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Abstract: Piezoelectric vibration based energy harvesting systems have been widely utilized and
researched as powering modules for various types of sensor systems due to their ease of integration
and relatively high energy density compared to RF, thermal, and electrostatic based energy harvesting
systems. In this paper, a low-power CMOS full-bridge rectifier is presented as a potential solution
for an efficient energy harvesting system for piezoelectric transducers. The energy harvesting
circuit consists of two n-channel MOSFETs (NMOS) and two p-channel MOSFETs (PMOS) devices
implementing a full-bridge rectifier coupled with a switch control circuit based on a PMOS device
driven by a comparator. With a load of 45 kΩ, the output rectifier voltage and the input piezoelectric
transducer voltage are 694 mV and 703 mV, respectably, while the VOUT versus VIN conversion ratio
is 98.7% with a PCE of 52.2%. The energy harvesting circuit has been designed using 130 nm standard
CMOS process.

Keywords: AC-DC power conversion; energy harvesting; piezoelectric transducer; active rectifier;
switch based rectifier

1. Introduction

Technological advancements in low-power CMOS processes have driven rapid development of
sensor electronics such as implantable and wearable sensor systems. The powering of such sensor
systems has remained a major problem since the traditional batteries can leak resulting in serious health
problems in patients. Moreover, in typical sensor systems, the available space for batteries is very
limited thereby restricting the battery capacity. Energy harvesting has emerged as one of the potential
solutions for powering the sensor electronics and has been widely studied in recent years. Energy can
be harvested from various ambient energy sources such as electromagnetic, wind, mechanical vibration,
RF, and thermal energy etc. There are three general energy sources that utilize vibration, namely
electrostatic, electromagnetic, and piezoelectric. Among these sources, the piezoelectric vibration
based energy harvesting system has received a great deal of attention because of its ease of integration
with electronic systems and moderate power density. Several rectifier circuits based on piezoelectric
transducers have been reported in [1–7]. The circuits reported in [4–6] aim to reduce the voltage drop
across rectifier diodes while references [2–9] aim to reduce the wasted charges associated with the
charging of the plate capacitance of the piezoelectric transducer to further increase the overall efficiency
of the systems. In [1,8,10], the researchers have used techniques called bias-flip and synchronized
switch harvesting on inductor (SSHI) to improve the extraction of energy. However, the major problems
associated with the schemes involve the requirement of relatively large inductors to improve the overall
efficiency while still requiring very complex control circuits.
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2. Piezoelectric Energy Harvester

2.1. General Architecture of Energy Harvesting System

Figure 1 shows a general building block or system architecture of a piezoelectric energy harvesting
system [1,11]. A piezoelectric transducer can convert vibrational energy into electrical energy or can be
used as a vibrational device by application of an electrical source such as a battery. When a piezoelectric
transducer is used as an electrical energy generator, an AC voltage is produced at the output. Therefore,
an AC-to-DC rectifier or an AC-to-DC converter must be constructed to acquire a useful DC output
voltage. Since the energy generated by an AC-to-DC rectifier or a converter is not sufficient or stable
enough to directly power up the system, the energy should be generally stored in a battery or a super
capacitor followed by a regulator such as a DC-DC converter, LDO etc. In general, there are two types
of conventional rectifiers: a voltage-doubler and a full-bridge rectifier [8]. The major drawbacks of these
two conventional structures are usually low power extraction and low power conversion efficiencies.
A low extraction efficiency is mainly attributed to charging and discharging of the internal parasitic
capacitances of a piezoelectric transducer whenever it changes its polarity and the large voltage drop
occurs due the diode turn-on voltage [8]. To overcome this drawback, a number of different schemes
have been proposed such as synchronized switch harvesting on inductor, switch-only harvester, etc.
In order to improve the conversion efficiency of a rectifier, a diode can be replaced by a CMOS circuit.
A CMOS based rectifier has lower voltage drop compared to a conventional off-chip diode rectifier.
In this paper, a CMOS synchronous switch based energy harvesting circuit is reported which offers
several advantages over the schemes reported in literature due to its simplicity of design, moderate
energy harvesting, and the requirement of no off-chip components except the output capacitor.
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Figure 1. A general building block of a piezoelectric energy harvester. 

