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Abstract: The focus of this work is to develop a starting framework for analog numerical analysis
and related algorithm questions. Digital computation is enabled by a framework developed over
the last 80 years. Having an analog framework enables wider capability while giving the designer
tools to make reasonable choices. Analog numerical analysis concerns computation on physical
structures utilizing the real-valued representations of that physical system. This work starts the
conversation of analog numerical analysis, including exploring the relevancy and need for this
framework. A complexity framework based on computational strengths and weaknesses builds from
addressing analog and digital numerical precision, as well as addresses analog and digital error
propagation due to computation. The complimentary analog and digital computational techniques
enable wider computational capabilities.

Keywords: FPAA; analog numerical analysis

1. Introduction

The range of digital and recent analog computation (e.g., [1]) leaves the system application
designer wondering what approach to utilize for different computational pieces. Figure 1 shows the
designer’s dilemma choosing analog or digital computing platforms. Digital computation is enabled by
a framework developed over the last 80 years. Most system designers will choose digital computation
over analog computation explicitly or implicitly because a digital framework exists, and the core of
their STEM education, even when it results in drastically lower performance. Hardware-software
co-design, almost entirely digital co-design between processors and FPGAs, is a currently researched
discipline (e.g., [2–8]). Having an analog framework enables wider capability while giving the designer
tools to make reasonable choices.

The focus of this work is to develop a starting framework for analog numerical analysis and
related algorithm questions. My working definition of numerical analysis is the mathematical and
algorithmic computational framework including the tradeoff of algorithms, numerical representations
and resulting error propagation (e.g., Signal-to-Noise Ratio (SNR)), in a particular physical computing
structure. All computation occurs in physical devices, even though the representation may be abstract
or idealized. The particular physical structure used for computation influences the choice of particular
computational algorithms. Digital numerical analysis concerns computation on synchronous
digital hardware. Analog numerical analysis concerns computation on physical structures utilizing
the real-valued representations of that physical system.

We see this work as starting the conversation of analog numerical analysis. This discussion
will build a starting foundation for analog numerical analysis over the next several sections. These
sections will address both digital and analog considerations and their comparisons, as appropriate.
The first section explores the relevancy and need for analog numerical analysis, in particular,
given the demonstration of analog computation. The second section addresses analog and digital
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numerical precision, the strength of digital numerical techniques. The third section addresses
analog and digital error propagation due to computation, an apparent strength of analog numerical
techniques. The fourth section then builds a complexity framework based on computational strengths
and weaknesses. The complimentary analog and digital computational techniques enable wider
computational capabilities. This paper presents a first-discussion on analog numerical analysis, a key
first step towards starting a unified physical-computing framework.

Digital Design Tools Analog Design Tools

Figure 1. When starting from potential programmable and configurable analog and digital
computational capabilities, an engineer must discern the right capabilities for particular parts
of her/his application. Analog numerical analysis complimenting digital numerical analysis provides
the framework to optimize application opportunities.

2. Why Analog Numerical Analysis?

Initially, one might wonder: Why consider analog computation at all? Although energy efficiency
in digital computation improved dramatically with scaling down of transistors, the issue of threshold
voltage (VT0) mismatch between transistors has effectively brought energy efficiency of commercial
digital ICs to a standstill [9,10]. This digital processing energy efficiency wall calls out for new solutions
to meet the appetite of the next generation of computing.

In 1990, Carver Mead hypothesized that custom analog solutions could have at least a 1000×
improvement over custom digital solutions [11]. This hypothesis gives hope that new computing
structures might be possible. A factor of 1000 improvement in energy efficiency is roughly equivalent
to the improvement from the start of DSP (1978) [12] to the digital energy efficiency wall of 10
MMAC (/s)/mW (MMAC = Million Multiply Accumulate). The computational capability of analog
computation compared to digital computation (1000×) lower energy/power, 100× lower area) could
possibly open the next wave of computing [13].

The following sections consider digital and analog computation, in turn.

2.1. Digital Framework Enables Ubiquitous Numerical Computation

Numerical analysis for digital computing seems like an established discipline [14–16]; coupled
with Turing’s original model of computation [17], one has a ubiquitous theory of modern computational
devices. When digital computation became more powerful and less expensive in the 1970s and 1980s,
digital numerical analysis techniques were already an established and growing discipline. These
techniques provided potential computational roadmaps for the exponential computational increase
from the digital VLSI revolution [18].

Numerical analysis provides guidance on the algorithmic approaches for numerical algorithms,
as well as preferred analytical representations, even if one is unaware of anything explicitly in
numerical analysis. Digital computation already had over 30 years of efforts in the numerical and
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algorithm analysis at the start of the digital VLSI revolution [18]; therefore, the computing framework
was rarely in question during the exponential growth of transistors and resulting computational
complexity. Digital computation became the dominant computational approach primarily because
of its programmability, empowering whole communities to program digital systems for a wide range
of applications, (e.g., using microprocessors (µP)), that would not ever design any physical system.

2.2. Analog Computing Has Arrived, But Lacks a Framework

Analog numerical analysis was never developed during the classical analog computing time frame.
Traditional analog computing was considered by multiple authors (e.g., [19,20]); the solutions were
a series of special case solutions with little overarching computational model (Figure 2). Analog
computation relied on individual artistic approaches to find the particular solution (Figure 2).
MacLennan provides a review of early analog computation [21].
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Figure 2. Digital and analog computation approaches based on their fundamental framework
(or lack of it). Digital computation builds from the framework of Turing machines, setting up
the capability of computer architectures, computer algorithms and resulting numerical analysis.
This framework becomes the basis for our day to day digital computing, such as laptop computing.
Analog computation is perceived to have little computational modeling, as well as architectures and
algorithms. The resulting analog computing designs, where built, seem more like bottom-up artwork
rather than top-down digital computing design.

The modern development of analog computation started with almost zero computational
framework. Modern analog computation started simultaneously with neuromorphic (including
neural network) resolution in the 1980s (e.g., [22–24]); these two fields have been tightly linked
ever since. The lack of a computational framework gives some understanding why large-scale
analog computation has taken so long to be realized since the renewed interest in physical/analog
computation. The requirement of a ubiquitous long-term memory and computing element, first
introduced in 1994, became essential for practical analog computation [25]. Without configurable and
programmable systems, analog computing discussions are mostly of a theoretical nature. Further,
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the success of programmable digital approaches nearly pushed out generations of students being
familiar with analog computation, as well as basic analog circuit design.

Many memory devices and circuits are used for analog memories. State variables provide
short-term memory of previous events. A first-order low-pass filter (e.g., capacitor and resistive
element) has memory of past events (e.g., [24]), efficiently using typically-occurring state variables
as part of the computation rather than fighting against these devices. These techniques are typically
limited to the order of 1-s timescales. Floating-Gate (FG) devices and circuits (e.g., [25]) have
provided long-term memories for analog computation, enabling very precise programming of values
(e.g., 14 bit [26]) for long-term lifetimes (e.g., [27,28]). Memory elements on the order of minutes or
longer tend to be more challenging, but possible using adaptive FG techniques from ms to years [29,30],
at reasonably low power, including in configurable spaces [31]. Another potential option will be using
other long-time-dependent devices, like memristors [32], demonstrated to be integrated with this form
of computation. Sometimes long-delay lines are required for a particular operation (e.g., linear-phase
filters). These can be achieved by cascades of delay stages (e.g., ladder filter [33]), as well as distributed
analog arithmetic [34] that uses digital intermediate representations for delay stages. Other sampled
memory approaches are used when the incoming data are already sampled, with a variety of additional
techniques possible (e.g., [35]). The most efficient physical computation is one operating at the speed
of the incoming data (and/or speed of output data) to minimize the amount of memory storage.
This type of memory storage always adds additional complexity, costs a significant amount of power
for an analog computation and typically adds cost to digital computation, as well.

