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Abstract: In this paper, we demonstrate how a network of dendrites can be used to build the

state decoding block of a wordspotter similar to a Hidden Markov Model (HMM) classifier

structure. We present simulation and experimental data fora single line dendrite and also

experimental results for a dendrite-based classifier structure. This work builds on previously

demonstrated building blocks of a neural network: the channel, synapses and dendrites

using CMOS circuits. These structures can be used for speechand pattern recognition.

The computational efficiency of such a system is>10 MMACs/µW as compared to Digital

Systems which perform10 MMACs/mW.
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1. Dendrites for Wordspotting

Dendrites are highly branched tree like structures that connect neuron’s synapses to the soma. They

were previously believed to act just like wires and have little or no computational value. However, studies

show that dendrites are computational subunits that perform some inherent processing that contributes to

overall neural computation [1–6]. It is thus interesting to explore computational models that can be built

using dendrites as a unit. It has been shown that dendrites can perform computations similar to an HMM

branch [3,7] which can be used for wordspotting. Wordspotting is the detection of small set of words in
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unconstrained speech [8]. The interlink between Neuroscience, CMOS transistors and HMMs is shown

in Figure1a.

Figure 1. (a) The Venn Diagram depicts the interlinks between the fields of neurobiology,

HMM structures and CMOS transistors. We have demonstrated in the past how we can

build reconfigurable dendrites using programmable analog techniques. We have also shown

how such a dendritic network can be used to build an HMM classifier which is typically

used for speech recognition systems; (b) Block Diagram for a Speech/Pattern Recognition

system with respect to biology. In a typical speech recognition system, we have an auditory

front-end processing block, a signal to symbol conversion block and a state decoding block

for classification. We have implemented the state decoding block using dendritic branches,

WTA and supporting circuitry for wordspotting. It is the classification stage before which

symbols have been generated for a word.
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A typical Wordspotting system has at least three stages: Feature generation, Probability Generation

(Signal to symbol conversion) and the State Decoding (classification) stage, which determines the word

detected. Figure1b shows the general block diagram for a classification system. In the specific example

of speech recognizer, the sensor would be a microphone stage. The first stage has interface circuitry to

acquire the signal from the microphone as well as initial signal processing. This processing may include

signal conditioning and filtering, frequency decomposition as well as signal enhancement.

Figure 2 shows the FPAA as a prototyping device for audio signal processing applications. Our

approach to audio processing includes a range of signal processing algorithms, that fit into the pathway

between speech production (source) and perception (human ear). These algorithms are implemented by

non-linear processing of sub-banded speech signals for applications such as noise suppression or hearing
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compensation, by proper choice of the non-linearity. In addition, the outputs of the non-linear processor

can be taken at each sub-band, for speech detection instead of recombining to generate a perceptible

signal for the human ear. Using this general framework, a variety of non-linear processing can result

in applications in speech classifiers and hearing aid blocks. Here, we focus on the application of

speech enhancement by noise-suppression, targeting word recognition in noisy environments. Detailed

experimental results for a noise suppression application are discussed in [9], where the speech-enhanced

sub-band signals are recombined together. For a speech recognizer, we use the enhanced sub-band

signals directly to extract basic auditory features.

Figure 2. High level overview: The FPAA can be used for a variety of audio processing

applications using the signal framework described. The first stage is a frequency

decomposition stage followed by a non-linear processing block. The non-linear circuit can

be used to implement the SNR estimator and a soft-threshold,which sets the gain in each

sub-band. The gain control is implemented using a multiplier. Transient results from a

MATLAB simulation of a 4 channel system is plotted. The noisyspeech is gray, while the

processed speech is in black.
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The second stage of the speech classifier consists of the probability generation stage that detects basic

auditory features and supplies input probabilities to the state decoding stage. These enhanced sub-band

signals undergo first-level information refinement in the probability generation stage, resulting in a sparse

“symbol” or “event” representation. This stage maybe implemented as an Artificial Neural network

(ANN), Gaussian Mixture model (GMM) or a Vector Matrix Multiplier (VMM) + WTA classifier. A

typical 2-layer NN has synaptic inputs represented by the VMM and the sigmoid modeling the soma

of a point-neuron. Alternatively, we can have synaptic computation followed by a competitive network

modeled by the WTA.
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We show in [10] that a single-stage VMM + WTA classifier can be used as a universal approximator,

in contrast to an ANN implementation which requires two layers to implement a non-linear decision

boundary. Figure3 shows the comparison in circuit complexity of a two-layer ANN and a VMM + WTA

classifier. A1-layer NN requires the computation of a Vector-Matrix Multiply (VMM) + neuron. The

addition of various weighted inputs is achieved through Kirchhoff’s Current Law (KCL) at the soma

node, adding all currents. The computation at the neuron is governed by the choice of complexity in

the model. Usually, for moderate size of the network, the synaptic computation dominates the neuron

computation. The sigmoidal threshold block for the soma nonlinearity in a NN can be implemented in

voltage mode by converting the current output from the VMM into voltage and using a voltage-mode

threshold block, or in current mode with anarcsinh(.) block. Either of these implementations require

more transistors per neuron compared to a WTA, which requires as few as2 transistors per neuron.

