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Abstract: A low complexity digital VLSI architecture for the computation of an algebraic
integer (AI) based 8-point Arai DCT algorithm is proposed. AI encoding schemes for
exact representation of the Arai DCT transform based on a particularly sparse 2-D AI
representation is reviewed, leading to the proposed novel architecture based on a new final
reconstruction step (FRS) having lower complexity and higher accuracy compared to the
state-of-the-art. This FRS is based on an optimization derived from expansion factors that
leads to small integer constant-coefficient multiplications, which are realized with common
sub-expression elimination (CSE) and Booth encoding. The reference circuit [1] as well
as the proposed architectures for two expansion factors α† = 4.5958 and α′ = 167.2309

are implemented. The proposed circuits show 150% and 300% improvements in the
number of DCT coefficients having error ≤0.1% compared to [1]. The three designs were
realized using both 40 nm CMOS Xilinx Virtex-6 FPGAs and synthesized using 65 nm
CMOS general purpose standard cells from TSMC. Post synthesis timing analysis of 65 nm
CMOS realizations at 900 mV for all three designs of the 8-point DCT core for 8-bit inputs
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show potential real-time operation at 2.083 GHz clock frequency leading to a combined
throughput of 2.083 billion 8-point Arai DCTs per second. The expansion-factor designs
show a 43% reduction in area (A) and 29% reduction in dynamic power (PD) for FPGA
realizations. An 11% reduction in area is observed for the ASIC design for α† = 4.5958

for an 8% reduction in total power (PT ). Our second ASIC design having α′ = 167.2309

shows marginal improvements in area and power compared to our reference design but at
significantly better accuracy.

Keywords: video processing; algebraic integer quantization; DCT; compression

1. Introduction

The 8-point discrete cosine transform (DCT) is widely used in video and image compression and
is a core component in contemporary media standards like JPEG and MPEG. The main reason for the
widespread adaptation of the DCT are favourable properties such as decorrelation, energy compaction,
separability, symmetry, and orthogonality [2]. The energy compaction property of the DCT is very
close to the Karhunen–Loève transform, which is of much higher computational complexity due to
requirements for numerical optimization. However the computational complexity of the DCT operation
imparts a heavy burden in VLSI circuits aimed for real time applications. Many algorithms have been
proposed to reduce the hardware complexity of DCT computation circuits by exploiting properties of the
transform. An obstacle in performing accurate DCT computations is the implementation of the irrational
coefficients in the transform.

The error-free computation of the 8-point DCT using algebraic integer (AI) quantization has recently
received much attention in the literature as it leads to both low-complexity, low-power consumption,
and good noise performance. AIs are defined as roots of monic polynomials having integer coefficients.
AI based algorithms allow error free computation by eliminating the need of rounding or truncation
during the DCT computation. An AI-based exact architecture free of numerical error was first proposed
by Dimitrov and Wahid in [1] for low-power multimedia video compression applications. Here, we
reduce the computational complexity of [1] by proposing a low-complexity AI based DCT computation
architecture based on a novel finite reconstruction step (FRS) algorithm that uses the number-theoretic
method of expansion factors to allow efficient conversion of the AI-encoded DCT coefficients into
fixed-point representation.
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2. Review of 1-D DCT Computation Algorithms

There are several variants of the DCT depending on the type of boundary conditions used to define
the finite length transform. Of these, the DCT-II is commonly used in image/video processing and is
hereafter referred to as the DCT. The definition of the DCT is given by [3]

X[k] =

√
2

N
αk

N−1∑
n=0

x[n] cos

[
πk(n + 1

2
)

N

]
, k = 0, 1, . . . , N − 1 (1)

where x[n] ∈ R is a data sequence of length N and coefficients αk, k = 0, 1, . . . , N −1 are expressed by

αk =


1√
2
, if k = 0

1, otherwise
(2)