Programmable and configurable ultra-low power computation due to physical (e.g., analog)
computing is becoming a reality. The capability of programmable and configurable analog/mixed
mode computation, large-scale Field Programmable Analog Arrays (FPAA) (e.g., [1]), enables
ubiquitous use of this technology similar to the use of microprocessors and related programmable
digital hardware (Figure 3). The SoC FPAA configurable fabric uses inter-digitized analog and digital
computation blocks, blurring the boundary between these two domains. Data-converters or their more
general concepts, analog classifiers, typically have digital outputs and require digital control. Most
analog computation will require both analog and digital parts.

Giving a causal look at Figure 3, one notices that Analog (A) CABs (CAB = Computational Analog
Block) and Digital (D) CLBs (CLB = Computational Logic Block) columns are interdigitated. One might
have expected a bank of analog components and a bank of digital components with data converters
(ADCs and DACs) moving between these two regions. Figure 3 does not use this approach. Analog or
digital signals can be routed on the same fabric [1] and can be used by CABs or CLBs. Early attempts
at these approaches were considered earlier [36,37]. Why would one take this approach? For example,
if one needs to compile an ADC, one needs some analog and some digital processing. Where one
would put the ADC is not clear and entirely system dependent. Building classifiers have analog inputs
and digital outputs. Analog or digital signals could be routed to the processor’s general purpose
I/O or to its interrupt lines. Digital symbols are often used to control the analog processing data
path. Once one gets beyond artificial boundaries between analog and digital processing, potential
opportunities are significant, particularly when high-performance computing (ODEs, PDEs) are done
by analog methods.
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Figure 3. SoC large-scale Field Programmable Analog Array (FPAA) device and comparison of
power-efficient computational techniques in MAC (/s)/W, including digital, analog Signal Processing
(SP) techniques, and the potential for neuromorphic physical algorithms. There have been amazing
improvements of three orders of magnitude in digital technology from speak-and-spell devices [12]
to current day smart phones. The analog SP approaches have the promise of similar advancements
by three orders of magnitude, as they become a stable capability. Biological neurons show a potential
of five more orders of magnitude of improvement, opening further opportunity for efficient
computational devices.

The design tools (and abstractions) [38,39], infrastructure [40] and FPAA ICs [1] developed
have reached a stable point, across multiple IC fabrication processes [41], where they are used
in educational [40] and research environments. The open-source design tool framework utilizes
a graphical, high-level data flow language and automatically compiles, places, routes and programs
the configurable IC, as well as macro-modeled simulation of the system (Figure 4).

It has already been shown that certain functions such as Vector-Matrix Multiplication (VMM),
frequency decomposition, adaptive filtering and Winner-Take-All (WTA) are a factor of 1000×
more efficient than digital processing (e.g., [1]). Recent demonstrations show sensor processing
through embedded classification and machine learning techniques integrating training algorithms [42].
Enabling further biologically-inspired classifier techniques opens the opportunity for configurable
biologically-inspired, energy-efficient classifier approaches (factor of 1000 to 1,000,000 over custom
digital solutions) [43] for context-aware applications (Figure 3).

One might wonder if fundamental analog building blocks, both in hardware and in the software
tools, can be reasonably determined in a similar way one uses look-up tables and flip-flops for FPGA
designs? We will summarize the key points here; the detailed discussions are beyond the scope of
this paper.

Digital FPGA components did not start off being obvious. The approaches used came from
the same individuals who were working on look-up tables and and-or logic components. There was
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not a methodology, but rather a good approach that, when scaled up, has been effective. Today, these
approaches seem sufficient for most tasks, particularly since FPGA architectures are partially hidden
from their users.

Analog computation has not had a similar set of blocks because analog computation did
not build up a computational framework to enable the transition to these higher levels. The rise
of FPAA approaches has become the testbed to begin to build this framework. Comparing the CABs
of early papers [44] to the CAB topology of recent FPAA designs (e.g., Figure 2 in [1]) shows some
similar characteristics, validated by numerous circuits designed and measured in these architectures.
Over a decade of consistent FPAA development and application design has roughly converged on
a typical mixture of several medium level components per CAB (Transconductance Amplifiers (OTAs),
FG OTAs, T-gates), along with a few low level elements (transistors, FG transistors, capacitors).
A few CABs might be specialized for larger functions (e.g., signal-by-signal multipliers [1], sensor
interfacing [45], neurons [36]), showing their relative importance in these discussions. Most of these
elements have at least one FG parameter that is part of the particular device used. For small to moderate
CAB components, the complexity of the resulting device is roughly proportional to the number of pins
available for routing. Three terminals of an nFET transistor have similar system complexity to three
terminals of an FG OTA. We expect some small shifts in these components in future FPAA devices,
such as dedicated current-conveyer blocks, but generally, the CAB level components are stable. Like
FPGAs, where the number and size of LUTs vary from architecture to architecture, one expects similar
variation for different FPAA devices.

Early recognition of FG switches (e.g., CAB selection crossbars) as computational elements [46]
both enabled a wide range of computations (e.g., VMM [47]), as well as brought creative energy
to the routing infrastructure (history described in [1]) and resulting novel tool framework. In such
architectures, the CAB components become as much the boundary conditions for the computation
as the computation itself. Finally, the ability to abstract analog blocks, with digital components,
into higher level abstractions enabled by the Scilab/Xcos toolset starts to illuminate the higher-level
representations for analog computation.

Analog numerical analysis enables faster system-level designs enabling a roadmap for various
applications. The process requires bringing out the lore of a few master research groups to a wider
group of designers. The widespread emergence of analog computing hardware (e.g., [48,49] will only
accelerate this process.
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Figure 4. A typical measurement setup for SoC FPAA devices. The interface is a USB port to
communicate with and power the resulting board. Additional resources (like a Digilent function
generator + scope) can be easily used for further characterization.
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3. Digital Strength: Lower Cost Numerical Precision

After one appreciates the very real and practical possibility of programmable and configurable
analog systems, the next questions concern the noisy or low-precision issues real and perceived in
analog systems. The issue starts by noting mismatch between typical circuit components, particularly
transistors and capacitors, setting the performance of analog computing structures [50]. Analog
computation requires many devices, and therefore, accuracy is compounded by the larger number of
mismatched devices. For example, one study for real-time acoustic computation shows significant
degradation of system performance due to mismatch [51]; although some techniques can be used
to improve these models [52,53], without dealing directly with the mismatch, the performance
of these systems will always be limited. As IC processes shrink to smaller transistor dimensions
(e.g., 40 nm and below) and power supplies, these issues become almost insurmountable for analog
design. Digital computation being limited by VT0 mismatch [9] makes the situation for analog
computation look less likely.

Figure 5 shows the precision of storage and simple element SNR versus expected cost, showing
that analog has advantages for lower precision and showing digital has advantages for higher precision
after a particular crossover point. SNR is defined at the ratio of the largest signal, limited by hard limits
or linearity, to the smallest signal, limited by noise. Multiple authors have utilized this framework
starting from Hosticka [54], then by Vittoz for simple filters [55], and utilized by others for basic
computational blocks [56–59]. Digital computation has a moderate to low cost for adding additional
precision, although it starts with higher starting overhead. Digital cost is effectively proportional to
the number of bits = log2 (precision). As one adds another bit, one increases the apparent precision
of that value by a factor of two; doubling a register size significantly increases its precision (e.g., eight
bits at 0.4% to 16 bits at 0.0015%). To increase analog precision by one bit requires an increased cost
of least a factor of two classically, primarily to deal with component mismatch, as well as current
noise [60]. Analog precision cost is a polynomial function of the target SNR.

