
Citation: Balasubramanian, P.;

Mastorakis, N.E. High-Speed and

Energy-Efficient Carry Look-Ahead

Adder. J. Low Power Electron. Appl.

2022, 12, 46. https://doi.org/

10.3390/jlpea12030046

Academic Editors: Jongsun Park and

Andrea Acquaviva

Received: 2 June 2022

Accepted: 9 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

High-Speed and Energy-Efficient Carry Look-Ahead Adder
Padmanabhan Balasubramanian 1,* and Nikos E. Mastorakis 2

1 School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore

2 Department of Industrial Engineering, Technical University of Sofia, 1000 Sofia, Bulgaria
* Correspondence: balasubramanian@ntu.edu.sg; Tel.: +65-6790-4745

Abstract: The carry look-ahead adder (CLA) is well known among the family of high-speed adders.
However, a conventional CLA is not faster than other high-speed adders such as a conditional sum
adder (CSA), a carry-select adder (CSLA), and the Kogge–Stone adder (KSA), which is the fastest
parallel-prefix adder. Further, in terms of power-delay product (PDP) that characterizes the energy of
digital circuits, the conventional CLA is not efficient compared to CSLA and KSA. In this context,
this paper presents a high-speed and energy-efficient architecture for the CLA. Many adders ranging
from ripple carry to parallel-prefix adders were implemented using a 32-28 nm CMOS standard
digital cell library by considering a 32-bit addition. The adders were structurally described in Verilog
and synthesized using Synopsys Design Compiler. From the results obtained, it is observed that the
proposed CLA achieves a reduction in critical path delay by 55.3% and a reduction in PDP by 45%
compared to the conventional CLA. Compared to the CSA, the proposed CLA achieves a reduction
in critical path delay by 33.9%, a reduction in power by 26.1%, and a reduction in PDP by 51.1%.
Compared to an optimized CSLA, the proposed CLA achieves a reduction in power by 35.4%, a
reduction in area by 37.3%, and a reduction in PDP by 37.1% without sacrificing the speed. Although
the KSA is faster, the proposed CLA achieves a reduction in power by 39.6%, a reduction in PDP by
6.5%, and a reduction in area by 55.6% in comparison.

Keywords: arithmetic circuits; digital circuits; logic design; adder; high-speed; low power; CMOS

1. Introduction

Addition is a fundamental operation that is pervasive in computer arithmetic [1].
For example, approximately 80% of the operations in an ARM processor’s arithmetic and
logic unit were found to be additions [2]. Addition is physically realized using an adder,
and the design of a high-speed and low power/energy-efficient adder is important for
processing units. There are different types of adders ranging from the slowest ripple carry
adder (RCA) to the fastest Kogge–Stone adder (KSA) [3], which is a parallel-prefix adder
(PPA). However, it may be noted that although the KSA is faster, the RCA is area- and
power-efficient in comparison. Based on physical realization using a 32-28 nm CMOS
standard digital cell library [4], for a 32-bit addition, we noted that the KSA has a 78.5%
reduced delay than the RCA while the RCA requires 86% less silicon area and dissipates
50.4% less power in comparison. The RCA and the KSA represent the two extremes in
physically realizing addition where the former requires the least area and dissipates less
power but is slower while the latter is of high-speed but requires more area and dissipates
relatively more power. Nevertheless, there are many high-speed adders such as the carry
look-ahead adder (CLA), the conditional sum adder (CSA), the carry-select adder (CSLA),
and other PPAs that offer a trade-off between the standard design metrics, namely speed,
power, and area. These high-speed adders lie between the extreme addition architectures,
i.e., RCA and KSA. Hence, for a practical application, and particularly from a standard
cell-based design perspective, the choice of an adder would be dependent upon the power
budget and/or operational speed.

