
Citation: Mazumder, D.; Datta, M.;

Bodoh, A.C.; Sakib, A.A. A Scalable

Formal Framework for the Verification

and Vulnerability Analysis of

Redundancy-Based Error-Resilient

Null Convention Logic Asynchronous

Circuits. J. Low Power Electron. Appl.

2024, 14, 5. https://doi.org/10.3390/

jlpea14010005

Received: 25 November 2023

Revised: 7 January 2024

Accepted: 9 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

A Scalable Formal Framework for the Verification and
Vulnerability Analysis of Redundancy-Based Error-Resilient
Null Convention Logic Asynchronous Circuits
Dipayan Mazumder , Mithun Datta, Alexander C. Bodoh and Ashiq A. Sakib *

Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
dmazumder8582@floridapoly.edu (D.M.); mdatta2164@floridapoly.edu (M.D.);
abodoh8714@floridapoly.edu (A.C.B.)
* Correspondence: asakib@floridapoly.edu; Tel.: +1-863-874-8552

Abstract: The increasing demand for high-speed, energy-efficient, and miniaturized electronics has
led to significant challenges and compromises in the domain of conventional clock-based digital
designs, most notably reduced circuit reliability, particularly in mission-critical hardware. At scaled
technology nodes, devices are vulnerable to transient or soft errors, such as Single Event Upset (SEU)
and Single Event Latch-up (SEL). External radiation, internal electromagnetic interference (EMI),
or noise are the primary sources of these errors, which can compromise the circuit functionality.
In response to these challenges, the Quasi-Delay-Insensitive (QDI) Null Convention Logic (NCL)
asynchronous design paradigm has emerged as a promising alternative, offering advantages such
as ultra-low power performance, reduced noise and EMI, and resilience to process, voltage, and
temperature variations. Moreover, its unique architecture and insensitivity to timing variations offers
a degree of resistance against transient errors; however, it is not entirely resilient. Several resiliency
schemes are available to detect and mitigate soft errors in QDI circuits, with approaches based on
redundancy proving to be the most effective in ensuring complete resilience across all major QDI
implementation paradigms, including NCL, Pre-charge/Weak-charge Half Buffers (PCHB/WCHB),
and Sleep Convention Logic (SCL). This research focuses on one such redundancy-based resiliency
scheme for QDI NCL circuits, known as the dual-modular redundancy-based NCL (DMR-NCL)
architecture, and addresses the absence of formal methods for the verification and analysis of such
circuits. A novel methodology has been proposed for formally verifying the correctness of DMR-NCL
circuits synthesized from their synchronous counterparts, covering both safety (functional correctness)
and liveness (the absence of deadlock). In addition, this research introduces a formal framework for
the vulnerability analysis of DMR-NCL circuits against SEU/SEL. To demonstrate the framework’s
efficacy and scalability, a prototype computer-aided support tool has been developed, which verifies
and analyzes multiple DMR-NCL benchmark circuits of varying sizes and complexities.

Keywords: asynchronous logic; quasi-delay insensitive (QDI); null convention logic (NCL); error
resilience; design validation

1. Introduction

The synchronous domain of digital integrated circuit (IC) design currently dominates
the semiconductor industry. This dominance can be attributed to the extensive progress
made over several decades in the development of advanced support tools and automation
infrastructures, facilitating mass production and enabling the industry to meet consumer
demands. However, as the demand for high-speed and energy-efficient electronic devices
continues to grow, clock-based digital designs are struggling to make further advance-
ments. Clock-related issues comprise a significant portion of the design challenges, includ-
ing high-frequency clock management and distribution issues, complex timing analysis

J. Low Power Electron. Appl. 2024, 14, 5. https://doi.org/10.3390/jlpea14010005 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea14010005
https://doi.org/10.3390/jlpea14010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0009-0008-9785-4518
https://orcid.org/0009-0007-2927-8718
https://orcid.org/0000-0001-7985-2449
https://doi.org/10.3390/jlpea14010005
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea14010005?type=check_update&version=3

J. Low Power Electron. Appl. 2024, 14, 5 2 of 24

requirements, and increased power dissipation. The Quasi-Delay Insensitive (QDI) asyn-
chronous design paradigm has emerged as a promising alternative to synchronous designs,
circumventing the aforementioned challenges associated with their clocked counterparts.
QDI implementations do not require a global clock for synchronization, thereby eliminating
all clock-related issues. The absence of a high-frequency clock signal and power-hungry
clock management units substantially improves power performance, making this paradigm
an excellent choice for ultra-low power applications [1]. Moreover, the inherently robust
architecture and lower susceptibility to process, voltage, and temperature (PVT) variations
allow the domain to provide enhanced circuit reliability, which is an important design
concern in the field of digital VLSI.

In miniaturized devices with limited supply voltage, transient errors, also known as
soft errors, are very common and can compromise the functionality of the circuit. Soft
errors can be caused by radiation, noise, and/or electromagnetic interference (EMI) between
components, which can result in two noteworthy phenomena: Single Event Upset (SEU) [2]
and Single Event Latch-up (SEL) [3]. SEU can cause unintended gate switching in a
circuit, resulting in incorrect functionality, whereas SEL can cause a substantial current
surge, resulting in permanent IC damage. Although the QDI architecture provides a certain
robustness against SEU/SEL, owing to its unique architecture, it is not completely SEU/SEL
resistant [4]. Over the years, researchers have investigated a variety of techniques, both
at the circuit and architectural level, to detect and mitigate soft errors in QDI circuits,
with schemes based on redundancy proving to be the most effective in ensuring complete
resilience across all major QDI implementation paradigms, including Null Convention
Logic (NCL) [5], Pre-charge/Weak-charge Half Buffers (PCHB/WCHB) [6], and Sleep
Convention Logic (SCL) [7]. Therefore, the primary objective of this research is to contribute
to the development of a computer-aided framework to support redundancy-based error-
tolerant QDI architectures, which can have an outstanding impact on several fields, such
as harsh and radiation-intensive environmental applications (e.g., outer-space and deep-
sea explorations), safety-critical applications (e.g., implantable medical electronic devices
and low-maintenance/unsupervised surveillance devices), intermittently powered or self-
powered IoT applications, etc. Towards achieving that goal, this research makes the
following contributions:

1. Development of a formal verification framework for redundancy based QDI NCL circuits: Over
the past two decades, several automated synthesis schemes have been developed for
different QDI paradigms, including NCL. NCL circuits are typically synthesized from
their synchronous/Boolean specifications utilizing synchronous CAD tools [8–12].
During the synthesis procedure, the circuits undergo numerous transformations. As
a result, the synthesized NCL structures differ significantly from their synchronous
specifications. A few formal verification methods have also been developed to verify
the safety (functional correctness) and liveness (deadlock-free operation) of the syn-
thesized NCL circuits [13–15]. However, these formal methods are only applicable to
conventional NCL architectures. In addition, the majority of the existing verification
schemes suffer from scalability issues due to the highly non-deterministic nature of
NCL circuits. Redundancy-based error-resilient NCL circuits are more complex than
conventional NCL circuits due to the presence of multiple circuit copies, additional
logic components to maintain interdependency between multiple copies, and a more
complex handshaking network. To resolve these issues, we propose a structural
abstraction-based scalable formal verification methodology for a redundancy-based
NCL resiliency scheme known as the dual-modular redundancy-based NCL (DMR-
NCL) architecture. The salient aspect of the proposed verification scheme is its versa-
tility, as it can be implemented either as an independent verification tool or integrated
into an existing synthesis tool. Moreover, the method can be tailored to be applicable
to existing redundancy-based SCL and PCHB architectures.

2. Development of a formal framework for vulnerability analysis during error scenarios: The
majority of the existing resilient QDI schemes test for circuit vulnerabilities and recov-

J. Low Power Electron. Appl. 2024, 14, 5 3 of 24

ery procedures in the presence of soft errors through extensive simulation. However,
simulation alone cannot guarantee complete resilience. Formal methods have been
shown to be more effective at covering corner-case scenarios, which simulations fail to
detect. Our second contribution is the development of a formal framework for analyz-
ing the vulnerability of the synthesized DMR-NCL circuits, which verifies whether
the circuit can recover from a SEU/SEL without causing incorrect output or deadlock.
Both the proposed verification and vulnerability analysis methodologies have been
demonstrated on multiple DMR-NCL combinational benchmark circuits of varying
sizes and complexities.

The rest of the article is organized as follows: Section 2 provides a brief background on
the NCL framework, discusses existing research on error-tolerant QDI architectures, and
describes the DMR-NCL architecture and its operation. The proposed formal verification
methodology for DMR-NCL circuits is presented in Section 3, clearly explaining each step
of the procedure using an appropriate example. In addition, the chapter enumerates all
possible errors that can occur during DMR-NCL synthesis and demonstrates how the
proposed methodology can detect them. The framework for vulnerability analysis is
described in Section 4, followed by a discussion of the results in Section 5, and a conclusion
in Section 6.

2. Background and Related Work
2.1. NCL Framework: An Overview

The NCL framework is depicted in Figure 1, and consists of three primary components:
the QDI registration unit, the QDI combinational logic (C/L) unit, and the completion
detection unit. In each stage of an NCL pipeline, a C/L unit is placed between two sets of
registers along with a completion detection unit. The C/L unit performs the logic function,
while the registration and completion units establish the control path for synchronization
in the absence of a reference clock signal. NCL employs one-hot encoding for data to
eliminate the timing reference. Dual-rail logic is the most common encoding scheme,
which, unlike Boolean logic, requires two wires to represent a single bit of information
(i.e., logic ‘0’ or ‘1’), simultaneously representing both literals of the variable. A dual-rail
variable, X, consists of two wires/rails X0 and X1 that can have one of the three legal values
from the set {NULL, DATA0, DATA1}, where X0 (and X1) ϵ {0, 1}. DATA0 (X1 = 0 and
X0 = 1) and DATA1 (X1 = 1 and X0 = 0) are the equivalents of Boolean logic ‘0’ and ‘1’,
respectively. When both rails are ‘0’, it indicates a NULL state, which serves as a filler
state between two distinct data fronts. As per the dual-rail protocol, both rails of a signal
cannot be asserted simultaneously, making X0 = X1 = 1 an illegal state. Together, the
registers and the completion units maintain a sequence of alternating NULL and DATA to
differentiate between two distinct DATA wavefronts at the input and their corresponding
DATA wavefronts at the output [16].

J. Low Power Electron. Appl. 2024, 14, 5 3 of 24

2. Development of a formal framework for vulnerability analysis during error scenarios: The

majority of the existing resilient QDI schemes test for circuit vulnerabilities and re-

covery procedures in the presence of soft errors through extensive simulation. How-

ever, simulation alone cannot guarantee complete resilience. Formal methods have

been shown to be more effective at covering corner-case scenarios, which simulations

fail to detect. Our second contribution is the development of a formal framework for

analyzing the vulnerability of the synthesized DMR-NCL circuits, which verifies

whether the circuit can recover from a SEU/SEL without causing incorrect output or

deadlock. Both the proposed verification and vulnerability analysis methodologies

have been demonstrated on multiple DMR-NCL combinational benchmark circuits

of varying sizes and complexities.

The rest of the article is organized as follows: Section 2 provides a brief background

on the NCL framework, discusses existing research on error-tolerant QDI architectures,

and describes the DMR-NCL architecture and its operation. The proposed formal verifi-

cation methodology for DMR-NCL circuits is presented in Section 3, clearly explaining

each step of the procedure using an appropriate example. In addition, the chapter enu-

merates all possible errors that can occur during DMR-NCL synthesis and demonstrates

how the proposed methodology can detect them. The framework for vulnerability analy-

sis is described in Section 4, followed by a discussion of the results in Section 5, and a

conclusion in Section 6.

2. Background and Related Work

2.1. NCL Framework: An Overview

The NCL framework is depicted in Figure 1, and consists of three primary compo-

nents: the QDI registration unit, the QDI combinational logic (C/L) unit, and the comple-

tion detection unit. In each stage of an NCL pipeline, a C/L unit is placed between two

sets of registers along with a completion detection unit. The C/L unit performs the logic

function, while the registration and completion units establish the control path for syn-

chronization in the absence of a reference clock signal. NCL employs one-hot encoding

for data to eliminate the timing reference. Dual-rail logic is the most common encoding

scheme, which, unlike Boolean logic, requires two wires to represent a single bit of infor-

mation (i.e., logic ‘0’ or ‘1’), simultaneously representing both literals of the variable. A

dual-rail variable, X, consists of two wires/rails X0 and X1 that can have one of the three

legal values from the set {NULL, DATA0, DATA1}, where X0 (and X1) ϵ {0, 1}. DATA0 (X1

= 0 and X0 = 1) and DATA1 (X1 = 1 and X0 = 0) are the equivalents of Boolean logic ‘0’ and

‘1’, respectively. When both rails are ‘0’, it indicates a NULL state, which serves as a filler

state between two distinct data fronts. As per the dual-rail protocol, both rails of a signal

cannot be asserted simultaneously, making X0 = X1 = 1 an illegal state. Together, the reg-

isters and the completion units maintain a sequence of alternating NULL and DATA to

differentiate between two distinct DATA wavefronts at the input and their corresponding

DATA wavefronts at the output [16].

Prev.

Stage

Current

Stage

N N1 1

QDI NCL

Register

N bits

Completion

Detection Unit
Ko Ko Ki

Ki

Data Channel

Handshaking

Channel

QDI

Combinational

Logic Unit

Next

Stage

QDI NCL

Register

N bits

Figure 1. NCL framework. Figure 1. NCL framework.

