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Abstract: This paper provides a short review of sustainable hybrid energy harvesting and its appli-
cations. The potential usage of self-powered wireless sensor (WSN) systems has recently drawn a
lot of attention to sustainable energy harvesting. The objective of this research is to determine the
potential of hybrid energy harvesters to help single energy harvesters overcome their energy defi-
ciency problems. The major findings of the study demonstrate how hybrid energy harvesting, which
integrates various energy conversion technologies, may increase power outputs, and improve space
utilization efficiency. Hybrid energy harvesting involves collecting energy from multiple sources and
converting it into electrical energy using various transduction mechanisms. By properly integrating
different energy conversion technologies, hybridization can significantly increase power outputs and
improve space utilization efficiency. Here, we present a review of recent progress in hybrid energy-
harvesting systems for sustainable green energy harvesting and their applications in different fields.
This paper starts with an introduction to hybrid energy harvesting, showing different hybrid energy
harvester configurations, i.e., the integration of piezoelectric and electromagnetic energy harvesters;
the integration of piezoelectric and triboelectric energy harvesters; the integration of piezoelectric,
triboelectric, and electromagnetic energy harvesters; and others. The output performance of common
hybrid systems that are reported in the literature is also outlined in this review. Afterwards, various
potential applications of hybrid energy harvesting are discussed, showing the practical attainability
of the technology. Finally, this paper concludes by making recommendations for future research to
overcome the difficulties in developing hybrid energy harvesters. The recommendations revolve
around improving energy conversion efficiency, developing advanced integration techniques, and
investigating new hybrid configurations. Overall, this study offers insightful information on sustain-
able hybrid energy harvesting together with quantitative information, numerical findings, and useful
research recommendations that progress and promote the use of this technology.

Keywords: energy harvesting; hybrid energy harvesters; sustainable energy harvesting; energy
conversion; green energy harvesting

1. Introduction

Using sustainable/renewable energy sources, such as light, wind, heat, waves, rota-
tion, or vibration, becomes a viable and effective solution to the world’s energy crisis [1–4].
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Environmental energy-harvesting methods have been the subject of numerous studies
and efforts over the past years. These energy sources provide electricity for household
and industrial use, thus addressing local power shortages. Because of the challenge of
connecting electrical cables with various sensors, powering wireless sensor node systems
is a concern [5–7]. However, a source of power without the self-powering ability limits
the sustainable functioning of wireless sensor systems. It creates difficulties for the users
due to the low capacity of batteries [8–10]. Although the operating times of wireless
sensor systems can be increased by using an ultralow power system and a high-capacity
battery, they cannot ensure the system will run without interruption for a long period
of time [11]. Thus, one of the innovative aspects proposed for a sustainable future soci-
ety is an energy-harvesting system which transforms waste environmental energy into
electrical energy [12–14]. Such energy harvesters provide sustainable power solutions
by collecting ambient sustainable/renewable energy sources and converting them into
electrical energy using a variety of transduction mechanisms [10,15–17], including thermo-
electric, photovoltaic, pyroelectric, electromagnetic, piezoelectric, triboelectric, and other
mechanisms. The development of self-charging electronics and self-powering wireless
sensor systems has gained considerable interest in research on sustainable and renewable
energy harvesters [18–21]. Wang et al. [22] introduced an innovative self-sustained wireless
sensor network through the combination of a hybrid piezoelectric generator (PEG) and
triboelectric nanogenerator (TENG). The PEG, comprising a hinged–hinged PZT bimorph
and two T-shaped proof masses, generates an output power of 6.5 mW when excited at
25 Hz with 1.0 g acceleration. This power is used to light up 30 serial LEDs in sine vibration
and 20 serial LEDs in shock vibration, serving as alarms for vibration and drop monitoring.
Additionally, a triboelectric accelerometer demonstrates excellent linearity with a sensi-
tivity of 15 V/g within the range of 0–1.5 g with an optimized gap of 1.5 mm. Ensuring a
self-sustained power supply is a crucial objective for various applications.

There are always both artificial and natural energies present, including wind, solar,
wave, machine vibration, heat, and automobile noise energies. As a result, solar, thermal,
and mechanical energy-harvesting devices can coexist and continuously produce energy, as
illustrated in Figure 1 [23]. To date, energy harvesters have typically been made to utilize
a single source of energy. For example, photovoltaic harvesters were created to harvest
light energy; to harvest thermal gradients, pyroelectric and thermoelectric harvesters were
specifically created; and for harvesting kinetic energy, piezoelectric, triboelectric, electro-
static, and electromagnetic harvesters are especially helpful. A single energy harvester
cannot always meet the power needs of electronic devices because its energy generation
depends on the accessibility of the energy source. The environment is filled with kinetic
energy from human activities, wind flows, structural and machine vibration, water waves,
etc. Yet, because humans require rest, wind or water waves might not always be always
present, and a machine might not run continuously, kinetic energy might be insufficient
and fluctuating. Kinetic energy harvesters will not work in these situations. Thermal
energy harvesters would likewise experience similar circumstances when dealing with
unpredictably changing temperature gradients. Hybrid energy harvesting is gaining popu-
larity as a response to the problem of energy deficiency among single energy harvesters. In
general, it refers to both the collection of energy from various sources and the conversion
of that energy into electrical energy via various transduction mechanisms. The two types
of hybrid energy harvesters (HEHs) are multi-source hybrid energy harvesters and single-
source hybrid energy harvesters. The result is the development of integrated multi-source
HEHs with a variety of configurations and energy conversion materials [24,25]. When
various power sources are accessible alternately or simultaneously, power outputs can
be greatly increased. The main research focus is still on developing and creating highly
efficient single-source HEHs with different energy transduction mechanisms. Emerging
energy-harvesting concepts, including flexoelectric [26], flexible organic ionic diodes [27],
ferro-electrets [28], mechano-radical [29], electrochemical [30], and mechanisms based on
biomaterials [31], have been published recently. It has been discovered via the comparative
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analysis of the energy harvesters that various harvesting mechanisms and materials may
be appropriate for various application scenarios and structural configurations. In recent
years, numerous researchers have provided innovative and efficient strategies for HEHs
from single-source and multi-source harvesters [32]. As there are fewer publications com-
pared to single-source harvesters, these studies still have not been thoroughly examined
and summarized.
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Research on hybrid energy harvesters has experienced a tremendous increase in recent
years, which has resulted in significant developments in the field. A critical analysis of the
existing literature identifies several trends and patterns that help to explain hybrid energy
harvesting and its uses. To increase power output and boost energy efficiency, numerous
studies have concentrated on investigating various combinations of sources of energy and
transduction mechanisms. For instance, studies have demonstrated the advantages of
integrating electromagnetic and piezoelectric energy harvesters along with the synergis-
tic effects attained by combining electromagnetic, triboelectric, and piezoelectric energy
harvesters. Comparing these hybrid systems to single-source energy harvesters, they have
shown to be more capable of producing power. In addition, a deeper examination of the
literature reveals the gaps and significant areas for hybrid energy harvesting. Fewer studies
have examined the real-world applications and execution of hybrid energy-harvesting
systems. At the same time, some have mainly concentrated on the technical aspects of the
conversion of energy and power generation. It is essential to consider the requirements and
limits of various application areas if one wants to grasp the advantages of hybrid energy
harvesting completely. For instance, the incorporation of hybrid energy harvesters in the
infrastructure and vehicles can help create self-sufficient and sustainable transportation
systems in smart mobility. In the same way, in healthcare, the development of devices that
are driven by hybrid energy harvesters can offer ongoing, unnoticeable health monitoring.