J. Low Power Electron. Appl. 2022, 12, 46. https://doi.org/10.3390/jlpea12030046 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12030046
https://doi.org/10.3390/jlpea12030046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0001-9412-4773
https://doi.org/10.3390/jlpea12030046
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12030046?type=check_update&version=1


J. Low Power Electron. Appl. 2022, 12, 46 2 of 11

Besides speed (whose reciprocal is called delay i.e., critical path delay) and power, the
product of power and delay, which is called the power-delay product (PDP), is representa-
tive of the energy consumption of digital circuits [5]. PDP is considered to be a low-power
and low-energy figure of merit. Since power and delay are preferred to be less for a digital
circuit, therefore, PDP is preferred to be less. Hence, an adder that offers a good trade-off
between speed, power, and energy (PDP) is preferable for generic applications. In this
context, this paper presents a CLA architecture that is higher in speed and energy-efficient
compared to a conventional CLA architecture. Additionally, this paper provides a com-
parison between the performance of different adders, which would be useful for a circuit
designer to make an appropriate choice of an adder for a target application by considering
the trade-offs in the design metrics.

CLA is an important member of the family of high-speed adders [6]. Many implemen-
tations of the CLA at the transistor level have been presented in the literature [7–14], which
correspond to different design styles such as the all N-type transistor logic, static CMOS,
BiCMOS, domino logic, etc. Further, CLAs designed using post-CMOS technologies such
as quantum dot cellular automata, memristors, hybrid CMOS-memristor logic, optical,
carbon nanotube, vertically stacked nanowire transistors, etc. [15–21], have also been pre-
sented in the literature. All these represent full-custom design approaches that require
considerable manual effort to meet timing/power/energy requirements commensurate
with an application. On the other hand, a semi-custom gate-level design would be generic
and modular and a soft CLA core can be offered as a synthesizable RTL model that can
be conveniently used/reused in any digital system design and can be implemented using
any standard digital cell library. In this context, this paper presents a generic gate-level
CLA architecture that is higher in speed and energy-efficient compared to the conventional
gate-level CLA architecture.

The rest of the paper is organized into three sections. Section 2 discusses the architec-
tures of the conventional CLA and the proposed CLA. Section 3 presents the design metrics
of several 32-bit adders corresponding to different architectures, which were implemented
using a 32-28 nm CMOS standard digital cell library and compares their performance.
Section 4 gives the conclusion.

2. Conventional and Proposed CLA Architectures

In an adder implementation, the sum bit corresponding to an input bit position is
produced based on a knowledge of any carry input and the carry may be generated and/or
propagated internally between the input bit positions. Hence, considering the worst-case
addition scenario where the carry may propagate internally from the 0th bit position up to
the (N–1)th bit position of an N-bit adder, speeding up the carry propagation internally
would help to speed up the addition process. The linear time encountered in a rudimentary
worst-case addition (which is the case with an RCA) can be reduced to a logarithmic time
addition in the case of a CLA by generating future (look-ahead) carries in advance based on
a knowledge of the carry input. The generalized carry look-ahead equation is given in (1),
where Q represents a bit position, CQ represents the carry input to the Qth bit position,
CQ+1 represents the carry output from the Qth bit position, GQ refers to the generate signal,
and PQ refers to the propagate signal corresponding to the Qth bit position. In Equation (1),
PQ is obtained by performing a logical XOR of input bits XQ and YQ (i.e., PQ = XQ ⊕ YQ),
and GQ is obtained by performing a logical AND of input bits XQ and YQ (i.e., GQ = AQBQ).
The sum bit corresponding to the Qth bit position is produced based on Equation (2).

CQ+1 = GQ + PQCQ (1)

SumQ = PQ ⊕ CQ (2)

Equation (1) is fundamentally recursive in nature, and this property can be utilized
to generate carries corresponding to successive bit positions in advance, which are called
look-ahead carries. This is described by Equations (3)–(6), which represent the look-



J. Low Power Electron. Appl. 2022, 12, 46 3 of 11

ahead carry output equations of four successive bit positions of an example 4-bit CLA. In
Equations (3)–(6), CK represents the carry input to a 4-bit CLA, PK+3 to PK represent the
propagate signals, GK+3 to GK represent the generate signals, and CK+4 to CK+1 represent the
look-ahead carry outputs derived. Equation (4) is deduced by substituting the expression
of CK+1 given in Equation (3), Equation (5) is deduced by substituting the expression of
CK+2 given in Equation (4), and Equation (6) is deduced by substituting the expression of
CK+3 given in Equation (5). In Equations (3)–(6), it can be observed that the look-ahead
carry outputs CK+1 up to CK+4 are all dependent on only the carry input CK. Hence, the
look-ahead carry outputs can be generated in parallel, which can be used to generate the
sum bits of the CLA in parallel and provide the carry input to the subsequent stage. The
conventional CLA implementing Equations (3)–(6) is shown in Figure 1.