NCL circuits are comprised of 27 fundamental threshold gates that constitute the set
of all functions consisting of up to four non-inverted variables, where each rail of a multi-

J. Low Power Electron. Appl. 2024, 14, 5 4 of 24

rail data signal is considered a separate variable. The gates have state-holding capability,
known as hysteresis, which necessitates that all inputs be de-asserted to de-assert an already
asserted output. The hysteresis ensures that all current input data wavefronts transition to
NULL prior to computing the output associated with the next input data wavefront. The
gates are classified into two categories: weighted and unweighted. An unweighted gate is
denoted as THmn, where n represents the number of inputs and m represents the threshold
value (i.e., minimum number of inputs that must be asserted to assert the gate output),
which ranges from 1 to n. A weighted gate is expressed as THmnWw1, w2 . . . , wr, where
wr (1 < wr ≤ m) signifies the weight of the input r [16]. Figure 2a depicts an NCL TH13
gate with three inputs (A, B, and C) and a threshold value of 1, indicating that the output
will be asserted when at least one of the inputs is asserted. Therefore, the set function of
TH13, FTH13, becomes A + B + C. Figure 2b shows a weighted TH24w22 gate, which has
four inputs (A, B, C, and D), with the first two inputs (A and B) having a weight of 2 and
the remaining inputs (C and D) each having a weight of 1. To assert the gate output, a
minimum threshold of two must be met. Therefore, the set equation of TH24w22, FTH24w22,
becomes A + B + CD.

J. Low Power Electron. Appl. 2024, 14, 5 4 of 24

NCL circuits are comprised of 27 fundamental threshold gates that constitute the set

of all functions consisting of up to four non-inverted variables, where each rail of a multi-

rail data signal is considered a separate variable. The gates have state-holding capability,

known as hysteresis, which necessitates that all inputs be de-asserted to de-assert an al-

ready asserted output. The hysteresis ensures that all current input data wavefronts tran-

sition to NULL prior to computing the output associated with the next input data wave-

front. The gates are classified into two categories: weighted and unweighted. An un-

weighted gate is denoted as THmn, where n represents the number of inputs and m rep-

resents the threshold value (i.e., minimum number of inputs that must be asserted to as-

sert the gate output), which ranges from 1 to n. A weighted gate is expressed as

𝑇𝐻𝑚𝑛𝑊𝑤1, 𝑤2 … , 𝑤𝑟, where 𝑤𝑟 (1 < 𝑤𝑟 ≤ 𝑚) signifies the weight of the input r [16]. Fig-

ure 2a depicts an NCL TH13 gate with three inputs (A, B, and C) and a threshold value of

1, indicating that the output will be asserted when at least one of the inputs is asserted.

Therefore, the set function of TH13, FTH13, becomes A + B + C. Figure 2b shows a weighted

TH24w22 gate, which has four inputs (A, B, C, and D), with the first two inputs (A and B)

having a weight of 2 and the remaining inputs (C and D) each having a weight of 1. To

assert the gate output, a minimum threshold of two must be met. Therefore, the set equa-

tion of TH24w22, FTH24w22, becomes A + B + CD.

Figure 2. (a) TH13 gate, and (b) TH24w22 gate.

Each one-bit NCL register comprises two TH22 gates and one inverting TH12 gate

(TH12n). The TH22 gates allow an input DATA to pass at the output only when the Ki

input is rfd (request-for-data, i.e., logic 1) and an input NULL to pass only when the Ki input

is rfn (request-for-null, i.e., logic 0). The TH12n gate produces a Ko output, which is rfd if a

NULL is latched and rfn when a DATA is latched. Each completion unit consists of a tree

of THnn gates that combines all N-bit Ko signals from the subsequent stage registers into

a single Ko output, which then serves as the Ki input of the previous stage registers. The

gate level structure of NCL registers and completion units can be found in [16].

NCL C/L must be designed to be both input-complete and observable to preserve

delay-insensitivity. Input completeness dictates that a C/L unit’s outputs cannot transition

from NULL to DATA until all inputs have transitioned from NULL to DATA. Likewise,

all outputs of a C/L unit must not transition from DATA to NULL until all inputs have

made the transition from DATA to NULL [16]. However, according to Seitz’s ‘weak con-

ditions’ of delay-insensitive signaling [17], in C/L units with multiple outputs, it is per-

missible for some of the outputs to transition without a complete set of inputs, as long as

all outputs do not manage to transition before all inputs arrive. Observability necessitates

that each gate transition be observable at the output, which means that each transitioning

gate must also transition at least one output [16].

2.2. Error-Resilient QDI Architectures

Resiliency schemes that are widely utilized and appropriate for traditional synchro-

nous designs lack direct applicability to the asynchronous domain due to their unique

architecture and demonstration of different responses to soft errors. For example, triple

modular redundancy (TMR) [18], a common resiliency approach for clocked designs, re-

quires making three copies of the circuit, where the correct output comes to be determined

by a majority voting logic scheme. In QDI circuits, implementing the majority voting

(a) (b)

A

B

C

Figure 2. (a) TH13 gate, and (b) TH24w22 gate.

Each one-bit NCL register comprises two TH22 gates and one inverting TH12 gate
(TH12n). The TH22 gates allow an input DATA to pass at the output only when the Ki
input is rfd (request-for-data, i.e., logic 1) and an input NULL to pass only when the Ki input
is rfn (request-for-null, i.e., logic 0). The TH12n gate produces a Ko output, which is rfd if a
NULL is latched and rfn when a DATA is latched. Each completion unit consists of a tree of
THnn gates that combines all N-bit Ko signals from the subsequent stage registers into a
single Ko output, which then serves as the Ki input of the previous stage registers. The gate
level structure of NCL registers and completion units can be found in [16].

NCL C/L must be designed to be both input-complete and observable to preserve
delay-insensitivity. Input completeness dictates that a C/L unit’s outputs cannot transition
from NULL to DATA until all inputs have transitioned from NULL to DATA. Likewise, all
outputs of a C/L unit must not transition from DATA to NULL until all inputs have made
the transition from DATA to NULL [16]. However, according to Seitz’s ‘weak conditions’
of delay-insensitive signaling [17], in C/L units with multiple outputs, it is permissible for
some of the outputs to transition without a complete set of inputs, as long as all outputs do
not manage to transition before all inputs arrive. Observability necessitates that each gate
transition be observable at the output, which means that each transitioning gate must also
transition at least one output [16].

2.2. Error-Resilient QDI Architectures

Resiliency schemes that are widely utilized and appropriate for traditional syn-
chronous designs lack direct applicability to the asynchronous domain due to their unique
architecture and demonstration of different responses to soft errors. For example, triple
modular redundancy (TMR) [18], a common resiliency approach for clocked designs, re-
quires making three copies of the circuit, where the correct output comes to be determined
by a majority voting logic scheme. In QDI circuits, implementing the majority voting
technique, synchronizing across three copies of the circuit, and ensuring deadlock-free
operation can be challenging [4]. In addition, NCL circuits are inherently area-heavy,
and making three copies of the circuit can restrict their application due to a much larger
area requirement.

J. Low Power Electron. Appl. 2024, 14, 5 5 of 24

The architecture and delay-insensitive nature of QDI circuits inherently confer a
certain level of resilience against soft errors. Monnet et al. studied the effects of timing
variations induced by transient faults in QDI circuits [19]. The study concluded that QDI
circuits offer a degree of resistance to timing variations, which may arise from alterations in
transistor threshold voltages resulting from charge accumulation through particle striking.
Furthermore, the dual-rail implementation can aid in easier detection of an SEU. An
example of this would be the generation of an invalid DATA value of ‘11’ by a single-
rail upset in a DATA variable (10 or 01), which would trigger automatic error detection.
Utilizing the advantages of such QDI properties, Kuang et al. [20] proposed an NCL
architecture with an integrated soft-error corrector that built upon the concept introduced
by Gardiner et al. [21]. In this method, the original NCL architecture is modified by
introducing additional logic and registration stages, ensuring correct re-computation of
the C/L unit once an error is detected. The method can detect and correct soft errors that
result in illegal DATA values during a DATA phase; however, errors that transpire during
the NULL phase of operation cannot be corrected by the proposed architecture. Ref. [22]
addressed this issue and modified the architecture further to detect and correct errors
in NULL phases as well. However, Ref. [23] illustrated that, despite the modifications
made to the architecture, it may still fail to ensure complete resilience under certain corner
case error scenarios. Moreover, both [20,22] impose a performance penalty in the form
of increased latency, as they both necessitate the pipeline to come to a halt until the error
effects completely subside.

A duplication-based dual modular redundancy (DMR) approach was proposed in [24]
to design resilient NCL circuits. This approach guarantees the pipeline’s full recovery in the
event of an SEL/SEU, while preventing the occurrence of incorrect data or circuit deadlock.
The approach was modified in [25] to mitigate multi-bit SEUs. Moreover, this approach was
further tailored and extended to design SEL/SEU-tolerant QDI SCL circuits as well [26]. A
duplication- and double-checking-based approach was successfully implemented to design
QDI PCHB and WCHB circuits that are entirely resistant to SEUs [27–29]. Furthermore,
a duplication-based approach was utilized in [30] to enhance the fault tolerance at the
threshold gate level in NCL circuits, operating at subthreshold regime. While duplication-
based methods can ensure complete resilience, they all incur substantial area and energy
costs as a result of additional control signals and duplication.

2.3. Dual Modular Redundancy (DMR)-Based NCL (DMR-NCL) Architecture

In DMR-NCL architecture, the original NCL pipeline is doubled, as shown in Figure 3,
with the shaded sections depicting the duplicated pipeline. During an SEL/SEU occurrence,
the architecture ensures error-free data propagation through the pipeline by performing
parallel computations on both the original and duplicate circuits, followed by an output
consistency check. Apart from the duplication, the following modifications are incorpo-
rated: (i) at the outputs of each registration stage in both copies, an additional stage of TH22
gates is added to prevent the propagation of mismatched data between the two copies.
We refer to this stage as DMR-TH22, as depicted in Figure 3; (ii) the conventional register
structure is modified and the TH22 gates within each register are substituted by TH33 gates,
allowing each register to receive two request (Ki) inputs—one from each copy’s completion
output in the succeeding stage to establish the dependency between the two copies of the
circuit; and (iii) the registers no longer generate acknowledge outputs (Ko) because the
TH12n gates have been removed. These TH12n gates are instead placed in the first level
of the completion components. The completion component in each stage receives inputs
from the outputs of the DMR-TH22 gates in the same stage and generates an output that is
supplied to one of the Ki inputs of the registers in the previous stage in both copies.

J. Low Power Electron. Appl. 2024, 14, 5 6 of 24

J. Low Power Electron. Appl. 2024, 14, 5 6 of 24

an output that is supplied to one of the Ki inputs of the registers in the previous stage in

both copies.

Modified

NCL

Register

(j

NCL C/L UNIT

(j

KiaKib

DMR-

TH22

(j

Modified

NCL

Register

(j)

DMR-

TH22

(j)

Modified

NCL

Register

(j

NCL C/L UNIT

(j

DMR-

TH22

(j

Modified

NCL

Register

(j)

DMR-

TH22

(j)

Kib Kia

Kia2Kib2

Kia2Kib2

Comp.

(j 1)

KiaKib

NCL C/L UNIT

(j)

NCL C/L UNIT

(j)

(t0) RFD

(t0) RFD

(t0) RFD

(t0) RFD

Comp.

(j 1)

Comp.

(j)

Comp.

(j)

(t0) DATA

(t0) DATA

(t0) NULL

(t0) NULL

(t0) NULL

(t0) NULL

(t0) NULL

(t0) NULL

(t0) NULL

(t0) NULL

(t0) RFD

(t0) RFD

(t0) NULL (t0) NULL

(t0) NULL (t0) NULL

(t1) DATA

(t1) DATA

(t2a) DATA

(t2a) DATA

(t2b) RFN

(t2b) RFN

(t3) DATA

(t3) DATA

(t4) DATA (t5a) DATA

(t4) DATA (t5a) DATA

(t5b) RFN

(t5b) RFN

(t6) DATA

(t6) DATA

Stage (j-1) Stage (j)

Figure 3. DMR-NCL architecture with an illustration of data flow.

The flow of DATA through the various stages of the DMR-NCL pipeline is also illus-

trated in Figure 3. Assume that, at time t0, new DATA is available at Regj−1 inputs and all

other stages are in the NULL state. Since the succeeding stage, stagej, is requesting data

(RFD), Regj−1 will latch the DATA in both copies at time t1. At t2a, the matched DATA will

be allowed to pass through the DMR-TH22 gates. Both the completion components in

stagej−1 detect the DATA at their corresponding DMR-TH22 outputs and evaluate to logic

‘0′, requesting for the next NULL (RFN) (time t2b). At time t3, the C/L units in both copies

complete their computation and provide the computed DATA to the next stage, stagej,

which is latched by the stagej registers at time t4. The DATA continue to propagate through

stagej in the same fashion as stagej−1. When the NULL signal becomes available, the flow of

NULL through the various stages of the DMR-NCL pipeline will also adhere to compara-

ble transitions.

3. Proposed Formal Framework for the Verification and Vulnerability Analysis of

DMR-NCL Architecture

This section describes the proposed formal verification method developed to verify

the correct operation of DMR-NCL circuits synthesized from their synchronous/Boolean

counterparts using design automation tools. There are four distinct high-level steps in the

verification procedure. In the first step, the synthesized DMR-NCL circuit is subjected to

a circuit abstraction procedure, resulting in the conversion of the original DMR-NCL cir-

cuit to an equivalent Boolean/synchronous circuit. The converted netlist is then checked

against the circuit’s original synchronous/Boolean specification for equivalence in the sec-

ond step. In the third step, additional invariant checks are conducted to validate the in-

tegrity of each dual-rail signal, thereby ensuring the mutual exclusivity property of each

dual-rail signal. In the fourth and final step, additional checks are performed to ensure

deadlock-free operation of the synthesized DMR-NCL circuits. This section also includes

an exhaustive list of all possible synthesis errors, which will be used to demonstrate the

effectiveness of the developed tool in detecting these errors post-synthesis, as described

in Section 5.

