
Citation: Pieper, P.; Herdt, V.;

Drechsler, R. Advanced Embedded

System Modeling and Simulation in

an Open Source RISC-V Virtual

Prototype. J. Low Power Electron. Appl.

2022, 12, 52. https://doi.org/

10.3390/jlpea12040052

Academic Editors: Teresa Cervero,

Kevin Martin, Mario Kovač and
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Abstract: RISC-V is a modern Instruction Set Architecture (ISA) that, by its open nature in combination
with a clean and modular design, has enormous potential to become a game changer in the Internet
of Things (IoT) era. Recently, SystemC-based Virtual Prototypes (VPs) have been introduced into
the RISC-V ecosystem to lay the foundation for advanced industry-proven system-level use-cases.
However, VP-driven environment modeling and interaction have mostly been neglected in the
RISC-V context. In this paper, we propose such an extension to broaden the application domain
for virtual prototyping in the RISC-V context. As a foundation, we built upon the open source
RISC-V VP available at GitHub. For a visualization of the environment purposes, we designed a
Graphical User Interface (GUI) and designed appropriate libraries to offer hardware communication
interfaces such as GPIO and SPI from the VP to an interactive environment model. Our approach is
designed to be integrated with SystemC-based VPs that leverage a Transaction-Level Modeling (TLM)
communication system to prefer a speed-optimized simulation. To show the practicability of an
environment model, we provide a set of building blocks such as buttons, LEDs and an OLED display
and configured them in two demonstration environments. Moreover, for rapid prototyping purposes,
we provide a modeling layer that leverages the dynamic Lua scripting language to design components
and integrate them with the VP-based simulation. Our evaluation with two different case-studies
demonstrates the applicability of our approach in building virtual environments effectively and
correctly when matching the real physical systems. To advance the RISC-V community and stimulate
further research, we provide our extended VP platform with the environment configuration and
visualization toolbox, as well as both case-studies as open source on GitHub.

Keywords: virtual prototyping; embedded systems; SW/HW co-design; simulation; RISC-V;
SystemC; TLM

1. Introduction

RISC-V [1,2] is a modern Instruction Set Architecture (ISA) that has gained significant
momentum in recent years. A key factor that drives the RISC-V success story is its free and
open nature, combined with a lightweight and modular architecture. Moreover, RISC-V is
designed from the ground up to enable the integration of custom instruction set extensions
in order to build highly application-specific solutions. These properties push the adoption
of RISC-V and strengthen its potential to become a game changer in the Internet of Things
(IoT) era. As such, great interest can be observed around RISC-V in industry and academia.

In line with RISC-V’s popularity, the extensive RISC-V ecosystem is continuously
growing to include a broad set of software and hardware development tools and library.
Recently, virtual prototyping solutions have been introduced into the RISC-V ecosystem to
lay the foundation for advanced system-level use-cases in the RISC-V context. A Virtual
Prototype (VP) is essentially an abstract model of the entire hardware platform and enables
early software development in the design flow. An industry-proven standard to create
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VPs is using the SystemC language in combination with the Transaction-Level Modeling
(TLM) style for modeling abstract communication interfaces [3]. A key property of VPs is
their binary compatibility with the hardware platform, i.e., from the software perspective,
the VP provides the same interface as the hardware platform and hence the software can
be executed unmodified on the VP and hardware. Besides a functional validation, VPs
also enable design space exploration by evaluating different design decisions early in the
design flow.

The RISC-V VP is a representative, advanced open source VP tailored for RISC-V and
available at GitHub [4], and has been described in [5]. It provides an extensive feature
set, such as support for the 32 and 64 bit RISC-V ISA, with all standard instruction set
extensions, several operating systems (such as Zephyr and Linux), advanced debugging
capabilities and configurations to create different platforms, such as the HiFive1 board
from SiFive [6]. The main benefit of the RISC-V VP is, however, the ease of its ability to
expand from custom RISC-V instructions with dynamic dataflow analysis extensions [7]
to a symbolic execution engine [8]. However, representative of other VPs in the RISC-V
context, the RISC-V VP is missing an effective methodology used to design and integrate
models that capture the interaction of the VP with the environment, such as other components
on a PCB besides the processor chip.

In this paper, we propose such an extension to broaden the application domain for
virtual prototyping in the RISC-V context. We provide a set of building blocks for the
environment, which includes buttons, LEDs and a display. The main idea of our approach
is to separate the hardware model from the world behavior (see Figure 1, VP Environment
vs. RISC-V VP). This allows for the parallel development of software and hardware
within the intended environment, speeding up the design process. For visualization of the
environment, we designed a Graphical User Interface (GUI) using the Qt C++ library. To
ease the environment setup, we provide a configuration-file-based approach that enables
the designer to specify the desired components and appropriate connections to the VP
in a simple way. The communication channel between the VP and environment GUI is
established through a TCP connection (which also enables us to distribute the simulation
to different computers e.g., a simulation server and a user’s desktop PC). We designed
appropriate libraries to transfer several hardware communication interfaces, such as GPIO,
SPI or CAN (via SPI), on top of the TCP channel. This allows us to transparently map these
interfaces between the VP, which models the SoC, and the environment GUI, which displays
and simulates the behavior of external components. Furthermore, the communication
was optimized to avoid performance impacts on the VP simulation. Our approach was
designed to be integrated with SystemC-based VPs that leverage a Transaction Level Modeling
(TLM) communication system. In addition, our setup provides the foundation to even
attach external real hardware components to perform a VP-driven hardware-in-the-loop
simulation. To facilitate the environment model design, we provide a set of building blocks,
such as buttons, LEDs and an OLED display. Moreover, for rapid prototyping purposes,
we provide a modeling layer that leverages the dynamic Lua scripting language to design
components and integrate them with the VP-based simulation. For evaluation purposes, we
provide two case-studies with different virtual environments. In all case-studies, we used
the RISC-V VP in the HiFive1 configuration, which is a model of the RISC-V HiFive1 board
from SiFive [6]. Besides the two virtual environments, we also built the corresponding two
real physical systems. We can observe that both the virtual and physical systems behave
identically in these case-studies, which demonstrates that our approach provides suitable
virtual models to enable early software development in the design flow. We also believe
that the combined VP platform can be very beneficial for education purposes in lectures
and also for further research projects.