There are a multitude of fast algorithms used for the computation of the DCT [3,4]. The direct-form
realization in [5] provides a straightforward method for DCT computation but results in increased chip
area. However, this scheme has a regular and modular structure which is of advantage in digital VLSI
realization. Algorithms that use recursive calculations to compute the N -point DCT from two N/2-point
DCTs have been proposed by Lee [6] and Hou [7] using a scheme similar to the Cooley–Tukey FFT
algorithm. Vetterli [8] proposed an algorithm which computes an N -point DCT from an N/4-point
DCT and an N/2-point DFT, thus involving three degrees of recursion. These recursive DCT algorithms
require (N/2) log2 N real multiplications [5]. Duhamel [9] showed that the theoretical lower bound
for an 8-point DCT is 11 multiplications and a class of DCT algorithms achieving this lower bound is
presented in [10].

Arai et al. [11] proposed a scheme where this computation can be efficiently achieved in cases where
the explicit values of DCT coefficients are not required. Digital video compression is a well-known
application for the Arai algorithm, which in turn is based on the findings of Tseng et al. [12] who
showed that the 8-point DCT can be computed by the means of the real part of 16-point DFT. Only
five multiplications and twenty-nine additions are needed for this method, hence superseding the other
algorithms mentioned in terms of multiplier complexity. If the explicit values of the 8-point DCT are
required, the output values computed from the Arai algorithm have to be multiplied by scalar constants.
Fortunately, this step can be absorbed by the quantizer in a video compression engine without increasing
the arithmetic complexity. The signal flow graph of the Arai algorithm is reviewed in Figure 1. The
values of the fixed multipliers are given by below:

m1 = cos
4π

16
; m2 = cos

6π

16
(3)

m3 = cos
2π

16
− cos

6π

16
; m4 = cos

2π

16
+ cos

6π

16
(4)
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Figure 1. Block diagram of an 8-point Arai 1-D DCT architecture [13].
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3. AI Encoding of DCT Computation Algorithms

The DCT transform matrix representing Equation (1) consists of real numbers of the form cos(πα
β
),

where α and β are integers, which in general lead to irrational transform coefficients. Instead of applying
the conventional procedure of approximating these multipliers using techniques such as Booth encoding,
AI encoding processes them using exact representations in integer fields [14]. Architectures using both
1-D [13] and 2-D [15] AI encoding schemes have been presented with advantages in both accuracy and
resource utilisation. The selection of a suitable DCT algorithm for AI encoding is paramount in achieving
the desired gains. Algorithms that contain no more than one multiplier per signal path are considered
suitable for AI encoding as they simplify the representation. Further, the hardware complexity of the
original algorithm should also be considered [16].

An efficient architecture with a sparse representation has been proposed by Dimitrov et al. [1] by
employing a 2-D AI encoding scheme to the Arai DCT algorithm.

In this architecture [1], AI encoding is applied to the outlined section in Figure 1 using a bivariate
polynomial of the form f(z1, z2) =

∑K
i=0

∑L
j=0 aijz

i
1z

j
2, with a selection of K = 1 and L = 1 in order to

guarantee error free encoding. The use of z1 =
√

2 +
√

2 +
√

2 −
√

2 and z2 =
√

2 +
√

2−
√

2 −
√

2

provides the most efficient encoding [1]. Using this scheme, the four multipliers, m1, . . . , m4, involved

in the Arai DCT algorithm can be represented in the form
[
a0,0 a1,0

a0,1 a1,1

]
, where superscripts (a), (b), (c)

and (d) are related to elements 1, z1, z2 and z1z2, respectively. Table 1 brings the encoding of these
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multipliers (multiplied by a factor of 4) [1]. As shown in the signal flow graph in Figure 2, the outlined
area in Figure 1 is implemented using two adders and the final reconstruction step (FRS) [1]. The FRS
performs the mapping of the computed transform coefficients from infinite precision AI encoding into
fixed point representation at any desired precision [1].