Additionally, a comparison of the existing studies demonstrated variability in the
efficiency, reliability, and performance of various hybrid energy-harvesting systems. These
differences result from the use of differed materials, configurations, design, optimization
techniques and energy management approaches. The elements that lead to greater per-
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formance and efficiency can be easily identified by critically analyzing and comparing
these studies, thereby paving the path for further advances in hybrid energy-harvesting
systems. Although hybrid energy-harvesting research has advanced significantly, there are
still possibilities to expand the understanding of its uses and fill the existing gaps. Yet, this
cutting-edge technology still has several significant gaps. First, maintaining compatibility
and seamless integration between the various energy sources is a challenging task that calls
for advanced power control and management systems. Furthermore, combining various
energy-harvesting technologies into a single system may result in an increase in overall
size and weight, creating problems for applications where portability and compactness
are essential. In addition, as numerous conversions and storage of energy components
must be included, deploying hybrid energy-harvesting systems might be costly [33–35]. To
fully grasp the potential of hybrid energy harvesting and advance sustainable and effective
energy solutions in the future, it is essential to overcome these challenges. Regions with
high potential can be easily determined and permit the development of more practical and
efficient hybrid energy-harvesting systems by conducting a more thorough analysis of the
literature, examining the patterns, developments, ideas, and interactions among studies,
and comparing the energy efficiencies of various approaches [36–41].

This article presents a review from the literature on the recent progress in hybrid
energy harvesting and its applications, which includes smart transportation, infrastructure
health monitoring, marine monitoring and development systems, aerospace engineering,
healthcare monitoring, industry condition monitoring, and water purification. While
already written review papers have primarily focused on single application areas, this paper
offers a comprehensive performance comparison and explores the diverse applications
of hybrid energy harvesting across multiple domains. In the last section, there are also
some recommendations to fill the gaps and enhance hybrid energy harvesting. This review
provides valuable insights to the researcher and reader on the potential and applications of
the hybrid energy-harvesting systems, as well as how it helps to solve the energy-deficiency
problems by providing sustainable energy-harvesting solutions, and it also explores some
opportunities for future research and advancement in this area.

2. Hybrid Energy Harvesting

Hybrid energy harvesting integrates multiple energy conversion mechanisms into
one design. The hybrid energy harvesters discussed in this paper show the integration
of different harvester types to achieve synergistic effects that enhance the overall energy
output. They are not just a simple combination but are designed for optimal interaction
between the integrated components. The integration aims to capitalize on coupling ef-
fects during operation, thereby significantly boosting the energy output. It is essential to
carefully design these systems to remove any negative impacts or interference that might
potentially reduce the overall energy-harvesting efficiency. Due to the coupling effect
and high performance of the hybrid energy-harvesting systems, they have drawn con-
siderable attention as a potential candidate for sustainable/renewable energy harvesting.
Examples of hybrid energy harvesters (HEHs) include a combination of mechanical and
photovoltaic energy harvesters [42–47], mechanical and thermal energy harvesters [48–52],
thermal and photovoltaic energy harvesters [53–55], and combinations of other energy
harvesters [56–60].

2.1. Piezoelectric–Electromagnetic Hybrid Energy Harvesters

Piezoelectric and electromagnetic processes are frequently utilized to produce electric-
ity from kinetic energy. These processes are integrated in the HEHs to increase the system
power density and the potential to generate more energy [61–69]. One of the goals of these
solutions is to improve the electrical dampening and match it with the mechanical one to
increase the efficiency of energy conversion in the HESs. Xia et al. created a novel approach
for the piezoelectric–electromagnetic (PE-EM) harvesters by altering the axial magnetic
force, as illustrated in Figure 2a [70]. The results showed a broad operating frequency range
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of about 25.5–62 Hz. In response to this, in the cantilever harvester, Xu et al. [71] added
another magnetic oscillator in between the coils and tip magnet, as shown in Figure 2b.
Power control circuits are a challenge for hybrid energy harvesting. Output in the form of
alternating currents is common for the harvesters utilizing piezoelectric and electromag-
netic technologies. It is necessary to convert this alternating current into a more stable
form through rectification, storing the energy and stabilizing the voltage to accumulate the
charges collected in a single storage unit. Piezoelectric energy harvesters (PEHs) often have
high output impedance due to their low capacitance and operating frequency. Conversely,
the electromagnetic harvester yields high output current and low voltage due to its lower
impedance in the coil. The distinct variations in output characteristics between PEHs
and electromagnetic energy harvesters pose considerable challenges when designing an
effective interface for hybrid harvesters. A practical approach involves designing separate
rectification and storage components for piezoelectric and electromagnetic harvesters and
operating them concurrently, as illustrated in Figure 2c [72]. The structural design of PE-EM
HEHs has been well studied. Still, one of the problems is that there is not enough synergy
to maximize the benefits of both the electromagnetic and piezoelectric conversion in a
single hybrid design. Most recent works either focus on exploring additional non-linear
dynamics that might be applicable to non-hybrid systems or separately adding the two
conversions. So, to make the PE-EM HEHs more advantageous, finding more efficient
ways to control two power sources is essential.
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2.2. Piezoelectric–Triboelectric Hybrid Energy Harvesters

The piezoelectric effect and the triboelectric effect are mechanisms for converting
mechanical energy into electrical energy through the fundamental concept of displacement
current. When two triboelectric materials come into contact or separate from one another
under the influence of an external force, electrons are transferred, and the triboelectric
nanogenerator (TENG) creates a potential difference over the surfaces of the materials due
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to the flow of current. In contrast, the piezoelectric energy harvester creates an internal
electrical potential across the piezoelectric material. When a stress is applied on the
piezoelectric material, this stress causes a displacement of electric charges within a material,
resulting in an electrical potential and subsequent electrical current. Hence, these two
effects exhibit certain similar operational properties in responding to mechanical vibration,
compression, and deflection, which may be further incorporated as the hybrid energy-
harvesting system for increasing the energy output. Recent revolutionary studies have
demonstrated that piezoelectric and triboelectric phenomena can coexist in a particular
function material and interact, opening a new path to improve the performance of hybrid
piezoelectric–triboelectric (PE-TE) devices. Nanoparticles of ferroelectric barium titanate
(BTO) were combined with a polydimethylsiloxane (PDMS) by Suo et al. [73] to create a
composite film of BTO/PDMS that outperformed the pure film of PDMS. It has been found
that adding BTO nanoparticles with positive polarization will increase the piezoelectricity’s
contribution. Han et al. [74] demonstrated a wide band and low-frequency hybrid harvester
that used a variety of piezoelectric PVDF cantilevers to periodically impact the bottom
triboelectric PDMS layer to generate both triboelectric and piezoelectric outputs. The
working principle of this PE-TE hybrid energy harvester is shown in Figure 3A.
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(B). Schematic diagram of PE-TE hybrid wind energy harvester proposed by Chen et al. [75].
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Moreover, some wind harvesters combine the phenomena of piezoelectricity and
triboelectricity as well simultaneously. Hybrid wind energy harvesting that is based on the
vortex shedding phenomenon was proposed by Chen et al. [75] and is shown in Figure 3B.
A PVDF cantilever’s output and triboelectric effect can be maximized by the appropriate
design of the flapping blades and the spindle-shaped frames.