CK+1 = GK + PKCK (3)

CK+2 = GK+1 + PK+1CK+1 = GK+1 + PK+1GK + PK+1PKCK (4)

CK+3 = GK+2 + PK+2CK+2 = GK+2 + PK+2GK+1 + PK+2PK+1GK + PK+2PK+1PKCK (5)

CK+4 = GK+3 + PK+3CK+3 = GK+3 + PK+3GK+2 + PK+3PK+2GK+1 + PK+3PK+2PK+1GK + PK+3PK+2PK+1PKCK (6)

Figure 1. Gate-level realization of a conventional 4-bit CLA with carry input CK.

Typically, an N-bit CLA is constructed using a cascade of M-bit CLAs where N and M
are even and N modulo M = 0. For example, a 32-bit CLA can be constructed by cascading
eight 4-bit CLAs. Figure 2 shows a block diagram of an N-bit CLA constructed using 4-bit
CLAs, and the critical path is highlighted by the orange dotted line. Supposing that the
4-bit CLA shown in Figure 1 is present in an intermediate stage of an N-bit CLA, as shown



J. Low Power Electron. Appl. 2022, 12, 46 4 of 11

in Figure 2, then theoretically the critical path that would be traversed through the 4-bit
CLA would be as highlighted by the red dashed line in Figure 1, which consists of a 5-input
AND gate and a 5-input OR gate. In modern standard digital cell libraries, the fan-in of
AND and OR gates are limited to four. So, a 5-input AND/OR gate may be decomposed
into a combination of two 3-input AND/OR gates, respectively. Supposing the 4-bit CLA
shown in Figure 1 is present in the last stage of Figure 2, then the critical path that would
be traversed is highlighted by the blue dashed line shown in Figure 1.

Figure 2. Block diagram of an N-bit CLA realized using a cascade of 4-bit CLAs, where N is even.

In Figure 2, it can be seen that the first (least significant) 4-bit CLA does not have a
carry input while the rest of the 4-bit CLAs have a carry input. Hence, in the absence of
a carry input, i.e., considering CK = 0 in Equations (3)–(6), the gate-level realization of a
4-bit CLA without any carry input would be as shown in Figure 3, and its critical path is
highlighted by the pink dashed line.

Figure 3. Gate-level realization of a 4-bit conventional CLA without carry input (i.e., CK = 0).

Referring to Figures 1–3, the theoretical critical path delay of a conventional N-bit
CLA, which includes only gate delays, is expressed by Equation (7). In Equation (7),
on the right-side, the first term given within brackets represents the propagation delay
encountered in producing the penultimate sum bit SumN–1, the second term given within



J. Low Power Electron. Appl. 2022, 12, 46 5 of 11

brackets represents the propagation delay encountered in traversing (M–2) 4-bit CLAs,
and the last term represents the propagation delay encountered in traversing the least
significant 4-bit CLA that does not have a carry input. The second term on the right-side of
Equation (7) reflects the optimum decomposition of 5-input OR and 5-input AND gates
seen in Figure 1 into two 3-input OR gates and two 3-input AND gates, respectively.

DConventional
CLA = (DXOR2 + DOR4 + DAND4) + (M − 2)× (2DOR3 + 2DAND3) + (DOR4 + DAND4 + DXOR2) (7)

Assuming that a 32-bit CLA has been constructed using eight conventional 4-bit
CLAs (i.e., M = 8), and using the average propagation delay information of gates with
minimum drive strength given in [4], the theoretical critical path delay (DConventional

CLA ) of
the conventional 32-bit CLA is calculated to be 2.106 ns.