Figure 3. Basic auditory feature extraction and probability generation stage: The speech

input undergoes frequency decomposition or enhancement resulting in sub-band signals. The

probability generation block can be implemented using an ANN, GMM or the VMM + WTA

classifier. The circuit complexity is halved by using a VMM + WTA classifier.
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The VMM + WTA classifier topology has the advantage of being highly dense and low power. Each

multiply is performed by one single transistor that stores the weight as well, and each WTA unit has

only 2 transistors, providing very high circuit density. Custom analog VMMs have been shown to be

1000× more power efficient than commercial digital implementations [11]. The non-volatile weights

for the multiplier can be programmed allowing flexibility. The transistors performing multiplication are

biased in deep sub-threshold regime of operation, resulting in high computing efficiency. We combine

these advantages of VMMs with the reconfigurability offeredby FPAA platforms to develop simple

classifier structures.

In this paper, we demonstrate the state decoding stage of a simple YES/NO wordspotter. We have

implemented an HMM classifier using bio-physically based CMOS dendrites for state decoding. For all
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experimental results in this paper, it is assumed that we have the outputs of the feature and probability

generation stages.

We shall describe an HMM classifier model and its programmable IC implementation using CMOS

dendrites. The first part of this paper describes the similarity between a single dendritic branch and

HMM branch, in addition to exemplifying its usage to computea metric for classification. An HMM

classifier is modeled comprising of these dendritic branches, a Winner-Take-All (WTA) circuit and other

supporting circuitry. Subsequently, the computational efficiency of this implementation in comparison

to biological and digital systems is discussed. Intriguingly, this research substantiates the propensity

of computational power that biological dendrites encompass, allowing speculation of several interesting

possibilities and impacts on neuroscience. It is in some ways a virtual visit into the dendritic tree as

was suggested by Segevet al. [12]. This paper further explores the interlinks between neurobiology,

Hidden Markov Models and CMOS transistors based on which we can postulate that a large group of

cortical cells function in a similar fashion as an HMM network [4,7]. Section II describes the similarities

between a dendrite branch and an HMM branch. We discuss the similarities between a simulated HMM

branch and experimental results using a CMOS dendrite branch. In Section III, we discuss the single

CMOS dendrite in detail. We will present experimental results for the line for different parameters. We

also discuss the simulation model that we have developed andthe similar results seen. In section IV, we

discuss the Analog HMM classifier implementation. We discuss the experimental results for a YES/NO

wordspotter for different sequences. In section V, we discuss the tools that made the implementation

of this classifier structure possible. In section VI, we willdiscuss the computational efficiency of the

system as compared to digital and biological systems. In thefinal section we will summarize the results

and discuss the future possibilities.

2. Dendritic Computation and the HMM Branch

For a typical HMM used for speech recognition, the update rule is given by:

φi[n] = bi[n]((1− ai)φi[n− 1] + ai−1φi−1[n− 1]) (1)

The probability distributionbi[n], represents the estimate of a symbol (short segment of

speech/phoneme) produced by a statei in framen. φi[n] represents the likelihood that a particular

state, was the end-state in a path of states that models the input signals [13] as shown in Equation (1). ai
is the transition probability from one state to another. In atypical speech recognition model, the states

would be phonemes/words and the output would represent the audio signal produced by the subject.

The features of the audio signal tend to vary for different subjects. The goal of this classifier model

is to correctly classify a sequence of symbols with some tolerance. For an HMM state machine for

speech recognition using CMOS dendrites, the inputsbi[n] can be modeled as Gaussian inputs as shown

in Figure4a, which is typical forbi[n] for speech signals with an exponential rise-time and fall-time.

In Figure 4b, the likelihood outputs for each state shows a very a sharp decay and has a very high

dynamic range.
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Figure 4. Simulation results for an HMM state machine based on a Mathematical HMM

model built using MATLAB (a) Input probability distribution of different symbols varying

with time; (b) Likelihood outputs of all the states on a logarithmic scale; (c) Normalized

likelihood outputs of all the states. The outputs were normalized by multiplying them with

an exponential function of the formexp(n/τ).
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Figure 5. CMOS implementation for a dendritic branch and experimental results.

(a) Dendrite with increasing diameter as typically seen in pyramidal cells. We refer this

increasing diameter as “taper”; (b) Co-relation between basic left-to-right HMM branch and

a CMOS dendrite branch with “taper”; (c) Resulting IC implementation using programmable

analog floating-gate pFETs. For the CMOS dendrite the “taper” is modeled by increasing

the axial conductance from left-to-right; (d) Experimental results showing the outputs from

each tap of the CMOS dendrite. These outputs are equivalent to likelihood outputs from the

HMM states. The output doesn’t decay completely but attainsa new dc level. Note that we

did not do normalization explicitly for the outputs of the dendrite as the decay is not as sharp

as seen in HMMs. All taps are set initially to have the same membrane voltageVmem.
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To limit this range, we normalize this output with an exponential function. It can be observed that

the normalized likelihood is similar to an EPSP signal with an asymmetric rise and fall time. For a

singlen-stage dendritic line with “taper”, if we applied sequential EPSP inputs at subsequent nodes, the

output observed at the end of the line is as shown in Figure5d. A “taper” signifies the changing diameter

through the length of a dendrite. It represents the normalized likelihood outputs of an HMM classifier.

The Gaussian inputs for the HMM model can be modeled using synaptic currents for a dendrite which

is also typical for biological systems.bi(t) is thus represented as the synaptic current into each node.

