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Abstract: We present our design exploration of reconfigurable Threshold Logic Gates
(TLG) implemented using silver–chalcogenide memristive devices combined with CMOS
circuits. Results from simulations and physical circuits are shown. A variety of linearly
separable logic functions including AND, OR, NAND, NOR have been realized in discrete
hardware using a single-layer TLG. The functionality can be changed between these
operations by reprogramming the resistance of the memristive devices.
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1. Introduction

Moore’s Law helped the semiconductor industry increase the computational power of computers
while shrinking their size and power consumption. This has enabled the development of many new
commercial products, which enables changes in daily life as well as new research breakthroughs.
However, it seems continuing Moore’s Law for much longer may not be possible. To continue to make
sizable jumps in computer development, a different architecture might be needed.

One new technology that could be part of this uses the memristor. Recent progress in memristive
devices has spurred renewed interest in reconfigurable and neuromorphic computing architectures [1].
The memristive devices, integrated with conventional CMOS, are expected to realize low-power circuits
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with increased reconfigurability and smaller physical layout area [2]. Threshold logic gates (TLG) are an
interesting candidate for logic implementation using hybrid memristive-CMOS circuits [3]. We present
our early results on TLG design using Silver–Chalcogenide (Ag–Ch) memristive devices developed at
Boise State University [4–10]. This work is an expansion of the work presented in [11].

TLGs built with memristors can lead to changes in reconfigurable processing architectures. Memristor
based circuits could be used to replace larger combinations of transistors, and through proper application
of signals, the logic operations in the foundational architecture could be easily changed among AND,
OR, NAND and NOR to create the logic necessary to solve each individual’s computational problem. We
present work in designing a circuit using memristors to implement a reprogrammable Threshold Logic
Gate with memristors in discrete circuitry. The circuit is designed and modeled first in Cadence with
a MATLAB controller, and then is built with discrete components and is controlled by an FPGA (field
programmable gate array). While several papers have proposed using memristors [12–16], most are just
simulation [17], often without a circuit [18]. A few papers go beyond simulation to design circuits, at
least for a portion of the system [19,20], and even fewer design the complete circuit and build a working
prototype [21–24]. Papers on physical memristors usually evaluate them in isolation using a signal
analyzer [25,26]. This work reports on using physical memristors in a complete circuit application.

Section 2 describes the Threshold Logic Gates simulated in this paper. The memristive devices and
their programming are described in Section 3. Section 4 describes circuits used to implement these
TLGs. Experiments and results of the co-simulation are described in Section 6. The conclusions are
portrayed in Section 7.

2. Threshold Logic Gate Design

Threshold Logic Gates are single node Artificial Neural Networks (ANNs) designed specifically to
implement a logic operation, g(X). The threshold logic gates produce a binary output by passing a
weighted summation of several binary inputs (X = [X1X2 · · ·Xn]) through a hard-limiting activation
function, f ,

Y = g(X) = f

(
N∑
i=1

wi ·Xi + w0

)
(1)

where w0 is a bias or the threshold level [3]. This is conceptualized in Figure 1 for N = 2 with a
bias. In this paper we are considering the two-input logic operations AND, OR, NAND and NOR. These
logic operations are all linearly separable and can be realized by this architecture. To implement a logic
operation (or any function) that is not linearly separable, such as XOR and XNOR, the logic must be
implemented using a two-layer TLG network.

Figure 1. Neuron with two input synapses and one bias synapse.
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The same network structure can be used for multiple logic operations, simply by changing the weights,
wi. The weights necessary to implement any given TLG are not unique. Figure 2 shows in weight space
the values that can be used to realize the four two-input logic operations AND, OR, NAND and NOR,
over the normalized range wi ∈ [−1, 1]. From these possible weight values, one target weight value for
each logic operation was selected, Table 1. Note that all but the OR operation require negative weights.

Figure 2. Weight values necessary to realize the logic operations AND, OR, NAND
and NOR.

Table 1. Weight values chosen for linearly separable logic operations.