2.3. Electromagnetic–Triboelectric Hybrid Energy Harvesters

To benefit from electromagnetic and triboelectric energy harvesters, several researchers
tried to integrate TENG and electromagnetic energy harvesters (EMEHs) into one hybrid
device. The EMEH and TENG, however, are unable to effectively exchange power process-
ing circuits. To harvest wind energy, Wang et al. [76] created a hybrid wind energy harvester
that combines both EMEH and TENG. When the central oscillating FEP film is oscillating
vertically by the wind flow, it contacts both the upper and lower electrodes, causing an
electron flow in the TENG component. Additionally, the varying distance between the
oscillating magnets on the central film and coils on the upper and lower bases enables the
EMEH component to produce output voltage or current simultaneously. A water wave
energy-harvesting system comprising the EMEH and TENG components was proposed
by Wang et al. [77], as shown in Figure 4a. A series of aluminum (Al) rolling rods and
polytetrafluoroethylene (PTFE) film covered with the copper inter-digital electrodes make
up the TENG component. Four steel rods were placed between the top and bottom magnet
arrays in the EMEH component to direct the copper coil motion. The hybrid generator
simultaneously enables a simultaneous increase in the operating frequency range and
maximizes the energy conversion efficiency at a low frequency below 1.8 Hz. A wearable
hybrid electromagnetic–triboelectric harvesting wristband utilizing relatively low wrist
motion was presented by Maharjan et al. [78,79], as depicted in Figure 4b. A magnetic ball
that could move freely inside of a hollow tube was used in the device. The production
of nanorods on the inner side of the tube, microstructures over the magnetic ball, and
flux-concentrated material combined with the coil significantly increased the overall output
performance. To capture the rotational energy, (Chen et al. [80] and Zhang et al. [81]) have
created a rotating disc that is based on EM-TE hybrid generators. The rotating mecha-
nism comprises a rotor and stator, facilitating the creation of relative motion between the
positively and negatively charged triboelectric materials, along with the magnets and coils.
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2.4. Piezoelectric–Electromagnetic–Triboelectric Hybrid Energy Harvesters

Researchers are looking at the possibilities of triple hybrid energy-harvesting tech-
nologies based on dual hybrid systems combining PE-TE, EM-TE, and PE-EM mechanisms.
Combining the piezoelectric–electromagnetic–triboelectric (PE-EM-TE) harvesting systems
into one device may be a potential way to further enhance the output performance. A
hybridized PE-EM-TE generator using a central magnet floating structure with increased
vibrational sensitivity was described by et al. [82]. The peak power (below 20 Hz), pro-
duced by the bottom EMEH was 38 mW, and that from the top EMEH was 36 mW. The
peak power produced by the bottom PEH was 105 mW and that from the top PEH was
122 mW. Compared with these components, TENG produced a negligible peak power
of about 78 µW. Koh et al. [83] exhibited a self-powered inertial sensor containing non-
resonant magnetic balls that move within a hollow shell, as depicted in Figure 5. The
interior surface of the shell was layered with PTEF, PVDF, and Al films, while wire coils
were wound around the exterior. This setup allowed the utilization of PE-EM-TE hybrid
effects to harness energy from three-dimensional vibrations, rotation, and unpredictable
human movements. The device was proven to detect acceleration in the x, y and z directions,
as well as angular velocity in roll, pitch, and yaw axes, displaying potential application in
healthcare monitoring for recognizing human motion.
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2.5. Various Hybrid Energy-Harvesting Systems

In most situations, energy sources like heat, vibrations, and light coexist; however,
some of these may only be partially accessible or available. Consider humans as an
illustrative example. People will move a lot when they are traveling or exercising but not
much when they are at rest. An alternative would be to use other sources of energy, such
as light or thermal energy. Hence, researchers are looking into hybrid energy-harvesting
methods that combine different sources of energy into one device to provide a resilient
and sustainable power supply [84–86]. To harvest different sources of energy, Gambier
et al. created an HEH comprising layers of flexible solar panels, thin film batteries, a
thermoelectric generator and piezoceramic [87]. A combined power management circuit-
equipped hybrid harvester from thermal and indoor light energy was presented by Tan
and Panda [84]. A total of 620 µW of output power was collected. By utilizing both
kinetic energy and light energy, Chen et al. developed a foldable, flexible, and lightweight
hybrid energy-harvesting technology for wearable applications [88]. To develop the smart
fabric having a thickness of about 320 µm, photovoltaic textile and fiber-based triboelectric
generators were integrated. The output power of this (hybrid energy harvesting) textile,
when exposed to sunlight, human motion, and wind, was around 67 µW [89].

These various transduction mechanisms as described in this section have various
advantages and disadvantages. A PE-EM hybrid energy harvester combines high energy
conversion efficiency by capturing both mechanical vibrations and electromagnetic induc-
tion, but there are design complexities and challenges in power management. PE-TE offers
versatility by harvesting energy from two different sources. However, it faces challenges
related to material compatibility and potential losses due to friction. EM-TE is prone
to mechanical wear and tear due to its operating mechanism. PE-EM-TE has superior
energy-harvesting capabilities through multiple mechanisms, yet the design complexity
and system optimization present significant drawbacks. Similarly, thermoelectric, and
piezoelectric optimization for varying temperature gradients and material properties are
significant challenges.

Table 1 below shows the performance comparison of various hybrid energy har-
vesters (HEHs) reported in the literature based on their configuration, energy sources and
output performance.

Table 1. Performance comparison of various hybrid energy harvesters.

Hybrid Energy-Harvesting System Configuration Energy Source/Device Size Output Performance References

Piezoelectric–Electromagnetic Energy Harvesters
PE-EM;
PZT disc, coil/magnet in approaching
separation mode

Helmholtz resonator 20 × 24 mm PEH: 49 µW
EMEH: 3.2 µW Khan et al. [90]

PE-EM;
PZT bimorph, coil/magnet in horizontal
sliding mode

Airfoil and cantilever
Flow induced vibration - No prototype developed Dias et al. [91]

PE-EM;
Fixed PZT beam, coil/magnet in
horizontal sliding mode

Oscillating magnet
Force amplification 70 × 45 × 20 mm 0.33 W peak power Li et al. [92]

PE-EM;
PZT disc, coil/magnet in approaching
separation mode

Free sliding magnet 68 × 39 × 37 mm 50–130 µW Hamid et al. [93]

PE-EM;
Bimorph PZT, coil/magnet in
approaching separation mode

Multi-modal oscillations 50 × 20 × 80 mm 1.4 mW at 22.6 Hz Xu et al. [71]

PE-EM;
PZT-coated d31, coil/magnet in
forthcoming horizontal sliding and
separation mode

Cantilever resonance 22 × 10 × 10 mm PEH: 176 µW
EMEH: 0.19 µW Yang et al. [94]

PE-EM;
PZT patch, coil/magnet in approaching
separation mode

Airfoil and cantilever
Dual beam structure 85 × 80 × 40 mm PEH: 156 µW

EMEH: 1.57 mW Iqbal et al. [95]

PE-EM;
PZT stack, coil/magnet in approaching
separation mode

Oscillating magnet
Tri-stable - No prototype developed Yang et al. [96]
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Table 1. Cont.

Hybrid Energy-Harvesting System Configuration Energy Source/Device Size Output Performance References

PE-EM;
PZT cantilever, coil/magnet in
approaching separation mode, non-linear
levitation

Free sliding
Multi-directional
Dual-stable

14 × 55 mm EMEH: 1.23 mW
PEH: 0.18 mW Fan et al. [97]

PE-EM;
PZT coating applied to Al, coil/magnet
in approaching separation mode

Multi-mode vibration 93 × 30 × 15 mm PEH: 250 µW
EMEH: 244 µW Toyabur et al. [98]

PE-EM;
PZT bimorph, coil/magnet in
approaching separation mode

Fixed-fixed beam
Mono-stable 50 × 10 × 15 mm No result provided Mahmoudi et al.