Analog programmability moves the crossover point, illustrated in Figure 5, to higher SNR levels.
The use of Floating-Gate (FG) devices (e.g., [25]) enables directly programming out these issues,
including accounting for a range of temperatures (e.g., [28,47]). Calibration of FG devices, particularly
in FPAA devices, has been extensively studied and experimentally shown [61,62]. Figure 6 shows
the significant opportunities of programmable FG analog concepts compared to alternative approaches,
a DAC for every parameter. Before these concepts were possible (e.g., [25]), the analog processing
community struggled for any reasonable solution for this approach (e.g., [63]). Neurobiological systems
seem to adapt around its mismatches to create precision in its analog computational structures [43].
With programmable systems, resolution is limited by thermal noise [60] and not in component
mismatch, resulting in a lower cost for similar precision.

A related issue is that input sensors rarely output SNR greater than 10 to 14 bits, although
the dynamic range might be a few orders of magnitude (e.g., a floating-point type representation,
whether analog or digital). The resulting analog starting precision for these typically analog
sensors matches with the resolution requirements of analog precision. Further, many initial sensor
computations require subtraction of similar values (e.g., spatial beamforming), resulting in lower signal
SNR independent of the computing approach. This catastrophic cancellation further matches analog
computing to the incoming data; higher precision is then primarily useful to offset any numerical
computation inaccuracies.
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between five and eight bits). Using programmable Floating-Gate (FG) techniques enable crossover
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Figure 6. FG parameters result in significantly higher parameter density (100× or larger). We
compare between FG parameters and the next closest solution, having an n-bit DAC at every device.
Optimistically, a DAC grows by a factor of two for an increase of one bit. At eight-bit DAC precision,
100 FG parameters is smaller than 1 DAC for 350-nm CMOS. We assume an increase for a DAC of
2× for one bit. Typically, the cost will increase at a higher level. Handling mismatch is a key risk for
any analog (as well as digital) system; only programmability makes analog computation practical in
a system (including high precision ADCs).

4. Analog Strength: Better Numerical Operations

This section considers the error propagation issues for computation, first for digital computation
and then for analog computation. Digital computation aligns well with matrix equation solutions.
Analog computation aligns well with the solution of differential equations, both Ordinary Differential
Equations (ODE) and Partial Differential Equations (PDE).
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4.1. LU Decomposition as the Basis of Digital Numerics

The question then turns to a question of the apparent low SNR of individual analog computations
aggregating into a larger computation. These algorithmic analyses tend to follow digital numerical
viewpoints modeling the propagation of digital noise (Figure 7). Digital summation is filled with
noise errors. The sum of two n-bit numbers half the time will be an n + 1 bit number. As the average
case, we potentially get 1

2 log2m due to the finite register, and potentially, we get 1
2 log2m due to

register overflow. One either handles fixed-point arithmetic issues by having large enough total
resolution for the summation to avoid overflow nonlinearities or handles floating-point arithmetic
issues by having enough mantissa bits to account for the Least Significant Bit (LSB) noise source.
The issue for digital computation is a large number of aggregate summations; 1024 summations will
lose five bits of precision on average and 10 bits in the worst case. For 16-bit registers, this error can
be significant; we have not addressed any further errors due to catastrophic subtraction of similar
numbers. Integration, often implemented as a sequence of summations, further compounds these
numerical issues. Further, integration must be approximated by a set of small regions. Too few steps,
and one gets low accuracy. Too many steps, and the summation errors result in low accuracy. The ODE
solution further complicates these issues with numerical stability issues (Figure 7), order of derivative
approximations, as well as stiff ODE computations.
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Figure 7. Illustration of basic computing operations, summation and integration, between analog
and digital approaches. Analog approaches tend to be nearly ideal in these situations, where digital
approaches accumulate significant noise and headroom errors in these processes. Analog approaches
need to be aware how these operations interface with the rest of the computation circuitry.

An engineer faced with these issues most naturally would try to reformulate a problem (ODE→
linear equation solution) to avoid these issues where possible. Matrix operations bound the number
of cascading numerical operations to the size (and sparseness) of the matrices. Matrix multiplication
of N×N matrices only has N length vectors for the O(N2) operation (as needed for LU decomposition),
and Gaussian elimination (typically less frequent computation) has at most N2 length data for the O(N3)
operation (e.g., citeNumAnal01). Further, some sparse techniques are based on iterative techniques,
further reducing the length of numerical computation for those techniques. The larger issue in LU
decomposition and other matrix inverses relates to eigenvalue spread, such as matrix condition
numbers, requiring high numerical precision for most operations to minimize these effects. We see that
most computational metrics all collapse to those forms of problems (e.g., LINPACK [64] (LINPACK is
a benchmark measure how fast a digital computer solves a dense n by n system of linear equations
Ax = b) ).

Figure 8 illustrates the classical issue of second order numerical integration (e.g., Simpsons
method for integrating sin x from zero to π/2) or first order finite difference ODE solution. At a
small enough step size, the numerical errors become larger than the errors due to the finite step size.
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Higher order ODE solutions will reach this point at a larger step size at different levels of accuracy.
The resulting error is O( f n+1), O( f n+1) for an order n-method, or an n-th order predictive step [15].
The resulting higher derivative often further increases the minimum step size point, particularly if
the functions are not analytic. Stiff ODE solutions are particularly sensitive to these issues, because
the wide separation of time constants requires long summation/integration computations.
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Figure 8. Classical picture for numerical integration (second order) or ODE solution as a function of step
size. Initially, error decreases as step size decreases due to the resulting order of the algorithm. As one
continues to decrease the step size, accumulated errors due to numerical noise become noticeable
and eventually become the dominant source of error.

4.2. ODE Solutions as the Basis of Analog Numerics

In the early days of neural network implementations (1987 to 1991), the typical lore was that
any realistic adaptive system (e.g., adaptive filter) would require 16-bit precision weights. Multiple
digital computations established this perspective at the time. Some followed this argument that analog
computing, just in its infancy, would never be successful because weights required too high precision.
Yet, analog adaptive systems did exist, from Widrow’s early adaptive filters [65,66], to additional
adaptive systems during a similar time frame [67–69].

Therefore, how could analog computing with six to eight-bit precise components, which is clearly
less precise than digital computation and certainly does not reach the 16-bit weights required for
adaptive filters, possibly outshine the performance of a digital system? This section looks to address
and answer this question by looking at the numerical behavior of digital and analog computation.

Figure 7 shows a comparison of the summation and integration operations in digital and analog
computation. Analog summation by charge or current (change of charge with time) is ideal due to
KCL, the physical summation of carriers. Depending on how the designer uses this output current
in further calculations can result in nonlinear effects; issues arise from the capability of the analog
algorithm design. A 16-tap FIR would average at two bits and in the worst case at four bits; analog
equivalent, Vector-Matrix Multiplication (VMM), has no signal loss and potentially an increase in SNR
for particular coherent signals. Comparing a 64-tap, 16-bit FIR block would be similar to a 64-bit eight-
to 10-bit analog VMM computation.
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Analog integration is also ideal (Figure 7), typically performed as a current (or sum of currents,
Ik) on a capacitor (of size C) as:

C
dVout

dt
=

n

∑
k=1

Ik (1)

where Vout is the computation result. The capacitors are the state variables for the system and the actual
state variables for the solution. Capacitors usually have very small temperature coefficients. Analog
computation naturally has infinitesimal time steps, with no errors due to these time steps, eliminating
accuracy issues arising from the order of numerical integration approximation. This framework shows
why analog computation is ideally suited towards solutions of ODEs.