Logic operation w1 w2 w0

NAND −0.5 −0.7 0.5
NOR −0.5 −0.7 −0.5
AND 0.3 0.6 −0.5
OR 0.3 0.6 0.5

3. Memristive Devices

The Ag–Ch memristive device acts as a programmable two-terminal resistor, which can be
programmed to assume a range of continuous resistance states. The resistance of the memristive device
is decreased (“program” operation) and increased (“erase” operation) by applying positive and negative
voltage pulses, greater than the device threshold voltage, respectively. The memristive device acts as a
linear resistor when it receives an input below the threshold voltage. This behavior makes memristive
devices suitable for use in reconfigurable hardware.
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In our early design exploration using memristive devices, we are implementing neuromorphic
circuits using discrete hardware. However, the true potential of these devices will be realized in the
second-phase of our research where a fully-integrated platform with memristive devices fabricated in the
back-end-of-the-line (BEOL) of a CMOS process will form compact reconfigurable circuit blocks.

A Verilog-A model for the memristive device has been developed and used with CMOS circuits
for simulation in Spectre [27]. A memristive device model, similar to [28], is used to emulate
the characteristics of the Boise State memristive device reported in [4–10], with appropriate device
parameters. The Boise State memristors have been widely referenced by other researchers in their
work [28–33]. This memristive model has a threshold voltage of 150 mV, while the read pulse voltage
for the actual memristive devices fabricated and packaged at Boise State University should not exceed
20 mV for repeatable operation. This threshold voltage will be increased to the desired range using a
modified material stack in the device. In our simulations, the initial state of the devices can be set to
the desired resistance value. However, the algorithms assume random initial states, and all subsequent
resistance changes are made through the application of voltage pulses.

4. Circuit Realization

The TLG defined in Equation (1) can be realized in discrete hardware using a summing op-amp
circuit with memristive devices implementing the weights (wi). The target logic function is then realized
by re-programming the weights (i.e., resistance) of the memristive devices.

To achieve the needed negative weights, the resistors (or memristive devices) are supplemented so
the current coming out of the op-amp has the opposite direction of the input, and its combination with
the variable current from the memristive device can take on both positive and negative values, Figure 3.
The two resistors, RN and RFS , determine the gain of the circuit that sets the range of weights possible
in the circuit realization. Adjusting the resistance of the memristive device RM between 1 kΩ and
100 kΩ moves the weights in this range. Table 2 shows a set of target resistances for the memristors if
RN = 1.98 kΩ and RFS = 2.02 kΩ.

Figure 3. Circuit implementation with memristive devices with circuitry for negative
weights. In our circuit implementation the common mode voltage VCM = 2.5 V.
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Table 2. Resistance values corresponding to theoretical weights in Table 1.

Logic operation R1 R2 R0

NAND 1.33 kΩ 1.17 kΩ 3.88 kΩ

NOR 1.33 kΩ 1.17 kΩ 1.33 kΩ

AND 2.81 kΩ 4.81 kΩ 1.33 kΩ

OR 2.81 kΩ 4.81 kΩ 3.88 kΩ

5. Memristive Device Characteristics

The memristive devices have been modeled in Cadence-Spectre and fabricated as physical devices.
Programming the devices in both forms has the same basic approach. This approach and the necessary
changes to that approach and observations about the physical devices are described next.

5.1. Simulations

The memristor model used in this paper is based on “A memristor device model” by C. Yakopcic [28]
and is written in Verilog-A. The “state input” pin “xd” is used to sneak into the memristor state, but
all memristor programming is done through the application of voltage pulses. The state input value is
inversely proportional to the memristor resistance. A characterization of how the memristor state in
the memristor model responds to the writing and erasing processes is shown in Figure 4. A series of
positive and negative pulses with an amplitude of 200 mV were applied across the memristor. A pulse
width of 1 µs was chosen so that the device is not under a constant stress. Applying a positive pulse
causes the memristor to write, which decreases the memristor resistance, meaning that the “state” will
be increasing. In contrast, applying a negative pulse causes the memristor to erase, which increases the
memristor resistance, meaning that the “state” will be decreasing. Figure 5 shows the schematic of the
programming circuit [34].