Besides our own positive experience in using our VP platform for teaching lectures
on system-level design and virtual prototyping, we are also already aware of an other
academic group that has leveraged our RISC-V VP infrastructure for teaching an embedded
systems lecture with laboratory sessions in the RISC-V context [9]. This further underlines
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the applicability of our VP platform with environment modeling capabilities for educational
purposes. To further spread its adoption, we provide the VP platform with the environment
interaction in combination with the case-studies as open source [4].

Figure 1. Main architecture of our approach. Elements highlighted in green define the hardware
behavior through the SystemC domain language (simplified for readability). The contents of the VP’s
memory define software behavior, highlighted in blue. On the left side is the VP environment GUI,
which provides the interface that is to interact with the user. The behavior of outside components is
combined in the environment model with its configurable set of devices, highlighted in orange [10].
The numbers will be used in Section 4.2.1.

1.1. Paper Structure

This journal paper includes and extends published material from our previous con-
ference paper [10]. We start by outlining the new contributions of this paper in the next
paragraph. Then, we continue with a discussion of related work (Section 2) and provide
relevant background information (Section 3). Next, we present the VP-driven environment
modeling methodology, including the communication interfaces and configuration features,
in more detail (Section 4). We follow up with our rapid prototyping approach using the
dynamic Lua scripting language (Section 5). Then, we present our modeling case-studies
with two different environment configurations (Section 6.1). Afterwards, we describe the
results of our performance evaluation (Section 6.2). Finally, after a discussion on future
work (Section 7), we conclude the paper (Section 8).

1.2. New Contributions

In comparison to our previous conference paper [10], we have implemented a signifi-
cant set of extensions to our VP-driven environment modeling platform. The extensions
include a new rapid prototyping approach for modeling components using the dynamic
Lua scripting language with a set of dedicated interfaces to enable an integration with a
SystemC-based simulation, updated communication protocols to enable a better perfor-
mance and more reliable communication and an updated set of component building blocks
to speed up the development process of new environments. We also updated and extended
the related work, preliminaries and future work sections to reflect the new developments,
as well as provided a more detailed and reformulated description of the VP-driven envi-
ronment modeling and added case-studies in the experiment section. To accommodate
these new contributions, the paper has also undergone significant editorial changes.
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The complete implementation of our VP-driven environment modeling platform,
including all new extensions and case-studies, is available open source on GitHub.

2. Related Work

The extensive ecosystem of RISC-V comprises several simulators that differ in their
implementation technique and intended purpose in order to cover different use-cases.
SPIKE is the reference simulator that is mainly designed for pure CPU simulations with
a basic set of peripherals [11]. RV8 is a high-speed simulator that employs just-in-time
compilation techniques to boost the execution performance, but also mainly covers pure
CPU simulations [12]. R2VM also targets CPU simulations by utilizing binary transla-
tion techniques [13]. It can switch between fast and accurate simulations in order to
cover different use-cases. QEMU enables a full system simulation that covers a complete
platform and employs advanced binary-level optimization techniques to achieve a high
performance [14]. Building on that, [15] proposed an approach to efficiently simulate
Translation Lookaside Buffer (TLB) behaviors in a QEMU setting. Gem5 is also a full-system
simulator that puts a stronger emphasis on architectural exploration aspects, but has a
significantly reduced performance as a trade-off [16,17]. Going beyond that, the Renode
simulation system supports multi-node networks of embedded systems in a distributed
simulation [18]. Recently, SystemC-based processor simulation solutions have been intro-
duced into the RISC-V ecosystem as well. Besides the RISC-V VP, which we have covered
in the introduction, viable alternatives are the DBT-RISE [19] framework, ETISS [20,21] and
the RISC-V-TLM [22] instruction set simulator, which are also designed with a SystemC
integration in mind and provide RISC-V support. However, they lack a way to model
external devices, e.g., via SPI or GPIO. Regarding DBT-RISE, an example VP platform that
integrates an RISC-V instruction set simulator and is implemented in SystemC TLM is
provided [23]. Another SystemC TLM simulator for RISC-V is RISC-V-TLM [22], which is
currently under active development to increase the supported core feature set. A recent
approach that has built upon the RISC-V VP is a proposed visualization of the internal VP
execution state for debugging purposes [24]. It offers a live view into the execution state of
the SystemC peripherals but lacks an interactive modeling platform for the environment
interaction. However, the freely available VP-based frameworks for RISC-V are currently
missing an effective methodology used to design and integrate configurable environment
models with extensive graphical capabilities. Advanced environment modeling capabilities
in a configurable framework with extensive graphical capabilities, as proposed in this
paper, is, to the best of our knowledge, not yet available using any of the open RISC-V
virtual prototyping approaches. Finally, there are commercial VP tools such as Synopsys
Virtualizer [25] that might support RISC-V in combination with extensive environment
modeling capabilities, but their implementation is proprietary.

Looking beyond RISC-V, existing simulators such as simavr [26] and PICSimLab [27]
(using simavr in the background) can be cycle-accurate but are limited to a certain family
of AVR processors, and are fairly computationally expensive. In contrast to our approach,
which offers an interface to a SystemC VP and hence is able to incorporate custom in-
house chips and IPs, these simulators are not designed with advanced industry-proven
SystemC-based virtual prototyping in mind.

3. Preliminaries

In this section, we review background information on SystemC TLM and virtual pro-
totyping (Section 3.1) and embedded systems, with a focus on components and interfaces
(Section 3.2).