[99]

PE-EM;
PZT-coated d33 cantilever, coil/magnet
in approaching separation mode

Cantilever resonance 44 × 24 × 30 mm 332 µW at 21.6 Hz Challa et al. [100]

Piezoelectric–Triboelectric Energy Harvesters
PE-TE;
Al/PVDF/Al, Al/PDMS/Al Flapping blade Wind flow PEH: 112 µW

TENG: 76 µW Chen et al. [75]

PE-TE;
Ag/PZT-5J/Ag, Al/PTFE/Nylon/Al Truss stopper Vibration PEH: 14 mW

TENG: 5.7 mW Li et al. [101]

PE-TE;
Conductive fabrics, fibroin/PVDF
nanofiber

Laminate Pressing force 0.31 mW/cm2 Guo et al. [102]

PE-TE;
Au/ZnO NFs + PDMS/Ni + 3D Gr Laminate Pressing force 6.22 mW/cm2 Qian et al. [103]

PE-TE;
PET/ITO/BTO + PDMS/Cu Laminate Pressing force No result provided Suo et al. [73]

PE-TE;
Al/PVDF/Al,
Al/PDMS/MWCNT-PDMS/Au

Parallel plate Pressing force PEH: 2.27 × 10−3 mW/cm2
TENG: 2.04 × 10−3 mW/cm2 Zhu et al. [104]

PE-TE;
AZO/P(VDF-TrFE)/AZO,
AZO/PDMS/Skin

Laminate Pressing force 0.075 mW/cm2 Wang et al. [105]

PE-TE;
Au/P(VDF-TrFE)/Au/P(VDF-TrFE)/Au,
Al/PTFE/Au

Rotational blade Rotation 10.88 mW Zhao et al. [106]

PE-TE;
Al/PVDF/Al, Al/PDMS/ITO Cantilever stopper Vibration No result provided Han et al. [74]

PE-TE;
Al/PTFE + PVDF + PDMS/Li-ZnO +
MWCNT/Ag

Laminate Pressing force No result provided Chowdhury et al.
[107]

PE-TE;
Cu/ZnO + MWCNT + EGO + PDMS/Cu Laminate Pressing force No result provided Karumuthil et al.

[108]
PE-TE;
Al/PVDF/Al, Al/PDMS/ITO r-shape Pressing force PEH: 10.95 mW/cm3

TENG: 2.04 mW/cm3 Han et al. [109]

PE-TE;
Cu/PTFE/PVDF/Cu, Cu/PTFE/Cu Parallel plate Pressing force PEH: 0.15 mW/cm2

TENG: 2.75 mW/cm2 Zhu et al. [110]

PE-TE;
Au/PVDF/Au, Au/PTFE/Al Arc shape Pressing force 4.44 mW/cm2 Jung et al. [111]

Electromagnetic–Triboelectric Energy Harvesters
EM-TE;
Coil/magnet in horizontal sliding mode,
Cu/FEP in lateral sliding mode

Rotating sleeve Rotation, wind flow 13.8 µW/cm3 Cao et al. [68]

EM-TE;
Coil/magnet in horizontal sliding mode,
Au/PTFE in freestanding triboelectric
layer mode

Rotating disk Rotation EMEH: 176.9 µW/cm3

TENG: 111.6 µW/cm3 Chen et al. [80]

EM-TE;
Coil/magnet in horizontal sliding mode,
Cu/Silicone in freestanding triboelectric
layer

Magnetic roller laterally Water wave EMEH: 39.4 µW/cm3

TENG: 0.21 µW/cm3 Hao et al. [112]

EM-TE;
Coil/magnet in horizontal sliding mode,
Cu/PTFE in freestanding triboelectric
layer

Magnetic slider laterally Water wave EMEH: 1.32 µW/cm3

TENG: 1.05 µW/cm3 Wang et al. [77]

EM-TE;
Coil/magnet in approaching separation
mode, Al/PDMS in lateral sliding mode

Magnetic slider laterally Vibration, human motion 381 µW/cm3 Salauddin et al.
[113]

EM-TE;
Coil/magnet in approaching separation
mode, Al/FEP in contact separation
mode

Spring-mass vertically Vibration EMEH: 9.7 µW/cm3

TENG: 37.6 µW/cm3 Liu et al. [114]

EM-TE;
Coil/magnet in horizontal sliding mode,
Cu/PTFE in freestanding triboelectric
layer

Rotating sleeve Rotation, wind flow EMEH: 0.34 mW
TENG: 2.13 mW Qian et al. [115]

EM-TE;
Coil/magnet in approaching separation
mode, Cu/FEP in contact separation
mode

Vibration film vertically Wind flow EMEH: 58.3 µW/cm3

TENG: 39.6 µW/cm3 Wang et al. [76]
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Table 1. Cont.

Hybrid Energy-Harvesting System Configuration Energy Source/Device Size Output Performance References

EM-TE;
Coil/magnet in horizontal sliding mode,
Cu/Silicone in freestanding triboelectric
layer

Magnetic roller laterally Water wave EMEH: 9 mW EMEH: 0.8 mW Wang et al. [116]

EM-TE;
Coil/magnet in approaching separation
mode, Al/PTFE in freestanding
triboelectric layer

Magnetic ball laterally Human motion EMEH: 5.14 mW/cm3

TENG: 0.22 µW/cm3
Maharjan et al.
[78]

EM-TE;
Coil/magnet in lateral sliding mode,
Cu/Kapton in contact separation mode

Spring-mass laterally Vibration, human motion EMEH: 29.9 µW/cm3

TENG: 0.78 µW/cm3 Chen et al. [117]

EM-TE;
Coil/magnet in approaching separation
mode, ITO/PTFE in contact separation
mode

Spring-mass vertically Vibration 1.3 µW/cm3 Gupta et al. [118]

Piezoelectric–Electromagnetic–Triboelectric Energy Harvesters
PE-EM-TE;
PVDF in bending, coil/magnet in
horizontal sliding mode, Al/PTFE in
lateral sliding and contact separation
mode

Rotating sleeve and disk Wind flow
PEH: 1.38 mW EMEH:
268.6 mW
TENG: 1.67 mW

Toyabur Rahman
et al. [119]

PE-EM-TE;
Compressed state PZT sheet, coil/magnet
in approaching separation mode,
Ni/silicone in single electrode mode

Magnetic mass stopper Vibration PEH: 122 mW, EMEH:
38.4 mW TENG: 78.4 µW He et al. [82]

PE-EM-TE;
Compressed PVDF Sheet, coil/magnet in
approaching separation mode, Al/PTFE
in freestanding triboelectric layer mode

Magnetic rolling ball Human motion
PEH: 0.19 µW, EMEH:
22.4 nW
TENG: 0.72 µW

Koh et al. [120]

PE-EM-TE;
Bending state PVDF sheet, coil/magnet
in approaching separation mode,
Cu/PVDF in contact separation mode

Spring mass stopper Vibration
PEH: 41 µW
EMEH: 66.5 µW TENG:
4.6 µW

He et al. [121]

Various Other Hybrid Energy Harvesters

Piezoelectric with magnet - Vibration and magnetic;
150 × 30 × 1 mm 50 µW Xu et al. [122]

Piezoelectric and pyroelectric - Thermal and vibration;
70 × 10 × 0.7 mm 0.4 µW Kang et al. [123]

Photovoltaic (PV) and radio-frequency
(RF) -

Solar and electromagnetic
(EM);
EM: 47 × 47 × 20 mm
PV: 114 × 24 mm

PV: 93 mW
RF: 28 µW Bito et al. [124]

Piezoelectric (PE), photovoltaic and
thermoelectric generation (TEG) - Vibration, light and thermal;

93 × 25 × 1.5 mm

TEG: 6.6 mW
PV: 12.5 mW
PE: 0.49 mW

Gambier et al.
[87]