For the new CLA design, we performed a specific grouping of the terms present in the
look-ahead carry output equations such that the carry propagation would be minimized
with respect to a gate-level realization. The general principle followed is that the literals
associated with the carry input (CK) are grouped into an intermediate product term and
represented using a Boolean variable, and the remaining sum of product terms that do not
involve the carry input are grouped and represented using another Boolean variable. With
reference to Equations (4)–(6), to perform the grouping, we introduced some intermediate
variables in the Boolean network, namely A1, A2, A3, A4, A5, and A6, where A1 and A2
are used for Equation (4), A3 and A4 are used for Equation (5), and A5 and A6 are used
for Equation (6), and they are expressed by Equations (8)–(13) given below. In fact, this
grouping procedure is generic and can be applied to a CLA of any size by incorporating
only two intermediate variables in each look-ahead carry output equation. Supposing only
two intermediate variables are present in a look-ahead carry output equation, as is the
case with Equation (3), it can be retained as such, and no transformation needs to be done.
In general, a CLA featuring L look-ahead carry outputs may require (2L–2) intermediate
variables according to our proposition.

A1 = GK+1 + PK+1GK (8)

A2 = PK+1PK (9)

A3 = GK+2 + PK+2GK+1 + PK+2PK+1GK (10)

A4 = PK+2PK+1PK (11)

A5 = GK+3 + PK+3GK+2 + PK+3PK+2GK+1 + PK+3PK+2PK+1GK (12)

A6 = PK+3PK+2PK+1PK (13)

Given Equations (8)–(13), and substituting them back into Equations (4)–(6), we obtain
their reduced forms as follows.

CK+2 = A1 + A2CK (14)

CK+3 = A3 + A4CK (15)

CK+4 = A5 + A6CK (16)

Consequently, the final logic level of the look-ahead carry outputs CK+1, CK+2, CK+3,
and CK+4 can be uniformly realized using a single complex gate, viz., the AO21 gate.
Assuming that A, B, and C are the inputs to an AO21 gate and Y is its output, an AO21
gate implements the logic function Y = AB + C, which requires eight transistors for a static
CMOS logic design.

The logic realization of an example proposed 4-bit CLA, described by
Equations (3) and (14)–(16), is portrayed by Figure 4. The critical path that would be
traversed when this 4-bit CLA would be present in an intermediate stage in Figure 2 is
highlighted by the red dashed line and the critical path that would be traversed when



J. Low Power Electron. Appl. 2022, 12, 46 6 of 11

this 4-bit CLA would be present in the final stage in Figure 2 is highlighted by the blue
dashed line.

Figure 4. Gate-level realization of 4-bit proposed CLA (with carry input).

Comparing Figures 1 and 4, it can be noted that the critical path of a conventional 4-bit
CLA, when present in an intermediate stage, consists of a 5-input AND gate and a 5-input
OR gate while the critical path of the proposed 4-bit CLA, when present in an intermediate
stage, consists of just one AO21 complex gate. As a result, the theoretical critical path delay
of the proposed N-bit CLA (shown in Figure 2), when implemented using the proposed
4-bit CLA, is given by Equation (17). However, for the least significant 4-bit CLA that does
not contain a carry input, Figure 3 can be used as mentioned earlier.

DProposed
CLA = (DXOR2 + DAO21) + (M − 2)× DAO21 + (DOR4 + DAND4 + DXOR2) (17)

Assuming that a 32-bit CLA has been constructed using eight proposed 4-bit CLAs
(i.e., M = 8), and using the average propagation delay information of gates with the min-
imum drive strength given in [4], the theoretical critical path delay (DProposed

CLA ) of the
proposed 32-bit CLA is calculated to be 0.781 ns, which is 63% less than the theoretical
critical path delay of the conventional CLA counterpart given by (7).