Table 1. 2-D error free multiplier encoding.

m1

[
0 0

0 1

]
m3

[
0 0

2 0

]

m2

[
0 1

−1 0

]
m4

[
0 2

0 0

]

Figure 2. Block diagram of the AI encoding based 1-D DCT architecture [1].
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The first fabricated algebraic-integer DCT design presented by Fu et al. [17] has demonstrated that
the applicability of AI-encoding to DCT would be successful if and only if the FRS step is optimized
with extreme care. To wit, more than 67% of the area and power in this design have been dedicated
to the FRS. So, any improvement, even a modest one, on that particular step will have a major
impact on the performance of the AI-DCT. Our present work improves on the AI-based 8-point 1-D
Arai-DCT algorithm proposed by Dimitrov, Wahid, and Jullien by reducing the computational and circuit
complexities of the FRS. The AI-encoding for the proposed algorithm remain the same as the case for
the original version.
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4. Final Reconstruction Step (FRS)

The final stage of the 1-D AI encoding based DCT architecture is the FRS which is used for converting
the computed DCT coefficients from the infinite precision AI encoding into fixed-point representation.
From [1], such conversions require the multiplication of each AI encoded output value with the finite
precision approximation corresponding to each AI basis. Consider the set of 2-D AIs used in [1].
As shown in Figure 2, FRS receives at most four inputs pertaining to a single coefficient Xm, each
corresponding to the channels associated with AI basis values 1, z1, z2, and z1z2. Let X

(a)
m , X

(b)
m , X

(c)
m ,

X
(d)
m be the four encoded integers pertaining to the AI basis values 1, z1, z2, and z1z2, respectively, for a

given coefficient Xm. Thus Xm is given by

Xm = X(a)
m · 1 + X(b)

m · z1 + X(c)
m · z2 + X(d)

m · z1z2 (5)

Here, the AI basis values z1, z2 and z1z2 are by definition irrational quantities. Approximating them
using standard Booth Encoding [1] or Dempster–McCloud constant coefficient multipliers [18] lead to
hardware intensive and highly complex FRS architectures. In this paper, we propose a novel scheme for
realization of a low complexity high-accuracy FRS using number theoretical approximations based on
expansion factors [19].

The main new idea here is to employ an expansion factor that could simultaneously scale the quantities
z1, z2, and z1z2 into integer values. That is, expansion factor α∗ leads to (z1α

∗, z2α
∗, z1z2α

∗) being very
close to a 3-tuple of small integers. This would facilitate the usage of integer arithmetic in place of
fixed-point. Such approach has been often employed by integer transform designers [19,20]. Let the

quantities z1, z2, and z1z2 form a vector ζ =
[
z1 z2 z1z2

]T

. An expansion factor [3] is the real
number α∗ > 1 that satisfies the following minimization problem:

α∗ = arg min
α>1

∥α · ζ − round(α · ζ)∥ (6)

where ∥ · ∥ is a given error measure and round(·) is the rounding function. Here Euclidean norm is taken
as the error measure. In the range α ∈ [1, 256] with a precision of 10−4, we could find the optimal value
for α through computational search. Two such solutions found are α† = 4.5958 and α′ = 167.2309.
Both these values comply with an error norm of 10−2. Scaling of AI base z using these values can be
denoted as,

α† ·

 z1

z2

z1z2

 =

12.01031370924931 . . .

4.97483482672658 . . .

12.99986988195626 . . .

 ≈

12

5

13

 (7)

α′ ·

 z1

z2

z1z2

 =

436.995521744185 . . .

181.009471802748 . . .

473.00054429861 . . .

 ≈

437

181

473

 (8)

Using the above properties exhibited by the selected expansion factors, Equation (5) can be written in
the following manner:

Xk =
1

α

(
α · X(a)

m + m1 · X(b)
m + m2 · X(c)

m + m3 · X(d)
m

)
(9)
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where m1, m2, and m3 are the integer constants implied by the expansion factor α such that,

{m1,m2, m3} = {round(α · z1), round(α · z2), round(α · z1z2)} (10)

For the values of α found above, these constants are {12, 5, 13}, for α = α†, and {437, 181, 473},
for α = α′. Here, the global multiplication by 1/α can be easily embedded into subsequent signal
processing stages. In a typical application this is absorbed by the quantizer. This approach is similar
to what has been employed in several other DCT architectures [20–22]. Multiplication by α is a single
step that is implemented as a constant multiplication. An efficient implementation of this multiplier is
described next.