The output voltage of each tap of the dendrite represents thelikelihoodφi(t) of an HMM state. This can

be linearly-encoded or log-encoded depending on the regionof operation. For the dendritic system, no

normalization is done as the decay is not as sharp as seen in the HMM branch for a wide dynamic range.

For a continuous-time version of Equation (1), the update rule is given by,

φi(t) = bi(t)((1− ai)φi(t− τ) + ai−1φi−1(t− τ)) (2)

where,bi(t) is the input probability of symbol in statei; andφi(t) is the likelihood of a statei at time

t; τ is the time index between two consecutive time indexes andai is the transition probability between

adjacent states. Even though the state sequence is implied,one cannot assume a definitive observation

of transition between the states. This is the reason why it iscalled Hidden Markov Model although

the state sequence has a Markovian structure [14]. Continuous-time HMMs can be represented as a

continuous-time wave-propagating PDE as given in Equation(3) [15].

τ
∂ϕ (x, t)

∂t
︸ ︷︷ ︸

state
element

+

(
1

b (x, t)
− 1

)

ϕ (x, t)

︸ ︷︷ ︸

decay
term

+ a (x)∆
∂ϕ (x, t)

∂x
︸ ︷︷ ︸

wave
propagation

= 0 (3)

where,∆ is the distance between two state nodes. This can be comparedto analog diffuser circuits. Also,

an HMM branch and a dendrite branch have similar looking topologies and similar wave-propagating

properties. The HMM state machine used, as shown in Figure4a, is a left-to-right model. Studies have

shown that a biological dendrite also does not have a constant diameter [16]. Its diameter at the distal

end is smaller as compared to the proximal end as shown in Figure5a,b [17]. Thus, for a similar CMOS

dendritic line that is uni-directional, we would expect theaxial conductances of the line to increase from

left-to-right as shown in Figure5c. This is the case of a dendrite with “taper”. Such a topologyensures

that the current flow is uni-directional. This also favors coincidence detection in the dendrite. We can

compare the continuous-time HMM to an RC delay line with “taper”. For this let us analyze the behavior

of an RC delay line with and without taper.

2.1. RC Delay Line without Taper

The classical RC delay line is reviewed in Mead’s text [18]. Figure6 shows the topology. Kirchhoff’s

Current Law (KCL) can be used to derive a differential equation for this circuit, given by Equation (4),

whereG is conductance.
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Figure 6. RC delay line representing a dendrite. The Rs represent the axial resistances, the

Gs represent the leakage conductances and C is the membrane capacitance.

R
i

Gi C

R
i+1

Gi C

Ii (t) = Ci
dVi(t)
dt

+ Vi (t)Gi +
[Vi(t)−Vi+1(t)]

Ri−1

+ [Vi(t)−Vi−1(t)]
Ri

(4)

Assuming the horizontal resistances are equal as given in Equation (5) allows one to simplify

Equation (4) to Equation (6):

Ri = Ri−1 = Rx (5)

Ii (t) = Ci
dVi(t)
dt

+ Vi (t)Gi

+ 1
Rx

[2Vi (t)− Vi+1 (t)− Vi−1 (t)]
(6)

Assuming there are many nodes allows one to perform the following change of notation from discrete

nodes to continuous nodes:

Vi(t) = V (x, t) (7)

Vi+1 (t) = V (x+∆x, t) (8)

Vi−1 (t) = V (x−∆x, t) (9)

Assuming that∆x represents a “position delta” one may use the Taylor series to describe the

continuous nodes in terms of∆x, Equations (10) and (11).

V (x+∆x, t) = V (x, t) + ∆x
dV (x, t)

dx
+

1

2
(∆x)

2 d
2V (x, t)

dx2
+ · · · (10)

V (x−∆x, t) = V (x, t)−∆x
dV (x, t)

dx
+

1

2
(∆x)

2 d
2V (x, t)

dx2
+ · · · (11)

Substituting Equations (10) and (11) into Equation (6) and simplifying, yields Equation (12), the

generalized PDE describing the RC delay line diffusor.

Ii (t)Rx = RxCi
dVi (t)

dt
+RxGiVi (t)− (∆x)

2 d
2V (x, t)

dx2
(12)

If one assumes no input current at the top of each nodeIi = 0, then one can put the diffusor circuit

into a form similar to the continuous time HMM equation as given in Equation (13).

RxCi
dV (x, t)

dt
︸ ︷︷ ︸

state
element

+RxGiV (x, t)
︸ ︷︷ ︸

decay
term

− (∆x)
2 d

2V (x, t)

dx2
︸ ︷︷ ︸

diffusion
term

= 0 (13)

The impulse response of such a system is a Gaussian decaying function over time. In this case,

diffusion is the dominant behavior of the system.
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2.2. RC Delay Line with Taper

Assuming that HMM will always propagate to the next state andthere is no probability that it will

remain in its current state leads to the assumption as given in Equation (14) which can be substituted in

Equation (3):

a (x) = 1 (14)

For a dendrite circuit with taper, axial conductances are NOT equal and increase towards the right.