When one uses analog summation and integration, one typically requires some amplifier
conversion step (e.g., current to voltage conversion), typically depending on the required dynamic
range and SNR required for that operation. Depending on the designer, better or worse solutions can
be chosen as in all engineered systems. The result of the final computation will have some noise or
distortion, where the added noise occurs at the end of the resulting computation and not affecting
the core numerics.

Figure 9 shows the comparison between analog and digital computation for solving the ODE
system for an adaptive filter. Adaptive filters are the simplest form of machine learning. Digital
computation requires long summations in the weight adaptation, weighted sum, as well as output
node integration. The average error due to these three effects results in a loss of 11 bits of accuracy (7 bits
weight accumulation, 2 bits FIR, 2 bits for 16 sample integration); the earlier lore of requiring 16-bit
arithmetic for adaptive filters seems justified. The analog system suffers none of these particular
degradations; both systems have noise in the multiplication and output components, the only
two sources of noise for the analog system. Further, slightly more complicated digital adaptive
structures, like neural networks, require that the weight adaptation rate must slowly converge,
bounded by particular functions, to zero, to guarantee a solution. Analog networks have no such
convergence requirement and therefore can operate with continuous adaptation. Other examples, like
the dynamics of the VMM + WTA classifier [70] without adaptation, result in equally challenging
multi-timescale solutions.
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Figure 9. Required numerical requirements for digital and analog adaptive filter computations.
Adaptive filters are two-timescale operations, with a fast timescale for signal computation (20 Hz to
20 kHz for speech computation) and a slow timescale for adaptation (<1 Hz for speech), with separation
between the two timescales.
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4.3. Analog Numerics for PDE Solutions

Numerical solutions of PDEs face both the overall complexity of the problem (large number of grid
points), as well as the numerical concerns due to error propagation due to derivative approximations,
phase error accumulation and numerical noise. Although some analog PDE solutions were utilized in
the 1960s and 1970s, one typically relates PDE computation with high performance digital arithmetic.
For digital computation, one does everything to transform the problem to a solution of the matrix
Equations [16] or a reduced solution of fundamental basis functions [71] wherever possible.

Energy efficiency, increased throughput and smaller computational area provide motivation
for considering analog techniques compared to standard digital approaches. Spatially-discretized,
continuous-time analog PDE solutions provide between ×10,000 (conservative case) and ×1,000,000
(average case) in energy efficiency, while achieving a ×100 improvement in computational area
in the same process. Example PDE solutions, built in FPAA infrastructure, confirm these
expectations [33,72–74]. Different forms of PDEs have been compiled and measured, including
elliptical PDEs (path planning [74]), diffusive PDEs (dendrites [75]), as well as hyperbolic and
hyperbolic with diffusion components (delay lines, dendritic word spotting, path planning [33,72,73]).
Figure 10 shows an analog computing example (on an FPAA) of a second order wave propagating
(hyperbolic), one-dimensional space and time, PDE. These PDEs have a constant velocity, analytically
solved through the method of characteristics [76]. Figure 10a shows the basic transformation between
an inductor-capacitor line and an OTA-capacitor line, and Figure 10b shows measured data from
a 10-tap SoC FPAA compiled ladder filter acting as a delay line. Further design details are given in the
referenced papers.

Classical digital PDE error accumulation (e.g., phase accumulation), primarily due to sampling
over time [16], is completely eliminated by this analog technique. These issues are further seen for
the stiff equivalent of PDEs, particularly near bifurcation points [77]. Continuous-time computation
eliminates constraining sample sizes in space and time [16]. One solves the physical system, so any
nonlinearities are effectively part of the problem (and the solution, like the analytic solution),
as opposed to error accumulating in the form seen in digital time-varying solutions. Analog systems
(properly designed) allow systems to run to arbitrary time lengths. Programmable devices allow for
programmable nonlinear grids. Further, one can recast problems, such as using spectral methods
Alternative solution methods could utilize sets of spatial basis functions, still solved in continuous
time. The resulting impact would enable a range of applications requiring PDE computations.
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Figure 10. Example of analog computing. (a) Implementation of a one-dimensional ladder filter for
computing inductor (L) and capacitor (C) lines. These components can be implemented in CABs or as
part of routing. (b) Measured data for a sine-wave input (5 kHz) to a 10-tap ladder filter implemented
on the SoC FPAA (350 nm IC).
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5. Analog Strength: Computational Effort (Energy) as a Metric for Digital and Analog
Numerical Computation

The energetic resources required for either analog or digital need to serve as another metric for
computation. This discussion interchanges energy and power consumption as required computation
resources because embedded processing systems will continuously repeat the resulting operation
at a required frequency. For digital systems, dynamic power is related to the required computation,
and for analog systems, the computational power is related to the bias current programmed to its
minimum functional level. Section 2 introduced the history of digital and analog computation,
with an initial discussion of low-power computation (Section 2.2).

Figure 11 illustrates the energy and area (e.g., size/number of processors) comparison between
digital and analog computation. This perspective started from Meads’s original work [11]. Roughly
several thousand transistors are required for digital multiply (16 bit) (e.g., [78]) versus one to two
transistors for an analog multiply, resulting in considerably lower capacitances to be charged and,
therefore, lower required energy. Analog approaches are tuned through only a few FG devices per
processing element. The transistor count also results in a 100× decrease in the required area. The small
size of the processing elements enables many parallel structures, so one might get efficient processing
by many slower computing units. Frequently, although not always, the analog devices are slightly
larger to get better analog properties than minimum size digital devices.

Multiplication

AnalogDigital

Size 

Energy/ 

operation

(digital: 

16bit)

2
0
 tran

sisto
rs

Iout

x1000

x100

x1

x1

Figure 11. Physical argument of analog versus digital computational efficiency, originating with Mead’s
original work [11]. A 16-bit digital and 12-bit analog multiplication + addition have similar accuracy
after a small length VMM operation. A digital multiplication requires roughly 5000 or more transistors
and greater than 1000 capacitors to charge per multiplication (e.g., [78]). Because analog devices tend
to be slightly larger than digital devices to get more ideal characteristics, the area improvements are
typically factors of 100. The two approaches use similar power supplies, where the analog is enabled
by programmable analog approaches.

Device to device mismatch limits the energy efficiency, as well as area efficiency and the
performance of yield-constrained digital systems. The energy efficiency wall (introduced in Section 2)
for digital computation [9], roughly around 10 MMAC(/s)/mW, is primarily constrained by
device-to-device mismatch. Timing accuracy between digital logic gates is essential for reliable
digital computation. Mismatch between MOSFETs causes considerable stress on any energy-efficient
digital designer.