2.2. Transducer Modeling 

A piezoelectric device can be modeled in both mechanical and electrical domains that are 
coupled through a magnetic coil [12], as illustrated in Figure 2a [10,12,13]. In the mechanical domain 
model of a piezoelectric transducer, RM represents the mechanical damping, CM is the reciprocal 
mechanical stiffness, and LM is the effective mass. In the electrical domain, the vibrational excitation 
can be modeled as a current source with a parasitic capacitance, CP and a parasitic resistance, RP. In 
the proposed CMOS active rectifier with a switch, a typical model of a piezoelectric device has been 
used. The parameter values for the piezoelectric transducer are chosen such that CP is 25 nF, RP is 1 
MΩ, and IP is 45 µA. 
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Figure 2. (a) Modeling of a piezoelectric transducer showing mechnical to electrical domain;  
(b) simplified model of a piezoelectric transducer [12].  
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Figure 1. A general building block of a piezoelectric energy harvester.

2.2. Transducer Modeling

A piezoelectric device can be modeled in both mechanical and electrical domains that are coupled
through a magnetic coil [12], as illustrated in Figure 2a [10,12,13]. In the mechanical domain model of
a piezoelectric transducer, RM represents the mechanical damping, CM is the reciprocal mechanical
stiffness, and LM is the effective mass. In the electrical domain, the vibrational excitation can be
modeled as a current source with a parasitic capacitance, CP and a parasitic resistance, RP. In the
proposed CMOS active rectifier with a switch, a typical model of a piezoelectric device has been used.
The parameter values for the piezoelectric transducer are chosen such that CP is 25 nF, RP is 1 MΩ,
and IP is 45 µA.
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3. CMOS Full-Wave Rectifier

3.1. Operating Principle

As shown in Figure 2 [8], a piezoelectric transducer can be modeled as a sinusoidal current
source iP(t) = IP sin(2πfPt), in parallel with a parasitic plate capacitor, CP and a parasitic resistor, RP.
The amplitude of a piezoelectric transducer current, IP varies with the mechanical excitation level of
the piezoelectric transducer while fP represents the excitation frequency of the piezoelectric transducer.

A typical full-wave bridge rectifier consists of four diodes. The major problem of using an off-chip
diode in a conventional rectifier circuit is that it results in a substantial voltage drop due to the diode
turn-on voltage (Vd), which is typically 0.5~0.7 V. This large turn-on voltage causes a significant loss in
a conventional full-bridge rectifier. In addition, charging and discharging of the plate capacitance of a
piezoelectric transducer results in a loss of available charges from the transducer. To overcome these
problems, a CMOS based full-bridge rectifier with a switch-only circuit in parallel with a piezoelectric
transducer is proposed in [8]. In the switch-only (SO) rectifier scheme, a switch is turned on whenever
the transducer current crosses a zero which helps discharge the capacitor, CP. Unlike a conventional
rectifier, this process allows the SO rectifier not to discharge from (VRECT + 2Vd). Figure 3a,b show a
conventional full-bridge rectifier and a rectifier with switch-only scheme, respectively. To reduce the
voltage-drop across a diode which affects the conversion efficiency, a CMOS based full-wave bridge
rectifier with a switch is presented in this paper. The advantages of this proposed design include
the ability to power the proposed circuit to operate without requiring any off-chip components even
though the power generated by the SO rectifier is less than that of the bias-flip or other power enhanced
structures. This allows more flexibility to integrate the circuits with an integrated system. In addition,
by using a separate control signal for the PMOS switch in a SO rectifier, the current for charging and
discharging of Csg of the PMOS device can be effectively reduced, which increases the available energy
transfer time to the output load. In addition, a switch can be added in between VN and VP inputs of
a piezoelectric transducer to reduce the wasted charges which is used to charge or to discharge the
parasitic capacitance of a piezoelectric device. Figure 4 shows the circuit diagram of the proposed
circuit as well as the system reported in [1,3,8].
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Figure 3. Circuit schematics of: (a) a full-wave rectifier, (b) a conventional diode full-bridge rectifier.
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Figure 4. (a) Full-wave rectifier circuits presented in [1,3,8] and (b) the proposed architecture.

