represents the control logic for instruction decoding and execution,
including the reading and writing from/to SRAM memory. The structure of the Sorting Cell
is shown in Figure 7. There are two comparators in the Sorting Cell. One comparator checks
whether the SORT_DATA of the input item provided by instruction (input_item_ff_SD)
is better than the SORT_DATA of the internal item (this_item_SD). Another comparator
is used for detection, whether the input item provided by instruction (kill_ID_ff) has the
same ID as the internal item (this_item_ID). Each instruction takes two clock cycles. The
first cycle is used to read the existing internal item from SRAM, which is provided via the
sram_dataout input port for the second cycle. The second cycle is used for comparing the
internal item with the input item using the abovementioned comparators and making a
decision whether we write back to SRAM (sram_we), overwriting the internal item (via
sram_datain port), either with the input item (input_item_ff), or with the item from the
previous cell (right_item), or with the item from the next cell (left_item).
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The MultiQueue architecture is able to execute any of the required instructions—
INSERT, REMOVE, INSREM or NOP, and the execution always takes two clock cycles
regardless of actual and/or maximum number of items stored in the queues. However,
only one queue can be accessed with the instruction at a time. Using multiple priority
queues with the instruction (i.e., writing into the queues) in parallel is not allowed. Because
of SRAM usage in this architecture, there is also a requirement for minimum number of
priority queues to be used in MultiQueue, which depends on minimum possible depth
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of SRAM memories, which depends on the selected implementation technology. For
FPGAs, this number is usually smaller than for ASIC technologies. For example, the FPGA
Cyclone V that was used for FPGA synthesis experiments in this paper needs at least four
priority queues in the MultiQueue because the minimum SRAM depth is 4. Smaller depth
would replace the SRAMs with registers, which would lead to less efficient design. ASIC
implementations typically have a minimum SRAM depth of 16, 32 or more. Therefore, the
MultiQueue architecture is generally more suitable for FPGA implementations.

5. Design Verification

The proposed MultiQueue architecture as well as several existing architectures of
priority queues was described using SystemVerilog language. Afterwards, correct function-
ality was verified in simulations. These priority queues were tested as coprocessors that
support the instructions listed in Section 2, Priority Queue Requirements. The following
priority queues were implemented and verified: Shift Registers, Systolic Array, Rocket
Queue, Heap Queue and MultiQueue.

Additionally, for the verification phase, a simplified version of Universal Verification
Methodology (UVM) was used. Since priority queue interfaces are relatively simple, UVM’s
use could also be simplified. We used just one test procedure for generating constrained
random inputs, a predictor and a scoreboard to simulate the device under test (DUT). Since
UVM transactions are just one instruction performed in two clock cycles, we do not need to
use agents for interfacing the DUT. As part of the test procedure, millions of instructions
are generated with fixed instruction opcodes and IDs, but with randomized SORT_DATA
values. As the name indicates, the predictor is a module that is responsible for prediction of
DUT output based on test inputs (like a DUT, but with higher level of abstraction, just as in
high-level software languages). The predictor description is purely sequential, software-like
and relatively high level. To order the items in the queue, a SystemVerilog queue structure
and sort() function are used. Figure 8 illustrates the entire testbench architecture used
for verification.
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All designed queues were verified through 500,000 test iterations, each consisting of
755 instructions generated by the test procedure, with one third being INSERT, one third
being REMOVE and the last third being INSREM. In these tests, all queues were loaded to
full capacity. Various random configuration parameters were used for the priority queue
verification, including: 16 queues, 8bits for item ID, 256 items per queue and 32 bits of
random SORT_DATA values.
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6. FPGA Synthesis Results

All versions of priority queues listed in the previous section were synthesized into
FPGA with a goal to compare their resource consumption efficiency. This synthesis was
conducted on an Intel FPGA Cyclone V (5CSEBA6U23I7) operating at 100 MHz. We have
conducted a comparison of Adaptive Logic Module (ALM) consumption, which represents
the Look-Up consumption, i.e., combinational logic and registers together. In addition to
that, SRAM bits consumption was compared too, but only Heap Queue and MultiQueue
architectures use this kind of resource. Other architectures are register-based only, thus
their consumption of SRAM bits was zero. However, the ALM (LUT) consumption is much
more important than the SRAM bits because the ALM resource is usually needed in digital
design much more than SRAM bits. Most digital system designs are typically limited by
the ALM resource limitations, not SRAM bits.

All priority queues were synthesized for usage with items that consist of 40 bits:
32 bits are used for SORT_DATA and 8 bits for ID. We decided to use this number of
bits as 32 bits are used for standard integer numbers and 8 bits for ID is enough for a
priority queue capacity of up to 256 items. Of course, these numbers can be adjusted to
different values depending on application needs. The synthesis results are presented in
Table 2. The first column contains the number of priority queues. The second column is the
maximum number of items the priority queue can contain. The third column is the total
number of items that can be stored in all priority queues in total, which can be obtained
by multiplying the first two columns. The fourth column contains ALM consumption of
Shift Registers (ShiftRegs) architecture. The fifth column contains ALM consumption of
Systolic Array (SysArray) architecture. Column number six contains ALM consumption of
Rocket Queue (RocketQ) architecture. The following two columns contain synthesis results
of Heap Queue (HeapQ) architecture. The last two columns contain synthesis results of the
proposed MultiQueue (MultiQ) architecture. Since only MultiQueue is specially designed
for multiple priority queues, all other priority queues were synthesized individually as a
one priority queue only, and then the results were multiplied by 16, 32 or 64 depending
on the needed number of priority queues. For example, Shift Registers (ShiftRegs—fourth
column from left) with priority queue capacity of 32 items consumed 2315 ALMs and this
number was then multiplied by 16 to mimic an implementation of 16 of these priority
queues, i.e., 2316 × 16 = 37,040 ALMs.