3. Implementation and Estimation of Design Metrics of Adders

In the existing literature, many papers dealt with specific adder designs, discussed
their implementation, and presented the design metrics, but failed to provide a comparison
with the design metrics of other adder architectures. For example, [22] presented a new
CSLA design and made a comparison between the design metrics of just the conventional
CSLA and the new CSLA. Reference [23] provided a comparison between CLA and CSLA



J. Low Power Electron. Appl. 2022, 12, 46 7 of 11

architectures but the adders were custom-designed at the gate-level and interconnects
were not taken into account in the estimation of design metrics—hence the design metric
estimates provided are not rigorous. Here, we aim to provide a rigorous and extensive
comparison between the performance of various adders corresponding to different archi-
tectures, including the proposed CLA, with all the adders realized using the same standard
digital cell library. This comparative evaluation would be useful for a circuit designer to
choose an appropriate adder when given specific design constraints. Towards this, we
described many 32-bit adders corresponding to different architectures, viz., RCA, CLA,
CSLA, CSA, and PPA structurally at the gate-level in Verilog HDL. We used Synopsys EDA
tools for synthesis, simulation, and estimation of the design metrics. We had access to some
Synopsys DesignWare library components that contain synthesizable RTL models of some
high-speed adders such as the Ling adder [24] (which is a variant of CLA), CSA [25], and
a few PPAs, namely the Brent–Kung adder (BKA) [26] and the Sklansky adder [27]. We
considered all these adders for implementation and comparison in this paper. Besides, we
considered the RCA, the conventional CLA, the proposed CLA, CSLAs without a binary
to excess-one code (BEC) converter [28] employing two different input partitions, viz.,
8-8-8-8 and 8-7-6-4-3-2-2, CSLAs with a BEC converter employing the same two input
partitions [22], and the KSA. We used the gate-level description of a 32-bit KSA given
in [29] for implementation in this work.

To perform synthesis, we used the Synopsys Design Compiler and targeted a typical
case PVT specification of a high Vth 32-28 nm CMOS standard digital cell library. The
recommended supply voltage of 1.05V and an operating junction temperature of 25 ◦C
was used. A default wire load model was included during synthesis and a fanout-of-4
drive strength was associated with all the output ports (i.e., sum bits) of the adders. The
high-speed adder components present in the DesignWare library, i.e., the Ling adder, CSA,
BKA, and Sklansky adder, were invoked during synthesis and these were synthesized along
with the rest of the high-speed adders mentioned earlier by using the ‘compile’ command
with speed defined as the optimization goal. To synthesize the RCA, the ‘compile_ultra’
command was used. After synthesis, the gate-level netlists generated by Design Compiler
were used to perform a functional simulation using Synopsys VCS. To do this, a test bench
comprising approximately 1000 randomly generated input vectors was supplied to the
adders at an input frequency of 250 MHz and their functionality were verified and their
corresponding switching activity were recorded. The switching activity information was
then used to accurately estimate the total average power using Synopsys PrimePower. To
accurately estimate the critical path delay of adders, we used Synopsys PrimeTime. The
total area of the adders estimated after synthesis, including the cells area and interconnect
area, was estimated using Design Compiler. The design metrics of the adders are given in
Table 1.

From Table 1, it is seen that the RCA requires the least area and hence it dissipates less
power. This is because the RCA is synthesized using 1 half adder and 31 full adders, and
the full adder and half adder are available as cells in the standard digital cell library [4],
which are optimized for area and power. However, the critical path delay of the RCA
is significantly greater compared to its counterparts, which makes it unsuitable for high-
speed digital circuits and systems. For example, compared to the proposed CLA, the
RCA has a 200% greater delay. As expected, in terms of speed, the KSA is faster than
its counterparts—however, this comes at the expense of a substantially greater area and
power dissipation. For example, compared to the proposed CLA, the KSA has a 35.3%
reduced delay but requires a 125.3% greater area and dissipates 65.6% more power. The
conventional CLA dissipates less power than the proposed CLA by 18.8% since it requires
26.4% less area but reports an approximate 124% increase in the delay. In terms of delay,
the rest of the adders lie in between the two adders, viz., the RCA and the KSA with the
former having the greatest delay and the latter having the least delay.



J. Low Power Electron. Appl. 2022, 12, 46 8 of 11

Table 1. Design metrics of 32-bit adders, synthesized using a 32-28 nm CMOS standard cell library.