5. Proposed 1-D DCT Architecture

The overall architecture of the proposed 1-D DCT circuit consists of three main sub-sections: (i) a
decimation block; (ii) the AI encoding based 8-point Arai DCT circuit; and (iii) the FRS. The complete
system block diagram is shown in Figure 3.

Figure 3. Block diagram of the proposed AI encoding based 1-D DCT architecture showing
multirate input Section [18], Arai AI-block and expansion-factor FRS.
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5.1. Decimation Block and 8-Point Arai-DCT Circuit

The input data stream is expected to be raster scanned with a streaming rate of Fs. The decimation
block converts the input sequence into 8-point columns via delay and downsample-by-8 operations.
The 8 parallel channels generated pertaining to each point in the 8-point block operate at the rate
Fclock = Fs/8. These 8 channels drive the 8 inputs of the 8-point Arai DCT circuit.

The 8 output channels from the decimation block drives the 8 inputs of the 8-point Arai DCT circuit.
This block is a direct implementation of the signal flow graph of Figure 2. Therefore the computed result
is AI encoded, resulting in a maximum of four parallel integer channels for each coefficient. As shown in
Figure 3, 22 output channels are required to represent the 8-point 1-D DCT coefficients. These outputs
are denoted X

(q)
i , where i = 0, 1, . . . , 7 and q ∈ {a, b, c, d} representing the 4 channels 1, z1, z2, and

z1z2, respectively.

5.2. Low-Complexity Expansion-Factor FRS

The FRS is structured using the principle presented in Section 4. A block diagram of the circuit is
given in Figure 4.

Figure 4. Block diagram of the proposed FRS block.
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5.2.1. Integer Multiplication Block (IMB)

Because constants m1,m2, and m3 in Equation (9) are integers, the associated constant coefficient
multiplications can be efficiently implemented in digital VLSI hardware. Using common sub-expression
elimination (CSE), these multiplications are reduced to only additions and shift operations, requiring
minimal amount of hardware resources. For the set 437, 181, 473, CSE yields the following
representation which requires only eight additions:

437 ·X(b)
k +181 ·X(c)

k +473 ·X(d)
k = 473 ·

(
X

(b)
k + X

(c)
k + X

(d)
k

)
−36 ·

(
X

(b)
k + X

(c)
k

)
−256 ·X(c)

k (11)

Analogously, for the set {12, 5, 13}, CSE yields the following representation which requires only five
additions as shown below:

12 · X(b)
k + 5 · X(c)

k + 13 · X(d)
k = 8 ·

(
X

(b)
k + X

(d)
k

)
+ 4 ·

(
X

(b)
k + X

(c)
k + X

(d)
k

)
+ X

(d)
k + X

(c)
k (12)

The above algorithms are realized using the proposed integer multiplication block (IMB) given in
Figure 4.

5.2.2. Multiplication by α

A Booth encoding scheme is used to efficiently implement this constant integer multiplications
using shifts and additions. Table 2 gives the Booth encoded representation for the two values of α

corresponding to the two circuits described above.

Table 2. Booth encoding of the expansion factors α.