3.1. Comprehensive Set of Possible DMR-NCL Synthesis Faults: A Case Study

Existing design and optimization methodologies for NCL circuits, such as NCL_D

[8], NCL_X [9], UNCLE [11], Nowick’s Relaxation [31,32], Enhanced Relaxation [33],

Prime Indicants [34], etc., employ commercially available design automation tools for

logic synthesis. In many of these techniques, e.g., NCL_D and UNCLE, the synthesis

Figure 3. DMR-NCL architecture with an illustration of data flow.

The flow of DATA through the various stages of the DMR-NCL pipeline is also
illustrated in Figure 3. Assume that, at time t0, new DATA is available at Regj−1 inputs
and all other stages are in the NULL state. Since the succeeding stage, stagej, is requesting
data (RFD), Regj−1 will latch the DATA in both copies at time t1. At t2a, the matched DATA
will be allowed to pass through the DMR-TH22 gates. Both the completion components
in stagej−1 detect the DATA at their corresponding DMR-TH22 outputs and evaluate to
logic ‘0’, requesting for the next NULL (RFN) (time t2b). At time t3, the C/L units in both
copies complete their computation and provide the computed DATA to the next stage,
stagej, which is latched by the stagej registers at time t4. The DATA continue to propagate
through stagej in the same fashion as stagej−1. When the NULL signal becomes available,
the flow of NULL through the various stages of the DMR-NCL pipeline will also adhere to
comparable transitions.

3. Proposed Formal Framework for the Verification and Vulnerability Analysis of
DMR-NCL Architecture

This section describes the proposed formal verification method developed to verify
the correct operation of DMR-NCL circuits synthesized from their synchronous/Boolean
counterparts using design automation tools. There are four distinct high-level steps in
the verification procedure. In the first step, the synthesized DMR-NCL circuit is subjected
to a circuit abstraction procedure, resulting in the conversion of the original DMR-NCL
circuit to an equivalent Boolean/synchronous circuit. The converted netlist is then checked
against the circuit’s original synchronous/Boolean specification for equivalence in the
second step. In the third step, additional invariant checks are conducted to validate the
integrity of each dual-rail signal, thereby ensuring the mutual exclusivity property of each
dual-rail signal. In the fourth and final step, additional checks are performed to ensure
deadlock-free operation of the synthesized DMR-NCL circuits. This section also includes
an exhaustive list of all possible synthesis errors, which will be used to demonstrate the
effectiveness of the developed tool in detecting these errors post-synthesis, as described in
Section 5.

3.1. Comprehensive Set of Possible DMR-NCL Synthesis Faults: A Case Study

Existing design and optimization methodologies for NCL circuits, such as NCL_D [8],
NCL_X [9], UNCLE [11], Nowick’s Relaxation [31,32], Enhanced Relaxation [33], Prime
Indicants [34], etc., employ commercially available design automation tools for logic syn-
thesis. In many of these techniques, e.g., NCL_D and UNCLE, the synthesis begins with the
register transfer level (RTL) description of the circuit’s synchronous/Boolean specification.
Initially, the specification becomes converted into a netlist comprising only two-input
Boolean functions, which is referred to as a 3NCL netlist. Then, each single-rail signal is
transformed into a dual-rail signal, and each gate function is expanded into its dual-rail

J. Low Power Electron. Appl. 2024, 14, 5 7 of 24

counterpart, followed by a series of optimization procedures, such as logic minimization,
gate mapping, cell merging, etc. The registers and completion components are then added,
and handshaking connections are established in accordance with the four-phase handshak-
ing protocol. Identical procedures can be followed to automate the synthesis of DMR-NCL
circuits. The goal of our proposed methodology is to verify the correct functionality of
the DMR-NCL circuits that are synthesized from their synchronous counterparts. The
proposed verification method ensures the functional equivalence between the synchronous
specification and the DMR-NCL implementation, while also ensuring that the circuit never
deadlocks during operation. Note that the proposed method assumes that the transistor-
level implementation of threshold gates as well as the NCL registers are correct, which is
consistent with standard gate-level verification practices [35]. Since each gate and register
component is small enough, exhaustive simulations, a common technique for verifying
circuit primitives, can be used to verify them with relative ease. Moreover, note that the
proposed method does not verify the input completeness and observability of the C/L
units, as these can be validated separately using existing formal methods, as described
in [13,36].

The following Is an exhaustive list of potential errors that may occur during DMR-NCL
synthesis.

Error Case 1: Incorrect logic synthesis—as discussed earlier, the synthesis process in-
cludes multiple logic optimization and minimization schemes. For instance, a two-input
NAND function followed by a two-input NOR function can be merged and substituted by
a three-input AND function during optimization (e.g., [(A.B)′ + C]′ can be implemented
using a three-input AND function with inputs A, B, and C′). In this scenario, incorrect
gate-mapping can lead to the merging function being implemented using a three-input
OR function instead, or the C input not being inverted, resulting in improper circuit
functionality.

Error Case 2: Incorrect gate connection in the C/L unit—this case corresponds to a scenario
in which a gate, gatei, that should be connected to gatej is instead connected to gatek. For
example, the output of a TH12 gate with set function, FSET = A + B, should be connected
to one of the inputs of TH22 (FSET = AB) in an error-free scenario. However, the TH12
gate output comes to be improperly connected to a TH23w2 gate with a set function,
FSET = A + BC, resulting in incorrect logic implementation.

Error Case 3: Swapped rail connection—in dual-rail logic, a signal inversion occurs when
the rails of a dual-rail signal are switched. Consider a direct connection between two NCL
functions, A and B, where the dual-rail output, F, of function A should be connected to one
of the dual-rail inputs, X, of function B. This connection requires F.rail0 and F.rail1 to be
directly connected to the corresponding rails, X.rail0 and X.rail1, of function B, respectively.
However, an erroneously swapped rail connection would result in F.rail0 and F.rail1 being
connected to X.rail1 and X.rail0, respectively. This would result in F’ being connected to
X instead of F, leading to a logical error caused by the signal inversion. This is true for a
connection between a dual-rail NCL register and NCL function as well.

Error Case 4: Incorrect rail connections—both rails of a dual-rail NCL function input,
register input, or primary output should be derived from the same variable; otherwise,
illegal dual-rail values may be generated. Assume that X is a dual-rail input of an NCL
function, which receives its rail0 and rail1 wires from two different signals, F.rail0 and G.rail1,
respectively. This will result in an illegal value for X (i.e., X.rail0 = X.rail1 = 1) if F becomes
DATA0 (i.e., F.rail0 = 1 and F.rail1 = 0) and G becomes DATA1 (i.e., G.rail0 = 0 and G.rail1 = 1).
Alternately, if F and G become DATA1 and DATA0, respectively, X will remain NULL.

Similarly, both rails of a dual-rail NCL function input, register input, or primary
output should not comprise the same rail of a dual-rail signal. Consider that both rails of
the X input of an NCL function are connected to the F.rail1 output of another NCL function.
This will prevent X from transitioning to DATA when F is DATA0 and evaluate to an illegal
data value when F is DATA1. Both types of rail errors can result in improper outputs and
deadlock in an NCL circuit.

J. Low Power Electron. Appl. 2024, 14, 5 8 of 24

Error Case 5: Control signals connected to data ports—the acknowledge output, Ko,
generated by a completion detection unit may be improperly connected to one or more
NCL threshold gates in the C/L and DMR-TH22 network, data input(s) of NCL registers,
or data input of another completion unit. This can potentially violate the four-phase
handshaking protocol and result in circuit deadlock and/or erroneous output.

Error Case 6: Incorrect gate type in the circuit—since NCL is synthesized from a syn-
chronous/Boolean specification, the synthesized circuit can contain unexpanded single-rail
Boolean gates. Lacking hysteresis, Boolean gates can influence the delay insensitivity of an
NCL circuit.

Error Case 7: Incorrect DMR-TH22 connections—the purpose of DMR-TH22 gates is
to block unmatched DATA between the two copies of the circuit during SEU/SEL. To
accomplish this, identical output rails of each register in a stage from both copies must be
connected to a single DMR-TH22 gate. Failure to maintain this connection may result in
deadlock or incorrect computation. For instance, consider a dual-rail register, Rega, in the
original copy of the circuit with output, F. The corresponding shadow (or duplicate) register,
Regb, has G as its dual-rail output. In an error-free scenario, there should be two DMR-TH22
gates following the two registers, one in the rail0 network with F.rail0 and G.rail0 as inputs,
and the other in the rail1 network with F.rail1 and G.rail1 as inputs. However, suppose
a synthesis error occurs in the DMR-TH22 gate in the rail0 network, in which the G.rail1

rail is incorrectly connected instead of the G.rail0 rail. In such a scenario, the registers
transitioning from NULL to DATA0 will be unable to update the DMR-TH22 gate in the
rail0 network. Therefore, DATA0 will not be permitted to pass, even though both register
outputs match. This will eventually result in circuit deadlock.

Error Case 8: Non-TH22 gates at register outputs—TH22 gates behave like two-input
C-elements [37], which evaluate to 1 or 0 only when both of their inputs are 1 or 0, respec-
tively. If the two inputs are different, the gate maintains the previous value, i.e., it does not
update. Therefore, the C-element-like behavior of DMR-TH22 gates at the register outputs
in both copies of the circuit is used to allow only matched DATA/NULL to flow through
both pipelines and block unmatched DATA. A non-TH22 gate at register outputs will fail
to serve this purpose and may result in deadlock, incorrect outputs, or both.

Error Case 9: Missing signals in the completion unit—as per the DMR-NCL handshaking
protocol, every completion unit acknowledges all preceding stage register outputs that
took part in calculating the stage’s register inputs. To maintain this, after being filtered by
the stage’s DMR-TH22 gates, each rail of the N-bit register outputs must be an input to the
stage’s completion unit, and the output of the completion unit must be connected to one
of the two Ki inputs of the registers in the previous stage in both copies of the circuit. The
absence of one or more of the required signals in the completion unit inputs may result in
the premature generation of a NULL/DATA request, which, in certain timing scenarios,
can result in circuit deadlock.

Error Case 10: Additional signals in the completion unit—A completion component may
incorrectly contain additional signals from the DMR-TH22-filtered register outputs from
other stages. This may cause circuit deadlock, especially when the pipeline contains the
maximum amount of distinct DATA tokens, but it could also function correctly. Each
additional signal would, therefore, require additional inspection. Moreover, any additional
input signal to a completion unit that is not generated by a DMR-TH22 gate is invalid.

Error Case 11: Incorrect gates (non TH12n/THnn) in the completion circuitry—the com-
pletion component in a DMR-NCL circuit comprises a series of TH12n gates at the first
level, followed by a tree of THnn gates, which combines N dual-rail signals into a single Ko
output. Any other gate in the completion circuitry is an error, which may cause deadlock
in a circuit.

Error Case 12: Incorrect TH12n input(s) in the first level of the completion circuitry—there
are N number of TH12n gates in the first level of an N-input completion unit. Each TH12n
gate receives both rails of the same dual-rail signal as inputs, which evaluates to ‘0’ when
either rail is ‘1’ (i.e., the dual-rail signal is DATA0/DATA1), and to ‘1’ when both rails are

J. Low Power Electron. Appl. 2024, 14, 5 9 of 24

‘0’ (i.e., the dual-rail signal is NULL). Hence, the series of TH12n gates in the first level of
each completion unit acts as a NULL/DATA detector for that stage. When a NULL/DATA
is detected, the logic ‘1’/‘0’ outputs of all the TH12n gates are combined utilizing a THnn
tree structure to generate a one-bit single-rail request-for-DATA (rfd, i.e., Ko = 1)/request-
for-NULL (rfn, i.e., Ko = 0) signal. If one or more of the TH12n gates receives incorrect
inputs, such as the same rails of a dual-rail signal or rails from two different signals, it will
fail to detect the corresponding NULL/DATA signal value. Consequently, even when all
inputs are NULL/DATA, the completion unit will not generate the correct request signal,
resulting in circuit deadlock.

Error Case 13: External Ki connection error—the external Ki inputs must be connected
to the Ki inputs of the registers in the last stage to synchronize all the primary outputs. A
missing external Ki connection will cause circuit deadlock under some timing scenarios.

Error Case 14: External Ko connection error—the external Ko outputs synchronize the
primary inputs in both copies of the circuit. Therefore, the completion unit in the initial
stage in a copy must include the DMR-TH22-filtered output signals of all the initial stage
registers that accept primary inputs in that copy. Any missing or incorrectly connected
signal in the completion component will cause circuit deadlock.

Error Case 15: Data signals connected to a register’s Ki ports—each register has two Ki
input ports. If the register is not in the final stage, it should receive one of the Ki inputs
from the output of the succeeding stage’s completion unit in the same copy, while it should
receive the other Ki input from the output of the succeeding stage’s completion unit in the
other copy. Otherwise, the Ki inputs should be connected to the external Ki signals if the
register is in its final stage. Any rail of a data signal cannot be connected to the Ki inputs of
a register, as this would result in circuit deadlock.

Error Case 16: Shorted output—an output of any C/L unit and/or DMR-TH22 gate,
completion unit, or register unit, cannot have a shorted connection with any other gate
outputs, register outputs, completion outputs, primary data inputs, external Ki inputs, or
external Ko outputs. This will result in undefined values for the shorted signals.

Error Case 17: Floating input(s) in components—an input signal to a gate in the C/L
unit and/or DMR-TH22 gate(s), completion unit, or register unit, must be derived from
the output of another component in the design—or from a primary input, if appropriate
according to the design rules of the DMR-NCL architecture. Otherwise, the signal will be
floating. This may happen during synthesis if, for example, the component driving the
signal is removed or the signal is updated in some but not all locations where it is used.