Figure 12a shows two identical inverters with VT0 mismatch. Some recent efforts consider
power supply (Vdd) shifts for static operation considering VT0 mismatch [79,80], but timing is rarely
considered. FG tuned digital circuits, eliminating VT0 mismatch (e.g., [81]), could be widespread, but to
date, nothing beyond simple gates has been done other than the FG CLBs in the SoC FPAA structure.
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Figure 12b shows the timing delays from a single inverter for a typical VT0 mismatch (25.55 mV).
The calculation modeled the two (saturated) nFET currents in Figure 12a, I1 and I2, from the analytic
EKV MOSFET model [82]:

Is = Ithln2
(

1 + eκ(Vdd−VT0)/2UT
)
→ I2

I1
= eκ∆VT0/UT (subthreshold). (2)

where Ith is the current at threshold, κ is the gate voltage coupling into the MOSFET surface potential
(assumed matched in this example) and UT is the thermal voltage. Subthreshold current biases
would give the worst case mismatch (factor of two) in this example. Using classic transistor matching
relations [83], with a transistor load capacitance (CLoad), the energy and power (P) consumption are:

σ2 ∝
1

WL
, and P ∝ CLoad ∝ WL ∝

1
σ2 , (3)

showing that energy is directly related to transistor mismatch. The timing variance of a cascade of n
inverters scales from its single inverter delay as

√
nσ. The relationship would be similar for other logic

gates. For a cascade of six inverters, operating at the threshold as in Figure 12b, the timing variance
is nearly four-times the inverter delay, making a synchronous design nearly impossible to reliably
complete timing.
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Figure 12. Effect of mismatch for digital circuits; mismatch limits the performance of yield-constrained
digital circuits. (a) Two identically-drawn CMOS inverters, transitioning between a one (Vdd) and
a zero (GND) that differ by VT0 mismatch between the devices. The nFET devices act mostly like
current sources to decrease the voltage; the capacitive loads are matched. The measurement would
have two different fall times due to the mismatch, although the designer was hoping for identical
responses. (b) Calculated inverter timing mismatch as a function of bias current. Given that two nFETs
are required for this comparison, mismatch in VT0 of 25.55 mV is routine for small devices even for
350-nm CMOS processes.

Just decreasing transistor linewidth, without improving transistor mismatch results in no
improvement in energy or power efficiency. For digital systems, this mismatch has not improved with
transistor scaling since the 180-nm CMOS node [9]. Further, typical digital cells tend to keep the product
of W and L relatively constant with scaling, getting better performance with decreasing L (increasing
W/L), but not improving the resulting energy efficiency. Although sub-threshold operation enables
lower dynamic and static currents, without calibrating VT0 mismatch, this region of operation likely
results in worse overall performance. Further, digital systems utilizing large separate memory blocks
further consume significant amount of power and energy, sometimes more than the computation being
performed [43], making it difficult to notice that the energy required for computation may not have
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improved. Digital systems could use co-located computing and memory, although these techniques
are rarely done in practice.

Lets consider a simple example comparing energy efficiency between digital and analog
computation. We will assume digital computation for 32 bit (say single precision) arithmetic
numbers close to the energy efficiency wall at four MMAC(/s)/mW. Consider the digital computation
of a second order system,

τ2 d2y
dt2 +

τ

Q
d2y
dt2 + y =

dx(t)
dt

(4)

with acoustic input signals (<10-kHz frequency). To keep this problem manageable, assume moderate
values of Q (0.5 to four) and τ = 1 ms. With samples every 50 µs, three-digit (10 bit or 60 dB) output
accuracy typically will require 20 Runga-Kutta 4th Order method (RK4) steps per iteration. The number
of MAC operations per step will require roughly 10 MACs to evaluate an RK4 iteration, requiring
four MMAC(/s), or 1 mW of power. The power required to supply the data for these computations is
roughly two- to four-times larger than the computation itself. Measurements for analog computing
systems of this computation result, for compiled systems, require less than 1µW of power for the
same computation at the same output Signal-to-Noise Ratio (SNR) [1]. A digital filter approximation
will require similar computation at the similar relative accuracy. The problem is a linear problem,
minimizing the computational complexity; if a nonlinear ODE needs to be computed, any nonlinearities
(e.g., sinh, tanh) will require significantly more MACs for the Taylor series approximations. The
numerical noise for this calculation will eventually limit the numerical computation simulation time.

6. Simulation Tool Impact of Analog and Digital Numerics

Developing large-scale analog or digital computing systems, particularly energy-efficient
computing systems, in a reasonable time frame requires some tools, as well as compilers. Digital tools,
like MATLAB or compiled code libraries (e.g., Java), already abstract the numerical issues from the
user, to the point engineers are unaware of the underlying numerics.

Some of the first analog/mixed-signal computing systems are emerging (e.g., [39]), including
utilizing high-level graphical interfaces. Whether analog or digital computation, many aspects fit
a similar framework in terms of component lists, net lists, compilation, place and route algorithms and
the resulting targeting functions. While these aspects have room for improvement, their structure is
similar between these two approaches.

The issue of simulation, using one system (digital) to emulate another system (physical) proves
to be the largest computational challenge. Given that all synchronous digital computation can be
related to a Turing machine, using a digital system to emulate another digital system seems reasonable,
with the only issue a question of relative computational complexity between the real and emulation
system. A digital system emulating an analog system requires digital simulation of at least ODEs,
which we established is a challenging problem for digital systems. The potential higher computing level
of analog systems (real values) compared with digital systems (countable values) further illustrates
the numerical difficulty [13].

Issues with digital simulation of physical computing implies that the designer must resign
themselves to simulating analog systems of moderate complexity, The functions modeling the circuits
must have well-controlled derivatives and be analytic (continuous through all derivatives) to be
well behaved for most numerical solutions. Physical computing systems tend to be advantageous
for stiff numerical problems, and therefore, simulating these systems presents technical difficulties
for numerical simulation. Noise modeling for analog computation is an essential aspect of system
level simulation required for modeling measured responses. Analog system design tools already are
starting to have this modeling [38]. This noise increases the derivatives of the function evaluation,
further complicating the digital noise in the resulting system. Smaller digital simulations will enable
initial performance right before actually compiling and computing using the physical medium, as
well as helping to design/automate the resulting process providing the pathway to build higher level
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tools and metrics. Simulation of physical computing might require using other configurable physical
computing systems [1,49].

7. Comparing Analog and Digital Numerical Analysis Complexity

Figure 13 discusses the implication of the strengths and weaknesses of analog and digital
computation. The different strengths in precision and numerics imply that digital systems lean
towards algebraic matrix solutions and that analog systems lean towards ODE solutions. These results
might translate to how one would plan a numerical analysis class. A traditional digital numerical
analysis class would start from LU decomposition, moving to optimization and integration, and ending
at ODE/PDE solutions.
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Figure 13. Analog computation utilizes strong numerics to empower its lower starting precision;
digital computation utilizes high starting precision to empower its higher (relative) numerical noise.
Fundamental operation for digital systems are solutions of linear equations, where the fundamental
operations for analog systems are solutions of differential equations. The resulting complexity for
digital and analog approaches takes complimentary paths.

Table 1 summarizes the properties of analog and digital computation systems. The algorithm
tradeoff between analog and digital computation directly leads to the tradeoff between high-precision
with poor numerics of digital computation verses the good numerics with lower precision of analog
computation. Digital systems have relatively inexpensive high resolution (16, 32 or 64 bit), but
with noisy numerics. Analog systems have higher cost for starting resolution (eight to 12 bits are
typically reasonable), but with far less noisy numerical calculations. Because we are often dealing with
embedded systems, energy/average power must be one metric (computation complexity at given
resolution/power) for any consideration.

Digital computation focuses on problems with limited number of iterations that can embody high
precision (e.g., 64-bit double precision), like LU decomposition (and matrix inversion). The LINPACK
metric [64] makes complete sense to evaluate computing engines when the fundamental computing
operations are LU decomposition. Classical digital numerical analysis courses begin with LU
decomposition and move to significantly harder computations in optimization, ODE solutions and
PDE solutions.

Analog computation solves difficult numerical applications that are tolerant of lower starting
precision for computation, such as ODEs and PDEs. Simple operations like VMM are fairly similar in
the tradeoffs between analog and digital approaches, particularly when using real-world sensor data
starting off with lower precision (e.g., acoustic microphones at 60 dB, CMOS imaging at 50 to 60 dB,
etc.). Many ODE and PDE systems have correlates in other physical systems found in nature that are
the focus of high performance computing. The resulting time/area efficiencies for analog computation
model a physical system by directly being the system to solve. This high-speed computation enables
low-latency signal processing and control loops.
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Table 1. Summary of digital and analog computational approaches. VMM, Vector-Matrix
Multiplication.