α Representation

4.5961 22 + 2−1 + 2−4 + 2−5 + 2−9

167.2309 27 + 25 + 23 − 20 + 2−2 − 2−6 − 2−8

6. On-Chip Verification Using Success Rates

The proposed architecture for the expansion factor values of α = 4.5958 and α = 167.2309, as well
as the design proposed in [1], were physically implemented and tested on-chip using field programmable
gate array (FPGA) technology. We used a Xilinx ML605 development kit which is populated with a
40 nm CMOS Xilinx Virtex-6 XC6VLX240T FPGA device. The JTAG interface was used to input the
test vectors to the device from the MATLAB workspace. Then the measured outputs from the FPGA
were returned to the MATLAB workspace via the same interface. Hardware computed coefficients were
compared to the ideal numerical values evaluated at nearly machine precision (64-bits) on MATLAB.
The machine precision is high-enough for typical video and imaging applications to be considered close
to infinite precision. First the experiment was conducted by sending test vectors of length 8 × 106,
8- and 12-bit randomly generated values through 8- and 12-bit versions of the designs. The success-rate
obtained as the percentage of coefficients having an error ratio less than a threshold value is plotted
for varying thresholds on a log scale in Figures 5 and 6 for signal input bit size W = 8 and W = 12
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respectively. The AI component of the algorithm (that is, up to the FRS) is completely error-free. The
test was also conducted on 512 × 512 pixel versions of standard test images Lena, Cameraman, and
Livingroom, and the success rates are tabulated in Table 3.

Figure 5. Accuracy results for W = 8.
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Figure 6. Accuracy results for W = 12.
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Table 3. Success rates of DCT coefficient computation for standard test images.

Percentage tolerance

Design Lena Cameraman Livingroom

10% 1% 0.01% 10% 1% 0.01% 10% 1% 0.01%

α = 4.5958 99.43 93.86 50.65 99.44 94.07 52.48 99.37 93.86 50.81

α = 167.231 99.99 99.94 93.44 99.99 99.96 93.53 99.99 99.93 93.41

[1] 98.44 52.33 26.10 98.72 54.52 26.49 98.39 52.81 26.44

The results show that the design corresponding to the expansion factor α′ = 167.2309 exhibit a far
superior accuracy than the other two designs. We found that 99% of coefficients could fulfill an error
ceiling of 0.1% whereas the corresponding values for α† = 4.5958 design and the design proposed in [1]
are 65% and 25%, respectively. Comparing the latter two designs it can be seen that the α† = 4.5958

expansion factor design shows much better accuracy compared with the design in [1].

7. Results

All three designs were implemented both in 65 nm CMOS process from TSMC up to synthesis
level for application-specific integrated circuit (ASICs) and physically implemented using 40 nm
CMOS Xilinx Virtex-6 XC6VLX240T FPGA for obtaining area (A), critical path delay (T ) and
power consumption (PD) for comparison. The respective results are shown in Tables 4 and 5 for
our FPGA-based physical implementation and ASIC synthesis, respectively. The accuracy results in
Figures 5 and 6 are from measurements from the hardware physical implementations of the FPGA
realizations as obtained from the Xilinx ML605 prototyping board.

Table 4. Area-speed and power consumption for FPGA implementation.

Design
Area Speed AT Power (mW)

LUTs Registers Slices (MHz) Slices·µs Clocks Logic Signals Total

α = 4.5958 1,412 602 409 268.7 1.522 13 12 11 36
α = 167.231 2,217 696 621 288.1 2.155 10 17 14 41

[1] 2,656 702 721 244.4 2.949 10 22 19 51

Table 5. Area-speed and power consumption for CMOS 65 nm ASIC implementation.

Design
Area Speed AT Power (mW)

(µm2) (MHz) (µm2 · µs) Dynamic Leakage Total

α = 4.5958 48,386.88 2,083.33 23.23 4.36 0.365 4.725
α = 167.231 52,904.88 2,083.33 25.4 4.67 0.424 5.094

[1] 54,299.52 2,083.33 26.06 4.74 0.427 5.167
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7.1. 40 nm CMOS Virtex-6 FPGAs

The designs were implemented for an input size of 8 bits in Xilinx Virtex-6 XC6VLX240T FPGA
using Xilinx ISE tools. The resulting area, critical path delay (inversely proportional to the maximum
clock speed) and power consumptions are given in Table 4.