Error Case 18: Illegal interconnection between two copies of the circuit—as per the DMR-
NCL architecture, the inputs to a C/L unit, the data inputs to a register, and the inputs to a
completion unit in the original copy cannot be derived from any component in the duplicate
copy, or vice versa. A violation of this connection protocol can impact the circuit recovery
procedure during SEL/SEU, leading to incorrect outputs, and resulting in circuit deadlock.

3.2. Proposed Safety Check

The safety check procedure has two steps. A functional equivalence check is conducted
initially to compare the synthesized DMR-NCL circuit with its synchronous specification.
In this step, the rail1 network is the primary focus, given that the Boolean outputs of the
synchronous specification correspond to the rail1 signals of the DMR-NCL output variables.
The rail0 network is validated in the second step. Both the steps are detailed in this section.

3.2.1. Functional Equivalence Check

We have used a two-stage 3 × 3 DMR NCL multiplier, as depicted in Figure 4, as an
example circuit to illustrate the safety check procedure. As per the DMR architecture in
Figure 3, there are two copies of the multiplier, one original and one duplicate (highlighted
in gray), implementing the output function p(5 : 0) = xi(2 : 0)× yi(2 : 0). Both the original
and duplicate circuits are identical and, therefore, the complete structure of the duplicate
circuit is not shown in the figure. The inputs, outputs, and intermediate signals of both the

J. Low Power Electron. Appl. 2024, 14, 5 10 of 24

actual and duplicate circuits are dual rails. The combinational logic (C/L) unit comprises
both input-complete (denoted with a C inside the AND symbol) and input-incomplete
(denoted with an I inside the AND symbol) NCL AND functions, NCL Half-Adders (HA),
and NCL Full-Adders (FA). The internal structures of the NCL AND, NCL HA, and NCL
FA functions can be found in [16]. Each copy of the circuit contains three sets of registers:
input registers, output registers, and intermediate registers that are all reset-to-NULL
(Reg_NULL). Note that the circuit can be designed with only the I/O registers; however,
an intermediate registration stage is added to make the circuit more generic and to better
explain each step of the procedure. Following registration, each stage contains a series of
DMR-TH22 gates at the same level, each of which receives the same rail of a particular
register output from its original and corresponding duplicate copies. Each completion
detection unit within a stage accepts the stage’s DMR-TH22 outputs as inputs and generates
an acknowledgment output, Ko, which acts as a request signal (Ki) for the previous stage’s
registers in both copies of the circuit.

J. Low Power Electron. Appl. 2024, 14, 5 10 of 24

variables. The rail0 network is validated in the second step. Both the steps are detailed in

this section.

3.2.1. Functional Equivalence Check

We have used a two-stage 3 × 3 DMR NCL multiplier, as depicted in Figure 4, as an

example circuit to illustrate the safety check procedure. As per the DMR architecture in

Figure 3, there are two copies of the multiplier, one original and one duplicate (high-

lighted in gray), implementing the output function 𝑝(5: 0) = 𝑥𝑖(2: 0) × 𝑦𝑖(2: 0). Both the

original and duplicate circuits are identical and, therefore, the complete structure of the

duplicate circuit is not shown in the figure. The inputs, outputs, and intermediate signals

of both the actual and duplicate circuits are dual rails. The combinational logic (C/L) unit

comprises both input-complete (denoted with a C inside the AND symbol) and input-

incomplete (denoted with an I inside the AND symbol) NCL AND functions, NCL Half-

Adders (HA), and NCL Full-Adders (FA). The internal structures of the NCL AND, NCL

HA, and NCL FA functions can be found in [16]. Each copy of the circuit contains three

sets of registers: input registers, output registers, and intermediate registers that are all

reset-to-NULL (Reg_NULL). Note that the circuit can be designed with only the I/O reg-

isters; however, an intermediate registration stage is added to make the circuit more ge-

neric and to better explain each step of the procedure. Following registration, each stage

contains a series of DMR-TH22 gates at the same level, each of which receives the same

rail of a particular register output from its original and corresponding duplicate copies.

Each completion detection unit within a stage accepts the stage’s DMR-TH22 outputs as

inputs and generates an acknowledgment output, Ko, which acts as a request signal (Ki)

for the previous stage’s registers in both copies of the circuit.

REG_NULL

1

xi0 x0

REG_NULL

2

xi1 x1

REG_NULL

3

xi2 x2

REG_NULL

4

yi0 y0

REG_NULL

5

yi1 y1

REG_NULL

6

yi2 y2

x0s_0

x0_0
2

x0s_1

x0_1
2

y2_0
2

y2_1
2

y2s_0

y2s_1

X0

X1

X2

Y0

Y1

Y2

NCL

HA

NCL

FA

t0

t1

t2

t3

t5

t6

t7

NCL

HA
t4

m0

m1

m2

c3

c2

X0

Y0

X0

Y1
X1

Y0

X1

Y1

X2

Y0

X0

Y2

X2

Y1
X1

Y2
X2

Y2

s1

c1

C

I

I

C

I

I

I

I

C

REG_NULL

7

m0 R2m0

REG_NULL

8

m1

REG_NULL

9

m2

REG_NULL

10

c3

REG_NULL

11

c2

REG_NULL

12

t5 R2t5

REG_NULL

13

t6

REG_NULL

14

t7 R2t7

R2m1

R2m2

R2c3

R2c2

R2t6

R2m0s_0

R2m0_0
2

2

R2t7_0
2

R2t7_1
2

R2t7s_0

R2t7s_1

Z0

Z1

Z2

m3

m4

m7

R2m0s_1

R2m0_1

m5

m6

NCL

FA

NCL

HA

NCL

FA

s2

c4

c5

Z3

Z4

Z5

REG_NULL

15

Z0 R3Z0

REG_NULL

16

Z1 R3Z1

REG_NULL

17

Z2 R3Z2

REG_NULL

18

Z3 R3Z3

REG_NULL

19

Z4 R3Z4

REG_NULL

20

Z5 R3Z5

R3Z0s_0

R3Z0_0
2

R3Z0s_1

R3Z0_1
2

R3Z5_0
2

R3Z5_1
2

R3Z5s_0

R3Z5s_1

P0

P1

P2

P3

P4

P5

KiaKib
KiaKib KiaKib

koa1

kob1

koa2

kob2

Comp1

Comp1s

X0 Y2

X0s . . . Y2s

Comp2

Comp2s

Z0 m7

Z0s . . . m7s

Comp3

Comp3s

P0 P5

P0s . . . P5s

koa

kob

kib

kia

REG_NULL

1

.

.

.

.

REG_NULL

6

xi0s

.

.

.

.

yi2s

TH22

.

.

.

.

TH22

TH22

.

.

.

TH22

TH22

.

.

.

.

TH22

REG_NULL

7

.

.

.

.

REG_NULL

14

SHADOW

COMBINATIONAL

LOGIC UNIT - 1

SHADOW

COMBINATIONAL

LOGIC UNIT - 2

x0

x0s

.

.

.

.

.

.

y2

y2s

X0s

.

.

.

.

Y2s

m0s

.

.

.

.

t7S

R2m0s

R2m0

.

.

R2t7

R2t7s

Z0s

.

.

.

.

m7s

Z0s

.

.

.

.

Z5s

R3Z0s

R3Z0

.

.

R3Z5

R3Z5s

P0s

.

.

.

.

P5s

x0s

.

.

.

y2s

KiaKib KiaKib KiaKib

REG_NULL

15

.

.

.

.

REG_NULL

20

Stage2

DMR-TH22 Gates

DMR-TH22 Gates

DMR-TH22 Gates

Figure 4. Unsigned two-stage 3 × 3 DMR-NCL multiplier.

Figure 5a displays the netlist format for the 3 × 3 DMR NCL multiplier, referred to as

NCLInitial. This netlist structure is generated from the circuit’s RTL-level description in Ver-

ilog HDL. The primary inputs and primary outputs of both the original and duplicate

circuits are listed in lines 1 and 2, respectively. rail0 and rail1 of a signal are denoted by the

Figure 4. Unsigned two-stage 3 × 3 DMR-NCL multiplier.

Figure 5a displays the netlist format for the 3 × 3 DMR NCL multiplier, referred to
as NCLInitial. This netlist structure is generated from the circuit’s RTL-level description in
Verilog HDL. The primary inputs and primary outputs of both the original and duplicate
circuits are listed in lines 1 and 2, respectively. rail0 and rail1 of a signal are denoted by the
extensions ‘_0’ and ‘_1’, respectively. Lines 3–166 correspond to the NCL C/L threshold
gates. For a threshold gate, the first column specifies the gate_type, the second column lists
the gate inputs separated by commas, and the final column specifies the gate output. Lines
167–206 correspond to the one-bit dual-rail NCL registers, where the first column indicates
the reset_type (i.e., reset-to-NULL, DATA0, or DATA1); the second column denotes the
register level (the depth of the path through the registers, excluding the C/L in-between);
the third and fourth columns correspond to the rail0 and rail1 data inputs, respectively; and
the fifth column corresponds to the Ki inputs in a comma-separated format, followed by
the rail0 and rail1 data outputs in the last two columns, respectively. In the 3 × 3 DMR NCL

J. Low Power Electron. Appl. 2024, 14, 5 11 of 24

multiplier example, there are three stages of reset-to-NULL registers with levels 1, 2, and 3,
starting from the input registers. Note, as the multiplier in the example is a combinational
circuit without feedback paths, reset-to-DATA registers are not required as an initial state
indicator. Lines 207–212 are the completion units, where Comp_n (or Comp_ns) in the first
column denotes a completion component in the circuit’s original (or duplicate) copy, where
‘n’ is a unique identifier, the second column indicates the inputs in a comma-separated
format, which comes from the same stage’s DMR-TH22 outputs, and the last column is the
output. Note that each completion component comprises a level of inverting TH12 gates
(TH12n) followed by THnn NCL gates arranged in a tree structure [24]. When processing
the original RTL-level netlist, the proposed tool combines all the completion unit gates
into the single completion component module, such as Comp_1 in Figure 5a (line 207), to
simplify the verification process.

J. Low Power Electron. Appl. 2024, 14, 5 11 of 24

extensions ‘_0’ and ‘_1’, respectively. Lines 3–166 correspond to the NCL C/L threshold

gates. For a threshold gate, the first column specifies the gate_type, the second column lists

the gate inputs separated by commas, and the final column specifies the gate output. Lines

167–206 correspond to the one-bit dual-rail NCL registers, where the first column indi-

cates the reset_type (i.e., reset-to-NULL, DATA0, or DATA1); the second column denotes

the register level (the depth of the path through the registers, excluding the C/L in-be-

tween); the third and fourth columns correspond to the rail0 and rail1 data inputs, respec-

tively; and the fifth column corresponds to the Ki inputs in a comma-separated format,

followed by the rail0 and rail1 data outputs in the last two columns, respectively. In the 3 ×

3 DMR NCL multiplier example, there are three stages of reset-to-NULL registers with

levels 1, 2, and 3, starting from the input registers. Note, as the multiplier in the example

is a combinational circuit without feedback paths, reset-to-DATA registers are not re-

quired as an initial state indicator. Lines 207–212 are the completion units, where Comp_n

(or Comp_ns) in the first column denotes a completion component in the circuit’s original

(or duplicate) copy, where ‘n’ is a unique identifier, the second column indicates the inputs

in a comma-separated format, which comes from the same stage’s DMR-TH22 outputs,

and the last column is the output. Note that each completion component comprises a level

of inverting TH12 gates (TH12n) followed by THnn NCL gates arranged in a tree structure

[24]. When processing the original RTL-level netlist, the proposed tool combines all the

completion unit gates into the single completion component module, such as Comp_1 in

Figure 5a (line 207), to simplify the verification process.

Initial NCL Netlist (NCLInitial) Converted Boolean Netlist (NCLBool)

1. xi0_0, xi0_1, …, yi2_0, yi2_1, xi0s_0, xi0s_1, xi1s_0…, yi2s_0, yi2s_1

2. P0_0, P0_1, …, P5_0, P5_1, P0s_0, P0s_1…, P5s_0, P5s_1

3. th22 x0_0,x0s_0 X0_0

4. th22 x0_1,x0s_1 X0_1

…

25. th22 y2_0, y2s_0 Y2s_0

26. th22 y2_1, y2s_1 Y2s_1

27. thand0 Y0_0,X0_0,Y0_1,X0_1 m0_0

28. th22 X0_1,Y0_1 m0_1

…

60. thand0 Y2s_0,X2s_0,Y2s_1,X2s_1 t7s_0

61. th22 X2s_1,Y2s_1 t7s_1

62. th22 R2m0_0,R2m0s_0 Z0_0

63. th22 R2m0_1,R2m0s_0 Z0_1

…

90. th22 R2m2_0,R2m2s_0 Z2s_0

91. th22 R2m2_1,R2m2s_1 Z2s_1

92. th22 R2c2_0,R2c2s_0 m3_0

93. th22 R2c2_1,R2c2s_1 m3_1

…

…

101. th22 R2t7_0,R2t7s_0 m7s_0

102. th22 R2t7_1,R2t7s_1 m7s_1

103. th24comp s2_0,m6_1,m6_0,s2_1 Z3_0

1. xi0_1, xi1_1…, yi2_1, xi0s_1, xi1s_1…, yi2s_1

2. P0_0, P0_1…, P5_0, P5_1, P0s_0, P0s_1…, P5s_0, P5s_1

3. not xi0_1 xi0_0

4. not xi1_1 xi1_0

…

14. not yi2s_1 yi2s_0

15. th22 xi0_0,xi0s_0 X0_0

16. th22 xi0_1,xi0s_1 X0_1

…

37. th22 yi2_0,yi2s_0 Y2s_0

38. th22 yi2_1,yi2s_1 Y2s_1

39. thand0 Y0_0,X0_0,Y0_1,X0_1 m0_0

40. th22 X0_1,Y0_1 m0_1

…

73. thand0 Y2s_0,X2s_0,Y2s_1,X2s_1 t7s_0

74. th22 X2s_1,Y2s_1 t7s_1

74. th22 m0_0,m0s_0 Z0_0

75. th22 m0_1,m0s_1 Z0_1

…

85. th24comp s1_0,t4_0,s1_1,t4_1 Z2_1

86. th24comp s1_0,t4_1,t4_0,s1_1 Z2_0

87. th22 m0_0,m0s_0 Z0s_0

88. th22 m0_1,m0s_1 Z0s_1

…

Figure 5. Cont.