Digital Analog

Precision High starting precision, low cost adding more lower starting precision (e.g., 10, 12, 14 bit)
Summation Noise High numerical noise accumulation (summation) ideal summation
Latency computational latency (need for pipelining) minimal latency
Computational Efficiency (VMM) 10 MMAC (/s)/mW (32 bit) 10 MMAC (/s)/µW (×1000, 12 bit)
Intellectual Tradition Long numerical tradition a few artistic experts, sometimes agree

An analog numerical analysis class would start from ODE solutions, moving towards PDE,
optimization and integration, and ending at algebraic matrix solutions. Ideal analog integration
requires infinite gain, which is difficult to achieve due to the non-ideal effects of transistor current
sources. Typically, good circuit techniques can minimize this low-frequency integration error. One
would want to avoid analog LU decomposition where possible, while one wants to avoid solving
a large number of ODEs and/or a couple of PDEs by digital methods. These two approaches show
complimentary strengths and weaknesses, potentially opening opportunities when both systems are
available.

8. Summary and Discussion

Analog design has come a long way from just saying lets do some magically inspired design with
op-amps and a few resistors. Approaches towards analog programmability and configurability enable
realistic conversations in this area. Digital computation relies on its strength in achieving relatively
inexpensive high-precision, while analog computation relies on its strength in its well-behaved
computational error propagation. Digital computation moves towards applications of (linear)
algebraic solutions, while analog computation moves towards applications of ODE solutions. Table 2
summarizes these core frameworks and comparisons between analog and digital computation, as well
as the open questions in these areas. The complimentary analog and digital computational techniques
enable wider computational capabilities. This discussion is the first necessary step among many to
follow towards a numerical physical-computing framework.

The analog numerical analysis is not contained by the range of applications for analog
computation. The presence of analog numerical analysis theory is not advocating for a dogmatic
view of only analog or digital computation. We need a framework for both approaches. The field
of digital numerical analysis is looking at digital computation and how errors propagate for particular
computations. It does not technically advocate for a particular computing system, but applicable
where it is used. A large number of analog numerical analysis applications would be toward sensor
processing and computation. The lower starting SNR (and effective bit size) of many sensors (eight to
12 bits) makes using analog computation highly advantageous.

The numerical analysis discussion asks what exactly made analog computing go from a dominant
computing mechanism (1960s) to nearly irrelevant (1980s) twenty years later. The main reason was
the lack of programmability. The ability to reuse the same digital system using abstracted frameworks
(like Fortran) and the rapid growth of digital during the Moore’s law era enabled those who used
the digital system to be different from those who designed the system. When one asks those who
used analog computing in the 1960s, they are not surprised at the capabilities of analog devices, nor at
the difficulties of memory or getting others to use their systems (e.g., moving cables). Additionally,
they also agree that they had very little computational theory to utilize when building applications.
Current analog computation’s ability to be reconfigured and programmed again changes these issues,
potentially allowing for these analog computation techniques to be available in the engineer’s toolbox.
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Table 2. Summary of Framework and comparisons between analog and digital computation.

Digital Strength Analog Strength

Lower Cost Numerical Precision X FG helps

Low Error Numerical Operations X

Core Numerical Algorithm LU decomposition ODE solutions

Computational Energy Required X
Designer Knowledge, Number Tools now

of Designers, CAD tools X being developed

Mismatch of components was the second issue for analog computing, an issue solved by
programmable analog concepts. Mismatch plagues any current analog approach that does not include
reasonably fine-grained programming capability. Device mismatch shows in significant parameter
errors, as well as is the main source of power supply fluctuations, temperature reference errors and
linearity issues, resulting in effectively unmatched transistor devices relied upon for robust analog
circuit design. Typically, eight-bit or more capability for adjusting component mismatch returns one
sufficiently close to the typical textbook cases of matched transistor circuits. FG techniques directly
adjust for the largest mismatch factor (VT0), and programmability directly improves offset, as well as
power supply rejection and linearity errors (e.g., [84]). Previous studies (e.g., [68]) show that small
mismatches between components typically have a small resulting system effect.

When programmability and elimination of mismatch are available capabilities, analog computing
has manageable design constraints involving temperature effects, power supply variation, noise
and linearity. The effects are typically of a similar size as, if not less than, noise constraints. For
example, linearity effectively limits the maximum analog values, similar to digital limiting by register
overflow; tradeoffs are made in analog or digital between computational noise and the resulting
risk of overloading a particular value. Analog summation is not limited by linearity, but potentially
computations preceding these computations and following after these computations. Using FG
techniques, one can proportionally tradeoff linearity with energy consumed with no additional noise
because of additional circuitry; therefore, one can use exactly the linearity needed for the problem
and not spend any more energy than is necessary. With programmability, distortion is created by
odd-symmetric nonlinearities. In the end, analog computation, with its lower starting resolution, but
robust numerical capabilities, could find opportunities in many potential applications.

Acknowledgments: First, the author would like to thank my many students at Georgia Tech for numerous helpful
conversations that helped this paper take shape. In particular, I appreciate the discussions with my recent students,
Sahil Shah, Sihwan Kim and Aishwarya Natarajan, who have been involved in many of these discussions that
formulated this paper. Second, I wish to thank Alan Feldstein, now Professor Emeritus, of Mathematics at Arizona
State University, who taught me in many courses in numerical analysis and computer arithmetic. Without his
inspirational teaching, I would never have had the appreciation for numerical analysis or computer arithmetic
sufficient enough to embark in this effort.

Conflicts of Interest: The author declares no conflict of interest.

References

1. George, S.; Kim, S.; Shah, S.; Hasler, J.; Collins, M.; Adil, F.; Wunderlich, R.; Nease, S.; Ramakrishnan, S.
A Programmable and Configurable Mixed-Mode FPAA SoC. IEEE Trans. Very Large Scale Integr. Syst. 2016,
24, 2253–2261.

2. Wolf, W. Hardware-software co-design of embedded systems. Proc. IEEE 1994, 82, 967–989.
3. Jerraya, A.A.; Wolf, W. Hardware/Software Interface Codesign for Embedded Systems. IEEE Comput. 2005,

38, 63–69.
4. Teich, J. Hardware/Software Codesign: The Past, the Present, and Predicting the Future. Proc. IEEE 2012,

100, 1411–1430.



J. Low Power Electron. Appl. 2017, 7, 17 19 of 22

5. Sampson, A.; Bornholt, J.; Ceze, L. Hardware—Software Co-Design: Not Just a Cliché. In Advances
in Programming Languages (SNAPL—15); Leibniz-Zentrum für Informatik: Wadern, Germany, 2015;
pp. 262–273.

6. Rossi, D.; Mucci, C.; Pizzotti, M.; Perugini, L.; Canegallo, R.; Guerrieri, R. Multicore Signal Processing
Platform with Heterogeneous Configurable hardware accelerators. IEEE Trans. Very Large Scale Integr. Syst.
2014, 22, 1990–2003.

7. Zhao, Q.; Amagasaki, M.; Iida, M.; Kuga, M.; Sueyoshi, T. An Automatic FPGA Design and Implementation
Framework. In Proceedings of the 23rd International Conference on Field Programmable Logic and
Applications (FPL), Porto, Portugal, 2–4 September 2013; pp. 1–4.

8. Weinhardt, M.; Krieger, A.; Kinder, T. A Framework for PC Applications with Portable and Scalable FPGA
Accelerators. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs
(ReConFig), Cancun, Mexico, 9–11 December 2013; pp. 1–6.