To read the current value of the memristor, the same circuit will be used, however, with a pulse
amplitude that is much smaller than the threshold voltage. For the memristor model used in this paper, a
(100 mV, 1 µs) pulse is chosen to be sufficiently small in order to avoid disturbing the current state of the
device while reading it. The memristor resistance is then determined by measuring the output voltage of
the circuit and applying Ohm’s law

RM =
Vread

Vout − Vread
Rf1. (2)

The programming circuit in Figure 5 was built in Cadence first and then it was connected to Simulink
using the Cadence coupler block. A MATLAB script was written to provide the voltage inputs to
automatically drive the memristor to a desired resistance. The script generates programming pulses
with amplitudes proportional to the difference between the current resistance RM of the memristor and
the desired value Rd. If the difference is large, it will send a bigger amplitude pulse and vice-versa.
This amplitude gets smaller and smaller as the memristor approaches the desired resistance. The erasing
process is more sensitive than the writing process; therefore, the gain in the erasing process is a factor of
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1/3 smaller than the gain in the writing process. The programming pulse is limited below Vmax so that it
will not destroy the device or cause clipping in the output voltage of this programming circuit.

Figure 4. Movement of the memristor state in response to the (a) writing and (b) erasing
processes. Writing decreases the device resistance, while erasing increases the device
resistance. The input pulses are shown in red (top window) and the current through the
device is shown in blue (middle window). The third window shows the movement of the
device state “x” (x0 = 0.1).

(a)

(b)

After each programming step, the MATLAB script will generate a reading pulse to read the current
resistance of the device. In short, the programming circuit will keep sending pulses with an adapted
amplitude to program, then read the memristor until its resistance is within a certain tolerance of the
desired value. This behaves like a state machine in hardware. The operating range of the memristor in
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this paper is between 10 kΩ and 100 kΩ. The device was initialized at 40 kΩ, the desired value for the
writing mode was 10 kΩ, and for the erasing mode was 100 kΩ. Figure 6 shows the amplitudes of the
applied programming pulses and the measured memristor resistance after each programming cycle. The
target resistance is highlighted in red. The script was able to drive the device to the desired resistance
within a tolerance of 4 kΩ within an average of 10 programming cycles.

Figure 5. Memristor programming circuit.

Figure 6. Programming a single memristor. (a) Programming from 40 kΩ to 10 kΩ;
(b) Programming from 40 kΩ to 100 kΩ.

(a) (b)

5.2. Hardware

While our simulations used a non-idealized Verilog-A memristor model, when working with physical
memristors the behavior of the devices is not fully predicted by the modeling equations. Experience
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with the characterization of these devices is employed to make circuits robust in the presence of these
deviations from the simplistic understanding of memristive devices. The memristor model was designed
as a curve fit to the data obtained from our physical memristors [28], but the full characteristics of the
physical memristors are still being studied. Most studies are with a semiconductor parameter analyzer
(SPA). Some experiments with physical memristors are shown here to understand how the memristors
function in a circuit environment.

At this point there is no accurate model that foresees how much the memristor’s state will move
if a voltage pulse of duration x and voltage y is applied. The writing and erasing voltages have to
exceed a certain threshold for the memristor to change its state. The device has both a writing and
an erasing threshold, which are not necessarily at the same absolute voltage level. Furthermore, these
thresholds can change as the device’s resistance is altered, and the threshold of a device can change
during its lifetime and was found to exhibit significant fluctuations between devices, making it even
more difficult to make an accurate prediction of where the state is going to end up. It is therefore
important to read the device’s state after each writing/erasing pulse so that programming error can be
detected and compensated for by applying subsequent pulses. After programming the memristance can
relax or drift, but certain programming pulses are less susceptible to the post-programming drift. For our
application the amount of decay will not affect the final application response. For other applications that
require finer memristance granularity, there would usually be a sequence of programming pulses and the
subsequent pulses would “correct” any resulting drift. A typical writing/erasing algorithm will therefore
need to send multiple pulses interspersed with reading pulses to the memristor.