J. Low Power Electron. Appl. 2024, 14, 5 12 of 24J. Low Power Electron. Appl. 2024, 14, 5 12 of 24

104. th24comp s2_0,m6_0 s2_1,m6_1 Z3_1

…

…

141. th23 m7s_0,c4s_0,c5s_0 Z5s_0

142. th23 m7s_1,c4s_1,c5s_1 Z5s_1

143. th22 R3Z0_0,R3Z0s_0 P0_0

144. th22 R3Z0_1, R3Z0s_1 P0_1

…

…

165. th22 R3Z5_0,R3Z5s_0 P5s_0

166. th22 R3Z5_1,R3Z5s_1 P5s_1

167. Reg_NULL 1 xi0_0 xi0_1 koa1, kob1 x0_0 x0_1

…

…

178. Reg_NULL 1 yi2s_0 yi2s_1 koa1,kob1 y2s_0 y2s_1

179. Reg_NULL 2 m0_0 m0_1 koa2, kob2 R2m0_0 R2m0_1

…

…

194. Reg_NULL 2 t7s_0 t7s_1 koa2, kob2 R2t7s_0 R2t7s_1

195. Reg_NULL 3 Z0_0 Z0_1 kia, kib R3Z0_0 R3Z0_1

…

…

206. Reg_NULL 3 Z5s_0 Z5s_1 kia, kib R3Z5s_0 R 3Z5s_1

207. Comp_1 X0_0, X0_1…, Y2_0, Y2_1 koa

208. Comp_1s X0s_0, X0s_1…, Y2s_0, Y2s_1 kob

209. Comp_2 Z0_0, Z0_1…, m7_0, m7_1 koa1

210. Comp_2s Z0s_0, Z0s_1…, m7s_0, m7s_1 kob1

211. Comp_3 P0_0, P0_1…, P5_0, P5_1 koa2

212. Comp_3s P0s_0, P0s_1…, P5s_0, P5s_1 kob2

97. th24comp s1s_0,t4s_0,s1s_1,t4s_1 Z2s_1

98. th24comp s1s_0,t4s_1,t4s_0,s1s_1 Z2s_0

99. th22 c3_0,c3s_0 m3_0

100. th22 c3_1,c3s_1 m3_1

…

107. th22 t7_0,t7s_0 m7_0

108. th22 t7_1,t7s_1 m7_1

109. th22 c3_0,c3s_0 m3s_0

110. th22 c3_1,c3s_1 m3s_1

…

117. th22 t7_0,t7s_0 m7s_0

118. th22 t7_1,t7s_1 m7s_1

…

125. th24comp s2_0,m6_1,m6_0,s2_1 Z3_0

126. th24comp s2_0,m6_0,s2_1,m6_1 Z3_1

…

129. th23 m7_0,c4_0,c5_0 Z5_0

130. th23 m7_1,c4_1,c5_1 Z5_1

…

137. th24comp s2s_0,m6s_1,m6s_0,s2s_1 Z3s_0

138. th24comp s2s_0,m6s_0,s2s_1,m6s_1 Z3s_1

…

141. th23 m7s_0,c4s_0,c5s_0 Z5s_0

142. th23 m7s_1,c4s_1,c5s_1 Z5s_1

143. th22 Z0_0,Z0s_0 P0_0

144. th22 Z0_1,Z0s_1 P0_1

…

165. th22 Z5_0,Z5s_0 P5s_0

166. th22 Z5_1,Z5s_1 P5s_1

(a) (b)

Figure 5. (a) Initial 3 × 3 multiplier DMR-NCL netlist, and (b) converted Boolean equivalent netlist.

The NCLInitial netlist is fed as an input to a Python-based automated safety check tool

that we have developed. The netlist undergoes a conversion algorithm that converts the

NCLInitial netlist into an equivalent Boolean netlist, referred to as NCLBool, as shown in Fig-

ure 5b. During the conversion process, the reset-to-NULL registers (Reg_NULL) and com-

pletion units (Comp_n) are removed as they exist solely for control and synchronization

purposes and do not affect functionality. Note that the connection between registers and

completion units will be verified as a part of the liveness and handshaking check, as elab-

orated on later. Each NCL threshold gate comes to be replaced with its equivalent hyste-

resis-less Boolean SET function. Each individual rail of a dual-rail signal is regarded as a

separate Boolean signal. Each primary dual-rail input signal is substituted with its rail1

signal, as shown in line 1 in NCLBool in Figure 5b, since rail1 represents the equivalent

Boolean logic for a dual rail signal. Line 2 lists the set of primary outputs, which consists

of both rail0 and rail1 signals. Lines 3–14 of the converted netlist contain a list of inverters

that are added to generate signals equivalent to the eliminated rail0 inputs. Lines 15 and

Figure 5. (a) Initial 3 × 3 multiplier DMR-NCL netlist, and (b) converted Boolean equivalent netlist.

The NCLInitial netlist is fed as an input to a Python-based automated safety check tool
that we have developed. The netlist undergoes a conversion algorithm that converts the
NCLInitial netlist into an equivalent Boolean netlist, referred to as NCLBool, as shown in
Figure 5b. During the conversion process, the reset-to-NULL registers (Reg_NULL) and
completion units (Comp_n) are removed as they exist solely for control and synchronization
purposes and do not affect functionality. Note that the connection between registers and
completion units will be verified as a part of the liveness and handshaking check, as
elaborated on later. Each NCL threshold gate comes to be replaced with its equivalent
hysteresis-less Boolean SET function. Each individual rail of a dual-rail signal is regarded
as a separate Boolean signal. Each primary dual-rail input signal is substituted with its
rail1 signal, as shown in line 1 in NCLBool in Figure 5b, since rail1 represents the equivalent
Boolean logic for a dual rail signal. Line 2 lists the set of primary outputs, which consists
of both rail0 and rail1 signals. Lines 3–14 of the converted netlist contain a list of inverters

J. Low Power Electron. Appl. 2024, 14, 5 13 of 24

that are added to generate signals equivalent to the eliminated rail0 inputs. Lines 15 and
onward specify the converted NCL gates, following the same gate format as NCLInitial.
Algorithm 1 outlines the proposed netlist conversion algorithm.

Algorithm 1: Procedure to generate an equivalent Boolean circuit from a DMR-NCL circuit

//Input to the procedure: NCLInitial; Output of the procedure NCLBool//
1: Create list_pIs (rail1.data_inputs(NCLInitial))
2: Create list_pOs (data_outputs(NCLInitial))
3: Create NCL_comp (NCLInitial)
4: for i← to component_count do
5: if NCL_comp(i).instance_type == Reg_NULL then
6: merge NCL gates separated by NCL_comp(i)
7: delete NCL_comp(i)
8: end if
9: end for
10: for i← to component_count do
11: if NCL_comp(i).instance_type == Comp then
12: delete NCL_comp(i)
13: end if
14: end for
15: for j← to list_pIs do
16: generate_rail0_signals (list_pIs(j))
17: end for
18: for i← to component_count do
19: convert_to_Boolean (NCL_comp(i))
20: end for

The converted Boolean netlist is then compared against the corresponding Boolean
specification function (FBool_Spec). The converted netlist is first encoded in the Satisfiability
Modulo Theory Library (SMT-LIB) language [38,39] using an automated encoding algo-
rithm that we have developed, which is then input to the Z3 SMT solver [40] to check for
equivalence between the converted Boolean netlist and the specification. To verify the
functionality of any combinational DMR-NCL circuit, we checked the following generic
proof obligation.

Proof Obligation 1 (PO1):

P1:
∧q

n=1
(in1

A, . . . , inq
A) = (in1

B, . . . , inq
B)

P2: (g1
A, . . . , gk

A) = NCLBoolStep (in1
A, . . . , inq

A)

P3: (g1
B, . . . , gk

B) = NCLBoolStep (in1
B, . . . , inq

B)

P4:
∧l

n=1
Outn

A⟨R1⟩ = Outn
B⟨R1⟩ = FBool_Spec.

PO1: {P1 ∧ P2 ∧ P3⇒ P4}

* Note that the suffixes A and B are used to differentiate the signals originating from
copy A (original) and copy B (duplicate) of the circuit, respectively. □

Proof Obligation 1, PO1, states that in a converted equivalent Boolean DMR-NCL cir-
cuit with q original circuit inputs (in1

A, . . . , inq
A) and q duplicate circuit inputs (in1

B, . . . , inq
B),

k threshold gates for both the original and duplicate circuits (g1
A,. . ., gk

A) and (g1
B,. . ., gk

B),
respectively, and l original circuit outputs (Out1

A, . . . , Outl
A) and l duplicate circuit outputs

(Out1
B, . . . , Outl

B), if the inputs to the both the original copy (A) and duplicate copy (B) of

J. Low Power Electron. Appl. 2024, 14, 5 14 of 24

the circuits are the same (P1), then after each step of the circuit’s execution (P2 and P3), the
rail1 outputs of both the copies should match the corresponding Boolean specification (P4).

In case of the 3 × 3 DMR-NCL multiplier, the Z3 SMT solver validates the follow-
ing safety check property: FNCLBool(xi[2 : 0]_1, xis[2 : 0]_1, yi[2 : 0]_1, yis[2 : 0]_1) =
MULT (x[2 : 0], y[2 : 0]), where (xi2_1, xi1_1, xi0_1) and (xis2_1, xis1_1, xis0_1) are the x
rail1 inputs to the original circuit A and its duplicate copy circuit B, respectively;
(yi2_1, yi1_1, yi0_1) and (yis2_1, yis1_1, yis0_1) are the y rail1 inputs to the original circuit
A and its duplicate copy circuit B, respectively; and MULT is the 3 × 3 unsigned Boolean
multiplication function as the specification. Although we utilize the Z3 SMT solver for
equivalence checking, other combinational equivalence checkers could also be used to ver-
ify the proposed safety check property. In this phase of verification, only the rail1 outputs
are required to be verified, as these correspond to the Boolean specification circuit outputs,
whereas the rail0 outputs are verified via the invariant check, as described next.

3.2.2. Invariant Check for Verifying the rail0 Network

The functional equivalence check only utilizes the abstracted netlist, NCLBool, and
the rail1 outputs. However, it is necessary to verify the safety of rail0 outputs as well. An
additional proof obligation of SMT invariant is required for the original DMR-NCL circuit
(NCLInitial) to guarantee the correctness of rail0 outputs. The proposed invariant check
property ensures that for every possible state reachable by the original non-converted
DMR-NCL circuit (NCLInitial), where all outputs are DATA, the rail0 of each output must be
the complement of its corresponding rail1 output, in accordance with the dual-rail protocol.

To generate all possible combinations of valid DATA at the primary outputs of a
DMR-NCL circuit, we take the NCLInitial netlist as an input to our tool and then initialize
all original and duplicate registers to NULL, all C/L gates to output 0, and all register
Ki inputs to rfd (i.e., request for data or logic 1). After this initialization step, the circuit
in NCLInitial is stepped with all primary inputs set to DATA. Note that the input to the
duplicate pipeline remains identical to that of the original pipeline and the symbolic step
encompasses all possible DATA input combinations. As the input DATA flows through
all stages of the circuit, it generates all possible combinations of valid DATA at the pri-
mary outputs. To ensure that the rail0 outputs correspond to the inverses of the rail1

outputs, the invariant is checked for each primary dual-rail output. The predicates for
Proof Obligation 2 (PO2) are shown below for a DMR-NCL circuit with j registers in both
the original (A) and duplicate (B) copies, (Reg1

A, . . . , Regj
A; Reg1

B, . . . , Regj
B), k gates in both

copies (g1
A, . . . , gk

A; g1
B, . . . , gk

B), and l dual-rail outputs in both copies (Out1
A
〈
R0, R1〉,. . .,

Outl
A
〈
R0, R1〉 ; Out1

B
〈
R0, R1〉, . . . , Outl

B
〈
R0, R1〉), where R0 and R1 are the rail0 and rail1

variables, respectively.

Proof Obligation 2 (PO2):

P1:
∧j

n=1
(Regn

A = Regn
B = 2′b00)

P2:
∧k

n=1
[(gn

A = 0) ∧ (gn
B = 0)]

P3:
∧j

n=1
[(Ki

n
A = 1) ∧ (Ki

n
B = 1)]

P4:
∧q

n=1
[(inn

A = 2′b01) ∨ (inn
A = 2′b10)] ∧ (inn

A = inn
B)

P5: (g1
A1, . . . , gk

A1) = NCLStep (in1
A, . . . , inq

A)

P6: (g1
B1, . . . , gk

B1) = NCLStep (in1
B, . . . , inq

B)

P7:
∧l

n=1
[(Outn

A1⟨R0⟩ = ¬ Outn
A1⟨R1⟩) ∧ (Outn

B1⟨R
0⟩ = ¬ Outn

B1⟨R1⟩)]

J. Low Power Electron. Appl. 2024, 14, 5 15 of 24

PO2: {P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 ∧ P6⇒ P7}

□

Predicate P1 requires all dual-rail registers to be reset-to-NULL. P2 and P3 specify
that all threshold gates are reset-to-logic-0 and Ki register inputs are initialized to rfd,
respectively, indicating all the stages are ready to accept a new DATA wavefront. P4
indicates that the dual-rail primary inputs to both the original and duplicate copies of the
circuit are the same DATA. P5 and P6 represent the symbolic step of the circuit (NCLStep),
which enables all stages to evaluate, update the threshold gates, and generate a valid output
based on the input DATA. Predicate P7 states that the rails of each dual-rail output are
complements of each other. Proof Obligation 2 (PO2) ensures that if DATA are allowed
to flow from the primary inputs to the primary outputs, then for all possible valid DATA
inputs, each output’s rail0, R0, is always the inverse of its respective rail1 output, R1.