Piezoelectric and pyroelectric - Thermal and vibration;
layer thickness 0.7 µm 400 mV Lee et al. [125]

Electromagnetic (EM), thermoelectric
generation (TEG) and piezoelectric (PE) -

Electromagnetic, thermal and
Vibration;
EM: 140 × 20 × 50 mm
TEG: 500 × 82 × 10 cm
PE: 90 × 17 × 0.8 mm

EM: 0.7–366 mW TEG:
12.9 mW to 1.98 W
PE: 0.63 mW

Yang et al. [126]

Triboelectric and photovoltaic - Solar and mechanical;
50 × 40 × 0.32 mm 0.5 mW Chen et al. [88]

Photovoltaic and thermoelectric
generation -

Light and thermal;
PV: 55 × 30 × 1 mm
TEG: 20 × 20 × 20 mm

621 µW Tan et al. [84]

3. Applications of Sustainable Hybrid Energy Harvesting

To attain self-sustaining electronics, Internet of Things (IoT) devices, and self-powered
smart wireless sensor nodes systems in a variety of applications, it is feasible to use
renewable/sustainable hybrid energy sources, such as heat, light, wave, wind, human
motion, vibration, radio frequency, radiations, and bioenergy. These sources offer potential
and long-term solutions. This section explores a range of applications for HEHs and
delves into the characteristics of different energy sources, the technologies that are used for
energy collecting, and the effect they have. The characteristics of energy sources vary widely.
Various technologies are employed to capture energy effectively. These include photovoltaic
cells for harnessing solar energy and piezoelectric and electromagnetic converters for
converting mechanical vibrations into electricity. Each technology is suited to specific
energy characteristics. Piezoelectric and electromagnetic technologies are particularly
effective in harvesting energy from vibrations with applications in industry condition
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monitoring and human healthcare. Some of the applications of HEHs are discussed in this
section below, and a flowsheet diagram of applications is shown in Figure 6.
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3.1. Smart Transportation

The latest trends in transportation, particularly in the automobile sector, are automated
vehicles and electrification. To meet the demands of digitalization and automation, elec-
tronics and sensors will be incorporated into the structures on a significantly bigger scale.
A more reliable and effective power supply can be achieved by utilizing various forms of
energy sources. Many different energy sources can be used to power vehicles, including
trains, cars, ferries, airplanes, and buses. Utilizing integrated multi-mode vibrations and
mechanical non-linearity, a broadband vibration-based energy harvester was designed for
the self-powered monitoring systems of the underground trains by Fu et al. [127]. The idea
of harnessing wind energy through the aerodynamic losses on the highways has been cov-
ered by numerous recent patents globally [128]. The GPS and accelerometer are the main
signal sources in the current systems, which quickly consume the device’s battery [129].
Hybrid energy-harvesting technologies may be capable of providing transportation vehi-
cles with self-powered sensing capabilities for event detection and condition monitoring.
In general, it is well recognized that energy can be transferred from one form to another,
as also seen in Figure 7 [130]. In this way, mechanical energy is converted to electrical
energy using piezoelectric and electromagnetic technology (Figure 7). Many studies have
been conducted in this field on energy harvesters utilizing single sources of energy or
single conversion processes [116]. Yet, there is limited information and few examples of
hybrid systems. In contrast to certain applications, like biomedical devices, airflow and
vibration are abundant in the transportation systems at comparatively high-frequency
ranges and energy levels, and the size limitation is frequently less demanding. Piezoelectric
and electromagnetic-based conversion methods are suitable. Triboelectric methods can also
be utilized in situations like tire pressure monitoring; however, one of the challenges is
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material reliability. The utilization of other energy sources like solar and thermal is also
possible, but their mounting restrictions are more severe.
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3.2. Infrastructure Health Monitoring

There is widespread agreement regarding the significance of managing and moni-
toring the condition of civil infrastructures, such as water management, power and com-
munication infrastructure, roads, buildings, bridges, railways, tunnels, environmental
monitoring, and agricultural facilities. Energy harvesting is the potential method that
helps to generate clean, renewable energy and increase the sustainability of infrastructures.
Figure 8a shows each energy-harvesting technology that is available and can be used on
roadways. An energy generator, storage device, and electrical circuit are the three main
parts of energy-harvesting systems. The energy generator transforms thermal, mechanical,
and solar energy from the environment into electrical energy. The resulting voltage is
then increased and regulated by the electrical circuit to assist in making it suitable for a
variety of applications. The energy that has been captured is then saved for subsequent
use in supercapacitors or rechargeable batteries. The amount of energy produced by an
energy-harvesting system might vary greatly depending upon the principle underlying the
harvesting technology used. The amount of energy produced overall depends on various
factors, including the availability and intensity of the environmental energy source and
the effectiveness of the conversion process. By using HEHs, it significantly increases the
output performance by converting the mechanical energy into electrical using multiple
transduction mechanisms [131]. To monitor the health of an infrastructure, a high pro-
portion of WSNs are arranged, which enables continuous detection that may eventually
save lives as well as minimize downtime and economic losses. As the infrastructural
systems are generally located outdoors, a variety of renewable energy sources, including
solar, wind, rain, and radio-frequency energy, are readily available instead of traditional
batteries and wire power supplies. In recent decades, the regular frequency of natural dis-
asters has posed a serious threat to human lives and property. A self-powered hybridized
electromagnetic–triboelectric (EM-TE) harvester and a solar cell for monitoring the state of
natural disasters were reported by Qian and Jing [115], as shown in Figure 8b. To monitor
earthquakes and detect fires, temperature and vibration sensors were used, respectively. A
revolving, wind-driven hybridized energy harvester (WH-EH) can be incorporated using
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the WSN technology to create a self-sustaining global disaster-monitoring device. The
rotator in this harvester is directly powered by the external rotational motion, making it
simple to combine the TENG with 18 electromagnetic generators. A thermoelectric and
electromagnetic HEH was created by Liu et al. [132] using the fluid velocity and tempera-
ture change in an irrigation system, as shown in Figure 8c. Different monitors or sensor
nodes, such as flow meters and temperature sensors, can be combined with power source
sources from renewable energy harvesters in a smart agriculture irrigation system. The
turbine-fan with magnets attached to the blades is positioned within the water pipe to
harness the motion of water flow. The energy due to water flow is converted into electricity
by multiple coils as the turbine rotates. To capture energy from the temperature differences,
thermoelectric generators are installed around the pipe. To enable long-term self-powered
wireless sensor applications for intelligent agriculture, smart buildings, structural health
monitoring, environmental monitoring, security, and facility monitoring, and so on, further
research and development is still required.
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3.3. Marine Monitoring and Development