Adder Name
Area (µm2) Critical Path

Delay (ns)
Total Power

(µW)Cells Interconnect Total

RCA 155.03 10.98 166.01 3.40 42.13

Conventional CLA 350.97 37.44 388.41 2.53 41.69

Ling adder (CLA variant) 392.40 75.21 467.61 2.39 67.48

Proposed CLA 475.50 51.94 527.44 1.13 51.33

Conditional sum adder (CSA) 412.48 77.65 490.13 1.71 69.43

CSLA without BEC (8-7-6-4-3-2-2) 834.35 117.82 952.17 1.20 87.54

CSLA with BEC (8-7-6-4-3-2-2) 683.65 96.22 779.87 1.33 73.43

CSLA without BEC (8-8-8-8) 745.15 95.86 841.01 1.16 79.45

CSLA with BEC (8-8-8-8) 621.89 81.90 703.79 1.28 65.46

Brent–Kung adder (BKA) 419.85 64.40 484.25 2.42 56.65

Sklansky adder 387.06 62.75 449.81 2.74 57.10

Kogge–Stone adder (KSA) 1014.29 174.43 1188.72 0.73 84.99

Figure 5 shows a split-up of the power components of different adders that includes
the net switching power, the cell internal power, and the leakage power, as reported by
Synopsys PrimePower. The sum of the net switching power and the cell internal power is
referred to as dynamic power in Synopsys PrimePower. The total power is the sum of the
dynamic power and leakage power. It may be seen that the proposed CLA reports increases
in all the power components compared to the conventional CLA. This is mainly because
the cells area and interconnect area of the proposed CLA are greater than the conventional
CLA, as seen from Table 1. Compared to the RCA and the conventional CLA, the proposed
CLA reports an increase in total power due to an increase in all the power components,
but the proposed CLA dissipates less total power compared to the other adders due to
reductions achieved in the switching power, internal power, and leakage power, as seen
from Figure 5. Although the KSA is faster than its counterparts, as seen from Table 1, it
dissipates substantially more power and this is due to its greater area occupancy both in
terms of cells and interconnect, which is reflected by its significant values of net switching
power, cell internal power and leakage power in Figure 5.

Besides the individual considerations of delay and power, it is important to analyze
the performance of adders from an energy perspective, which is given by the product
of total power and the critical path delay. This is because an evaluation of energy gives
information about any trade-off between power and delay in a digital circuit [5]. Since
power and delay are preferred to be less, therefore, the product of power and delay (PDP) is
preferred to be less. In other words, the lesser the PDP, the more energy-efficient is a design.
PDP was calculated for all the adders and those values were then normalized. To perform
the normalization, the highest PDP value (corresponding to the Ling adder) was used to
divide the actual PDP of all the adders. The normalized PDP plots of the adders are shown
in Figure 6 with the optimum plot shown in red. An adder with a lesser normalized PDP
value is preferable. Given this, the Ling adder is found to be less energy-efficient compared
to the other adders. From Figure 6, it is seen that the proposed CLA has an optimized
normalized PDP compared to its counterparts, which implies the proposed CLA is more
energy-efficient. Compared to the conventional CLA, the proposed CLA is 45% more
energy-efficient. The KSA consumes 7% more energy than the proposed CLA, although
it is faster, and this is due to its increased power dissipation in comparison on account of
its greater area occupancy. Hence, from Table 1 and Figure 6, it may be concluded that
the proposed CLA offers a good trade-off between speed, power, and area compared to
its counterparts.



J. Low Power Electron. Appl. 2022, 12, 46 9 of 11

Figure 5. Split-up of total power dissipation of different adders, estimated using PrimePower.

Figure 6. Normalized PDP of different 32-bit adders (lesser value is preferable, which is highlighted
by the red bar). The PDP of Ling adder is considered to be the baseline as it is higher and the PDP of
all the adders are divided by the baseline value to obtain the normalized PDP plots.