7.2. Area Utilization

FPGA resources are given in Table 4 in terms of slices, slice registers, and slice look-up-tables
(LUTs). It is observed that both the designs using proposed expansion factor based FRS consume less
resources than the current state-of-the-art in comparable designs in the literature [1]. Furthermore, the
proposed expansion factor based designs provide significantly better accuracy at a much lower hardware
cost. The design using α† = 4.5958 expansion factor consumes the least FPGA resources although it
exhibits less accuracy compared with the design using α′ = 167.2309 as the choice of expansion factor.
The proposed designs for α† = 4.5958 and α′ = 167.2309 show 43% and 14% reductions in area,
respectively, compared to our reference design [1] when realized in Virtex-6 FPGA technology.

7.3. Operating Frequency

A similar pattern to the area consumption is seen with the design using α† = 4.5958 expansion factor
running at the highest frequency followed by α = 167.2309 expansion factor and the design proposed
in [1] in respective order. The difference in the size of the designs as discussed under area utilization
can be assumed to be the dominant factor in determining the critical path, resulting in the observed
behaviour. The proposed designs for α† = 4.5958 and α′ = 167.2309 show 48% and 27% reductions in
area-time complexity metric (AT ), respectively, compared to the reference design [1] when realized in
Virtex-6 FPGA technology.

7.4. Power Consumption

The dynamic power consumption of a FPGA design consists of components form clocks, logic and
signals. A breakdown of these components for all three designs along with the total dynamic power
consumption is given in Table 4. The proposed designs for α† = 4.5958 and α′ = 167.2309 show 29%
and 20% reductions in dynamic power consumption, respectively, compared to the reference design [1]
when realized in 40 nm CMOS Xilinx Virtex-6 FPGA technology.

7.5. 65 nm CMOS for ASICs

The designs were implemented for an input size of 8 bits in 65 nm CMOS general purpose standard
cells from TSMC at an operating voltage of 900 mV. The resulting VLSI area, critical path delay Tcpd

which is inversely proportional to the maximum clock speed such that Fclock = 1/Tcpd and dynamic
power PD, leakage power PL, as well as the total power consumption PT are given in Table 5.
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7.6. Area Utilization

ASIC resources are given in Table 5 in terms of area in µm2. It is observed that both designs using
proposed expansion factor based FRS consume less resources than the current state-of-art in comparable
designs in the literature [1]. The design using α† = 4.5958 expansion factor consumes the least ASIC
resources. The proposed designs for α† = 4.5958 and α′ = 167.2309 show 11% and 3% reductions in
area, respectively, compared to our reference design [1] when realized in 65 nm CMOS general purpose
standard cells from TSMC.

7.7. Operating Frequency

The proposed designs for α† = 4.5958 and α′ = 167.2309 show 11% and 3% reductions
in area-time complexity metric, respectively, compared to the reference design [1]. All three
designs were synthesized for a Tcpd ≤ 0.48 ns clock period corresponding to a maximum speed of
Fclock = Fs/8 = 2.083 GHz. Because this clock frequency is for the slowest inner core of the
architecture, the architecture potentially supports high-performance video processing having input word
rates (pixels per second) at Fs = 16.664 GHz, which in turn implies a serial data processing rate of
133.312 Gbps for an 8-bit system. In practice, it is unlikely that popular image sensors would be able
to deliver such high levels of pixel read-out data unless used in a specialized scientific instrument.
The synthesis results indicate potential suitability for 100 Gbps Ethernet video feeds. However, it is
reasonable to assume that the core would in practice be clocked at much lower rates than 2.083 GHz,
which would proportionately reduce the dynamic power consumption since PD ∼ Fclock. Hence, power
estimates assume 100 MHz clock, which implies a pixel rate of 800 MPixels/seconds, and a serial data
rate for the system at 6.4 Gbps (for W = 8 bit precision) and 9.6 Gbps (for W = 12 bit precision), which
is well within the range of current high-performance digital video processing systems. As an aside, we
note that 9.6 Gbps serial-deserializers (SERDES) are available as hard silicon in many FPGA systems.