Different countries and research groups are paying more attention to marine moni-
toring and development. The power supply, and more particularly the carrying battery’s
capacity, has a significant role in limiting the functional life of the marine equipment. It has
been recognized that the ocean contains a significant quantity of renewable energy, includ-
ing wind energy, solar energy, water wave energy, tidal energy, temperature gradient energy,
salinity gradient energy, and water flow energy [133,134]. The blue-energy-harvesting tech-
nique that is based on the different transduction mechanisms has drawn the attention of
many researchers in recent years. These methods were discovered to be a potential source
for self-charging batteries or self-powered sensors in marine monitoring and development
systems [135,136]. For the sustainable growth of society, blue energy, which is obtained
from the ocean waves, is a significant and promising renewable energy source. Both TENGs
and EMGs are recognized as potential methods for harnessing blue energy. Wu et al. [137]
present a hybridized TE-EM water-wave energy harvester (WWEH) that is based on the
magnetic sphere, as shown in Figure 9a. A freely rotating magnetic sphere detects the
water’s motion to move the friction element for the TENG backward and forth on the
solid surface. By the electromagnetic induction phenomenon, two coils simultaneously
convert the movement of a magnetic ball/sphere into electricity. This work illustrates that
distributed self-powered environmental-monitoring sensors can be driven successfully
by the WWEH. Similarly, a hybridized TE-EM WWEH, based on a chaotic pendulum, is
presented by Chen et al. [138], as illustrated in Figure 9b. The major pendulum and the
inner pendulum are the two parts that make up this chaotic pendulum. The main pendu-
lum simply swings back and forth in time with the oscillations of the water waves. The
inner pendulum, which has three magnetic balls that are evenly spaced out on a revolving
shaft, however, moves chaotically and unexpectedly. An electromagnetic nanogenerator
(EMG) and triboelectric nanogenerator (TENG) are the two components of the hybridized
nanogenerator. The central pendulum is connected to the TENG, which is made of gold
electrodes and polytetrafluoroethylene (PTFE) films. Through the friction that occurs be-
tween the PTFE layer and the interdigitated electrodes, oscillating mechanical energy is
transformed into electrical energy. Inside the chaotic pendulum, the EMG comprises three
magnetic balls and three coils. The magnetic flux among the copper coils changes as the
magnetic balls move under the influence of external magnetic forces and gravity, producing
electrical energy. The harvester’s physical design made use of the chaotic pendulum’s
high electromechanical conversion ratio and low working frequency. Wang et al. [116]
presented a ship-shaped hybridized nanogenerator (SHNG) made up of three triboelectric
nanogenerators and an electromagnetic generator, as shown in Figure 9c. Because of the
less frictional resistance created by rolling the magnetic cylinder in this design, the TENG
can easily be powered by a water wave.

This study not only offers a novel approach for efficiently harvesting blue energy but
also offers a significant opportunity for enabling self-powered marine rescue devices and
self-desalination. The combination of water-wave power generators, solar panels, and
wind turbines can create a generation power network over the ocean’s surface, according
to the blue energy dream outlined by Wang et al. [139], as shown in Figure 9d. On a
floating platform, the electricity generated by wind-powered turbines, solar cells, and
TENG networks could be utilized locally or sent to onshore electric grids or power plants.
For marine monitoring and development, hybridized blue energy-harvesting technology
can hold significant value in the self-powered Internet of Things.
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3.4. Human Healthcare Monitoring

The advancement of implantable and wearable electronic devices can help profession-
als intervene in chronic illnesses as soon as possible. The sustainable supply of power
is one of the major constraints. A human body may have a variety of energy sources
available, such as muscle contraction, human motion, body heat, cardiac and lung mo-
tions, blood pulsation, etc. Several energy-harvesting designs have been proposed for
replenishing batteries and ultimately developing self-powered implantable or wearable
electronic devices to harvest the human body energies [140–143]. Zhu et al. [144] developed
self-functional socks that provide self-powered monitoring and the sensing of different
physiological signals, like contact force, sweat level gait, etc. They did this by utilizing the
hybrid PE-TE energy harvester phenomena from human walking, as shown in Figure 10a.
With a frequency of 2 Hz and a load resistance of 59.7 MΩ, an output power of 1.71 mW
is obtained. All the described conversion methods have advantages at various sources
or areas of the human body. For instance, the mechanical energy that is provided by the
footsteps is considerable, making this suitable for TE and EM [145–147]. For applications
involving the upper body and the skin, TEG and PV would be preferable [88,148,149].
However, the sources of energy from the human body generally occur in low-frequency
or low-grade and in random form compared to the other applications. Designing efficient
strategies to provide enough energy for monitoring and sensing in a limited environment is
more challenging. Hybrid systems that use a variety of energy sources or conversion mech-
anisms could offer a way to address this challenge. Due to the ability to produce a huge
amount of data that is important for healthcare, the impact of PE-TE hybrid nanogenerators
(HBNGs) has recently come under study. This PE-TE HBNG measures the changes and
diverse movements in the human body, including respiration, muscular contractions, and
blood circulation. They can be used in various healthcare settings to power non-invasive
sensors, enabling continuous patient monitoring without limiting the patient’s comfort
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or range of motion. Figure 10b schematically depicts various HBNG classes as well as
numerous physiological conditions that these prospective dual-effect sensors can be used to
monitor [150]. A wearable medical self-powered sensor system was designed for long-term
healthcare applications by Mohsen et al. [151], as shown in Figure 10c. This system moni-
tors the various parameters such as heartbeat, temperature, human body acceleration, and
blood oxygen saturation in real time. It consists of sensors for pulse oximetry, temperature,
and acceleration, a microcontroller unit, and a Bluetooth low-energy module. This sensor
system typically relies on batteries for power, which have limited lifetimes. To overcome
this limitation, a photovoltaic–thermoelectric hybrid energy harvester has been devised
to provide continuous power to the wearable medical sensor system. The hybrid energy
harvester incorporates a flexible photovoltaic panel, a thermoelectric generator module,
a DC–DC boost converter, and two supercapacitors. Experimental results show that in
active-sleep mode, the sensor system consumes an average power of 12.3 mW over 1 h,
operating without the energy harvester for up to 46 h. These findings underscore the
medical sensor system’s sustainable and prolonged monitoring capabilities.
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3.5. Aerospace Engineering

To improve passenger safety, decrease operational downtime, and save maintenance
costs, it is essential to continuously monitor the operational conditions and structural
integrity of spacecraft and aircraft [152,153]. For those distributed WSNs monitoring the
operating condition, energy harvesting could offer reliable energy sources. Many energy
sources are also available in spacecraft and aircraft, particularly vibration, temperature
difference, and solar. A thorough analysis of the technology and energy sources for energy
harvesting in aerospace applications is provided by Le et al. with a focus on thermal and
vibration sources [154]. The main cause of interior vibration is the propulsion system. In
both the propeller-driven aircraft and the helicopters, the amplitude and frequency range
are greatly affected by the blade passage frequency and rotor speed. Common jet engine
vibrations seem to have a frequency range of about 20–500 Hz. Engines, gear trains, and
hydraulic systems all produce heat when used as a thermal source. Another way sensors
located on the fuselage might be energized is by the temperature gradient between the
fuselage and the cabin. Using the temperature gradient in the fuselage, Kiziroglou et al.
developed a temperature gradient for a TEG utilizing the heat mass [155]. Wang et al. have
created a self-powered jet engine monitoring system utilizing a non-linear PEH [156]. A
22 g energy harvester with a load of 100 kΩ may provide an output power of 79 mW at the
rotational conditions’ of 2050 rpm. In addition to the sources of energy on spacecraft, solar,
diurnal temperature variations, and electromagnetic field in space can also be potential
sources of energy. Because of the conditions in these kinds of environments, energy
harvesting within this region is limited. Yet hybrid energy harvesting may be a future
enabling technology for distributed and autonomous sensing in aerospace engineering. By
using hybrid energy harvesters having multiple transduction mechanisms, it enhances the
long-term monitoring of structural and environmental conditions and space exploration.