3.3. Proposed Liveness Check and Handshaking Connection Verification

Improper connection(s) between threshold gates, registers, and completion compo-
nents can compromise the liveness of the circuit and cause deadlock. As substantially more
signals are required to establish the dependency between the original and duplicate circuits
in DMR-NCL, there is a greater probability of erroneous connections between components
in DMR-NCL than in conventional NCL circuits. Consider a DMR-NCL circuit with dual
copies, A and B, where A and B are the original and duplicate copies, respectively. Each
copy comprises #N one-bit registers, #M DMR-TH22 gates that block unmatched DATA
between A and B, #G C/L threshold gates, a completion detection unit per stage, #X dual-
rail primary data inputs, #Y dual-rail primary data outputs, one external Ki input signal
and Ko output signal, and one reset signal. Considering all possibilities, the output of a C/L
gatei (non-DMR TH22 gates) in copy A, can have the following interconnection possibilities:
it could be connected to (i) input(s) of other gate(s), gatej, in the same stage in copy A,
where i ̸= j; (ii) input(s) of other gates in the same stage in copy A including gatei (feedback);
(iii) input(s) of other gate(s) in a different stage in copy A; (iv) data input(s) of register(s) in
the next stage in copy A; (v) data input(s) of register(s) in the same stage in copy A (feedback);
(vi) data input(s) of any register in any other different stage(s) in copy A, excluding the
same and immediate next stage; (vii) Ki input of any register in copy A; (viii) input(s) of
any DMR-TH22 gate(s) in copy A; (ix) input(s) of the completion detection unit in the same
stage in copy A; (x) input(s) of completion detection unit(s) in a different stage in copy A;
(xi) external reset inputs of either copy; (xii) external Ki inputs of either copy; (xiii) external
data inputs of either copy; (xiv) external data output rail(s) of either copy; (xv) external
Ko outputs of either copy; (xvi) completion unit output(s) of either copy; (xvii) output(s)
of any gate(s) (including DMR-TH22) or register(s) in either copy; and/or (xviii) inputs
of any gate (including DMR-TH22), register, or completion component input(s) in copy
B. Based on the DMR-NCL architecture, scenarios (i) and (iv) are valid and presumably
correct, whereas the remaining 16 scenarios are incorrect. Each DMR-TH22 gate’s output
in copy A also has the same 18 possible interconnection scenarios, out of which scenarios
(i), (iv), (ix), and (xiv) are the only valid possibilities. Register and completion component
outputs have a smaller set of legitimate connection possibilities than C/L and DMR-TH22
gates. Each rail of the dual-rail output of a register in each stage in copy A can only be
connected to one DMR-TH22 gate in copy A and one in copy B in the same stage. The
output of each completion detection unit in copy A can only be connected to one of the Ki
inputs of the preceding stage registers in both copies, i.e., the stagej completion component
in copy A must acknowledge the stagej−1 registers in both copies A and B.

As a part of the liveness check, we exhaustively checked all these connections between
each component within the circuit to ensure the absence of deadlock. Like the safety and
invariant check, the initial DMR-NCL netlist, NCLInitial (as depicted in Figure 5a), is taken
as an input for our liveness check procedure. The netlist was then transformed into a graph

J. Low Power Electron. Appl. 2024, 14, 5 16 of 24

structure for efficient examination of all connections. Primary inputs and C/L gates have
no liveness conditions, as their correctness is verified by the safety check. However, the
safety check cannot verify any of the register and completion unit connections as those are
eliminated as a part of the circuit abstraction for verifying the functionality. By traversing
the graph structure, the tool creates fanout and fan-in lists for all the registers, DMR-TH22
gates, and completion detection units to verify every connection as per the DMR-NCL
architecture and handshaking protocol. For instance, for each dual-rail single-bit register,
we constructed two fan-in lists, one for the dual-rail DATA input and one for the Ki inputs,
and one fan-out list for the dual-rail DATA output. Then, we checked the following
conditions: (i) if a register belongs to the original copy (or duplicate copy), its DATA input
fan-in list should only contain components from the original copy (or duplicate copy),
indicating that the signals are generated by the components in the same copy; (ii) each
register’s DATA inputs can originate from the primary inputs (if the register is an input
register, belonging to level 1) or else the preceding stage’s C/L gates or DMR-TH22 gates;
(iii) the rail0 and rail1 input signals must be associated with the same dual-rail variable;
(iv) the Ki inputs of each register should originate from the original and duplicate circuits’
completion component in the succeeding stage or from the original and duplicate circuits’
external Ki inputs (if the register belongs to the final stage); (v) the DATA fan-out list
of each dual-rail register should only contain four DMR-TH22 gates in the same stage,
comprising original and duplicate DMR-TH22 gates taking the register’s rail1 output as
an input as well as the original and duplicate DMR-TH22 gates taking the rail0 output as
an input; and (vi) the rail0 and rail1 output signals should belong to the same dual-rail
variable. When verifying DMR-TH22 gates based on the components’ fan-in and fan-out
lists, we checked the following conditions: (i) both inputs of each DMR-TH22 gate in a
given stage should be from the outputs of registers in the same stage; (ii) the inputs should
be a pair comprised of one signal coming from a register in the original circuit and the other
from its corresponding register in the duplicate copy; if they are not, the gate is flagged
as a probable C/L TH22 gate instead of a DMR-TH22 gate, and the register condition
(v) described above will fail; and (iii) the output of a DMR-TH22 gate in the original or
duplicate copy can be a primary output of the same copy (if the DMR-TH22 gate is in the
final stage), a DATA input of a register in the subsequent stage of the same copy, or an
input to C/L gates in the same stage of the same copy. For a completion component in each
stage, we check the following conditions: (i) the fan-in list must only include DMR-TH22
gates that are in the same stage of the same copy; and (ii) the fan-out list of a completion
component in the original/duplicate copy must comprise either a single Ko primary output
in the original/duplicate copy if it is a first stage completion component, or the set of all
original and duplicate registers in the preceding stage if it belongs to any other stage.

4. Proposed Vulnerability Analysis Framework: SEL/SEU Will Not Cause Incorrect
Outputs and/or Deadlock

This section elaborates on our proposed formal framework for analyzing the SEL/SEU
vulnerability of the synthesized DMR-NCL circuit, ensuring that the synthesized circuits
are capable of entirely recovering from SEL/SEU without causing incorrect outputs and/or
deadlock. As per the DMR-NCL protocol, in each copy of the circuit (original or duplicate),
the DMR-NCL TH22 gates, C/L unit, and completion detection unit of a given stage and
the NCL registers of the subsequent stage are considered as parts of one group that are
powered by the same supply. This implies that a DMR-NCL pipeline contains multiple such
groups, where each group has its distinct power source. Figure 6 shows one such group
within the purple box. When a group encounters a current surge due to SEL, it becomes
disconnected from its source to protect the circuitry. Once the power is restored, the gates
within the affected group components may output unknown values (logic 1, logic 0, or
even a transient voltage between logic 1 and 0), which, if allowed to propagate, can corrupt
the subsequent pipeline stages. Our vulnerability analysis ensures that the synthesized
DMR-NCL circuit will not cause and allow the propagation of incorrect outputs during

J. Low Power Electron. Appl. 2024, 14, 5 17 of 24

an SEL/SEU. For a comprehensive analysis, we evaluate the vulnerability of a DMR-NCL
pipeline when it contains the maximum amount of distinct DATA tokens. As per [24],
in NCL, the pipeline contains the maximum amount of DATA tokens when two distinct
DATA stages are interleaved by only one NULL stage, maintaining an alternating sequence
of DATA and NULL wavefronts. Therefore, in the worst-case scenario for a pipeline
containing the maximum number of DATA tokens, SEL can affect a specific group under
two scenarios: (1) when the affected group registers stored NULL, and the preceding stage
latched DATA; and (2) when the affected group registers stored DATA, and the preceding
stage latched NULL.

J. Low Power Electron. Appl. 2024, 14, 5 17 of 24

contains multiple such groups, where each group has its distinct power source. Figure 6

shows one such group within the purple box. When a group encounters a current surge

due to SEL, it becomes disconnected from its source to protect the circuitry. Once the

power is restored, the gates within the affected group components may output unknown

values (logic 1, logic 0, or even a transient voltage between logic 1 and 0), which, if allowed

to propagate, can corrupt the subsequent pipeline stages. Our vulnerability analysis en-

sures that the synthesized DMR-NCL circuit will not cause and allow the propagation of

incorrect outputs during an SEL/SEU. For a comprehensive analysis, we evaluate the vul-

nerability of a DMR-NCL pipeline when it contains the maximum amount of distinct

DATA tokens. As per [24], in NCL, the pipeline contains the maximum amount of DATA

tokens when two distinct DATA stages are interleaved by only one NULL stage, maintain-

ing an alternating sequence of DATA and NULL wavefronts. Therefore, in the worst-case

scenario for a pipeline containing the maximum number of DATA tokens, SEL can affect

a specific group under two scenarios: (1) when the affected group registers stored NULL,

and the preceding stage latched DATA; and (2) when the affected group registers stored

DATA, and the preceding stage latched NULL.

REGA
1

.

.

.

REGA
N

DMR

TH22

GatesA

C/L UnitA

DMR

TH22

GatesA

outA
1

.

.

.

outA
N

REGB
1

.

.

.

REGB
N

DMR

TH22

GatesB

C/L UnitB

DMR

TH22

GatesB

outB
1

.

.

.

outB
N

N

N

Stagej Stagej

Comp1s

Comp1
KiA

KiB

Group components under test in copy A after

power restoration

DATA
NULL

NULL

X X

X

NULL

X

DATA DATA

KoA =

KoB = rfn

Figure 6. Extracted submodule to test the group components enclosed within the purple box.

We formally model the recovery procedure of each individual group with separate

power source within the DMR-NCL circuit to exhaustively verify that a temporary power

outage in one group will not result in incorrect circuit outputs in either of the two scenar-

ios. For that, we have developed an algorithm that parses the original NCLInitial netlist,

partitions the circuit, and creates individual submodules for analyzing each of the unique

groups. Each submodule contains the following components: the group under test (i.e.,

DMR-TH22 gates and the subsequent C/L, registration, and completion detection units),

the corresponding group components from the duplicate copy, and the DMR-TH22 gates

of the succeeding group from both copies. Figure 6 depicts one such submodule, which

will be used to formally analyze the SEL recovery procedure of the test group (enclosed

in the purple box). Consider scenario 1 from above, in which SEL affects the test group in

copy A when Stagej−1 contained DATA and Stagej latched a NULL. The gates within the

affected components will be unknown (X) after power restoration. We have formalized a

proof obligation, PO3a, which ensures that, under scenario 1, the correct DATA values

will be restored by the circuit before passing it on to the succeeding stages. Identical

Figure 6. Extracted submodule to test the group components enclosed within the purple box.

We formally model the recovery procedure of each individual group with separate
power source within the DMR-NCL circuit to exhaustively verify that a temporary power
outage in one group will not result in incorrect circuit outputs in either of the two scenar-
ios. For that, we have developed an algorithm that parses the original NCLInitial netlist,
partitions the circuit, and creates individual submodules for analyzing each of the unique
groups. Each submodule contains the following components: the group under test (i.e.,
DMR-TH22 gates and the subsequent C/L, registration, and completion detection units),
the corresponding group components from the duplicate copy, and the DMR-TH22 gates
of the succeeding group from both copies. Figure 6 depicts one such submodule, which
will be used to formally analyze the SEL recovery procedure of the test group (enclosed
in the purple box). Consider scenario 1 from above, in which SEL affects the test group in
copy A when Stagej−1 contained DATA and Stagej latched a NULL. The gates within the
affected components will be unknown (X) after power restoration. We have formalized a
proof obligation, PO3a, which ensures that, under scenario 1, the correct DATA values will
be restored by the circuit before passing it on to the succeeding stages. Identical symbolic
DATA inputs are supplied to both the original and duplicate copies (predicate P1 of PO3),
indicating that the preceding stage registers (not shown in Figure 6) latched DATA prior to
SEL occurrence. All the subsequent group’s unaffected DMR-TH22 gates in both copies are
initialized to 0, i.e., (out1

A,. . ., outN
A) and (out1

B,. . ., outN
B) are initialized to NULL, indicating

that the succeeding stage latched NULL prior to SEL occurrence (predicate P2), resembling
scenario 1. The gates of all the test group components in copy A, i.e., all the C/L unit gates
(g1

A,. . ., gk
A), register gates (g1

regA,. . ., gp
regA), and completion detection unit gates (g1

compA,. . .,
gr

compA) are initialized with unknown values using symbolic assignments, resembling the

J. Low Power Electron. Appl. 2024, 14, 5 18 of 24

restored phase of the group after a power outage (predicates P3–P5). The duplicate group’s
register is initialized with the correct NULL value (P6), since the alternate copy will re-
main intact during SEL. To enable the transmission of DATA to the subsequent stage, the
request signals of the affected group’s registers, KiA, and their corresponding duplicate
registers, KiB, are made rfd (P7). Note that KiA and KiB are the correct request signals as
they are generated by the uncorrupted group in the subsequent stage. Both the original
and duplicate circuits are then stepped (P8 and P9), allowing the group components and
the succeeding DMR-TH22 gates to update based on the DATA inputs. The registers in the
intact copy (copy B) will latch valid DATA (i.e., D1D0 = {10, 01}) based on the C/L unit’s
computation, whereas the registers in copy A, presumably affected by SEL, may output
corrupted DATA (DATAX, i.e., D1D0 = {1X, X1}), where one of the rails may come to be
asserted, while the other rail remains ‘X’. Note that the NCL C/L units are monotonic, i.e., if
the inputs to the C/L unit are DATA (DATAX)/NULL, then the outputs will eventually be
DATA (DATAX)/NULL. The proof obligation PO3a verifies that the corrupted DATA will
eventually be filtered by the succeeding groups’ DMR-TH22 gates, resulting in identical
outputs from both partitioned copies in the succeeding stage (P10). This ensures that only
the correctly recovered DATA will be transmitted to the subsequent stage even if multiple
gates within the test group become corrupted during a SEL occurrence.