3.1. SystemC TLM and Virtual Prototyping

SystemC [28] is a hardware modeling framework, designed as a C++ library, that is
widely adopted in the industry. It offers a C/C++ style modeling framework with varying
degrees of timing accuracy at the benefit of simulation speed. The structure of a SystemC
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design is described with ports and modules, whereas the behaviour is modeled in processes
that are triggered by events. The execution of a process is non-preemptive, i.e., it uses
co-operative user-space scheduling for the processes of each module. This means that a
process, once started, runs indefinitely until it either yields (wait()) or terminates forever
(return). The process will be woken up when an event in its static sensitivity list triggers
(e.g., a clock edge), or it can wait for a dynamic sc_event. This event may be triggered
immediately or with a delay by, e.g., an asynchronous task, calling event.notify(delay).
Communication between SystemC modules can be abstracted using the TLM standard [29]
at the cost of timing accuracy, but with significant improvements in simulation speed, i.e., up
to a factor of 1000 in comparison to the RTL simulation. Especially in bus-like memory
mapped communication networks, skipping interconnect procedures and abstracting bus
protocols greatly reduces the execution time. A transaction object essentially consists of
a command (e.g., read/write) and the data (payload) to be transmitted. Transactions are
routed based on their address from an initiator to a target socket, which is all defined
in the SystemC TLM-2.0 standard, and allow for very fast interactions between modules.
Optionally, a transaction can be associated with a delay (modeled as sc_time data structure),
which denotes the execution time of the transaction and allows us to obtain a more accurate
overall simulation time estimation. Instead of taking the whole route through the VP,
interactions can be initiated directly to a target port. These transactions can either read
or write at a specified address carrying a generic payload along with a cumulative delay,
and may return either OK or ERROR. This delay is increased by every model passing the
transaction and is added to a global quantum afterward. The global quantum tracks the
time difference that a transaction “jumped" in contrast to the actual simulated time. If
this difference is bigger than the maximum allowed time, SystemC will initiate a global
synchronization. This allows for a fine control over the trade-off between simulation speed
and accuracy.

SystemC TLM is a de facto standard used to build advanced VPs that offer efficient
and extendable interfaces to model a wide range of different embedded systems early in
the design flow.

3.2. Embedded Systems: Components and Interfaces

The General Purpose Input/Output (GPIO) module is, in most embedded devices,
the interface to the outside world. It drives the physical pins of the chip or interprets
applied voltage as logic inputs, but can also be configured as an interface to other on-chip
peripherals. These peripherals depend on the instance of the System-on-Chip (SoC) and may
include digital data interfaces (e.g., Universal Asynchronous Receiver–Transmitter (UART),
Serial Peripheral Interface (SPI)), Analog-to-Digital Converters (ADCs) or timer-controlled
Pulse-Width-Modulated (PWM) outputs. Aside from active polling, the CPU may also enable
hardware interrupts that trigger when, e.g., the input state of a pin changes. This way,
the CPU may work on other threads and only be notified via the Platform Local Interrupt
Controller (PLIC) on a state change, initiated by the GPIO module.

4. VP-Driven Environment Modeling

In this section, we present our proposed approach. We first introduce the main
software architecture components of the modified RISC-V VP and our new VP environment
GUI (Section 4.1). Then, in Section 4.2, we look in more detail at the communication
between SystemC modules and the new GPIO server; and between the two executables.
Lastly, in Section 4.3, we show the details of our environment modeling GUI and the
currently available, placeable objects.

4.1. Architecture Overview

Figure 1 shows an overview on our approach. It consists of two standalone executables:
the modified RISC-V VP and our new VP Environment GUI. The RISC-V VP is organized in
the SystemC domain (the hardware model residing in simulation time, highlighted in green)
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and the GPIO server (bottom right). The SystemC peripherals relevant to this work and
their interactions will be described in more detail in Section 4.2. The GPIO server interfaces
between the SystemC GPIO peripheral to the environment model in physical (i.e., wall
clock) time, highlighted in yellow.

The VP environment GUI (VP-Env GUI, on the left side) consists of the GPIO client
(bottom left), the environment model and the QT modules for the GUI. The GPIO client is
responsible for obtaining and setting the pin states to the simulated hardware (the RISC-V
VP), while the environment model (highlighted in orange) models the world behavior based
on the configured devices and user input (see Section 4.3). The protocol between the GPIO
client and the GPIO server is described in more detail in Section 4.2.2. The environment
model manages the devices such as buttons, LEDs, etc., and their respective connections to
individual pins, and is shown in Section 4.3. The QT interface modules handle the drawing
functions and distribute keyboard/mouse input events to the respective environment
components, and is not shown in this work for brevity.

4.2. VP Peripheral Interfaces

As the GPIO peripheral resides in the user-space scheduled SystemC threading scheme,
an interface to the asynchronous “real time” world is needed. This interface is modeled in
the form of the GPIO server, which accepts TCP connections from a GPIO client to receive
and send pin status updates. To minimize the dependency of the VP to our environment
simulation, the server does not act (and thus impose an execution overhead) when no
client is connected. Furthermore, the GPIO client in the environment simulation performs
active polling on the server, where it sends changed pins on the environment side and
requests the current status on the VP side. This way, the execution overhead on a running
VP with an environment simulation is minimized at the cost of missed changes that happen
between the update cycles. With LEDs and buttons that interact with humans, this is
usually enough, but this loss of information would disable fast digital transmissions such
as SPI communication. This is why, when the GPIO peripheral is configured to do so, the
GPIO server and client will transmit their respective payload. For digital communication
interfaces such as SPI, our approach abstracts the underlying protocol and directly transmits
the payload to enable lossless communication and a faster simulation time.

4.2.1. SystemC Peripheral Interface

The GPIO peripheral is accessed through the device’s bus (Figure 1, 1 ), where it can
be configured and read by the software running on the CPU. It has an asynchronous (with
respect to the CPU clock) interrupt line 2 to notify the PLIC (and thus the CPU later) when
a configured input triggers, and, lastly, a direct interface from the SPI peripheral 3 , where
the payload bytes are sent directly into the GPIO interface.

“Outside” pin changes (from the VP environment GUI) are handled by using SystemC
AsyncEvents to notify the synchronous (with respect to the SystemC simulation time) GPIO
thread of pin changes 4 , which, in turn, notifies the PLIC if an interrupt is configured for
the corresponding change type.