Using this assumption, Equation (4) simplifies to Equation (15):

Ii (t) = Ci
dVi (t)

dt
+ Vi (t)

[

Gi +
1

Ri

]

−
Vi−1 (t)

Ri

(15)

Substituting the Taylor series expansions of Equations (10) and (11) into the above we get:

Ii (t) = Ci
dV (x,t)

dt
+ V (x, t)

[

Gi +
1
Ri

]

− 1
Ri






V (x, t)

−∆x
dV (x,t)

dx

+1
2
(∆x)

2 d2V (x,t)
dx2






(16)

Assuming that

∆x ≪ 1 (17)

we can neglect higher order terms of the Taylor series.

(∆x)
2
≈ 0 (18)

We can see in Equation (16) that there is still some diffusion that can be seen in the line. It is however

negligible as the wave propagation term is more dominant. Re-arranging terms and assuming no input

current we get:

0 = RiCi
dV (x, t)

dt
︸ ︷︷ ︸

state
element

+ V (x, t) [GiRi − 1]
︸ ︷︷ ︸

decay
term

+∆x
dV (x, t)

dx
︸ ︷︷ ︸
wave
propagation

(19)

Table1 closely examines the similarities between a RC delay line and an HMM PDE.

Table 1. Comparing HMM PDE and RC Delay Line Terms w/Assumptions.

Element description HMM PDE RC delay line

Recursion variable ϕ (x, t) V (x, t)

State element coefficient τ RiCi

Decay term coefficient 1
b(x,t)

− 1 GiRi − 1

Wave propagation/diffusion term K ∂ϕ(x,t)
∂x

K dV (x,t)
dx
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3. Single Line CMOS Dendrite

Since dendrites have computational significance, it is interesting to explore computational models that

can be built using dendrites or a network of dendrites. One such application is classification in speech

recognition. We have already discussed the similarities between an HMM branch and a dendritic branch.

To test this hypotheses, we implemented a single dendritic branch with spatially temporal synaptic inputs.

We compared a single CMOS dendritic branch implemented on a reconfigurable analog platform and

a MATLAB Simulink simulation model based on the device physics of CMOS transistors. Figure7

shows a complete overview of how CMOS dendrites are modeled and also the experimental results for a

6-compartment CMOS dendrite. The inputs to the dendrite aresynaptic currents. In biological systems,

synaptic inputs can be excitatory and inhibitory in nature.However, in this paper we assume that we

have excitatory synapses as a majority of contacts on a pyramidal cell are excitatory in nature. As

discussed before the dendrite does not have a constant diameter. This implies that for a CMOS dendrite,

the conductance of the dendrite increases towards the somai.e., from left to right [17]. The inputs will

also decrease in amplitude as conductance increases. This ensures that an input closer to the soma does

not have a larger effect than inputs farther away. This indicates decreasing synaptic strengths of inputs

down the dendritic line. This has been observed previously in biological dendrites [16]. Thus, we also

varied the synaptic strengths of inputs in our experiments.We implemented the single dendritic line both

as a CMOS circuit model and a MATLAB Simulink simulation model. We found that the comparison of

our experimental and simulation results were fairly close.This is demonstrated in Figure8.

Figure 7. System overview for a dendrite branch. (a) Detailed diagram for a single dendritic

line which is equivalent to an HMM branch; (b) The representation of input voltage on the

source of the transistor representing the input synapses; (c) The asymmetric triangular input

voltagesVsyn on the source of the transistor representing the input synapses.Isyn, the input

synapse currents into each of the different nodes is proportional toVsyn; (d) Vota, the output

of FG-OTA which has a gain of approximately20; (e) Vout, the output voltage at each node.
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Figure 8. Simulation Datavs. experimental data comparison. The dotted lines depict the

simulation data and the solid lines are the experimental data. The parameters for simulation

data areVLeak = 0.5V , Vaxial = 0.5V , κ = 0.84, I0 = 0.1fA, C = 1.3pF , Ek = 1V ,

Vdd = 2.4V .
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3.1. Inputs to the PFET Source

The input probabilitiesbi(t) are represented as log-compressed voltage signal at the dendrite node.

To generate EPSP input currents into each of the dendritic nodes, we input an asymmetric triangular

wave voltage at the source of the pFET FG-FETs. This generates typical EPSP signals, which have a

faster rising time and a slower fall time. By varying the magnitude of the triangular waves we were able

to control the input current into each of the nodes of the dendrite. This can be seen in Figure7c. The

current of a transistor is exponentially proportional to its source voltageVS.

Isyn = I0e
κ(VS−VG)/UT (e−(VS−VD)/UT − 1) (20)

where,VS = Vdd. This enables us to generate EPSP-like inputs for the CMOS dendrite. All input

representations shown thus are voltage inputs on the sourceof the transistor, that acts as synapse at every

node of the dendrite.
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3.2. Single Line Dendrite Results

We implemented a single 6-compartment dendrite. Each compartment consisted of 3 FG pFETS

for the axial conductance, the leakage conductance and the synaptic input respectively. We present

experimental results for the same. To test the behavior of dendrites for a typical speech model, we varied

three parameters namely: “taper”, delay between inputs andthe EPSP strengths of the synaptic inputs.