Table 3 shows the threshold voltages that were found to work best for the devices under study. Note
that these values are only valid for DC operation (slow pulses) and are not representative of the AC
behavior of these devices. The following general rules have been developed to reach the desired state
without damaging the memristor:

- The reading voltage should be as low as possible to prevent unintentional ion movement. For the
Ag–Ch devices used for this work, the reading voltage should not exceed 40 mV.

- If a large reduction in resistance has been observed after applying a writing pulse, the device should
be fully erased before applying another writing pulse. A large ∆R indicates hard device switching,
meaning that most of the silver from the top electrode is embedded in the amorphous insulation
layer. Applying another writing pulse might irreversibly damage the device.

- Erasing pulses of very short duration and high enough amplitude can cause the device to go into
negative differential resistance (NDR) mode or even damage the device. Repeated mild erase
pulses will not cause long-term damage.

Table 3. DC threshold levels for Ag–Ch memristors.

Programming operation Threshold (volts)

Writing 0.23 V
Erasing −0.58 V
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Figure 7 shows erasing and writing pulses applied to a silver-based device. The device is initially in
low resistance state. Applying a low erasing pulse does not change its state, unless the erasing threshold
is reached. At 15 ms, the device switches to a higher resistance because the erasing threshold listed
in Table 3 is exceeded. The same is true for programming the device back to a lower resistance at
25 ms. The three programming pulses between 30 and 40 ms are bad examples as they violate one of the
programming rules. If a larger ∆R is observed when writing, no more subsequent writing pulses should
be applied as it could potentially harm the device. Note that the resistance in Figure 7 was only slightly
reduced by the first pulse at 25 ms, indicating that the device has been sufficiently written. At 50 ms, the
amplitude needed to erase the device is significantly higher than previously reported. This shows how
the threshold levels can change while programming the device. The programming algorithm in this work
was designed to accommodate these non-ideal characteristics.

Figure 7. Experimental response of the device to program and erase pulses. The program
and erase threshold can be seen to move between pulses. The moving threshold can be
observed by the change in memristance relative to the program and erase pulse heights.

The device used for this experiment performed well for several cycles, indicating that its integrity was
not decreased. In fact, the “moving threshold” phenomenon was observed in all devices under study. The
threshold levels listed in Table 3 were found to generally be accurate, but exhibited a deviation of up to
50% over a memristor’s lifetime. The moving threshold was observed because as every instance a voltage
pulse is applied to change the resistance, there is an activation energy involved. At every step to move the
Ag atoms to change the state, a higher pulse is required to affect the change. This gives the appearance
of a moving threshold voltage. This variable threshold phenomenon has also been observed in other
memristive devices [35].

In the Cadence memristor model a pulse train of writing pulses continues to decrease a memristor’s
resistance, while an erasing pulse train continually increased its resistance, Figure 4. This is based on a
simulation model, which does not have to follow the memristor programming rules as outlined above.
The physical devices look moderately different compared with a simulated environment. Experiments
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on the devices confirmed this indication and it was found that continuously increasing or decreasing
the resistance with fine control can be challenging to achieve in practice. This is especially true for
continuous writing, as the programming rules prohibit us from continually sending writing pulses. It is
therefore better to write the device and gradually erase it. In most cases, the devices would perform hard
switching (i.e., jump from a low resistance to a high resistance and vice-versa). We chose a programming
pulse that was suited to our application to enable us to jump in a single programming pulse between a
high and low resistance value. Figure 8 shows the result of applying a pulse train of writing and erasing
pulses with pulse amplitudes that are only slightly above the silver threshold levels (see Table 3) to a
silver device. As can be seen, the resistance jumps up and down by at least two orders of magnitude in
response to applied programming and erase pulses. The standard deviation was found to be around 45%

for both high and low states. While this is a pretty significant variation, it enables the memristors to be
used as a digital memory when toggling between the two states (high and low). The average high state
resistance was found to be at 392 kΩ and the average low state resistance at 7.3 kΩ.

Figure 8. Memristor characterization plot showing toggling between high and low
memristance states.