Proof Obligation 3 (PO3):

P1:
∧q

n=1
[(inn

A = 2′b01) ∨ (inn
A = 2′b10)] ∧ (inn

A = inn
B)

P2:
∧N

n=1
(outn

A = outn
B = 2′b00)

P3:
∧k

n=1
(gn

A = X)

P4:
∧p

n=1
(gn

regA = X)

P5:
∧r

n=1
(gn

compA = X)

P6:
∧j

n=1
(Regoutn

B = 2′b00)

P7: (KiA = KiB = 1)

P8: (g1
A1, . . . , gk

A1; g1
regA1, . . . , gp

regA1; g1
compA1, . . . , gr

compA1) = NCLStep (in1
A, . . . , inq

A)

P9: (g1
B1, . . . , gk

B1; g1
regB1, . . . , gp

regB1; g1
compB1, . . . , gr

compB1) = NCLStep (in1
B, . . . , inq

B)

P10:
∧N

n=1
[(outn

A1 = 2′b01) ∨ (outn
A1 = 2′b10)] ∧ (outn

A1 = outn
B1)

P11: (KoA1 = KoB1 = 0)

PO3a: {P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 ∧ P6 ∧ P7 ∧ P8 ∧ P9⇒ P10}

PO3b: {P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 ∧ P6 ∧ P7 ∧ P8 ∧ P9⇒ P11}

□

To prove that SEL will not cause deadlock in a DMR-NCL circuit, we need to ensure
that the four-phased NCL handshaking protocol will always be preserved. The NCL
handshaking protocol dictates that, in an NCL pipeline, a register should permit a new
DATA/NULL wavefront to pass only after the previous NULL/DATA wavefront has been
acknowledged by the succeeding stage. In other words, the succeeding stage’s completion
detection unit should request-for-DATA/request-for-NULL (i.e., output rfd/rfn) only after
detecting the complete NULL/DATA at the stage, which allows the previous stage registers
to pass the new DATA/NULL wavefront. Unlike NCL registers, DMR-NCL registers

J. Low Power Electron. Appl. 2024, 14, 5 19 of 24

receive two Ki inputs, one from each of the original and duplicate copies’ completion
detection units in the subsequent stage, and both the Ki signals need to be rfn/rfd for
the register to allow NULL/DATA to pass through. This guarantees that a corrupted
completion detection unit, such as the Comp1 unit in Figure 6, cannot alone cause a register
in the previous stage to pass NULL/DATA by prematurely requesting for NULL/DATA if
the other copy, Comp1s, is intact (i.e., not corrupted). As they belong to separate groups, it is
highly improbable that both completion detection units in a stage will be compromised at
the same time during a SEL. This does not require a separate verification procedure because
we assume that the gate-level structure of registers is correct based on component-level
testing. Additionally, the liveness check verifies that the registers are receiving the correct
Ki inputs, as described in Section 3.1. Hence, it is safe to assume that a register will not
allow NULL/DATA to pass if its Ki request signals do not match. However, there is a corner
case. Consider the submodule circuit in Figure 6 under scenario 1, where the SEL-affected
completion component, Comp1, incorrectly outputs an rfd after power restoration when
the corresponding duplicate copy, Comp1s, outputs the correct rfn. In such a scenario, the
pipeline will halt and fail to advance if the corrupted completion detection output is not
rectified. PO3b checks that, under scenario 1, the SEL-affected completion component will
eventually output the correct request signal (rfn in this case; P11) after recomputing, once
the DATA flows through the group following power restoration, allowing the circuit to
make forward progression.

Similar to PO3, PO4 verifies that a SEL-affected group will not result in incorrect
outputs and/or a deadlock when the affected group register stored DATA and the previous
stage latched NULL before becoming disconnected from the source (scenario 2). Note that
the proof obligations PO3 and PO4, which prove that SEL will not result in inaccurate out-
puts and/or deadlock in either of the two potential scenarios, also cover SEU occurrences,
as SEU only assumes the corruption of a single gate, whereas SEL assumes the corruption
of multiple gates within a group.

Proof Obligation 4 (PO4):

P1:
∧q

n=1
(inn

A = inn
B = 2′b00)

P2:
∧j

n=1
[(Regoutn

B = 2′b01) ∨ (Regoutn
B = 2′b10)]

P3:
∧N

n=1
(outn

A = outn
B = Regoutn

B)

P4:
∧k

n=1
(gn

A = X)

P5:
∧p

n=1
(gn

regA = X)

P6:
∧r

n=1
(gn

compA = X)

P7: (KiA = KiB = 0)
P8: (g1

A1, . . . , gk
A1; g1

regA1, . . . , gp
regA1; g1

compA1, . . . , gr
compA1) = NCLStep (in1

A, . . . , inq
A)

P9: (g1
B1, . . . , gk

B1; g1
regB1, . . . , gp

regB1; g1
compB1, . . . , gr

compB1) = NCLStep (in1
B, . . . , inq

B)

P10:
∧N

n=1
[(outn

A1 = outn
B1 = 2′b00)]

P11: (KoA1 = KoB1 = 1)

PO4a: {P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 ∧ P6 ∧ P7 ∧ P8 ∧ P9⇒ P10}

PO4b: {P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 ∧ P6 ∧ P7 ∧ P8 ∧ P9⇒ P11}

J. Low Power Electron. Appl. 2024, 14, 5 20 of 24

□

5. Results and Discussions
5.1. Verification Results

As shown in Table 1, the proposed methodology has been demonstrated on multiple
unsigned DMR-NCL multipliers of varying widths, extending from 3− bit× 3− bit to
10− bit× 10− bit multipliers. Since multiplier complexity in terms of number of gates
and gate levels grows exponentially with bit size, multipliers are excellent benchmarks for
demonstrating the scalability of the verification process. For each circuit, the Z3 runtime
for the safety and invariant check and the tool’s runtime for the additional tests performed
to ensure the liveness and handshaking check are reported in Table 1. Note that the netlist
conversion time and the time required to traverse the graph structure to construct the
components’ fan-in and fan-out lists have not been reported because they are negligible
as compared to the Z3 runtime. All the bugs were injected into the largest DMR-NCL
test circuit, i.e., the 10− bit × 10− bit multiplier. Bn − 10 Mult circuits correspond to
buggy circuits, where ‘n’ corresponds to one of the 18 error case scenarios, as illustrated in
Section 3.1. For instance, B3− 10 Mult corresponds to a bug that results in swapped rail
connection during synthesis (error-case 3). In the case of buggy circuits, the (B) next to the
runtime indicates whether the bug was discovered during the safety check, invariant check,
and/or liveness and handshaking connection check steps of the verification procedure. The
verification was carried out on a computer with an Intel Core i7-8550U CPU, 12 GB of RAM,
and an operating frequency of 1.80 GHz. Note that the proposed verification methodology
does not require the incorporation of additional circuitry to the circuit under verification.
The proposed formal framework can be integrated with existing NCL synthesis tools or
can be used by itself as a standalone verification tool. In addition, it can be customized
for the verification of other redundancy-based QDI paradigms, such as duplication-based
resilient PCHB and SCL circuits.

Table 1. Verification time for various combinational DMR-NCL multiplier circuits.

Circuits
Verification Time of Different Procedures Total Verification

Safety Check (s) Liveness and
Additional Checks (s) Time (s)

Test Circuits without Bugs

3 × 3 Mult 0.06 0.0155 0.0755

4 × 4 Mult 0.44 0.0157 0.4557

6 × 6 Mult 1.03 0.0158 1.0458

8 × 8 Mult 14.48 0.0159 14.4959

9 × 9 Mult 128.06 0.0312 128.0912

10 × 10 Mult 1187.59 0.0336 1187.6236

J. Low Power Electron. Appl. 2024, 14, 5 21 of 24

Table 1. Cont.

Circuits
Verification Time of Different Procedures Total Verification

Safety Check (s) Liveness and
Additional Checks (s) Time (s)

Test Circuits with Injected Bugs

B1 − 10 Mult 296.65 (B) 0.0336 296.774

B2 − 10 Mult 1.19 (B) 0.0336 1.224

B3 − 10 Mult 296.88 (B) 0.0336 296.914

B4 − 10 Mult 1.48 (B) 0.0336 1.514

B5 − 10 Mult Is detected during
Netlist Processing 0.1220 (B) ---

B6 − 10 Mult Is Detected during Netlist Processing

B7 − 10 Mult 1.55 (B) 0.0312 (B) 1.581

B8 − 10 Mult 1.61 (B) 0.029 (B) 1.639

B9 − 10 Mult 1187.59 0.03 (B) 1187.620

B10 − 10 Mult 1187.59 0.0279 (B) 1187.618

B11 − 10 Mult Is Detected during Netlist Processing

B12 − 10 Mult Is Detected during Netlist Processing

B13 − 10 Mult 1187.59 0.0359 (B) 1187.626

B14 − 10 Mult 1187.59 0.031 (B) 1187.621

B15 − 10 Mult 1187.59 0.0331 (B) 1187.623

B16 − 10 Mult 1.35 (B) 0.026 (B) 1.376

B18(i) − 10 Mult 2.39 (B) 0.034 (B) 2.424

B18(ii) − 10 Mult 1187.59 0.0342 (B) 1187.624

5.2. Detection of All Possible Synthesis Faults

Section 3.1 enumerates 18 different types of errors that can happen during the auto-
mated synthesis of DMR-NCL circuits. In this section, we demonstrate how the proposed
verification scheme detects all these synthesis faults. Error Cases 1–4 correspond to datapath
faults generated by incorrect logic implementations, swapped rails, and/or rail duplication,
which are detected during the safety check (i.e., during the functional equivalence check
and/or invariant check). Error Cases 5 and 6 are detected during the netlist processing
stages, i.e., during the NCLInitial-to-NCLBool-to-SMT language conversion procedure. Live-
ness and additional checks also detect Error Case 5 as well. Error Cases 7–8, and 16–18 can
affect the functionality and/or violate the DMR-NCL protocol, which are detected by both
the safety and liveness checks. Error Cases 9–10 and 13–15 are the errors in the handshaking
network, which are detected by the liveness and additional checks only. Error Cases 11
and 12 correspond to faults within the internal gate-level circuitry of the completion units,
which are detected during the RTL-level netlist processing to generate the NCLInitial format
for our tool. During that process, the algorithm combines all the completion unit gates
into a single completion component (as shown in Figure 5a). When processing the original
DMR-NCL netlist to obtain the abstracted completion component, we ensure that all data
inputs to a completion unit go to TH12n gates, and their outputs form a tree of NCL THnn
gates to produce a single-bit Ko output. Any discrepancy in the completion unit’s circuitry
is reported during this processing stage.

Note that depending on the point of occurrence, certain faults may be detected during
the safety check, the liveness and handshaking checks, or both. For instance, both B18(i)
and B18(ii) correspond to error case 18: Illegal interconnection between two copies of the circuit.
B18(i) is an injected bug that occurs when one of the datapath signals from copy A becomes

J. Low Power Electron. Appl. 2024, 14, 5 22 of 24

incorrectly connected to a gate that is in the datapath of the other copy, copy B. On the other
hand, B18(ii) represents an injected bug in the control path, where one of the acknowledg-
ment signals from copy A incorrectly replaces a copy B acknowledgment signal in the fan-in
of copy B register. While B18(ii) is detected only by the liveness and additional checks, B18(i)
is detected by both checks.

5.3. Vulnerability Analysis Results

The vulnerability analysis result is shown in Table 2, based on the Proof Obligation
3 and Proof Obligation 4. The proof obligations were modeled in Satisfiability Modulo
Theorem (SMT) language and were tested using the Z3 SMT solver. The vulnerability
analysis was carried out on a computer with the same specifications noted above. For each
circuit, the Z3 runtime for the vulnerability check is listed in Table 2.

Table 2. Vulnerability analysis run-time for various combinational DMR-NCL multiplier circuits.

Circuits Vulnerability Analysis (s)

3 × 3 Mult 0.04
4 × 4 Mult 0.12
6 × 6 Mult 1.11
8 × 8 Mult 13.54
9 × 9 Mult 85.52

10 × 10 Mult 257.41

6. Conclusions

The QDI asynchronous design paradigm has emerged as a promising alternative to
conventional clock-based digital designs due to its inherent advantages, which include
ultra-low power performance, less noise, reduced EMI, and the ability to withstand PVT
variations. In addition, the unique architecture provides a certain level of resistance to
transient or soft errors that are primarily induced by radiation, but is not completely
resilient. Several techniques exist for detecting and mitigating soft errors in QDI circuits,
with redundancy-based schemes proving to be the most effective in ensuring complete
resilience across all main QDI implementation paradigms, including NCL, PCHB/WCHB,
and SCL. This research focuses on one such redundancy-based QDI NCL resiliency scheme
known as the dual modular redundancy-based NCL (DMR-NCL) architecture.