9. Marr, B.; Degnan, B.; Hasler, P.; Anderson, D. Scaling Energy Per Operation via an Asynchronous Pipeline.
IEEE Trans. Very Large Scale Integr. Syst. 2013, 21, 147–151.

10. Degnan, B.; Marr, B.; Hasler, J. Assessing trends in performance per Watt for signal processing applications.
IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 58–66.

11. Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636.
12. Frantz, G.; Wiggins, R. Design case history: Speak and spell learns to talk. IEEE Spectr. 1982, 19, 45–49.
13. Hasler, J. Opportunities in Physical Computing driven by Analog Realization. In Proceedings of the IEEE

International Conference on IEEE ICRC, San Deigo, CA, USA, 17–19 October 2016; pp. 1–8.
14. Conte, S.D.; de Boor, C. Elementary Numerical Analysis: An Algorithmic Approach; McGraw Hill: New York,

NY, USA, 1980.
15. Butcher, J.C. Numerical Analysis of Ordinary Differential Equations: Runga Kutta and General Linear Methods;

Wiley: Hoboken, NJ, USA, 1987.
16. Mitchell, A.R.; Griffiths, D.F. The Finite Difference Method in Partial Differential Equations; Wiley: Hoboken, NJ,

USA, 1980.
17. Turing, R. On Computable Numbers. Proc. Lond. Math. Soc. 1937, 2, 230–265.
18. Mead, C.; Conway, L. VLSI Design; Addison Wesley: Boston, MA, USA, 1980.
19. MacKay, D.M.; Fisher, M.E. Analogue Computing at Ultra-High Speed: An Experimental and Theoretical Study;

John Wiley and Sons: New York, NY, USA, 1962.
20. Karplus, W.J. Analog Simulation: Solution of Field Problems; McGraw Hill: New York, NY, USA, 1958.
21. MacLennan, B.J. A Review of Analog Computing; Technical Report for University of Tennessee: Knoxville, TN,

USA, 2007.
22. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities.

Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558.
23. Hopfield, J.J. Neurons with graded responses have collective computational properties like those of two-state

neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092.
24. Mead, C. Analog VLSI and Neural Systems; Addison Wesley: Boston, MA, USA, 1989.
25. Hasler, P.; Diorio, C.; Minch, B.A.; Mead, C.A. Single transistor learning synapses. In Advances in Neural

Information Processing Systems 7; Tesauro, G., Touretzky, D.S., Todd, K.L., Eds.; MIT Press: Cambridge, MA,
USA, 1994; pp. 817–824.

26. Kim, S.; Hasler, J.; George, S. Integrated Floating-Gate Programming Environment for System-Level ICs.
IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 2244–2252.

27. Srinivasan, V.; Serrano, G.J.; Gray, J.; Hasler, P. A precision CMOS amplifier using floating-gate transistors
for offset cancellation. IEEE J. Solid-State Circuits 2007, 42, 280–291.

28. Srinivasan, V.; Serrano, G.; Twigg, C.M.; Hasler, P. A floating-gate- based programmable CMOS reference.
IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 3448–3456.

29. Hasler, P. Continuous-time feedback in floating-gate MOS circuits. IEEE Trans. Circuits Syst. Analog Digit.
Signal Process. 2001, 48, 56–64.

30. Hasler, P.; Minch, B.; Diorio, C. An autozeroing floating-gate amplifier. IEEE Trans. Circuits Syst. Analog
Digit. Signal Process. 2001, 48, 74–82.

31. Brink, S.; Hasler, J.; Wunderlich, R. Adaptive floating-gate circuit enabled large-scale FPAA. IEEE Trans. Very
Large Scale Integr. Syst. 2014, 22, 2307–2315.



J. Low Power Electron. Appl. 2017, 7, 17 20 of 22

32. Laiho, M.; Hasler, J.; Zhou, J.; Du, C.; Lu, W.; Lehtonen, E.; Poikonen, J. FPAA/memristor hybrid computing
infrastructure. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 906–915.

33. Hasler, J.; Shah, S. Reconfigurable Analog PDE Computation for Baseband and RF Computation. In
Proceedings of the GOMAC, Reno, NV, USA, 20–23 March 2017.

34. Ozalevli, E.; Huang, W.; Hasler, P.E.; Anderson, D.V. A reconfigurable mixed-signal VLSI implementation
of distributed arithmetic used for finite impulse response filtering. IEEE Trans. Circuits Syst. I Regul. Pap.
2008, 55, 510–521.

35. Gregorian, R.; Temes, G.C. Analog MOS Integrated Circuits for Signal Processing; Wiley: Hoboken, NJ, USA,
1983.

36. Ramakrishnan, S.; Wunderlich, R.; Hasler, J.; George, S. Neuron array with plastic synapses and
programmable dendrites. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 631–642.

37. Wunderlich, R.; Adil, F.; Hasler, P. Floating gate-based field programmable mixed-signal array. IEEE Trans.
Very Large Scale Integr. Syst. 2013, 21, 1496–1505.

38. Schlottmann, C.; Hasler, J. High-level modeling of analog computational elements for signal processing
applications. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 1945–1953.

39. Collins, M.; Hasler, J.; George, S. An Open-Source Toolset Enabling Analog–Digital Software Codesign.
J. Low Power Electron. Appl. 2016, 6, 3.

40. Hasler, J.; Kim, S.; Shah, S.; Adil, F.; Collins, M.; Koziol, S.; Nease, S. Transforming Mixed-Signal Circuits Class
through SoC FPAA IC, PCB, and Toolset. In Proceedings of the IEEE European Workshop on Microelectronics
Education, Southampton, UK, 11–13 May 2016.

41. Hasler, J.; Kim, S.; Adil, F. Scaling Floating-Gate Devices predicting behavior for Programmable and
Configurable Circuits and Systems. J. Low Power Electron. Appl. 2016, 6, 13.

42. Hasler, J.; Shah, S. Learning for VMM + WTA Embedded Classifiers; GOMAC: Orlando, FL, USA, March 2016.
43. Hasler, J.; Marr, H.B. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci.

2013, 7, doi:10.3389/fnins.2013.00118.
44. Hall, T.; Twigg, C.; Gray, J.; Hasler, P.; Anderson, D. Large-scale Field-Programmable Analog Arrays for

analog signal processing. IEEE Trans. Circuits Syst. 2005, 52, 2298–2307.
45. Peng, S.Y.; Gurun, G.; Twigg, C.M.; Qureshi, M.S.; Basu, A.; Brink, S.; Hasler, P.E.; Degertekin, F.L.

A large-scale Reconfigurable Smart Sensory Chip. In Proceedings of the IEEE International Symposium on
Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 2145–2148.

46. Twigg, C.M.; Gray, J.D.; Hasler, P. Programmable floating gate FPAA switches are not dead weight.
In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA,
27–30 May 2007; pp. 169–172.

47. Schlottmann, C.; Hasler, P. A highly dense, low power, programmable analog vector-matrix multiplier:
The FPAA implementation. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1, 403–411.

48. Rumberg, B.; Graham, D.W. Reconfiguration Costs in Analog Sensor Interfaces for Wireless Sensing
Applications. In Proceedings of the International Midwest Symposium on Circuits and Systems (MWSCAS),
Columbus, OH, USA, 4–7 August 2013; pp. 321–324.

49. Guo, N.; Huang, Y.; Mai, T.; Patil, S.; Cao, C.; Seok, M.; Sethumadhavan, S.; Tsividis, Y. Energy-efficient
hybrid analog/digital approximate computation in continuous time. IEEE J. Solid-State Circuits 2016, 51,
1514–1524.