Due to their intrinsic device structure and material characteristics, silver-based devices are expected
to exhibit a certain hard-switching behavior, making them suitable to reprogrammable TLG use as the
weights are polarized. It has been proposed that memristors would be suitable for use in ANNs, but
these need finely variable resistances. Further device development and alternate circuitry and control
methodologies may be necessary for these applications. The programmer used for this work is purely
voltage controlled. While the presence of a threshold voltage suggests that the programmer should
be voltage controlled, it is possible that the device should be programmed in current mode once the
threshold voltage is reached. In fact, literature suggests that memristors are both a voltage and current
controlled device [1,4], but no solutions are presented as to how a memristor is best controlled in a
practical application such as an TLG or ANN programming circuit. The work in this paper starts to
develop this.
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Figure 8 shows the device has clear high and low states, but they vary significantly. It may seem as
though the deviation of the values representing these high and low states is random and does not suggest
that a relationship between previous state (resistance) and the change in resistance exists. However,
when the change in resistance is analyzed numerically, a relationship between the change in resistance
and the previous resistance is found to exist, but only when writing. Figure 9 shows data points from
selected datasets that exhibited nice hard-switching behavior of the silver-based devices. When writing
the devices to a lower resistance, the change in resistance is dependent on the previous state, but is
independent of the pulse amplitude (the pulse amplitudes used here were all the same).

Figure 9. Relationship between resistance change and previous state.

The resistance change can be said to be proportional to −1/R2, where R is the resistance
of the current state (before applying the pulse). This is consistent with literature investigating
spike-timing-dependent-plasticity (STDP), which governs how synapses learn in biology [36]. This
relationship between resistance change and previous state only holds for programming (i.e., reducing the
resistance). When erasing, there seems to be no apparent pattern between the change and previous state.
Given that the relationship is proportional to −1/R2, it makes sense that this only applies when writing
a memristor to a lower state, as the change in resistance will always be a negative number, indicating
a reduction in resistance. Further, in Figure 8 it can be observed that with the selected program/erase
voltage pulses, we could achieve a binary switch functionality desired for our 2-input Boolean logic
application. For TLGs with a larger fan-in (N > 2), a more continuous range of weight values will be
needed. A different scheme of adaptive program/erase voltage pulses would be applied to achieve the
desired functionality.

6. Experiments and Results

The circuit described in Section 4 was created in a Cadence Simulation and also built as a physical
circuit with discrete devices. In both cases the memristors were programmed to change the functionality
of the TLG circuit alternately to AND, OR, NAND and NOR. Descriptions of these experiments and
their results are described next.
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6.1. Simulations

A feedback-based adaptive programming circuit was developed to program the individual memristive
devices to predetermined resistance values to create each logic operation. The programming circuit
in Figure 10 was built in Cadence and connected to Simulink using the Cadence coupler block. The
memristor has to alternately be isolated for the circuit to apply the programming via the circuit in Figure 5
and be connected with the other memristors to the negative weight and summing circuitry in Figure 3.
This is accomplished from switches shown in Figure 10.

Figure 10. Circuit implementation for programming memristive devices. In our circuit
implementation the common mode voltage VCM = 2.5 V.

A MATLAB-Simulink/Cadence co-simulation was run to realize four threshold logic gates: AND,
OR, NAND, and NOR. The memristive devices were programmed by providing the voltage inputs
through a charge-scaling DAC (digital to analog converter) with an iterative search process, using
the device programming method described in Section 3 to automatically drive the memristor to reach
the resistance values in Table 2 within a tolerance of 100 Ω. The program-and-erase operation is
performed by applying positive and negative pulses (1 µs pulse width). After the memristive devices
were programmed to match all the target resistances, a set of feed forward voltages was applied to the
network to confirm the logic outputs for all four AND, OR, NAND, and NOR operations.

The results are shown in Figure 11. The waveform in the top frame of the plots shows the clock signal
of the circuit, and the second and third frames show the two binary input signals. The amplitudes of
these inputs are set within a range of 100 mV to not disturb the current state of the memristive device.
The fourth waveform shows the output voltage superimposed on the 2.5 V virtual ground. The logic
output of the comparator is displayed in the fifth window. The results show that the circuit built with
memristive devices can be programmed and re-programmed to create the four desired logic operators. It
is confirmed that the circuit design and programming procedure work correctly.