In terms of “taper”, two approaches were tested. One without“taper” and the second with increasing

“taper”. Results are shown in Figure9a. We observed that by using “taper” we could ensure that the

input current would transmit more in one direction of the dendritic cable. To achieve this we increased

the axial conductance of the cable down the line, such that maximum current tends to flow to the end

of the cable. At every node of the dendrites we input EPSP currents in a sequence. This is similar to a

speech processing model, where all the phonemes/words are in a sequence and based on the sequence

we classify the word/phoneme. We then varied the delay between the input EPSP signals as seen in

Figure9b. It was observed that as the delay between the inputs increases, the amplitude of the output

decreases. This implies that as outputs are spaced farther apart, there is less coincidence detection. The

third parameter varied was the strength of the EPSP inputs, with the difference in EPSP strengths of the

first node and the last node increasing for subsequent plots as seen in Figure9c. The EPSP strengths near

the distal end are larger than the EPSP strengths near the proximal end. Evidence for the same has been

shown in biology [16]. It was observed that as the difference in amplitude was increased, the amplitude

of the output reduced. The study of the variation of these parameters showed the robustness that such

a system would demonstrate in terms of speech signals. The difference in delay, models the different

time delays between voice signals when a word is spoken by different subjects. The difference in EPSP

strengths ensures that the impact of all the phonemes on the output is similar for detection of a word and

not dominated by just the last stage.

In Figure10, we have studied the trends that one would observe collectively for different parameters.

The output metric here is the difference of amplitude of lastnode when all inputs are present and when

only the last input is present. We observed that as we increased the timing difference between various

inputs, the final metric of the line decreased as seen in Figure10b. We simulated the dendritic branch to

observe the effects a wide range of time delays between inputs as shown in Figure10c. We observed that

the output metric decreased as we increased the delay between the inputs for a line. And for the cases

where we reversed the sequence, the amplitude was very closeto zero. This clearly demonstrates that if

the sequence of the inputs is not in succession, there will beno word detection. Also, the output metric

decreases as the delay between the inputs increases.
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Figure 9. Experimental results for a single branch 6-tap dendrite fordifferent parameters.

The three main parameters that govern the output of a dendrite are, namely the taper of

the line, the spatial-temporal characteristics of the synaptic inputs and the strength of the

synaptic inputs. All results are from the last tap of the dendrite. (a) Metric changed is the

taper of the dendrite. For subsequent figures, the taper is increased from no taper to a larger

taper. The diameter of the dendrite increases down the line which is achieved by increasing

the conductances of the axial transistors from left to right; (b) Metric changed is the delay

between EPSP inputs into each of the taps of the dendrite. In the first case we have zero

time unit delay, 10 time units delay(2ms) for second and 20 time units delay(4ms)for the

third diagram in the sequence. One time unit =0.2ms; (c) Metric changes is the difference

between the EPSP strengths of the input signals. In the first case, the difference is 10 mV,

50 mV for the second and 100 mV for the third case. As can be seenin the graph we can see

decreasing amplitude as the difference in EPSP strengths increases
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Figure 10. Experimental results, simulation results and trends observed for a single line

dendrite. We varied the input sequence with respect to the time difference between signals.

The output metric in this case is the difference between the output of the dendrite when

all signals were present and output of the dendrite when onlythe last input was present.

(a) Diagram depicting the decreasing EPSP inputs into a singleCMOS dendrite line; (b)

Experimental data showing change in peak to peak amplitude for a dendrite as the EPSP

inputs into each of the nodes decrease down the line; (c) Change in amplitude of the output

with respect to increasing difference in the EPSP amplitudes as we progress from left to

right down the line.tdiff implies the time delay between inputs. As we increase the time

delay the output metric reduces. Negativetdiff implies a reversed sequence of inputs, where

the output metric is zero; (d) Change in amplitude of the output with respect to increasing

difference in the taper of the dendrite. In this experiment,the diameter of the dendrite was

increased as we progress from left to right down the line.tdiff implies the time delay between

inputs. As we increase the time delay the output metric reduces. Negativetdiff implies a

reversed sequence of inputs, where the output metric is zero. The study of these parameters

showed the robustness that such a system would demonstrate in terms of speech signals. The

difference in delay, models the different time delays between voice signals when a word is

spoken by different people. The difference in EPSP strengths ensures that the impact of all

the phonemes on the output is similar for detection of a word and not dominated by just the

last stage.
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4. Analog Classifier for Word-Spotting

We will now discuss the complete classifier structure. We have built a simple YES/NO HMM

classifier using dendrite branches, a Winner-Take-All (WTA) circuit and supporting circuitry. We will

simplify the modeling of a group of neuron somas and the inhibitory inter-neurons as a basic WTA block,

with one winning element. We can consider the winning WTA output, when it transitions to a winning

response as an equivalent of an output event (or action potential). To build this network, we made a model

of a dendrite, initially a single piece of cable with branch points, where the conductance of the line gets

larger towards the soma end, and the inputs are excitatory synaptic inputs. For classification, we focus on

the ability for dendritic trees to be able to compute useful metrics of confidence of a particular symbol

occurring at a particular time. This confidence metric will not only be a metric of the strength of the

inputs, but also will capture the coincidence of the timing of the inputs. We would expect to get a higher

metric if the1st, 2nd, and3rd, inputs arrived in sequence, whereas we would expect a lowermetric for

the3rd, 2nd, and1st inputs arrived in sequence. This type of metric building is typical of HMM type

networks. Simple example being if the word “Y” “E” “S” were detected in a sequence as opposed to “S”

“E” “Y”. This is demonstrated by the simulation results as shown in Figure10, where when the input

sequence is reversed the output metric is zero. The output metric is defined as the difference in output of

last node when all inputs are present and when only the last input is present.