4.2.2. GPIO-Protocol

Upon startup, the GPIO server opens a TCP socket and listens to incoming connections
from the GPIO client. The GPIO client in the virtual environment GUI then connects to
the server and begins polling with a getState command to request all pin states (see
Figure 2, 1 ). The response is a list of states for all pins that may assert either direct
values (LOW, LOW_WEAK, HIGH, HIGH_WEAK and FLOATING), or any of the current supported
IO-functions: SPI, SPI_NORESPONSE, BITSYNC and PWM, and reserved future functions such
as UART and I2C. If an environment device (such as a button) sets a pin, it is always
sent immediately over the channel (Figure 2, 2 ). Note that this happens throughout the
execution of the environment in regular intervals, indicated by the dashed line after 2 .
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Figure 2. Example sequence diagram of the GPIO-Protocol. The dashed line illustrates that the
getState()and setPin(...) functions are continued regularly in the background. The numbers are
referenced in Section 4.2.2.

The GPIO client may also request an IO-function channel, in which case, the GPIO
server will generate a unique channel ID (Figure 2, 3 ) and open (if not already existing)
a second TCP socket to which the GPIO client will connect (not shown in Figure 2 for
brevity). If some on-chip peripheral writes to one of the GPIO IO-function inputs, but the
corresponding pin is not yet “tracked” by the GPIO client, the GPIO peripheral will discard
the message. Additionally, in case of a two-way protocol, it will respond as if no device
was connected (e.g., a zero, Figure 2, 4 ). If the pin has an already registered “channel”,
the datum is transmitted to the GPIO client, with the actual response forwarded if needed
(Figure 2, 5 ).

Note that, in the case of SPI, there is also the SPI_NORESPONSE mode (unidirectional),
which can be requested by the GPIO client, where the response phase is omitted by the GPIO
client and the server will continue to respond directly with a zero. This is especially useful
for devices that do not implement a response anyway, to further reduce the overall latency.

4.3. VP Environment Model

In order to support the design process to build an environment model with the accom-
panying GUI, we provide a set of building block components that can be re-used across
different environments and designed our GUI to support configuration and placement via
a configuration file. In the following, we describe both aspects in more detail.

C++ Building Blocks

At the moment, we have, in total, designed five ready to use C++ components as
building blocks to support the design engineer in building environment models:

• Button: simple input area on screen that changes its state by mouse click or button
press and sets/resets a pin value.

• LED: a colored light spot that changes its brightness from transparent to a configured
color tone depending on a pin input value. This value can either be binary (on/off) or
a PWM ratio sent as a float.
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• RGB LED: an extension to the regular LED, directly mixing the three colors for
convenience.

• Seven-segment display: arranged color lines with background of a configurable size,
connected to up to seven input pins.

• Display: an SPI OLED display with an internal state machine, connected to one of the
digital SPI inputs and two pins for slave select and data/command switch.

Besides this set of C++-implemented components, our environment model architecture
is designed to be extensible and, as such, we can add additional components to increase our
toolbox. For rapid prototyping purposes, we also implemented a Lua-scripting interface
for modeling devices, as explained in the following Section 5.

5. Rapid Prototyping Using Lua Scripting

To increase the usability of our VP environment modeling tool, we added a device
scripting engine. This allows developers to focus on the actual behavior of devices without
having to understand the whole system, to not have to re-build the framework for each
change in a device and to increase modularity for an easier community-driven library
of devices.

Such a scripting engine has to be fast, memory efficient and easily learnable. Without a
particular scientific relevance, we chose Lua as the driving scripting language, as it is widely
used in games and other applications where execution speed and a low memory footprint
is key. Though the Python language was considered, as it is widely used nowadays in more
high-level applications, its interpreters for C/C++ programs compare rather laboriously
and (slightly) slowly.

For the interface between Lua and C/C++, we kept the dynamically typed language
style, and activated offered interfaces in a “duck typing” way. This means that, if a script
is loaded, it is checked whether it implements certain functions that are expected by our
framework. These can then be used by the configuration mechanism to enable/connect the
following currently implemented functions: SPI, Pin input/output, Configuration change,
Button/Mouse input, and Graphics.

In Figure 3, a brief overview of the interface registry is shown. On the right side,
the Lua tab, the functions to be implemented are grouped by their interfaces (colored).
Higlighted in bold are the necessary functions for each interface (the Graphics interface
is special, which will be discussed in the following paragraphs) to be recognized by the
Device wrapper (central tab). Upon instantiation, the device wrapper will check for the
existence of these functions and add the corresponding interfaces to the C++-world. The
Platform then instantiates and stores all devices listed in the configuration file (bottom left).
For each of the interfaces, a central registry is held for all devices to speed up the lookup of
each frame.

A Lua scripted device may implement a set of functions and have at least a member
classname, which is used to identify and instantiate this device (see Figure 3). For pin
input/output, it has to implement at least the function getPinLayout(), where it defines the
number of input or output pins during the instantiation setup phase (see also Figure 6). The
host system will then periodically call getPin(num) (if implemented) to request updates,
and setPin(num, val) if registered and connected pins are updated from outside the
device. A pin is updated asynchronously (i.e., only when the environment model updates;
see Section 4.2.2) per default, unless the environment configuration sets it as synchronous.
This is to save bandwidth and performance. Normal, asynchronously sensitive pins are
registered in the reading- and writingPINs data structures, whereas synchronous pins
are handled in the registeredPINchannels data structure, as it is considered as an IO-
function internally. SPI connections are handled by implementing receiveSPI(byte)
and is called synchronously when the device is connected to an SPI port and receives
something. Note that the function may return a value that is passed back to the processor if
not configured in SPI_NORESPONSE mode. If the device implements the setConfig(list)
functions, it may receive configuration updates in the form of a key-value list during
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setup from the json config file. Additionally, it may implement getConfig(), from where
the (default) settings may be viewed and reconfigured in the GUI. For GUI interactions
(Button/Mouse input), the device may implement onKeypress(keycode, press_release)
or onClick(press_release). Note that, for onClick, a graphical representation is needed.