3.2. Proposed Active Full-Wave Rectifier

Figure 4a shows the full-wave rectifier structure reported in [1,3,8]. Due to the cross-coupled
nature of the circuit, it requires a current and time to charge and discharge Csg of the PMOS switch
charged by a piezoelectric transducer directly prior to being turned on and off. Therefore, to turn on
the PMOS switch in order to charge Csg the input voltage from a piezoelectric transducer, VPN should
be greater than |Vthp|. Therefore, the available transfer time of energy from a piezoelectric transducer
will be reduced because of the time required to charge Csg.

However, in the proposed active rectifier circuit as shown in Figure 4b, the PMOS on/off are
controlled by the NMOS turning on/off signal and are driven by output voltage powered buffer.
Therefore, the proposed system does not pose problems associated with the design reported in [1,3,8].
As shown in Figure 5, the time required to charge Csg is about 100 µs (about 39% less time to reach
the peak current from a piezoelectric transducer) less than cross-coupled system presented in [1,2,8].
The PMOS off-time also has been reduced as shown in Figure 5b. The proposed system instantly
discharges Csg, and as a result, the off time is in the nano-second range even though the off-time of
the cross-coupled system is 4.5 µs. Therefore, more energy from a piezoelectric transducer can be
transferred to the output resulting in the VPN voltage ([VP-VN] of a piezoelectric input voltage) being
about 0.7% higher than that of a cross-coupled based active rectifier with the same load and piezo
input. Although 0.7% can be considered as a small improvement in a system, for low input power
systems such as the one proposed in this paper, every available energy should be squeezed so that
more available energy can be transferred to the output. In addition, if the excitation frequency as
well the force applied to a piezoelectric transducer are lowered, then, charging time will be increased
because of less available charges from a piezoelectric transducer. As a result, the voltage amplitude
of VPN will be lowered so as VRECT. In addition, since the proposed energy harvesting system can
handle more energy than a cross-coupled rectifier, the output voltage, VRECT, is higher than that of
the cross-coupled circuit. Figure 6a,b show the body leakage current and the body bias control circuit
utilizing the leakage current, respectively. With the help of simple implementation of body-bias control
circuit, the proposed system can achieve lower body leakage current compared with cross-coupled
system reported in [1,3,8].

Figure 6 shows the body leakage current of the circuit that has been used to control the body bias.
In Figure 6b, IN is connected to the VRECT, OUT is connected either VP or VN, and the body-bias port is
connected to the body of the PMOS switch. As shown in Figure 6a, the leakage current in the proposed
system is −12.11 pA (black line) while the leakage current in cross-coupled system is −14.35 nA (red
line), which is a huge improvement. With the help of all the above improvements, the output voltage
from a proposed active rectifier is 698 mV while that of the rectifier with cross-coupled based is 694 mV.
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The proposed switch-only active rectifier as well as the cross-coupled active rectifier with
switch-only are simulated with the same MOSFET sizes as well as the same input piezo current.
The only difference between the two schemes is the top PMOS gate control methods. Figure 7 shows
the waveform of the piezoelectric transducer current, iP versus VRECT of a conventional full-wave
rectifier. The shaded regions show the wasted energy due to charging and discharging of a parasitic
capacitor, CP.
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It is evident from the figure that a significant amount of energy is lost due to the charging and
discharging actions of CP. In Figure 7, the difference between t0 to t1 represents the wasted energy
when iP is used to charge CP. The total charge available in full-bridge rectifier can be written as,