Figure 11. (a) The classifier structure with the normalization factor multiplied,

f(t) = et/τ ; (b) The classifier structure after normalization. This figure demonstrates that the

normalization is inherent in the system; (c) Detailed structure of the HMM classifier using

reconfigurable floating-gate devices. There are three main structures here : The dendrite

branches, the Winner-Take-All circuit and the supporting circuitry. The dendrite branch

consists of a 5-stage dendrite for both the branches representing the words YES and NO; and

a single stage dendrite to set the the threshold current. Thedendrites have synaptic inputs at

each node, which represent the phonemes of the word to be detected. When the output of a

dendrite exceeds the threshold limiti.e., if a YES/NO is detected, the threshold loses. The

supporting circuitry consists of a Vector-Matrix Multiplier (VMM) building block which acts

as a reset after a word is spotted [11].
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The network we built has two desired winning symbols, “YES” and “NO”. Each symbol is represented

by one or more states that indicate if a valid metric has been classified. Only the winning states would

be seen as useful outputs. The useful outputs feed back to theinput dendrite lines, and in effect reset

the metric computations. This is implemented using a Vector-Matrix-Multiplier block [11]. The system

block diagram is as shown in Figure11. Each of the dendritic lines for the desired winning symbols

has 5 states (dendritic compartments), where the inputs to the dendritic line represent typical excitatory

synaptic inputs.

4.1. Synaptic Inputs Model Symbol Probability

In speech/pattern recognition, signal statistics/features are the inputs to the HMM state decoder.

It generates the probability of the occurrence of any of the speech symbols. These signals when

grouped, generate a larger set of symbols like phonemes or words [13]. We assume we have these

input probabilities to begin with, as inputs to the classifier structure. We have taken inspiration from

Lazzaro’s Analog wordspotter for classification. However,we use a different normalization technique to

eliminate the decay as shown in Figure4c. We can draw comparisons for such a system to a biological

dendrite with synaptic inputs. We have modeled the input signals as excitatory synaptic currents. The

synaptic current is given by :

Isyn ∝ te−t/tpeak (21)

For a continuous cable,

τ
dV (x, t)

dt
+ V (x, t) = λ2(x)

d2V (x, t)

dx2
+R(x)Iinput (22)

Considering thatexp(t/τ) is the normalizing factor we have,

V (x, t) = V1(x, t)e
t/τ (23)

where,

τ
dV1

dt
+ V1(x, t) = λ2(x)

d2V1

dx2
+R(x)Iinpute

−t/τ (24)

V1(x, t) is the system output before normalization. From Equations (21) and (24), we see that the input is

similar to a synaptic current. Thus the inputs for the classifier using dendrites can be modeled as synaptic

currents. This is represented in Figure11a and Figure11b. The derivation has two implications. First,

we can use EPSP inputs to represent the input probabilities for phonemes. Second the system inherently

normalizes the outputs. In Figure12, the input to dendrite-1 signifies the phonemes of the word “YES”.

The inputs used were EPSP inputs that are similar to probability inputs bi(t) that in a typical HMM

classification structure would be generated by a probability estimation block. There is no input into

dendrite-2 which signifies that phonemes of “NO” were not detected. The threshold dendrite, dendrite-3

sets the threshold level. The WTA circuit determines the winner amongst the three dendritic lines. It

is observed that when “YES” is detected, dendrite-1 wins. This happens when coincidence detection is

observed at the output of dendrite-1. The winning line signifies the word that is classified. It is only when

all the inputs are in sequence and cross the given threshold that the dendrite line wins. In Figure12 we

demonstrate the classification of the word “YES”. The feedback from the WTA acts as a reset function
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for the dendrites, as after a word has been classified the threshold dendrite wins again. In Figure13, the

classification of words “YES” and “NO” in a sequence is demonstrated. In Figure14we show the effect

of timing and variation of EPSP strengths for input sequences.

Figure 12. Experimental results for the YES/NO classifier system. The results shown are

for the case when a YES is detected by the system (a) Synaptic inputs at the nodes of the

first dendrite and the line output for the first dendrite. Herewe assume we have the input

probability estimate for the phonemes (symbols) for the word YES; (b) Corresponding WTA

output for first dendrite. A low value signifies that it is winning; (c) The synaptic input

and output for the second dendrite; (d) Corresponding WTA output for the second dendrite;

(e) The line output for the third dendrite; (f) Corresponding WTA output of the third dendrite.

The third dendrite acts as a threshold parameter. The amplitude of the word detected on a

particular line needs to be higher than the threshold to win.
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Figure 13. Experimental results for the classifier system when a sequence of words is

detected. (a) First dendrite wins when the word YES is detected and the second dendrite

wins when the word NO is detected. The WTA inputs and outputs are shown; (b) Second

dendrite wins when the word NO is detected and first dendrite wins when YES in detected.
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The winning output of the WTA is akin to an action potential. In terms of classification too, the WTA

output signifies if a “word” has been detected. Our results have demonstrated that, such a system looks

similar to an HMM state machine for a word/pattern. We can postulate from these experimental results

that there are some similarities in computation done by HMM networks and a network of dendrites. The

results are shown in Figure12 for a single word and for continuous detection of words in Figure13. We

have demonstrated a biological model, built using circuitsthat is much closer than the implementation

of any HMM network to date. Thus we have shown that an HMM classifier is possible using dendrites,

and we have made a clearly neuromorphic connection to computation, a computation more rich than

previously expected by dendritic structures.