getConfig()
setConfig(list)

Platform Device Lua
devices;
registeredSPIchannels;
registeredPINchannels;
readingPINs;
writingPINs;
readConfig();
deviceGraphics;

implementsInterface
    ↪SPI()
    ↪PIN()
    ↪Config()
    ↪Graphbuf()

spi->sendByte(byte);
pin->setPin(val);
pin->getPin();
conf->getConfig();
conf->setConfigElem();
draw->getLayout();
draw->registerSetBuf(...);

getGraphbufferLayout()
initializeGraphBuffer()
setGraphbuffer(x,y,Pixel)

classname = "DHT22"

receiveSPI(byte)
    return ...
end

getPinLayout()
setPin(num)
getPin(num, val)

"class" : "DHT22",
"id"    : "sens1",
"spi"   : {
    "cs_pin"     : 15,
    "noresponse" : true
},
"pins"  : [
   {
    "device_pin" : 1,
    "global_pin" : 18,
    "synchronous": true
   }

config.json

2

3

1

Figure 3. Available device interfaces for Lua scripts. In the Lua tab, highlighted in bold, are the
minimum necessary functions for each interface. Not shown is the Button/Mouse input interface
with the functions onClick(active) and onKeypress(code, active) for better readability.

The interface for graphics is slightly more interesting, as the environment GUI offers
functions to the device once it defines the getGraphbufferLayout() function. During
setup(Figure 3, 1 ), the GUI calls this function and reserves a memory region with the re-
quested image size and format (currently only RGBA8888), and inserts the callback function
(Figure 3, 2 ) get- and setGraphbuffer(x,y,Pixel), which directly access the internal
image buffer. A Pixel is a custom data type that combines red, green, blue and alpha
values. These functions may be called by the device during all callbacks (Figure 3, 3 ).

Due to technical reasons, all scripted devices run in one single Lua interpreter state
as scoped chunks for the best memory and execution speed. This means that a script is
loaded into a table, where it may only access pre-defined global functions without access
to the other script’s functions. All devices may call setGraphbuffer(..), but they may
only access their own buffer. To enable this, we opted for prefixed global C functions
(e.g., button1_setGraphbuffer(..), Figure 4, Line 9). This is a technical limitation of
the used LuaBridge3, where C functions may only be global These are inaccessible for the
scoped device scripts (chunks) until they are inserted into the respective Lua meta-table
(Figure 4, Line 20), and without the prefix.
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1 template <typename FunctionFootprint >
2 void LuaDevice :: Graphbuf_Interface :: regGlobalFunctionAndInsertLocalAlias(

↪→ const string name , FunctionFootprint fun) {
3 if(m_deviceId.length () == 0 || name.length () == 0) {
4 cerr << "[Graphbuf]␣Error:␣Name␣’" << name << "’␣or␣prefix␣’"
5 << m_deviceId << "’␣invalid!" << endl;
6 return;
7 }
8
9 const auto globalFunctionName = m_deviceId + "_" + name;

10 luabridge :: getGlobalNamespace(L)
11 .addFunction(globalFunctionName.c_str (), fun)
12 ;
13
14 const auto global_lua_fun =
15 luabridge :: getGlobal(L, globalFunctionName.c_str());
16 if(! global_lua_fun.isFunction ()) {
17 cerr << "[Graphbuf]␣Error:␣" << globalFunctionName << "␣is␣not␣valid!" <<

↪→ endl;
18 return;
19 }
20 m_env[name.c_str()] = global_lua_fun;
21 };

Figure 4. Mechanism for unique global C-functions that are inserted into the Lua script’s metatable
m_env as prefix-less references.

5.1. Configuration

Our VP environment loads a json-formatted configuration file on start-up for ease of
customizing the user interface. An example is shown in Figure 5. In the window section,
a background image (Line 3) and a desired window size (Line 4) can be defined (which
defaults to the background image size).

After that, all implemented/loaded device classes may be referenced and instan-
tiated in the devices section (Line 6). A device entry must have a class and an id
(Lines 9 and 10). The class references the building blocks classname (see Section 5), while
the id must be a name that is unique to the instance. Further items depend on the im-
plemented interface of the specific building block (see Figure 3). For example, a Lua-
implemented button button_lua offers the graphics (Line 11), onKeypress (Line 16) and
pin (Line 17) interface. The OLED device (Line 44) was implemented in both Lua and C++,
with the latter being instantiated in this example.

5.2. Scoping Layers

To increase the modularity in the whole HW stack from the device to SoC peripheral,
the environment model consists of four layers: the device layer, the environment layer, the
platform layer and the GPIO layer in the GPIO peripheral of the VP (see Figure 6).

The device layer is scoped to every individual device, which define the pin and other
protocol descriptions according to the respective interfaces (see Section 5). In the environ-
ment layer, all instantiated devices are connected to the global pin numbers. This would
normally be carried out via a prototyping breadboard or a PCB. It is allowed to not connect
pins. The pins between the labeled “global” connectors of a platform (such as the HiFive 1)
into the chip’s GPIO register offsets are translated in the platform layer. Lastly, in the GPIO
module that resides in the VP, the actual pin states are set/read according to Section 4.2.2
and can either contain per-pin managed digital levels (see Section 4.2.1) or pass through to
an IO-function such as SPI.
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1 {
2 "window" : {
3 "background" :

↪→ ":/img/oled_shield.jpg",
4 "windowsize" : [470, 750]
5 },
6 "devices" :
7 [
8 {
9 "class" : "button_lua",

10 "id" : "button_up",
11 "graphics" :
12 {
13 "offs" : [77, 625],
14 "scale" : 2
15 },
16 "keybindings" : ["DOWN"],
17 "pins" :
18 [
19 {
20 "device_pin" : 1,
21 "global_pin" : 19
22 }
23 ]
24 },
25 {
26 "class" : "button_lua",
27 "id" : "button_down",
28 "graphics" :
29 {
30 "offs" : [220, 580],
31 "scale" : 2
32 },
33 "keybindings" : ["DOWN"],
34 "pins" :
35 [
36 {
37 "device_pin" : 1,
38 "global_pin" : 4
39 }
40 ]
41 },
42 [...] // other buttons