Herein, this paper proposes the first ever verification method for formally modeling
and validating the correctness of combinational DMR-NCL circuits synthesized from their
synchronous counterparts. The methodology can validate both the functional correctness
and deadlock-free operation of a circuit. In addition, an exhaustive list of all potential faults
that may occur during DMR-NCL synthesis has been presented, and it has been shown
that the proposed method can detect each of them. Multiple DMR-NCL combinational
benchmark circuits of variable size and complexity were utilized to demonstrate the efficacy
of the proposed method. Our approach is fast, scalable, and directly applicable to verify any
combinational DMR-NCL circuit synthesized and/or optimized using existing schemes.
Note that additional checks would be necessary to assure the input completeness and
observability of the synthesized NCL circuits, which already exist in the literature [13,36]
and are therefore not discussed in this paper. A formal framework to ensure the capability
of synthesized DMR-NCL circuits to correctly recover from SEL/SEU without causing
incorrect outputs and/or deadlock has also been presented and demonstrated using the
same set of benchmark circuits. Future work will involve extending the proposed approach
to verify sequential DMR-NCL circuits and customizing the approach to verify similar
redundancy-based QDI SCL and PCHB circuits.

J. Low Power Electron. Appl. 2024, 14, 5 23 of 24

Author Contributions: Conceptualization, D.M. and A.A.S.; methodology, D.M. and A.A.S.; software
development, A.C.B.; validation, D.M. and A.A.S.; formal analysis, D.M., A.A.S. and M.D.; investiga-
tion, D.M. and M.D.; resources, D.M., A.A.S. and M.D.; writing—original draft preparation, D.M.;
writing—review and editing M.D., A.C.B. and A.A.S.; supervision, A.A.S.; project administration,
A.A.S.; funding acquisition, A.A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Woodrow W. Everett, Jr. SCEEE Development Fund in
cooperation with the Southeastern Association of Electrical Engineering Heads under Grant No.
SCEEE-21-04 and by the National Science Foundation (NSF) under Grant No. CCF-2153373.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Di, J.; Smith, S.C. (Eds.) Asynchronous Circuit Applications; IET: Stevenage, UK, December 2019. Available online: https:

//digital-library.theiet.org/content/books/cs/pbcs061e (accessed on 1 November 2023).
2. Dodd, P.E.; Massengill, L.W. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl.

Sci. 2003, 50, 583–602. [CrossRef]
3. Shoga, M.; Binder, D. Theory of single event latchup in complementary metal oxide semiconductor circuits. IEEE Trans. Nucl. Sci.

1986, NS-33, 1714–1717. [CrossRef]
4. Sakib, A.A. Soft error tolerant quasi-delay insensitive asynchronous circuits: Advancements and challenges. In Proceedings of

the 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI), Campinas, Brazil, 23–27
August 2021; pp. 1–6. [CrossRef]

5. Fant, K.M.; Brandt, S.A. Null convention logic: A complete and consistent logic for asynchronous digital circuit synthesis. In
Proceedings of the International Conference on Application Specific Systems, Architectures and Processors: ASAP’96, Chicago,
IL, USA, 19–21 August 1996; pp. 261–273.

6. Martin, A.J.; Nystrom, M. Asynchronous Techniques for System-on-Chip Design. Proc. IEEE 2006, 94, 1089–1120. [CrossRef]
7. Zhou, L.; Parameswaran, R.; Parsan, F.; Smith, S.; Di, J. Multi-Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power

Asynchronous Circuit Design Methodology. J. Low Power Electron. Appl. 2015, 5, 81–100. [CrossRef]
8. Ligthart, M.; Fant, K.; Smith, R.; Taubin, A.; Kondratyev, A. Asynchronous design using commercial HDL synthesis tools. In

Proceedings of the Sixth International Symposium on Advanced Research in Asynchronous Circuits and System, Eilat, Israel, 2–6
April 2000; pp. 114–125. [CrossRef]

9. Kondratyev, A.; Lwin, K. Design of asynchronous circuits using synchronous CAD tools. IEEE Des. Test Comput. 2002, 19, 107–117.
[CrossRef]

10. Zhou, Y.; Sokolov, D.; Yakovlev, A. Cost-aware synthesis of asynchronous circuits based on partial acknowledgement. In
Proceedings of the IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, USA, 5–9 November 2006;
pp. 158–163.

11. Reese, R.B.; Smith, S.C.; Thornton, M.A. Uncle—An RTL approach to asynchronous design. In Proceedings of the IEEE 18th
International Symposium on Asynchronous Circuits and Systems, Kgs, Lyngby, Denmark, 7–9 May 2012; pp. 65–72. [CrossRef]

12. Khodosevych, D.; Sakib, A.A. Evolution of NULL convention logic based asynchronous paradigm: An overview and outlook.
IEEE Access 2022, 10, 78650–78666. [CrossRef]

13. Sakib, A.A.; Le, S.; Smith, S.C.; Srinivasan, S.K. Formal verification of NCL circuits. In Asynchronous Circuit Applications; IET:
Stevenage, UK, 2018; pp. 309–338. Available online: https://digital-library.theiet.org/content/books/10.1049/pbcs061e_ch15
(accessed on 1 November 2023).

14. Wijayasekara, V.; Srinivasan, S.K.; Smith, S.C. Equivalence verification for NULL convention logic (NCL) circuits. In Proceedings of
the 32nd IEEE International Conference on Computer Design (ICCD), Seoul, Republic of Korea, 19–22 October 2014; pp. 195–201.

15. Wijayasekara, V.M.; Rollie, A.T.; Hodges, R.G.; Srinivasan, S.K.; Smith, S.C. Abstraction techniques to improve scalability of
equivalence verification for NCL circuits. Electron. Lett. 2016, 52, 1594–1596. [CrossRef]

16. Smith, S.C.; Di, J. Designing Asynchronous Circuits Using NULL Convention Logic (NCL); Morgan & Claypool: San Rafael, CA, USA, 2009.
17. Seitz, C.L. System Timing. In Introduction to VLSI Systems; Addison-Wesley: Reading, MA, USA, 1980; pp. 218–262.
18. Lyons, R.E.; Vanderkulk, W. The use of triple-modular redundancy to improve computer reliability. IBM J. Res. Dev. 1962, 6,

200–209. [CrossRef]
19. Monnet, Y.; Renaudin, M.; Leveugle, R. Asynchronous circuits sensitivity to fault injection. In Proceedings of the 10th IEEE

International Online Testing Symposium, Funchal, Portugal, 14 July 2004; pp. 121–126.
20. Kuang, W.; Zhao, P.; Yuan, J.S.; DeMara, R.F. Design of asynchronous circuits for high soft error tolerance in deep submicrometer

CMOS circuits. IEEE Trans. Very Large-Scale Integr. (VLSI) Syst. 2010, 18, 410–422. [CrossRef]

https://digital-library.theiet.org/content/books/cs/pbcs061e
https://digital-library.theiet.org/content/books/cs/pbcs061e
https://doi.org/10.1109/TNS.2003.813129
https://doi.org/10.1109/TNS.1986.4334671
https://doi.org/10.1109/SBCCI53441.2021.9530001
https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.3390/jlpea5020081
https://doi.org/10.1109/ASYNC.2000.836983
https://doi.org/10.1109/MDT.2002.1018139
https://doi.org/10.1109/ASYNC.2012.14
https://doi.org/10.1109/ACCESS.2022.3194028
https://digital-library.theiet.org/content/books/10.1049/pbcs061e_ch15
https://doi.org/10.1049/el.2016.1138
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1109/TVLSI.2008.2011554

J. Low Power Electron. Appl. 2024, 14, 5 24 of 24

21. Gardiner, K.T.; Yakovlev, A.; Bystrov, A. A C-element latch scheme with increased transient fault tolerance for asynchronous
circuits. In Proceedings of the 13th IEEE International On-Line Testing Symposium (IOLTS 2007), Heraklion, Greece, 8–11 July
2007; pp. 223–230. [CrossRef]

22. Lodhi, F.K.; Hasan, O.; Hasan, S.R.; Awwad, F. Modified null convention logic pipeline to detect soft errors in both null and data
phases. In Proceedings of the IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA,
5–8 August 2012; pp. 402–405. [CrossRef]

23. Lodhi, F.K.; Hasan, S.R.; Hasan, O.; Awwad, F. Analyzing vulnerability of asynchronous pipeline to soft errors: Leveraging
formal verification. J. Electron. Test. 2016, 32, 569–586. [CrossRef]

24. Zhou, L.; Smith, S.; Di, J. Radiation Hardened NULL Convention Logic Asynchronous Circuit Design. J. Low Power Electron. Appl.
2015, 5, 216–233. [CrossRef]

25. Brady, J.D. Radiation-Hardened Delay-Insensitive Asynchronous Circuits for Multi-Bit SEU Mitigation and Data Retaining SEL Protection;
University of Arkansas: Fayetteville, AR, USA, 2014.

26. Datta, M.; Bodoh, A.; Sakib, A.A. Error Resilient Sleep Convention Logic Asynchronous Circuit Design. In Proceedings of the
2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), Edinburgh, UK, 26–28 June 2023; pp. 1–5. [CrossRef]

27. Jang, W.; Martin, A.J. A soft-error-tolerant asynchronous microcontroller. In 13th NASA Symposium on VLSI Design; Citeseer:
University Park, PA, USA, 2007.

28. Jang, W.; Martin, A.J. SEU-tolerant QDI circuits [quasi delay-insensitive asynchronous circuits]. In Proceedings of the 11th
IEEE International Symposium on Asynchronous Circuits and Systems, New York, NY, USA, 14–16 March 2005; pp. 156–165.
[CrossRef]

29. Jang, W.; Martin, A.J. Soft-Error Tolerant Asynchronous FPGA. In Proceedings of the Dependable System and Network 2005, Rio
de Janeiro, Brazil, 22–25 June 2005.

30. Santos, I. Asynchronous Logic Design with Increased Fault Tolerance and Optimized for Subthreshold Operation; The University of Texas
at El Paso: El Paso, TX, USA, 2013.

31. Jeong, C.; Nowick, S.M. Optimization of robust asynchronous circuits by local input completeness relaxation. In Proceedings of
the Asia South Pacific Design Automation Conference, Yokohama, Japan, 23–26 January 2007; pp. 622–627.

32. Jeong, C.; Nowick, S.M. Block-level relaxation for timing-robust asynchronous circuits based on eager evaluation. In Proceedings
of the 14th IEEE International Symposium on Asynchronous Circuits and Systems, Newcastle Upon Tyne, UK, 7–10 April 2008;
pp. 95–104. [CrossRef]

33. Khodosevych, D.; Bodoh, A.C.; Sakib, A.A.; Smith, S.C. Combining relaxation with NCL_X for enhanced optimization of
asynchronous NULL convention logic circuits. IEEE Access 2023, 11, 104688–104699. [CrossRef]

34. Toms, W.B.; Edwards, D.A. A complete synthesis method for block level relaxation in self-timed datapaths. In Proceedings of the
2010 10th International Conference on Application of Concurrency to System Design, Braga, Portugal, 21–25 June 2010; pp. 24–34.
[CrossRef]

35. Sakib, A.A.; Smith, S.C.; Srinivasan, S.K. Formal modeling and verification of PCHB asynchronous circuits. IEEE Trans. Very
Large-Scale Integr. (VLSI) Syst. 2019, 27, 2911–2924. [CrossRef]

36. Le, S.; Srinivasan, S.K.; Smith, S.C. Automated verification of input completeness for NCL circuits. Electron. Lett. 2018, 54,
1158–1160. [CrossRef]

37. Muller, D.E. Asynchronous logics and application to information processing. In Switching Theory in Space Technology; Stanford
University Press: Redwood City, CA, USA, 1963; pp. 289–297.

38. Monniaux, D. A Survey of Satisfiability Modulo Theory. Available online: https://hal.archives-ouvertes.fr/hal-01332051
/document (accessed on 10 September 2023).

39. Barrett, C.; Fontaine, P.; Tinelli, C. The SMT-LIB Standard: Version 2.6. Tech. Rep.; Department of Computer Science, The University
of Iowa: Iowa City, IA, USA, 2017. Available online: www.SMT-LIB.org (accessed on 10 September 2023).

40. de Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and Analysis of Systems (Lecture
Notes in Computer Science); Ramakrishnan, C.R., Rehof, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 337–340.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IOLTS.2007.5
https://doi.org/10.1109/MWSCAS.2012.6292042
https://doi.org/10.1007/s10836-016-5619-8
https://doi.org/10.3390/jlpea5040216
https://doi.org/10.1109/NEWCAS57931.2023.10198041
https://doi.org/10.1109/ASYNC.2005.30
https://doi.org/10.1109/ASYNC.2008.25
https://doi.org/10.1109/ACCESS.2023.3318132
https://doi.org/10.1109/ACSD.2010.29
https://doi.org/10.1109/TVLSI.2019.2937087
https://doi.org/10.1049/el.2018.6068
https://hal.archives-ouvertes.fr/hal-01332051/document
https://hal.archives-ouvertes.fr/hal-01332051/document
www.SMT-LIB.org

	Introduction
	Background and Related Work
	NCL Framework: An Overview
	Error-Resilient QDI Architectures
	Dual Modular Redundancy (DMR)-Based NCL (DMR-NCL) Architecture

	Proposed Formal Framework for the Verification and Vulnerability Analysis of DMR-NCL Architecture
	Comprehensive Set of Possible DMR-NCL Synthesis Faults: A Case Study
	Proposed Safety Check
	Functional Equivalence Check
	Invariant Check for Verifying the rail0 Network

	Proposed Liveness Check and Handshaking Connection Verification

	Proposed Vulnerability Analysis Framework: SEL/SEU Will Not Cause Incorrect Outputs and/or Deadlock
	Results and Discussions
	Verification Results
	Detection of All Possible Synthesis Faults
	Vulnerability Analysis Results

	Conclusions
	References