4. Conclusions

CLA is a popular member of the family of high-speed adders. However, the con-
ventional CLA architecture is not faster than some high-speed adders and this is mainly
due to the greater delay encountered in the carry propagation. In this context, this paper
presented an improved architecture for the CLA that significantly reduces the delay in the
carry propagation. The theoretical and practical delay estimates confirm the significant
reduction in delay achieved by the proposed CLA compared to the conventional CLA. For
a 32-bit addition, the proposed CLA achieves a 55.3% reduction in delay compared to the
conventional CLA and is 45% more energy-efficient.



J. Low Power Electron. Appl. 2022, 12, 46 10 of 11

Author Contributions: Conceptualization, P.B.; methodology, P.B. and N.E.M.; formal analysis, P.B.
and N.E.M.; validation, P.B.; visualization, P.B.; investigation, P.B.; data curation, P.B.; writing—original
draft preparation, P.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available within the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 5th ed.; Morgan Kaufmann: Burlington, MA, USA,

2003; ISBN 9780123838735.
2. Garside, J.D. A CMOS VLSI implementation of an asynchronous ALU. In Proceedings of the IFIP Working Conference on

Asynchronous Design Methodologies, Manchester, UK, 31 March–2 April 1993.
3. Kogge, P.M.; Stone, H.S. A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans.

Comput. 1973, 100, 786–793. [CrossRef]
4. Synopsys SAED_EDK32/28_CORE Databook. Revision 1.0.0. 2012. Available online: https://www.synopsys.com/community/

university-program/teaching-resources.html (accessed on 8 December 2021).
5. Rabaey, J.M.; Chandrakasan, A.; Nikolic, B. Digital Integrated Circuits: A Design Perspective, 2nd ed.; Pearson Education: London,

UK, 2003; ISBN 978-0130909961.
6. Parhami, B. Computer Arithmetic: Algorithms and Hardware Designs, 1st ed.; Oxford University Press: New York, NY, USA, 2000;

ISBN 978-0195125832.
7. Kuo, J.B.; Liao, H.J.; Chen, H.P. A BiCMOS dynamic carry lookahead adder circuit for VLSI implementation of high-speed

arithmetic unit. IEEE J. Solid-State Circuits 1993, 28, 375–378. [CrossRef]
8. Ruiz, G.A. New static multi-output carry lookahead CMOS adders. IEE Proc. Circuits Devices Syst. 1997, 144, 350–354. [CrossRef]
9. Lim, J.; Kim, D.-G.; Chae, S.-I. A 16-bit carry-lookahead adder using reverse energy recovery logic for ultra-low-energy systems.

IEEE J. Solid-State Circuits 1999, 34, 898–903.
10. Wang, C.-C.; Huang, C.-J.; Tsai, K.-C. A 1.0-GHz, 0.6-µm 8-bit carry lookahead adder using PLA-styled all-N transistor logic.

IEEE Trans. Circuits Syst. II Analog. Digit. Signal Processing 2000, 47, 133–135. [CrossRef]
11. Yang, G.; Jung, S.O.; Baek, K.-H.; Kim, S.H.; Kim, S.; Kang, S.-M. A 32-bit carry lookahead adder using dual-path all-N logic. IEEE

Trans. VLSI Syst. 2005, 13, 992–996. [CrossRef]
12. Wang, C.-C.; Huang, C.-C.; Lee, C.-L.; Cheng, T.-W. A low power high-speed 8-bit pipelining CLA design using dual-threshold

voltage domino logic. IEEE Trans. VLSI Syst. 2008, 16, 594–598. [CrossRef]
13. Zlatanovici, R.; Kao, S.; Nikolic, B. Energy-delay optimization of 64-bit carry-lookahead adders with a 240 ps 90 nm CMOS design

example. IEEE J. Solid-State Circuits 2009, 44, 569–583. [CrossRef]
14. Morgenshtein, A.; Yuzhaninov, V.; Kovshilovsky, A.; Fish, A. Full-swing gate diffusion input logic—Case-study of low-power

CLA adder design. Integr. VLSI J. 2014, 47, 62–70. [CrossRef]
15. Cho, H.; Swartzlander, E.E. Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 2007, 6,

374–383. [CrossRef]
16. Lopez, J.F.; Reina, R.; Hernandez, L.; Tobajas, F.; de Armas, V.; Sarmiento, R.; Nunez, A. Pipelined GaAs carry lookahead adder.