43 {
44 "class" : "SSD1106",
45 "id" : "display",
46 "spi" :
47 {
48 "cs_pin" : 15,
49 "noresponse": true
50 },
51 "pins" :
52 [
53 {
54 "device_pin" : 1,
55 "global_pin" : 16,
56 "name": "dc_pin",
57 "synchronous" : true
58 }
59 ],
60 "graphics" :
61 {
62 "offs" : [105, 308],
63 "scale" : 2
64 }
65 },
66 {
67 "class" : "LED",
68 "id" : "led1_down",
69 "pins" :
70 [
71 {
72 "device_pin" : 1,
73 "global_pin" : 3,
74 "name": "led_pin"
75 }
76 ],
77 "graphics" :
78 {
79 "offs" : [435, 655],
80 "scale" : 2
81 }
82 }
83 ]
84 }

Figure 5. Excerpt of an example configuration file for a PCB with an OLED display, used in Figure 10b.

Figure 6. The four layers of scoping for connections from the individual environment device to the
actual register contents of the GPIO peripheral in the VP.
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5.3. Example Devices

To explain the concept better, we will show two of the currently implemented devices
in more detail: a simple red LED (see Figure 7) and a more complex OLED display (Figure 8).

5.3.1. LED

The LED implementation in Figure 7 uses the pin, config and graphic interfaces. In
Lines 3–6, the module defines only one pin, with the number 1 as an input pin and the
description string of “led_on”. Lines 8–11 request only one color pixel from the graph-
ics system, which is accessed later via setGraphbuffer(0,0, ...) on Lines 32 and 34.
Lines 13–15 define local variables for the displayed color, which are set or read by the
configuration file or during the runtime via getConfig() and setConfig(conf) in Lines 17
and 23, respectively. The actual display action happens if the input pin (1) is changed
(Lines 29–37). The call supports multiple pins, so setPin(...) includes the pin number
and the (boolean) value if it is HIGH or LOW.

5.3.2. SSD1103 OLED Display

In Figure 8, a more sophisticated example is given. It implements the already
known pin interface, but also the SPI interface with the function receiveSPI(byte_in)
(Lines 56–81). Note that, for brevity, some of the internal logic is omitted (Lines 44, 58,
77). In Lines 36–41, the most common operator bytes are defined. The omitted func-
tion getMask(op) determines the value bits of an input command byte, which is then
used by the match(cmd) function (Lines 47–54) to decode incoming raw bytes. Lastly, in
receiveSPI(byte_in) (Lines 56–81), the actual drawings to the frame buffer are performed
when the incoming SPI byte is detected as data (if the data_command pin was set HIGH). In
Lines 57–65, the translation from 1-bit-pixel rows to the pixelwise frame buffer is carried
out, including the increment of the current column pointer. Some of the command handling
is shown in Lines 65–79, where internal state variables are changed.

1 classname = "LED"
2
3 function getPinLayout ()
4 -- number , [input | output | inout], name
5 return {1, "input", "led_on"}
6 end
7
8 function getGraphBufferLayout ()
9 -- x width , y width , data type

10 return {1, 1, "rgba"}
11 end
12
13 local r = 255
14 local g = 10
15 local b = 0
16
17 function getConfig ()
18 return {{"r", r},
19 {"g", g},
20 {"b", b}}
21 end
22
23 function setConfig(conf)
24 r = conf["r"] or r
25 g = conf["g"] or g
26 b = conf["b"] or b
27 end
28
29 function setPin(number , val)
30 if number == 1 then
31 if val then
32 setGraphbuffer (0, 0, graphbuf.Pixel(r, g, b, 255))
33 else
34 setGraphbuffer (0, 0, graphbuf.Pixel(r, g, b, 0))
35 end
36 end
37 end

Figure 7. Simple one-pixel LED model with Lua.
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1 classname = "SSD1106"
2
3 function getPinLayout ()
4 -- number , [input | output | inout], name
5 return {1, "input", "data_command"}
6 end
7
8 local width = 132
9 local height = 64

10
11 function getGraphBufferLayout () return {width , height , "rgba"} end
12
13 local isData
14 local state = {
15 column = 0,
16 page = 0,
17 contrast = 255,
18 display_on = true
19 }
20
21 function setPin(number , val)
22 if number == 1 then
23 isData = val
24 end
25 end
26
27 -- optional
28 function initializeGraphBuffer ()
29 for x = 0, width -1 do
30 for y = 0, height -1 do
31 setGraphbuffer(x, y, graphbuf.Pixel (0,0,0, 255))
32 end
33 end
34 end
35
36 operators = {
37 COL_LOW = 0 ,
38 COL_HIGH = 0x10 ,
39 PUMP_VOLTAGE = 0x30 , --0b00110000
40 [...]
41 }
42
43 function getMask(op)
44 [...]
45 end
46
47 function match(cmd)
48 for key , op in pairs(operators) do
49 if ( (cmd ~ op) & getMask(op) ) == 0 then
50 return op, cmd & (~ getMask(op))
51 end
52 end
53 return operators.NOP , 0
54 end
55
56 function receiveSPI(byte_in)
57 if isData then
58 [...]
59 for y = 0,7 do
60 if (byte_in & 1 << y) > 0 then pix = 255 else pix = 0 end
61 setGraphbuffer(state.column , (state.page *8)+y,
62 graphbuf.Pixel(pix ,pix ,pix , state.contrast ))
63 end
64 state.column = state.column + 1
65 else
66 op, payload = match(byte_in)
67 if op == operators.DISPLAY_START_LINE then
68 return 0
69 elseif op == operators.COL_LOW then
70 state.column = (state.column & 0xf0) | payload
71 elseif op == operators.COL_HIGH then
72 state.column = (state.column & 0x0f) | (payload << 4)
73 elseif op == operators.PAGE_ADDR then
74 state.page = payload
75 elseif op == operators.DISPLAY_ON then
76 display_on = payload
77 [...]
78 else print("unhandled␣operator␣" .. byte_in) end
79 end
80 return 0
81 end

Figure 8. Simple SPI OLED driver model with Lua.
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6. Evaluation

In this section, we will show some use-cases for our VP environment by modeling
two example environments along with their interacting software (Section 6.1), give a
performance evaluation of different modeling strategies (and comparing to the baseline
RISC-V VP, Section 6.2) and, lastly, give a short demonstration on how we used it in our
own lectures (Section 6.3).