3.6. Industry Condition Monitoring

It is widely acknowledged that condition monitoring is essential for modern manu-
facturing and production processes particularly for smart industries (Industry 4.0; fourth
technological revolution in the future). Since companies and industries cannot afford any
unplanned downtime due to equipment failure; vibration, voltage, temperature, current,
and other machine data are all fed to condition monitoring systems, which enables the
early detection and evaluation of machine and system faults in real time. In addition, these
equipment condition insights enhance productivity, expediting the transformation toward
Industry 4.0. WSNs are suitable for implementing real-time condition monitoring because
of their low power requirements and high flexibility. To supply power to sensor nodes,
hybrid energy-harvesting systems gather unused energy through machines or the sur-
rounding environment, minimizing the high cost and process of recharging or changing the
batteries, particularly in remote or unreachable conditions [157]. A hybridized PE-EM-TE
energy-harvesting system having a high output power was described by He et al. [82], as
shown in Figure 11. One triboelectric nanogenerator (TENG), two piezoelectric generators
(PEGs), and two electromagnetic generators (EMGs) make up the hybrid energy-harvesting
system. In the EMG part, magnetic attractive forces cause a levitated annular magnet to
oscillate vertically, absorbing vibration energy. PZT ceramic sheets are used in the PEG
part. When the magnet’s motion grasps them, they produce an electric current via the
piezoelectric effect. When the magnet moves, the silicone and carbon nanotubes that are
used in the TENG unit transmit triboelectric charges between the top and bottom layers,
creating an electric current. Due to the movement of the levitated magnet, these three
parts work together to generate energy by electromagnetic induction, the piezoelectric
effect, and the triboelectric effect. To monitor the condition of the bearing and prevent
mechanical damage or overload, the device was incorporated in a WSN of vibration and
temperature. Future applications of industry IoTs will be highly dependent on it. An
EM-PE-TEG HEH from industrial power equipment was presented by Yang et al. [126]. It
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provides a constant DC voltage output that was applied to the Zig-Bee sensor to maintain
its operation continuously.
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3.7. Water Purification

The potential of hybrid energy-harvesting systems to address the issue of obtaining
reliable sources of energy for water purification has also attracted attention. Researchers are
investigating how to sustain point-of-use (POU) water treatment technology using various
energy sources like solar, thermal, and mechanical energy. Hybrid energy harvesters pro-
vide a constant and sustainable energy supply for water purification by integrating various
energy conversion approaches. Various hybrid energy harvesters have been investigated
for the water purification system: these are solar and triboelectric, solar, and piezoelectric,
thermal-induced triboelectric, thermal-assisted piezoelectric, and thermal and photovoltaic
hybrid energy harvesters. These hybrid energy harvesters have the potential to effectively
harvest many energy sources simultaneously, making them reliable, affordable, and energy-
efficient water-purifying solutions. They offer self-powered disinfection of microorganisms
and degradation of pollutants, facilitating the purity of drinking water in areas with min-
imal access to electricity and sanitary facilities. Hybrid energy harvesters that are used
for water purification become even more crucial during time of worldwide epidemics like
COVID-19. To ensure continuous operation, hybrid energy harvesters, which combine solar
and other energy sources, can efficiently harvest solar energy during the day and convert it
to piezoelectric or triboelectric energy harvesting in changeable weather conditions or at
night. The use of hybrid energy-harvesting devices for water purification presents a promis-
ing option for self-sufficient, sustainable water treatment. These systems help provide clean
drinking water in various situations, utilizing the advantages of various energy sources.
Figure 12 shows a schematic of a hybrid solar and thermal energy harvester, where water
absorbs far-IR (infrared), photocatalytic layers absorb UV (ultraviolet), and photovoltaic
solar cells absorb visible and near-IR [47,158].
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system [158].

Table 2 shows the hybrid energy systems that are utilized in the applications above.
Yet, there is limited information, and few examples are available for the hybrid systems
for the above applications. The area of hybrid energy harvesting is still in its infancy, and
more research is needed to fully explore its potential. But ongoing work on hybrid energy
harvesting shows that it has attracted a lot of attention from researchers and is included in
one of the hot topics of today.

Table 2. Output performance and configurations of the hybrid energy systems that are utilized in the
applications described above.

Hybrid Energy-Harvesting System Configuration Output Performance Advantages Disadvantages References

Infrastructure Health Monitoring

Triboelectric–electromagnetic and
solar cell

Integrated with WSN
technology

Capable of lighting 100
of LEDs

Utilizes both
mechanical and solar
energy

Scalability is restricted
due to reliance on WSN
technology

[115]

Thermoelectric–electromagnetic
generator

The turbine fan with
magnets attached to the
blades and is placed
within the pipe

Thermoelectric power
output 0.435 mW
electromagnetic power
output 0.584 mW

Dual thermoelectric and
electromagnetic power
generating

Very little power output [132]

Marine Monitoring and Development

Hybridized
triboelectric–electromagnetic water
wave energy harvester (WWEH)

Contain freely rotating
magnetic sphere that
detects the water’s
motion

Supercapacitor is
charged by it to 1.84 V
in 162 s

Makes use of a
magnetic sphere that is
free to rotate to detect
water movements

Complex
implementation and
design

[137]

Triboelectric–electromagnetic
hybridized nanogenerator Chaotic pendulum

The maximum output
power of triboelectric
can reach 15.21 µW and
the electromagnetic can
reach 1.23 mW

High electromagnetic
and triboelectric output
power

A small scalability [138]

Ship-shaped hybridized
triboelectric–electromagnetic
nanogenerator

Ship shaped have
rolling magnetic
cylinder in it

Peak power of 800 µW
with an operating
frequency of 2 Hz

A novel ship-shaped
design with useable
applications

Power output
restrictions for some
applications

[139]
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Table 2. Cont.

Hybrid Energy-Harvesting System Configuration Output Performance Advantages Disadvantages References

Human Healthcare Monitoring

Hybrid piezoelectric–triboelectric
self-functional socks

Self-functional socks of
poly(3,4-
ethylenedioxythiophene)
polystyrenesulfonate

With a frequency of
2 Hz and a load
resistance of 59.7 MΩ,
an output power of
1.71 mW is obtained

Self-contained socks
that continuously
harvest energy by
utilizing human motion

A low power output for
medical equipment that
is required

[144]

Photovoltaic–thermoelectric hybrid
energy harvester

Consists of sensors for
pulse oximetry,
temperature, and
acceleration, a
microcontroller unit,
and a Bluetooth
low-energy module

In active sleep mode,
the sensor system
consumes an average
power of 2.13 mW over
1 h, while it can operate
without the energy
harvester for up to 46 h

Extended battery life,
sustainability through
energy harvesting, and
reliable long-term
health parameter
monitoring

Proper placement of
photovoltaic panel,
limitation in low light
or low-temperature
environment

[151]

Industry Condition Monitoring

A hybridized piezoelectric–
electromagnetic–triboelectric
energy harvester

A single device with a
magnetic levitation
structure at its core and
three harvest modes is
incorporated

Under the frequency of
20 Hz, the output peak
powers produce are
TENG: 78.4 µW,
EMG1: 36 mW,
EMG2: 38.4 mW,
PEG1: 122 mW, and
PEG2: 105 mW.

Incorporates a variety of
energy-harvesting
techniques

Integrated and
controlled complex
device systems

[82]

Magnetic, thermoelectric, and
vibration energy-harvesting system -

Power produced by
magnetic is 366 mW,
thermoelectric is 1.98 W,
and vibration is
0.63 mW

Uses a variety of energy
sources to increase
efficiency

Requires exact
component alignment
and location

[126]

Water Purification

Photo-induced piezoelectric ZnO nanowire 92%, 10 min

Photo-induced
piezoelectric water
treatment that uses less
energy

Specific uses for water
treatment [47]

TENG-assisted photocatalytic Rotational TENG and
visible light 510 V 26 W/m

Combines
photocatalysis and
rotational TENG for
energy harvesting

Only applicable to some
photocatalytic
applications

[47]

Thermal-induced piezoelectric NaNbO3 nanofibers 86.5%, 80 min

Uses the thermally
generated piezoelectric
action to produce
energy

A small scalability [47]

Thermal-induced photocatalytic
UV: photocatalytic,
far-IR: water, visible,
and near-IR: solar cell

300 W/m
Combines many energy
sources to effectively
purify water

Specific to uses for
water treatment [47]

4. Challenges of Hybrid Energy Harvesters

The effective utilization of different energy sources within a single device offers a
chance to sustain the power provision durability. Researchers have diligently explored
this approach across various applications and energy sources. However, the integration
of a hybrid energy-harvesting system presents different challenges as well that need to
be addressed. The foremost challenge revolves around optimizing the synergy among
various conversion mechanisms to enhance the overall system efficiency while maintaining
a compact design. Additionally, the creation of power management circuits capable of
efficiently handling the varied types of generated power is crucial.