5. Reconfigurable Platform to Build Neuromorphic Circuits

In the sections below, we will give a brief overview of the experimental setup used for the study.

We used the FPAA, RASP2.8a for all experimental data and the software tool MATLAB Simulink and

sim2spice script to build the dendrite simulation block.

5.1. FPAA Review

All the data presented in this paper comes from a reconfigurable hardware platform. The

Field-Programmable Analog Array (FPAA) is a mixed-signal CMOS chip which allows analog

components to be connected together in an arbitrary fashion. Reconfigurable Analog Signal Processor

(RASP) was one of the first large scale FPAAs. It allowed us to build multiple complex circuits. The

specific chip used from the family of RASP chips for this research work is RASP 2.8a [19]. It is a

powerful and reconfigurable analog computing platform thatcan be used to build neuromorphic models.

It consists of thirty-two Computational Analog Blocks (CABs). The CAB consists of groups of analog

elements which include nFETs, pFETs, Operational Transconductance Amplifiers, capacitors, Gilbert

multipliers, among others. These act as the computational elements which together can form complex

sub-circuits that can be used to build analog computationalsystems. The interconnection of the CAB

components is achieved by the switch matrix. It essentiallyconsists of floating-gate (FG) pFETs. These

50, 000 programmable elements can be used not only as programmable interconnects for routing but

also as adaptive computational elements. The switch matrixallows for both local routing between

CAB elements as well as global routing. Last but not the least, it has the programmer block, which

selectively accesses a floating-gate device on the chip and through tunneling and injection tune it on, off

or operational in between. This is not only an efficient routing scheme but can enable implementation of

dense systems.

5.2. Dendrite on the Routing Fabric

We used floating gate pFET switches to build the network of dendrites. This would also enable us

to build denser networks as we scale the system. In our current system implementation for a single

dendrite, we implemented 5 dendritic compartments, with each compartment consisting of 3 floating

gate transistors. The most exciting aspect of implementingdendritic circuits using floating-gates is, that
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we can do so in a very compact manner. As stated above, the switch matrix of the RASP 2.8a FPAA is

completely made up of about 50,000 floating-gate elements. Thus huge arrays of dendrites can be made

using the switch matrix. Its inherent function is to interconnect components, which is similar to the

function of dendrites that are used to transmit signals fromone structure to another. Modeling dendritic

circuits using floating gates, however has a few complications. The reason being the capacitive coupling

from source and drain to the floating gate is more pronounced than regular pFETs [4]. Characterizing

this capacitive coupling between the source and the drain isimportant if precision is desired. Another

non-ideality that arises due to indirect programming is themismatch between the transistor that is

“programmed”versus the transistor that is actually used in the circuit. However, recently methods have

been developed to characterize this mismatch [20].

Nevertheless, floating-gates enable building very compactcircuits. This enables the building of larger

systems like HMM classifiers using CMOS dendrites. The advantage being that not only could we

individually program the FG-FETs for varying levels of charge to obtain taper easily but also could

build a denser network. This would be useful for building larger systems. Also one must also take into

account that neural systems are known to be inherently imprecise. Dendritic structures are not always

similar and synapses are very unreliable. So one can say thatthis floating-gate mismatch is similar to

dendrite-to-dendrite variability [4].

5.3. Simulink Model for Simulating CMOS Dendrites

Engineers have conventionally relied on digital systems like DSPs and FPGAs to implement

algorithms for signal processing. A lot of software tools are available that enable and simplify this

process. Thus existence of such intuitive software tools enables engineers to leverage the higher

computational efficiency offered by hardware systems.Our lab has developed sim2spice, which is a

tool that automatically converts analog signal processingsystems from Simulink designs to a SPICE

netlist [21]. It is the top-level tool in a complete chain of automation tools.The basic analog elements

consist of the CAB elements on the FPAA. All parameters of theblock are configurable. The Simulink

block mainly serves two purposes. First, it converts the block-level Simulink model into a spice netlist

which can be implemented on the FPAA. Secondly, it can also beused to run a behavioral simulation of

the circuit.

5.3.1. Dendrite Simulink Block

The Simulink block simulates the behavioral characteristics of the dendrite structure given input/s.

This provides the user an insight to the working of the dendritic circuit when implemented using

the FPAA. The MOSFET parameters used are based on the MOSFETSpresent on the FPAA. It is

characterized by coupled ordinary differential equations(ODE) and solved using the ode solver ode-45.

The model has been tested for both static as well as time-varying inputs and has given reasonable results.

For this paper we have used EPSP signals as inputs for the block. Consider a dendritic line as given
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in Figure5c, with n number of nodes. The voltage at each node can be calculated using the following

coupled ODE [4],

~dV

dt
=

1

C
(a1 · Iinj + k1(e

a2·~V /UT − ea3·
~V /UT )

+ k1(e
a4·~V /UT − ea5·

~V /UT )

+ k2(e
a6·~V /UT − eEk/UT ))

(25)

For taper, we changed the parametersk1 as it is proportional to axial conductances.