6.1. Modeling Case-Studies

We implemented our proposed approach for VP-driven environment modeling and
interaction in the RISC-V context using the open source RISC-V VP as foundation, which is
available at GitHub [4]. To demonstrate the effectiveness of our approach in building feature
rich environments, we designed two example environments in combination with different
firmware applications as a case-study. In the following, we present both case-studies in
more detail (Sections 6.1.1 and 6.1.2).

6.1.1. Breadboard Environment

To demonstrate the usability of our approach as a rapid prototyping methodology, we
designed a breadboard environment and configured a button, an LED and a seven-segment
display, as well as the built-in RGB-LED of the HiFive1 board. An excerpt of the corre-
sponding configuration file can be found in Figure 5. The corresponding graphical display
of the environment is shown in Figure 9. Besides the already mentioned components, the
environment also displays the connection between the respective GPIO pins of the HiFive1
and the breadboard. During the VP-driven simulation, the environment GUI was updated
accordingly to reflect the current execution state of the VP.

Figure 9. Image of the virtual breadboard environment with a button, a red LED and a seven-
segment display on the breadboard, and the built-in RGB-LED on the HiFive1. The connections to
the seven-segment display are omitted for readability reasons [10].

The firmware is held as simple in this example: it counts a number in seconds using the
core local interrupter (CLINT) timer, and renders it to the seven-segment display. Whenever
the button is pressed, the count direction is reversed accordingly. The single LED is changed
every second. Due to the built-in RGB LED segments always being connected to certain
GPIO pins of the seven segment display, its color changes and mixes as well.
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6.1.2. OLED Display Shield with Buttons

For a more sophisticated example, we modeled a hand-held “gaming” device with
seven input buttons and a 64-by-128-pixel-wide OLED screen. An overview of this system is
shown in Figure 10, with the left side showing the virtual environment and the right side the
corresponding real physical device. The screen is connected via SPI and demonstrates the
bytewise I/O functions of our GPIO and environment model. The buttons are connected to
the ground and require a pull-up resistor on the input pins to work, while the OLED screen
is interfaced via an SSD1306 (https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf,
last accessed 4 September 2022) compatible protocol, consisting of the usual SPI pins
Master In Slave Out (MISO), Clock (CLK) and a Data Command (DC) input. This interface
also demonstrates the requirement of synchronicity between the abstracted byte-wise SPI
transmissions and the GPIO-handled (software driven) Data/Command (DC) pin, where
a small transmission jitter of data vs. the DC pin would already result in a glitchy or
inoperable display. An excerpt of the Lua implementation can be found in Figure 8.

To test the interaction between the user input and output, we programmed a demo
snake game that listens to the up, down, left and right buttons in an interrupt routine and
draws a gaming field on the screen. With the key mapping of our environment model, it
can be played by clicking on the on-screen buttons or via the arrow-keys on the keyboard.
As the RISC-V VP is binary-compatible to the HiFive1 board, the same program can be used
and played on the real board, after the PCB has been manufactured (see Figure 10a). For
demonstration purposes, we built another firmware, besides the snake game, that displays
a Mandelbrot visualization on the same device (as shown on Figure 10b).

(a) Simulated (b) Real
Figure 10. Our OLED display shield with an SSD1306 driver and seven buttons, running the demos
from Section 6.2 (a) and Section 6.1.2 (b), respectively [10].

6.2. Performance Evaluation

For performance evaluation purposes, we designed a non-interactive test program
that first calculates 40 frames in a Mandelbrot set visualization (see Figure 10a) that uses
software floating-point arithmetic to render the fractal. It then fades the display using the
background illumination command and draws 1000 characters of pre-defined, randomized
text to the screen. After this, the program exits with a special RISC-V exit sequence that
is handled in the RISC-V VP. This is, of course, not handled by the real processor. While
the Mandelbrot set visualization is computationally intensive, as every pixel is calculated
individually, the text stream is only limited by the SPI-bandwidth as it uses lookup-buffers
for the font and addresses the native eight-pixel-rows per byte.

https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
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In addition, we modeled the SPI OLED display three times: 1. in the SystemC VP,
communicating directly with the SPI device over TLM, sharing only the screen buffer over
memory-mapped I/O to the GUI; 2. in the VP environment GUI as a C++ device, using
our GPIO protocol; and 3. in the VP environment GUI as a Lua device, using our GPIO
protocol (see Figure 8) .

The results of this experiment can be found in Table 1. The first column describes the
Test type: Baseline (unmodified RISC-V VP with non-functional mock-up GPIO peripheral);
Disconnected (our modified RISC-V VP with the display modeled in SystemC, but no
connection to the environment); and GUI-connected (our modified RISC-V VP with the
connected environment GUI actively displaying the execution state). The connected tests
were built in four different set-ups: SystemC-Device, where the OLED display driver is
directly connected to the SPI peripheral in SystemC sharing the screen buffer with our GUI;
Bidirectional C++-Device, where the driver is modeled in our environment GUI and the SPI
peripheral awaits the answer byte via the protocol; Unidirectional C++-Device, where the
device’s answer is discarded for speedup; and, finally, Unidirectional Lua-Device, where the
logic of the display driver is modeled in our Lua scripting engine.