Qtotal/cycle =
∫ 2π/ωP

0
iPdt =

4IP
ωP

= 4CPVP (1)

where Vp is the amplitude of the open circuit voltage of the piezoelectric transducer.
The piezoelectric transducer current, iP, has to charge CP from VRECT to −VRECT in every cycle

before turning on a diode in a conventional full bridge diode. Therefore, charge lost in every cycle can
be written as [8],

Q lost
cycle

= 2CP(VRECT − (−VRECT)) = 4CPVRECT (2)

From Equations (1) and (2), the actual charge that used to charge CL in Figure 3 can be written
as [8],

Q RECT
cycle

= Q total
cycle

− Q lost
cycle

= 4CPVp − 4CPVRECT (3)

Multiplying Equation (3) by the output voltage of the piezoelectric transducer, VRECT provides
the total energy delivered to CL. Therefore, the total energy can be written as [8],

Energy RECT
cycle

= Q RECT
cycle

× VRECT = 4CPVRECT
(
Vp − VRECT

)
(4)

Since the piezoelectric transducer operates at a frequency, fP the total power delivered to the
output capacitor, CL by the conventional full-bridge rectifier can be expressed as [8],

PowerRECT = Energy RECT
cycle

× fP = 4CPVRECT fP
(
Vp − VRECT

)
(5)

Using Equation (5), the maximum available power is obtained when VRECT = VP/2, and can be
expressed as

PRECT(MAX) = CP(VP)
2 fP (6)

To reduce this unwanted energy loss or to increase the energy transfer from a piezoelectric
transducer, one effective scheme involves inserting a switch in between the inputs of the piezoelectric
transducer, VP and VN as shown in Figure 4.

Figure 8 shows the steady-state operation of the proposed full-wave rectifier. It can be seen
from Figure 8 that the operation of the proposed full-wave rectifier can be divided into three phases.
In phase 1 between t0 to t1, a sinusoidal current, iP from a piezoelectric transducer starts charging a
parasitic capacitor, CP. Unlike a conventional piezoelectric transducer as shown in Figure 3, time for
charging of CP has been reduced significantly because of the inclusion of a switch in between VP and
VN. In Figure 9, it can be seen that as the one-shot turns on, the VP and VN terminals are shorted
instantly and therefore it does not have to charge from its previous value, rather it starts from zero.
In a conventional rectifier, when iP is changing its polarity from positive to negative, CP should be
discharged from (VRECT + 2Vd) to zero and charged from zero to −(VRECT + 2Vd). In phases 2 and 3,
since the charging of a parasitic capacitor CP has been completed, the energy can be transferred to the
output capacitor, CL through the full-wave rectifier.
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Figure 9. Schematic of the piezoelectric transducer switch.

Whenever a piezoelectric transducer crosses the zero point, the one-shot control circuit as shown
in Figure 10 is designed to provide a short pulse which shorts the input ports of a piezoelectric
transducer to reset the voltages VP and VN. This shorting action will help improve the efficiency of
the piezoelectric energy harvesting circuit by reducing a waste charge. Therefore, iP does not have
to charge or discharge CP from ±(VRECT + 2Vd) but rather from zero to (VRECT + 2Vd). The bottom
two NMOS switches are controlled by a low-power comparator while the top two PMOS switches are
controlled by P_Control and N_Control bar signals. All the control circuits as well as the comparator
are powered by the harvested supply voltage, VRECT.
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In the proposed full wave rectifier, the charge lost in every cycle can be denoted by [8],

Qlost/cycle = 2CPVRECT (7)

The charge available can be calculated as [8],

Q RECT
cycle

= Q total
cycle

− Q lost
cycle

= 4CPVopen − 2CPVRECT (8)

Therefore, the total power delivered to the output load CL can be expressed as follow [8].