50. Shyu, J.B.; Temes, G.C.; Krummenacher, F. Random error effects in matched MOS capacitors and current
sources. IEEE J. Solid-State Circuits 1984, 19, 948–956.

51. Lyon, R.F.; Mead, C. An analog electronic cochlea. IEEE Trans. Acoust. Speech Signal Process. 1988, 36,
1119–1134.

52. Watts, L.; Kerns, D.A.; Lyon, R.F.; Mead, C.A. Improved implementation of the silicon cochlea. IEEE J.
Solid-State Circuits 1992, 27, 692–700.

53. Van Schaik, A.; Fragniere, E.; Vittoz, E.A. Improved silicon cochlea using compatible lateral bipolar
transistors. In Neural Information Processing Systems; Touretzky, D.S., Hasselmo, M.E., Eds.; MIT Press:
Cambridge, MA, USA, 1996; pp. 671–677.

54. Hosticka, B.J. Performance comparison of analog and digital circuits. Proc. IEEE 1985, 73, 25–29.
55. Vittoz, E.A. Future of analog in the VLSI environment. In Proceedings of the International Symposium on

Circuits and Systems, New Orleans, LA, USA, 1–3 May 1990; Volume 2, pp. 1347–1350.



J. Low Power Electron. Appl. 2017, 7, 17 21 of 22

56. Sarpeshkar, R. Analog Versus Digital: Extrapolating from Electronics to Neurobiology. Neural Comput. 1998,
10, 1601–1638.

57. Abshire, P.A. Sensory Information Processing under Physical Constraints. Ph.D. Thesis, Johns Hopkins
University, Baltimore, MD, USA, 2001.

58. Hasler, P.; Smith, P.; Graham, D.; Ellis, R.; Anderson, D. Analog floating-gate, on-chip auditory sensing
system interfaces. IEEE Sens. J. 2005, 5, 1027–1034.

59. Vittoz, E.A. Low-power design: Ways to approach the limits. In Proceedings of the IEEE International
Solid-State Circuits Conference, San Francisco, CA, USA, 6–18 February 1994; pp. 14–18.

60. Sarpeshkar, R.; Delbruck, T.; Mead, C. White noise in MOS transistors and resistors. IEEE Circuits Devices
Mag. 1993, 9, 23–29.

61. Kim, S.; Shah, S.; Hasler, J. Calibration of Floating-Gate SoC FPAA System. IEEE Trans. Very Large Scale Integr.
Syst. 2017, in Press.

62. Shapero, S.; Hasler, P. Mismatch characterization and calibration for accurate and automated analog design.
IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 548–556.

63. Vittoz, E.A. Analog VLSI Signal Processing: Why, Where and How? J. VLSI Signal Process. 1994, 8, 27–44.
64. Dongarra, J.J.; Luszczek, P.; Petitet, A. The LINPACK Benchmark: Past, present and future. Concurr. Comput.

Pract. Exp. 2003, 15, 803–820.
65. Widrow, B. Adaptive Filters I: Fundamentals; Technical Report No. 6764-6; Stanford University: Stanford, CA,

USA, 1966.
66. Widrow, B.; Lehr, M.A. 30 Years of Adaptive Neural Networks: Perceptrons, Madaline, and Backpropagation.

Proc. IEEE 1990, 78, 1415–1442.
67. Schneider, C.; Card, H. CMOS implementation of analog hebbian synaptic learning circuits. In Proceedings

of the IEEE IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA,
8–12 July 1991; pp. 437–442.

68. Hasler, P.; Akers, L. Circuit implementation of trainable neural networks employing both supervised and
unsupervised techniques. In Proceedings of the IEEE International Joint Conference on Neural Networks,
San Diego, CA, USA, 10–13 May 1992; pp. 1565–1568.

69. Hasler, P.; Dugger, J. An analog floating-gate node for supervised learning. IEEE Trans. Circuits Syst. I Regul.
Pap. 2005, 52, 834–845.

70. Ramakrishnan, S.; Hasler, J. Vector-Matrix Multiply and WTA as an Analog Classifier. IEEE Trans. Very Large
Scale Integr. Syst. 2014, 22, 353–361.

71. Morton, K.W.; Mayers, D.F. Numerical Solution of Partial Differential Equations; Cambridge University Press:
Cambridge, UK, 2005.

72. George, S.; Hasler, J.; Koziol, S.; Nease, S.; Ramakrishnan, S. Low power dendritic computation for
wordspotting. J. Low Power Electron. Appl. 2013, 3, 73–98.

73. Koziol, S.; Brink, S.; Hasler, J. A neuromorphic approach to path planning using a reconfigurable neuron
array IC. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 2724–2737.

74. Koziol, S.; Wunderlich, R.; Hasler, J.; Stilman, M. Single-Objective Path Planning for Autonomous Robots
Using Reconfigurable Analog VLSI. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1301–1314.

75. Nease, S.; George, S.; Hasler, P.; Koziol, S.; Brink, S. Modeling and implementation of voltage-mode CMOS
dendrites on a reconfigurable analog platform. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 76–84.

76. Whitham, G.B. Linear and Nonlinear Waves; Wiley: Hoboken, NJ, USA, 1973.
77. Kevorkian, J.; Cole, J.D. Perturbation Methods in Applied Mathematics; Springer: New York, NJ, USA, 1981.
78. Asadi, P.; Navi, K. A New Low Power 32 × 32-bit Multiplier. World Appl. Sci. J. 2007, 2, 341–347.
79. Fuketa, H.; Iida, S.; Yasufuku, T.; Takamiya, M.; Nomura, M.; Shinohara, H.; Sakurai, T. A Closed-form

Expression for Estimating Minimum Operating Voltage (VDDmin) of CMOS Logic Gates. In Proceedings
of the Design Automation Conference, San Diego, CA, USA, 5–10 June 2011; pp. 984–989.

80. Fuketa, H.; Yasufuku, T.; Iida, S.; Takamiya, M.; Nomura, M.; Shinohara, H.; Sakurai, T. Device-Circuit
Interactions in Extremely Low Voltage CMOS Designs. In Proceedings of the 2011 IEEE International Electron
Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 559–562.

81. Degnan, B.P.; Wunderlich, R.B.; Hasler, P. Programmable floating-gate techniques for CMOS inverters.
In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005;
pp. 2441–2444.



J. Low Power Electron. Appl. 2017, 7, 17 22 of 22

82. Enz, C.C.; Krummenacher, F.; Vittoz, E.A. An analytical MOS transistor model valid in all regions of operation
and dedicated to low-voltage and low-current applications. Analog Integr. Circuits Signal Process. 1995, 8,
83–114.

83. Pelgrom, M.J.M.; Duinmaijer, A.C.J.; Welbers, A.P.G. Matching Properties of MOS Transistors. IEEE J. Solid
State Circuits 1989, 24, 1433–1440.

84. Adil, F.; Serrano, G.; Hasler, P. Offset removal using floating-gate circuits for mixed-signal systems.
In Proceedings of the Southwest Symposium on Mixed-Signal Design, Las Vegas, NV, USA, 23–25 February
2003; pp. 190–195.

c© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Why Analog Numerical Analysis?
	Digital Framework Enables Ubiquitous Numerical Computation
	Analog Computing Has Arrived, But Lacks a Framework

	Digital Strength: Lower Cost Numerical Precision
	Analog Strength: Better Numerical Operations
	LU Decomposition as the Basis of Digital Numerics
	ODE Solutions as the Basis of Analog Numerics
	Analog Numerics for PDE Solutions

	Analog Strength: Computational Effort (Energy) as a Metric for Digital and Analog Numerical Computation
	Simulation Tool Impact of Analog and Digital Numerics
	Comparing Analog and Digital Numerical Analysis Complexity
	Summary and Discussion