The next column, Time, reports the real time as reported by the program time of the
whole simulation with an already started GUI (if applicable). # Exec. Instr. refers to the
number of native machine instructions (not pseudo-instructions) executed until the test
end. Note that the number differs slightly for the same binary due to different behavior
when the GPIO memory mapped region is either mock-up memory (Baseline), correct but
disconnected (Disconnected) or responding to actual SPI devices (GUI connected). Lastly, we
calculated the number of Million Instructions Per Second (MIPS) to offer a comparison to
other simulation approaches. All tests were conducted on a desktop grade AMD Ryzen
3700G processor with 32 GiB RAM, and outperformed the real HiFive1 setup; especially
in memory-intensive tests, which is usually not possible with RTL models (note that the
RISC-V VP has the feature to lock the CLINT (internal timer) to either simulation- or wall
clock time).

Table 1. Performance overhead test results. GPIO register accesses (read/write): 3025/946. SPI words
transmitted: 58,678 (in connected tests).

Test Time # Exec. Instr. MIPS

Baseline 27.312 s 79,392,401 2.907
Disconnected 27.617 s 79,390,408 2.875
GUI connected

– SystemC-Device 27.917 s 79,390,486 2.844
– Bidirectional C++-Device 32.118 s 79,390,437 2.472
– Unidirectional C++-Device 28.789 s 79,390,491 2.758
– Unidirectional Lua-Device 28.654 s 79,390,408 2.771

As can be observed, a connected and running VP environment has a minimal impact
on the execution speed of the VP. Besides the asynchronous communication scheme, the
minimal overhead could be achieved through the use of a multi-core processor, as the
RISC-V VP uses the single-threaded SystemC reference implementation. Thus, the RISC-V
VP and the environment GUI can be executed in parallel with little to no interference.
Secondly, it can be noted that the implementation of a high-throughput device (such as the
OLED display) in the Lua scripting language does not add a significant run-time overhead
to the simulation speed, as long as the response is discarded. Note, however, that the
refresh rate of the environment GUI drops slightly, as Lua devices accesses to the frame
buffer are generally slower because of the C-wrapper (see Figure 3). The refresh rate in all
tests varied between 10 and 20 Hz, limited to 20 Hz.

The overall impact of our approach on execution speed can be observed against a
baseline version of the GPIO peripheral, where any accesses to the memory mapped IO-
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interface are ignored (pass-through to memory). This reveals only a 2.2% runtime overhead
on average for the benefit of a functioning, interactive GPIO interface.

6.3. Educational Tool for Teaching

Among others, we offer a system-level design lecture that also covers programming
embedded systems. During the COVID-19 pandemic, there was no possibility for the
students to interact with physical prototype boards such as the Sifive Hifive1. As the stu-
dents covered implementing their own small VPs, it was easy to show them the principles
of the more complex RISC-V VP. The students could then use and program our digital
version of the Hifive1 board to understand the basic concepts of interrupt handling and
how embedded systems interact with their environment. As the RISC-V VP can be analyzed
using normal software-based debuggers such as GDB, we can show the detailed steps
of different control flows during the runtime, and how software and hardware modules
interact between each others. The small exercises were laid out in incremental steps to
program an interrupt-triggered blinking LED while reacting to button presses. One year,
the final lectures could be held in person, where the students could test their own programs
on real Hifive1 boards supplied by the university.

Overall, we noted that the RISC-V VP with the environment model extension, while
posing an initial learning curve, was very helpful during remote teaching and was still nice
to have in in-person teaching as every student could test and build their programs at home
without having to supply real hardware. We suppose that it will also be beneficial for more
practical-focused embedded programming courses; especially when using hardware that is
either too costly/complex to be supplied to every student or hardware that requires special
programming devices.

7. Discussion and Future Work

Our evaluation demonstrates the applicability of our approach in building advanced
VP-driven environment models for embedded systems efficiently to enable a full-platform
simulation early in the design flow. To further boost our approach, for future work, we
plan to:

1. Extend the GUI to build the environment configuration live in an interactive way
instead of using a static configuration file. Moreover, we want to investigate enabling
dynamic modifications of the environment configuration at the runtime in order to
facilitate the rapid prototyping process or for debugging purposes (development has
already started).

2. Investigate a VP-driven hardware-in-the-loop integration that allows for attaching
real physical HW objects with the VP-based simulation. This would allow for mixing
virtual and physical environment objects. In addition, it allows a step-wise approach
to refine models and specifically debug certain physical objects by providing virtual
wrappers for the others.

3. Look into techniques to boost the simulation performance of the VP-driven simu-
lation. In particular, the integration of just-in-time compilation techniques seems
very promising but requires special attention to be integrated with a SystemC-based
simulation in combination with the environment model communication.

4. Investigate the integration of extra-functional models with the VP-driven simula-
tion to enable a fast and accurate estimation of extra-functional properties in a full
platform setting. This requires appropriate interfaces and dedicated techniques for
measurement and synchronization between the VP and environment models.

8. Conclusions

We presented an effective methodology for advanced environment modeling and
interaction for VPs in the RISC-V context to enable the design of an advanced embedded
system early in the design flow. We provided a library with a set of building blocks and
support for several hardware communication interfaces. For visualization purposes of the
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environment, we designed an interactive GUI that communicates to the VP through TCP
connections. To ease the environment setup, the model was specified through a config-
uration file. For rapid prototyping purposes, we added a modeling layer that leverages
the dynamic Lua scripting language to design components and integrate them with the
VP-based simulation. Our evaluation with two different case-studies demonstrated the
applicability of our approach in building virtual environments effectively and correctly. To
advance the RISC-V community and stimulate further research, we provided our complete
framework, including all case-studies as open source on GitHub. We also believe that the
combined VP platform can be very beneficial for education purposes in lectures.
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Abbreviations

ADC Analog–Digital Converter
RISC Reduced Instruction Set Computer
ISA Instruction Set Architecture
IoT Internet of Things
SoC System on Chip
CPU Central Processing Unit
CLINT Core Local Interruptor
TLM Transaction-Level Modeling
HW Hardware
SW Software
VP Virtual Prototype
PCB Printed Circuit Board
SPI Serial Peripheral Interface
GPIO General Purpose Input/Output
LED Light-Emitting Diode
OLED Organic LED
UART Universal Asynchronous Receiver–Transmitter
PWM Pulse Width Modulation
DAC Digital–Analog Converter
GUI Graphical User Interface
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