PowerRECT = Energy RECT
cycle

× fP = 2CPVRECT fP
(
2Vopen − VRECT

)
(9)

Comparison of Equations (3) and (8) reveals that the charge lost is reduced by about 50%.
Therefore, inserting a switch in between VP and VN of a piezoelectric transducer can save a substantial
amount of energy. All the control circuits in this proposed active rectifier are powered by the output
voltage, VRECT derived from the harvested energy. Figure 11 illustrates the start-up operation of the
circuit. For the start-up of the rectifier operation, all the control circuits including the comparators are
not working until CL is charged properly since no charge is accumulated in CL initially. As shown in
Figure 11, leakage current flows through both PMOS(MP) and NMOS(MN) as the input of a piezoelectric
transducer starts increasing thereby slowly charging CL. The initial charging current derived from
this leakage current is in nano-ampere range. The time required to charge CL is approximately 120 µs
and the resulting harvested supply power all the control circuits including the comparators. Proper
working of all control signal starts at around 180 µs. CompP and CompN are the output waveform of
comparators, and One-Shot is the output waveform of the One-Shot control signal. CompP and CompN
are represent P_Control and N_Control signals in Figure 4b.
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4. Measurement Results

Figures 12 and 13a show the measured waveforms of the proposed full-wave rectifier. For the
sake of simplicity and to validate the operation of the proposed circuits, the input signal was generated
by a function generator with Vpk-pk voltage of 1.2 V (600 mV amplitude). The output was measured to
be 580 mV with load resistor of 45 kΩ. The measurement data is slightly different from a simulated
one because of the parasitic PCB board capacitance as well as the chip-package parasitics. Figure 12c,d
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show the test set-up. Since the proposed circuit is tested with a signal generator, the model used in this
test set-up is the Norton to Thevenin equivalent of the circuit shown in Figure 13b. V1 represents the
voltage signal from the signal generator with an amplitude of 0.6 V (VPK-PK is 1.2 V), R1 is 13.3 kΩ,
and CP is a parasitic capacitance of a piezoelectric transducer.
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5. Conclusions

Figure 14 shows the layout of the proposed full-wave CMOS rectifier and the microphotograph
of the fabricated IC and Table 1 shows the summary of the system performance. The amplitude of
the output voltage is 0.694 V. The simulated conversion ratio of VOUT versus VIN is 98.7%. The output
power, POUT of the proposed full-wave rectifier is 10.7 µW, and the power conversion efficiency (PCE)
of the system is 52.2%, and this PCE can be achieved at 45 KΩ (Max PCE). The main reason for the low
PCE is due to the low available input power. The main idea of this proposed active rectifier is to reduce
the off-chip components as much as possible so that this energy harvester can be easily integrated
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with other complex systems. In addition, the performance of the proposed system demonstrates that
by reducing the time for charging and discharging of Csg of the PMOS switch, the input amplitude
of a piezoelectric transducer will increase the output voltage. This process saves the wasted charges
caused by CP, and the output voltage can be increased even though the increment in the input voltage
amplitude is small. As shown in Table 1, the PCE of the proposed circuit is comparable to other energy
harvesting circuits reported in literature. Reference [8] used an external power source, which will
decrease the harvested power. References [1,3] used high piezo current, iP compared to this proposed
design and high voltage amplitude to achieve higher output voltage. In addition, an inductor is used
in reference [1] to further increase the PCE of the overall system. However, with such high piezoelectric
current as well as with an additional inductor with a fairly big value, the PCE of their system is not
far from the proposed simple but effectively controlled rectifier. The input of the proposed system
was provided by a function generator instead of a piezoelectric transducer for proof of concept of
the proposed rectifier circuit. The preliminary test results show that the overall system performs as
expected. Figure 14 shows the proposed full-wave rectifier layout and full-chip micro-photograph.

Table 1. Performance Comparison.

Publications [1] [3] SO [8] This Work

Inductor and External Components Yes No No No
External Power Yes No No No

Amplitude of IP by PD or Applied force 2 mA 94 µA 3.35 g 45 µA
Parasitic Capacitance of PD (nF) 330 25 12 25

Vibration Frequency (Hz) 185 200 225 200
VIN,Peak 3.5 3 2.4 0.704

VOUT (V) 3.34 2.9 2 0.694
RL (KΩ) 3.51 100 75 45

PCE (%) 160% higher than conventional rectifier.
Converted PCE is 63% - 53 52.2
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