6. Classifier: Computational Efficiency

Current approaches for Automatic Speech Recognition (ASR)use Hidden Markov Models as acoustic

models for sub-word/word recognition and N-gram models forlanguage models for words/word-class

recognition. For HMMs, discriminative training methods have been found to perform better than other

Maximum Likelihood methods like Baum-Welch estimation [22] . Our dendritic model is similar

to a continuous-time HMM model and can be used to classify sub-phoneme, phonemes or words.

Typically, phoneme recognition models have a much higher error rate as they are much less constrained

as compared to word recognition models. Based on our comparison studies for different features we

hypothesize that our model would have higher tolerance levels and dynamic range. We have not used

an audio-dataset to characterize our system, rather we haveused symbolic representations to make a

hypothesis. These are experiments we plan to do int he near future. However, we can compare the

computational efficiency of these methods since we can modelthese systems mathematically. The

unit used to compare computational efficiency is Multiply ACcumulates (MAC) per Watt. The energy

efficiency at a given node of the system, depends on the bias currents, supply voltage and also the

node capacitance.

We know that the node capacitanceC is the product of conductance and the time constantτ . Now the

bias currentIbias for a dendrite node is given by,

Ibias = (Vrest − Ek)
C

τ
(26)

where,Vrest is the resting potential;Ek signifies the voltage of a potassium channel and G is the axial

conductance. Also, power is the product of voltage across the node and current into the node. Now for

a single node of an HMM classifier, we have 2 MAC/sample. Assuming τ ∼ delay , which at a given

node is approximately1ms. Thus,

Energy/MAC =
1

2
Vdd(Vrest − Ek)C (27)

We have compared the computational efficiency of digital, analog and biological systems as shown

in Table2. Now for a wordspotting passive dendritic structure, we have 2 MAC/node. Typical dendrite

would have over 1000 state variable equivalents in its continuous structure. For a particular neuron

time constantτ , we would want to have multiple samples for proper operation. For this discussion,

let’s assume an effective discrete time sample rate 5 times more thanτ . Let us chooseτ = 1ms

for this discussion. Thus, we have each tree computing 10 MMAC for an HMM computation. For
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biological systems, say the brain has1T neurons and total power consumption of about 20 W. Thus the

power consumption is20 pW/neuron. In a passive dendritic structure, the computational efficiency

is 10 MMAC /neuron. Thus the computational efficiency of biological systems works out to be

0.5 MMAC/pW. Also from the equation it is evident that a major factor contributing to energy efficiency

is node capacitance. Currently the node capacitance on the chip we used was1pF . If we further scale

down the process used, this number will also reduce. This effectively means higher computational

efficiency. A decrease to10fF itself will give us an improvement of 2 orders of magnitude. This is

depicted in Figure15.

Table 2. Comparing computational efficiency of Digital, Analog and Biological systems.

Computing type Computational efficiency

Digital (DSP) < 10MMAC/mW [23]

Analog SP (VMM) 10MMAC/µW [11,24]

Analog (wordspotter) > 10MMAC/µW

Neural process > 10MMAC/pW

Figure 15. Computational efficiencyversus capacitance plot for VMM (analog) and

dendritic computation algorithms forVdd = 2.5V [25].
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7. Conclusions

We have demonstrated a low-power dendritic computational classifier model to implement the

state decoding block of a YES/NO wordspotter. We have also found that this implementation is

computationally efficient. We have demonstrated a single dendritic line with 6 compartments, with
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each compartment having a single synaptic input current. Wehave seen the behavior of a single dendrite

line by varying three parameters, namely, the “taper”, the delay between inputs and the strength of the

EPSP input currents. The effects of taper which enabled coincidence detection were studied. We have

also seen the functioning of the WTA block with dendritic inputs and the how feedback helps initiate

the reset after a word/phoneme is detected. We also build a Simulink dendritic model and simulated

the output for time-varying inputs to compare with experimental data. This demonstrated how such a

network would behave if inputs were in a sequence or if they were reversed.

The broader impact of such a system is two-fold. First, this system is an example of a computational

model using bio-inspired circuits. Secondly the system proposes a computationally efficient solution

for speech-recognition systems using analog VLSI systems.As we scale down the process, we can get

more efficient and denser systems. We can also address how synaptic learning can be implemented and

classification systems be trained. We can also model the input synapses as NMDA synapses to get a more

multiplicative effect. In NMDA synapses, the synaptic strength is proportional to the membrane voltage.

It couples the membrane potential to the cellular output. This could lead to a more robust system and

is also closer to how biological systems are modeled. Also, we have modeled passive dendrites in this

paper. It would be interesting to see how the system behaves when we add active channels. We currently

have systems built that will enable us to further explore this discussion which is beyond the scope of

this paper. There is a lot of scope for discussing how to buildlarger systems using this architecture. We

can use spiking WTA networks for a larger dictionary of words. It is evident from the computational

efficiency discussions, that clearly analog systems are a better choice for higher computational efficiency

and lower costs. This calls for greater effort to build such systems. Reconfigurable/programmable

analog systems open a wide range of possibilities in demonstrating biological processing and also for

signal processing problems. As shown in Figure16 there is great potential in other areas as image

processing and communication networks as well. These systems will not only enhance our understanding

of biological processes but also will help us design more computationally efficient systems.

Figure 16. Different applications using the Pattern Recognition system based on biology. It

has application in speech and image processing and in communication systems. The state

decoder in this paper is one block that is part of the whole system level design that we plan

to build.
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