Electron. Lett. 1998, 34, 1732–1733. [CrossRef]
17. Shaltoot, A.H.; Madian, A.H. Memristor based carry lookahead adder architectures. In Proceedings of the IEEE 55th International

Midwest Symposium on Circuits and Systems, Boise, ID, USA, 5–8 August 2012.
18. Liu, G.; Zheng, L.; Wang, G.; Shen, Y.; Liang, Y. A carry lookahead adder based on hybrid CMOS-memristor logic circuit. IEEE

Access 2019, 7, 43691–43696. [CrossRef]
19. Dutta, P.; Bandyopadhyay, C.; Giri, C.; Rahaman, H. Mach-Zehnder interferometer based all optical reversible carry-lookahead

adder. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 9–11 July 2014.
20. Sun, Y.; Kursun, V. Low-power and compact NP dynamic CMOS adder with 16nm carbon nanotube transistors. In Proceedings

of the IEEE International Symposium on Circuits and Systems, Beijing, China, 19–23 May 2013.
21. Sacchetto, D.; Ben-Jamaa, M.H.; de Micheli, G.; Leblebici, Y. Design aspects of carry lookahead adders with vertically-stacked

nanowire transistors. In Proceedings of the IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June
2010.

22. Ramkumar, B.; Kittur, H.M. Low-power and area-efficient carry select adder. IEEE Trans. Very Large Scale Integr. Syst. 2012, 20,
371–375. [CrossRef]

23. Balasubramanian, P.; Mastorakis, N. Performance comparison of carry-lookahead and carry-select adders based on accurate and
approximate additions. Electronics 2018, 7, 369. [CrossRef]

http://doi.org/10.1109/TC.1973.5009159
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html
http://doi.org/10.1109/4.210006
http://doi.org/10.1049/ip-cds:19971445
http://doi.org/10.1109/82.823541
http://doi.org/10.1109/TVLSI.2005.853605
http://doi.org/10.1109/TVLSI.2008.917561
http://doi.org/10.1109/JSSC.2008.2010795
http://doi.org/10.1016/j.vlsi.2013.04.002
http://doi.org/10.1109/TNANO.2007.894839
http://doi.org/10.1049/el:19981239
http://doi.org/10.1109/ACCESS.2019.2907976
http://doi.org/10.1109/TVLSI.2010.2101621
http://doi.org/10.3390/electronics7120369


J. Low Power Electron. Appl. 2022, 12, 46 11 of 11

24. Ling, H. High-speed binary adder. IBM J. Res. Dev. 1981, 25, 156–166. [CrossRef]
25. Sklansky, J. Conditional-sum addition logic. IRE Trans. Electron. Comput. 1960, EC-9, 226–231. [CrossRef]
26. Brent, R.P.; Kung, H.T. A regular layout for parallel adders. IEEE Trans. Comput. 1982, C-31, 260–264. [CrossRef]
27. Sklansky, J. An evaluation of several two-summand binary adders. IRE Trans. Electron. Comput. 1960, EC-9, 213–226. [CrossRef]
28. Bedrij, O.J. Carry-select adder. IRE Trans. Electron. Comput. 1962, EC-11, 340–346. [CrossRef]
29. Yazdanbakhsh, A.; Mahajan, D.; Esmaeilzadeh, H.; Lofti-Kamran, P. AxBench: A multiplatform benchmark suite for approximate

computing. IEEE Des. Test 2017, 34, 60–68. [CrossRef]

http://doi.org/10.1147/rd.252.0156
http://doi.org/10.1109/TEC.1960.5219822
http://doi.org/10.1109/TC.1982.1675982
http://doi.org/10.1109/TEC.1960.5219821
http://doi.org/10.1109/IRETELC.1962.5407919
http://doi.org/10.1109/MDAT.2016.2630270

	Introduction 
	Conventional and Proposed CLA Architectures 
	Implementation and Estimation of Design Metrics of Adders 
	Conclusions 
	References