7.8. Power Consumption

All 65 nm designs assume a 900 mV supply at a clock frequency of Fclock = 100 MHz for all three
designs. The dynamic power consumption of an ASIC design consists of components form clocks,
logic and signals. A breakdown of these components for all three designs is given in Table 5. The
proposed designs for α† = 4.5958 and α′ = 167.2309 show 8% and 1.5% reductions in dynamic power
consumption, respectively, compared to the reference design [1]. The total power consumption was
9% and 1.5% down compared to the reference. Although the 65 nm CMOS design for α′ = 167.2309

shows only a marginal reduction in area and power consumption compared to [1] realized on the same
technology, it should be noted that the proposed design has a significant improvement in computational
accuracy. At the highest precision level of 0.1%, there is approximately a 300% increase in the number
of computed coefficients for α′ = 167.2309 compared to [1]. For α† = 4.5958, the improvement in
accuracy is still significant at better than 150% for the most accurate coefficients at 0.1%.

Because both circuits show accuracy of over 90% for a tolerance level of 1%, it might be possible
to reduce the power supply voltage with a penalty in arithmetic errors leading to lower power at
lower accuracy.
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7.9. Overall Comparison With Existing Architectures

CMOS implementations of DCT architectures that are comparable to the proposed architecture are
tabulated in Table 6 with a detailed comparison between their salient features and reported results.
Results obtained from CMOS implementation using 8-bit input size for the proposed architectures for
α = 4.5958 and α = 167.2309 along with the implementation for [1] was used in this comparison.

Table 6. Comparison of the proposed implementation with published 1-D DCT
implementations.

Parameter
Gong

et al. [23]
Shams

et al. [24]
Ghosh

et al. [25]
Dimitrov
et al. [1]

Proposed architectures

α = 4.5958 α = 167.231

Measured results No No No Yes Yes Yes

Structure

Vector matrix
DCT core

Coefficient
arithmetic
DCT core

based DCT

Coefficient
arithmetic
DCT core

based DCT

AI based
DCT+ Booth
encoded FRS

AI based DCT+ expansion
factor FRS

Multipliers 8 0 0 0 0 0
Operating
frequency

125 MHz 1.5 GHz 50 MHz 2.08 GHz 2.08 GHz 2.08 GHz

Pixel rate 125 Mpix/s 108 Gb/s 10.922 Mpix/s 16.67 Gb/s 16.67 Gb/s 16.67 Gb/s
Power consumption N/A 210 mW 12.45 mW 5.167 mW 4.725 mW 5.094 mW

Technology
0.25 µm
CMOS

0.35 µm
CMOS

0.12 µm
CMOS

65 nm
CMOS

65 nm
CMOS

65 nm
CMOS

Independently
adjustable precision

No No No Yes Yes Yes

8. Conclusions

In this paper, we proposed a low complexity digital VLSI architecture for the computation of an
algebraic integer (AI) based 8-point Arai-DCT. AI encoding is used on the Arai fast algorithm for DCT
computation, and a novel FRS structure based on expansion factors is employed. By the use of CSE and
Booth encoding the optimum circuits are synthesized for two different FRS structures corresponding to
two suitable expansion factors. The designs are implemented in both 65 nm CMOS general purpose
standard cells from TSMC and 40 nm CMOS Xilinx Virtex-6 XC6VLX240T FPGA technology.

The results show an improvement of 43% in area and 29% in power consumption for our
FPGA implementation and 10% in area and 8% in power consumption for our CMOS standard cell
implementation when α† = 4.5958 is used. The expansion factor of α′ = 167.2309 yields an
improvement of 300% in the number of DCT coefficients having error ≤0.1%, with improvements
of 13% and 19% in area and power consumption for the FPGA implementation and corresponding
improvements of 2.5% and 1.5% for the ASIC implementation. We therefore conclude that the
α† = 4.5958 design is suitable in cases where lowest power, lowest area, and good accuracy is
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required, and the second expansion factor α′ = 167.2309 is suitable when accuracy is the most important
requirement of the application. An example of such an application may be high-definition high-dynamic
range imaging. Both proposed architectures excel as per metrics considered (area, power, area-time,
throughput, accuracy) when compared to the reference design [1] for both 65 nm CMOS standard cells
and 40 nm Virtex-6 FPGA technology.
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