Simulations are often based on ideal behavior of devices. The MATLAB-Simulink/Cadence
co-simulation tried to account for hardware-related phenomena as much as possible, and used the
most realistic memristor model available, but there are still a lot of things that a simulation cannot
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account for. Dynamic range, noise and signal integrity are only a few examples. In order to build the
simulated TLG entirely in hardware, a new programming circuit was developed to program and read the
memristor devices.

Figure 11. Results of TLG circuit when programmed to each of the four logic operations.
(a) AND; (b) OR; (c) NAND; (d) NOR. The output is valid only when the clock is high.

(a) AND (b) OR

(c) NAND (d) NOR

The programming setup used in the simulation is based on an op-amp in non-inverting configuration.
The MATLAB-Simulink programming algorithm sends a pulse width and a pulse amplitude value to
the Cadence simulation, which applies the programming pulse to the op-amp. The basic programming
circuit used is shown in Figure 5. While this works fine in simulation, to build this circuit in hardware
an op-amp supporting high speeds, high gains, and a wide dynamic range is needed and is hard to find.
Given a fixed feedback resistor Rf1, the resistance value of the memristor can easily be determined by
applying a pulse with a known pulse height to the positive input of the op-amp. The output VOUT is
then a function of RM . However, depending on the value of RM , the gain of the op-amp can range from
very small values to very large values. This dynamic range issue is not a big deal for simulations, but
it is for hardware-based applications. In order to improve the dynamic range, the op-amp in Figure 5 is
turned into a programmable gain amplifier (PGA) by adding different feedback resistors in parallel to
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the existing feedback resistor Rf1. These additional resistors can be connected with switches to change
the effective feedback resistance and therefore the gain of the PGA, Figure 12.

Figure 12. Programmable gain amplifier used to program memristors.

The output of the PGA for different memristor resistance values is shown in Figure 13. Note that
there are four feedback resistors in Figure 12, but Figure 13 only shows three curves. This is because the
first of the four resistors (Rf1) is only used for programming and not reading on the memristor device.
We limited our circuit to a range from 1 kΩ to 200 kΩ such that when programming, the gain of the PGA
is set sufficiently small. With a 1 kΩ feedback resistance, the programming current is also sufficiently
limited such that the device will not be destroyed when its resistance is drastically reduced.

Figure 13. Output of programming/reading circuit with programmable gain.

An FPGA (field programmable gate array) and a high-speed DSP (digital signal processing) board are
used to generate the programming pulses and to read the response (VOUT ) of the programming circuit. A
host computer communicates with a Nios-II soft-core processor implemented on the FPGA, controlling
the pulse generation module also implemented on the FPGA. The pulse generation module generates
both programming and reading pulses through a high-speed DAC, controls the switches for the PGA
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and reads the response of the memristor using an ADC (analog to digital converter). When reading a
memristive device, a small reading pulse (20–40 mV) is applied and the response of the PGA is read
back by the DSP board’s DAC and is further processed by the FPGA. For the Ag–Ch devices, a pulse
with fixed pulse width of 10 µs and variable amplitude was used.

For the simulation where greater control of the memristor is possible, exact target resistances were
calculated in Table 1. Since the zones of acceptable weight values are large, binary toggling of the device
was utilized for the hardware implementation. The weight values in Table 1 are therefore quantized to
produce the binary states in Table 4. These correspond to the four corners of the weight cube in Figure 2
where a logic operation of interest is located.

Table 4. Binary memristor states for each logic function.

Logic operation w1 w2 w0

AND high kΩ high kΩ low kΩ

OR high kΩ high kΩ high kΩ

NAND low kΩ low kΩ high kΩ

NOR low kΩ low kΩ low kΩ

Figure 10 shows the fully connected TLG with quantizer (activation function of the neuron) and
programming circuit attached. The switches are needed to disconnect each memristor individually and
connect it to the programmer for reconfiguration. This circuit was built from discrete components.
Memristors were packaged and connected. The circuit board is shown in Figure 14.