Table 2. FPGA synthesis results of various priority queue architectures.

Number of
Priority
Queues

Priority Queue
Capacity
(Items)

Total
Capacity
(Items)

ShiftRegs
(ALMs)

SysArray
(ALMs)

RocketQ
(ALMs)

HeapQ
(ALMs)

HeapQ
(RAM bits)

Proposed
MultiQ
(ALMs)

Proposed
MultiQ

(RAM bits)

16

32 512 37,040 43,248 36,656 31,024 36,736 2432 20,480
64 1024 74,112 87,056 63,568 37,376 79,744 4894 40,960

128 2048 158,416 174,384 115,376 45,856 165,504 9397 81,920
256 4096 321,168 349,696 218,432 53,264 337,280 19,605 163,840

32

32 1024 74,080 86,496 73,312 62,048 73,472 2445 40,960
64 2048 148,224 174,112 127,136 74,752 159,488 4894 81,920

128 4096 316,832 348,768 230,752 91,712 331,008 9357 163,840
256 8192 642,336 699,392 436,864 106,528 674,560 19,640 327,680

64

32 2048 148,160 172,992 146,624 124,096 146,944 2350 81,920
64 4096 296,448 348,224 254,272 149,504 318,976 4711 163,840

128 8192 633,664 697,536 461,504 183,424 662,016 9420 327,680
256 16,384 1,284,672 1,398,784 873,728 213,056 1,349,120 18,808 655,360

After comparing the results from Table 1, it is clear that the proposed MultiQueue
architecture saves a significant number of ALMs (LUTs) in FPGA. The least significant ALM
saving was achieved when 16 priority queues were used, each with a size of 256 items,
if Heap Queue was used originally. The Heap Queue solution consumed 53,264 ALMs
and the proposed MultiQueue consumed 19,605 ALMs, which means a 63.19% reduction
of ALM consumption. The most significant ALM saving was achieved when 64 priority
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queues were used, each with a size of 256 items, if Systolic Array was used originally.
The Systolic Array solution consumed 1,398,784 ALMs and the proposed MultiQueue
consumed only 18,808 ALMs, which means 98.66% reduction of ALM consumption.

In terms of performance, all solutions that were discussed and compared in this
research paper use a shared interface for execution of one item insertion/deletion/reading
from one priority queue at a time. All compared solutions provide the same performance
for the application that is using the priority queues. The latency and throughput are
two clock cycles per instruction, with the exception of Shift Registers, which is a solution
that needs only one clock cycle per instruction, but at a cost of far too long critical paths
and poor scaling with priority queue capacity, making such an approach impractical for
high-performance applications. The proposed MultiQueue architecture operates with the
same performance as a collection of several priority queues based on Heap Queue, Rocket
Queue or Systolic Array architecture and is muxed according to Figure 5. For 100 MHz
clock and 32-bit items, the performance of all these solutions (Heap Queue, Rocket Queue,
Systolic Array and MultiQueue) is 1.6 Gbits/s.

In terms of total energy consumption of all compared solutions, it consists of two parts:
static energy consumption (leakage) and dynamic energy consumption. The static energy
consumption (leakage) is directly proportional to the chip area costs if the solutions were
implemented in ASIC. For FPGA implementations, the static energy consumption depends
on FPGA chip selection only. The dynamic energy consumption depends on which priority
queue architecture is selected and on input/instructions sequence only. For these reasons,
all compared solutions reported the same total energy consumption of 427.3 mW. These
results were obtained from Quartus Prime 16.1.0 using default settings of PowerPlay Power
Analyzer Tool.

7. Conclusions

In this paper, existing priority queue architectures were reviewed and a new architec-
ture for multiple priority queues was presented. This architecture is called MultiQueue and
its FPGA implementation can save a significant number of FPGA LUTs in comparison to
existing, conventional priority queue solutions. Four existing priority queues plus the new
MultiQueue were implemented, tested and synthesized in FPGA to compare their efficiency.
The synthesis results show that the proposed MultiQueue architecture can save the majority
of combinational logic thanks to the sharing of logic among multiple queues. The more
priority queues are implemented within MultiQueue architecture, the bigger the relative
reduction of combinational logic that is observed. The only disadvantage and limitation
of the MultiQueue architecture is that only one priority queue can be used/accessed at
the same time. The number of needed priority queues as well as whether it is required to
have access to multiple priority queues in parallel depends on the system requirements
and application that will be using these priority queues. All analyzed priority queues
including the proposed MultiQueue architecture are able to process any combination of
instruction sequences.

While the proposed MultiQueue can save a significant amount of logic resources (LUTs)
in FPGA, it is limited for applications that need several priority queues with shared access
interface. The number of priority queues can be 16, 32, 64 or more. The proposed solution
is not suitable for applications that need access to multiple priority queues simultaneously
or applications that use less than 16 priority queues.
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