As the research on the hybrid energy harvester is still early, conducting quantitative
analyses or directly comparing various solutions proves challenging. PE-EM hybrid energy
harvesters are primarily designed for vibration energy harvesting. However, there are some
instances where they are utilized for harvesting human motion [159,160], airflow [161,162],
and acoustic energy sources. On the other hand, PE-TE hybrid systems involving applying
external forces to deformable laminated structures, achieving deformation of the piezoelec-
tric material (e.g., PVDF) and contact-separation of the triboelectric materials (e.g., Al, Au,
Cu, PDMS, PTFE) [163]. The piezoelectric part generally yields higher output power than
the triboelectric part with the same dimensional area, while the triboelectric part primarily
contributes to higher output voltage. Some studies have achieved the PE-TE dual effect
through composite material synthesis like PDMS mixed with piezoelectric nanoparticles or
nanofibers [164]. In triple-hybrid energy-harvesting systems, the output power is typically
mainly contributed by one or two energy conversion effects. This suggests that certain
energy conversion effects may not provide sufficient energy to the hybrid device but could
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enhance the capacitor charging efficiency or act as a self-powered sensing unit. Attaining
significant energy contribution from three types of energy conversion effects in one hybrid
energy-harvesting system remains challenging.

The literature also showcases the integration of different conversion mechanisms, such
as photovoltaic, thermoelectric, and piezoelectric, to harness various energy sources [165–168].
While hybrid systems offer more reliable power sources, many studies combine different
functional materials with limited synergy. One distinctive concept highlighted in the
literature is the use of PZT ceramics to harness both vibration and thermal energies through
piezoelectric and pyroelectric effects [169] or the utilization of a piezoelectric beam with a
magneto strictive mass to harness vibration and magnetic energy [170]. Power management
circuits are the crucial yet demanding aspect of hybrid energy harvesting. Compared to
mechanical design and material synthesis, the research focused on designing appropriate
circuits for diverse hybrid systems is relatively underdeveloped. Presently, there are no
universal solutions available for various hybrid energy harvesters. Still, some common
architectures or mechanisms have been demonstrated, such as inductor/converter [171],
maximum power point tracking [172] or synchronous control [173]. Enhancements in
conversion efficiency, reduced electronics component count, and minimized power losses
can all be achieved through a holistic design approach in power management circuits.
With the future advancement of power management integrated circuits (PMICs) for hybrid
energy harvesters, sustainable hybrid energy-harvesting systems are poisoned to become
pivotal renewable energy technologies [174].

5. Future Perspective and Conclusions

In conclusion, this review on sustainable hybrid energy harvesting has shown the
advancements made in this area and possible implications for the development of future
sustainable energy solutions. Hybrid energy harvesting can be pivotal in enhancing energy
efficiency and providing a green future. Researchers have shown that there has been an
increase in the production of energy in the hybrid energy-harvesting systems through
the integration of numerous energy conversion processes by assessing different materials,
configurations, and strategies, thereby increasing the output power and overall efficiency.
The area of hybrid energy harvesting is still in its infancy, and more study is needed to
fully explore its potential. The ability of hybrid energy harvesting to combine several
energy conversion processes enables it to continuously generate energy even in various
environmental conditions and is one of its notable benefits. They combine several energy
conversion processes, including triboelectric, piezoelectric, and electromagnetic, allowing
the utilization of a variety of energy sources, including vibrations, pressing force, rotating
motion, and wind flow. This adaptability opens new opportunities for generating sus-
tainable power in various applications, like smart transportation, infrastructure health
monitoring, marine monitoring and development, healthcare monitoring, aerospace engi-
neering, industry condition monitoring, and water purification. However, as the acquired
results are thoroughly examined, it is discovered that it is difficult to compare and assess
various hybrid energy-harvesting systems thoroughly due to the lack of varying input
quantities and standardized specification specifications. Future studies should aim to
create a unified specification standard and carry out rigorous performance comparisons
to determine the most reliable and effective hybrid energy harvesting techniques. Hybrid
energy-harvesting systems hold significant promise for addressing the rising need for
sustainable energy solutions in the upcoming years by filling these gaps and improving
energy conversion efficiency and power density.

By comparing the performance comparison of the several hybrid energy harvesters
mentioned in Table 1, several noteworthy results are obtained. Khan et al. [90] talked
about a piezoelectric–electromagnetic hybrid energy harvester with an output perfor-
mance of 49 µW for piezoelectric and 3.2 µW for electromagnetic. Similarly, Coa et al. [68]
used an electromagnetic–triboelectric hybrid energy harvester utilizing a coil/magnet in
horizontal sliding mode and Cu/FEP in a lateral sliding mode, achieving an output of
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13.8 µW/cm3. The various configurations and performance levels possible with the hybrid
energy harvesters can be seen in these examples. Hybrid systems can improve power
generation and offer more versatile and reliable energy-harvesting options by combining
multiple energy conversion techniques. Selecting the best hybrid energy harvester with-
out further context and precise criteria is difficult. The selection of the suitable hybrid
energy harvester system depends upon various factors, i.e., application, source of energy,
output performance, efficiency, cost-effectiveness, and device size, all of which affect the
system’s performance. However, the highest output performance shown in Table 1 is for the
electromagnetic–triboelectric hybrid energy harvester having a coil/magnet in approaching
separation mode and Al/PDMS in lateral sliding mode with an output performance of
381 µW/cm3. This system can be used in applications where human motion and vibration
are present.

To enhance hybrid energy harvesting, it is recommended to improve energy conver-
sion efficiencies, develop advanced integration techniques, and investigate new hybrid
configurations. By improving energy conversion efficiency, more power could be pro-
duced from the energy source that is accessible, improving performance and expanding
the capacity for energy harvesting. A single system may more effectively integrate several
energy-harvesting processes, including thermoelectric, electromagnetic, and piezoelectric
due to enhanced integration techniques. This integration can increase the overall power
production by effectively utilizing several energy sources simultaneously. Additionally,
investigating novel hybrid configurations may reveal innovative and effective energy-
harvesting techniques. By focusing on these, researchers can enhance and develop the field
of hybrid energy harvesting, realizing its full potential for the sustainable powering of
various systems and devices.
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Nomenclature

Wireless Sensor WSN
Hybrid Energy Harvester HEHs
Piezoelectric–Electromagnetic PE-EM
Triboelectric Nanogenerator TENG
Piezoelectric–Triboelectric PE-TE
Barium Titanate BTO
Polydimethylsiloxane PDMS
Polyvinylidene Fluoride PVDF
Electromagnetic Energy Harvester EMEHs
Polytetrafluoroethylene PTFE
Piezoelectric–Electromagnetic–Triboelectric PE-EM-TE
Piezoelectric Energy Harvester PEH
Electromagnetic Generators EMGs
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Water-Wave Energy Harvester WWEH
Ship-Shaped Hybridized Nanogenerator SHNG
Hybrid Nanogenerator HBNGs
Piezoelectric Generators PEG
Lead Zirconate Titanate PZT
Point-Of-Use POU
Infrared IR
Ultraviolet UV
Power Management Integrated Circuits PMICs
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