Figure 14. TLG programming circuit.

The performance of the TLG was measured by the four basic logic operations (AND, OR, NAND,
NOR), but there are a total of 16 two-input logic operations possible, 14 of which could be achieved by
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this circuit. The remaining 12 cases for the purposes of this paper are described as invalid or “other”
logic operations. In Figure 15 the output of the TLG through several cycles of programming to take on
different logic operations is shown. The top two frames show the input signals cycling through 4 input
options, then resting while voltages are applied to change the memristor’s state. The resulting output
signals after each reprogramming cycle are shown in frame 3. Frames 4 and 5 show additional results
that were generated after the first set of results. They use the same functional inputs as frames 1 and 2.
This clearly shows that the TLG can be reconfigured to many more possible functions. Since we used
memristors, it is non-volatile and retains the settings even when we remove the power source.

The programming intervals in Figure 15 indicate where a single memristor was programmed
according to Table 4. As Table 4 shows, going from an AND to a NOR configuration requires two
memristors to change (memristor 1 and 2 need to change from high to low; memristor 3 stays low).
Therefore, it required two programming cycles—one for each memristor—to reconfigure the TLG. In
order to reconfigure the TLG from an AND to an OR or a NAND to a NOR configuration, only one
programming cycle is required, as the bias weight (memristor 3) is the only one that needs to be changed.

Figure 15. TLG inputs and outputs.

Figure 16a shows the weight space with a possible programming path for reconfiguring the TLG from
NOR to OR. In this case it will take a total of three programming cycles as all three memristors need to
be changed. As Figure 16a shows, the path from NAND to OR leads through a corner that is not one of
the four functions used for this work. Figure 16b shows the programming paths required to obtain all the
results in Figure 15 in the order presented. As can be seen, the TLG is reconfigured to operate only in
the corner regions. Four of the eight corners are valid configurations (AND, OR, NAND, NOR), while
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the rest are unused configurations and are simply used as way-points to reconfigure the TLG from one
function to another.

Figure 16. (a) Weight cube indicating the programming path required to go from NOR to
OR and (b) all programming paths required to obtain the results seen in Figure 15.

(a)

(b)

7. Conclusions

We have developed a circuit design capable of realizing four different logic operations by changing
the resistance of the memristive devices. The resistance is changed through an iterative procedure
through the application of voltage pulses to reach resistances determined outside the circuit. This was
implemented first in simulation, and this same circuit with only minor modifications was then physically
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realized on a printed circuit board (PCB). The memristors in this circuit were reprogrammed based on
voltage pulses determined by an FPGA so the circuit could take on the four logic operations of interest.

We believe that this is the first reported experimental demonstration of a reprogrammable TLG circuit
with physical memristors. This work developed a greater understanding of the constraints involved when
using memristors in complete circuits, instead of in signal analyzers. Techniques necessary to work with
these memristors were also developed.

This programming procedure can be replaced by a learning algorithm, such as back propagation, to
determine the resistance values based on input-output pairs. Memristors and a control circuitry that can
attain finer granularity in resistances will be needed. The switching circuitry introduced a high level
of overhead. Future work should look at alternate approaches to do both programming and use of the
memristors without this.

The prototype TLG circuit, presented in this paper, used discrete circuit components to demonstrate
the hybrid memristor and circuit application. Due to the limitations set by the available discrete op-amps,
a 5 V supply was used. Eventually, the memristive devices will be fabricated in the back-end-of-the-line
(BEOL) on a CMOS chip, with a compact TLG circuit implementation and comprised of the peripheral
circuits for program and read operations. A lower supply voltage and smaller device geometries in
nanometer CMOS processes would result in significant power savings. Further, the integrated version of
the threshold logic gate would use a compact transistor level implementation instead of a power hungry
op-amp. Our work thus far has explored feasibility of two-input TLGs with Ag–Ch memristive devices.
In the future, hybrid CMOS-memristor integrated TLGs are expected to have fan-in of >10, switching
speed >1 GHz and dissipate lower static power than a corresponding pure-CMOS logic implementation.
Such high density of integration will allow development of several new applications.
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