
Journal of

Low Power Electronics
and Applications

Article

Opportunistic Design Margining for Area and Power
Efficient Processor Pipelines in Real
Time Applications

Mini Jayakrishnan 1,2,*, Alan Chang 2 and Tony Tae-Hyoung Kim 1

1 VIRTUS, IC Design Centre of Excellence, School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798, Singapore; thkim@ntu.edu.sg

2 NXP Semiconductors Singapore Pte Ltd., 1 Fusionopolis Walk, #12-01/02 South Tower, Solaris,
Singapore 138628, Singapore; alan.changyk@gmail.com

* Correspondence: mini001@e.ntu.edu.sg; Tel.: +65-911-63-479

Received: 9 February 2018; Accepted: 18 March 2018; Published: 21 March 2018
����������
�������

Abstract: The semiconductor industry is strategically focusing on automotive markets, and significant
investment is targeted to addressing these markets. Runtime better-than-worst-case designs like
Razor lead to massive timing errors upon breaching the critical operating point and have significant
area overheads. As we scale to higher-reliability automotive and industrial markets we need
alternative techniques that will allow full extraction of the power benefits without sacrificing reliability.
The proposed method utilizes positive slack available in the pipeline stages and re-distributes it to
the preceding critical logic stage using Slack Balancing Flip-Flops (SBFFs). We use opportunistic
under designing to get rid of the area, power and error correction overheads associated with the
speculative hardware of runtime techniques. The proposed logic reshaping results in 12 percent
and eight percent power and area savings respectively compared to the worst-case design approach.
Compared to runtime better-than-worst-case designs, we get 51 percent and 10 percent power
and area savings, respectively. In addition, the timing budgeting and timing correction using
opportunistic slack eliminate critical operating point behavior, metastability issues and hold buffer
overheads encountered in existing runtime resilience techniques.

Keywords: variation tolerance; slack balancing; under design; logic reshaping

1. Introduction

Technology scaling has benefited integrated circuits by meeting their power, performance and
area goals over generations. However, it has also aggravated circuits and system failures creating
major cost and reliability impacts in nanoscale designs [1,2]. Advanced technology nodes show
a significant amount of intra-die variations due to process inaccuracies [3–5]. Dynamic variations
caused by voltage and temperature fluctuations also cause reliability issues [6]. These reliability issues
shrink the design life cycle. The impacts of variations continue to increase with process technology
scaling, which leads to pessimistic delay margins in processor pipelines. This stretches the timing
guard bands in traditional designs. The worst-case design margins result in overdesign and wastage of
chip resources. Therefore, we need opportunistic design techniques to improve the chip yield without
compromising performance and energy efficiency, which are highly demanded.

Digital circuits do not always face the worst operating conditions. Several alternative techniques
have been proposed to dynamically tune the operating conditions in real time to recover the design
margins. Sensor-based adaptive techniques help to combat static and dynamic variations [7,8].
Hardware signatures from sensors are used to tune the circuit operating point [9,10]. However, sensors
may not respond fast enough to dynamic variations. In addition, sensors need to be calibrated to

J. Low Power Electron. Appl. 2018, 8, 9; doi:10.3390/jlpea8020009 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
http://www.mdpi.com/2079-9268/8/2/9?type=check_update&version=1
http://www.mdpi.com/journal/jlpea
http://dx.doi.org/10.3390/jlpea8020009

J. Low Power Electron. Appl. 2018, 8, 9 2 of 18

determine safe operation regions through post-silicon tuning. Another technique is to use critical path
replicas to monitor variations [11]. However, they fail to detect the actual amount of variation due to
the mismatch between the actual path and the replica path.

In situ error correction techniques illustrated in Figure 1 help to overcome the drawbacks of the
sensor-based designs. They tune supply voltage to the point of failure to minimize design margins and
reclaim power. Timing errors due to dynamic variations are then detected and corrected using special
flip-flops. However, the dynamic tuning of the operating point makes the in situ schemes vulnerable
to metastability issues in data paths and/or error paths, which affects the overall system recovery.
Razor I [12] illustrated in Figure 1a has a metastability issue in the data path since data are allowed
to change very close to the clock (CLK) edge. Razor II [13] in Figure 1b overcomes the metastability
in the data path using a latch. Double Sampling with Time Borrowing (DSTB) [14] and Transition
Detection with Time Borrowing (TDTB) [14] are similar to Razor II, employing a latch as the data path.
However, the delayed sampling leads to short path violations and buffer overheads. Bubble Razor [15]
uses two-phase latch timing to overcome the short path violations. However, there is a performance
penalty for error recovery during heavy workloads.

Runtime techniques come with high-cost overheads, latency issues and the risk of runtime error
handling. In the Razor approach, the voltage adaptation is based on the measured timing error rate.
As errors have to be accepted, architectural recovery circuits are necessary, which increases design
time and cost. Besides the undesirable increase in complexity, error recovery also leads to variable and
unpredictable latency, which causes catastrophic failures. Error masking techniques in Figure 1c like
soft edge flip-flops [16] and Time Borrowing and Error Relay (TIMBER [17]) mask timing errors by
borrowing time from the subsequent pipeline stages with zero latency overheads. However, they have
limited design margin reduction and metastability and hold buffer overheads. Runtime techniques
reclaim power, area and performance by using dynamic/adaptive voltage/frequency scaling and
Better-than-Worst-Case (BTWC) design techniques [18–20].

Design margins are also recovered by redistributing slack to the critical pipeline stages using
combinatorial and sequential optimizations. Sequential optimizations like retiming help to minimize
clock period, achieve low power and maximize tolerance to variations [21,22]. However, it restricts the
space of possible retiming and may result in unnecessary area overheads. Useful skew and clock skew
scheduling [23] combined with gate sizing [24,25] help to compensate variations and speed up the
processor pipelines. EVAL (Environment for Variation-Afflicted Logic) speeds up the timing of critical
paths through Adaptive Body Bias (ABB), as well as Adaptive Supply Voltage (ASV) [26], but it has
significant area overheads. Blue Shift uses On-demand Selective Biasing (OSB) and Path Constrained
Tuning (PCT) [27] to achieve performance gains at the cost of significant power overheads. Such design
optimizations worsen the critical operating point of the design [28], which limits the effectiveness of
the voltage scaling. Power-aware slack distribution (SlackOptimizer) [29] uses cell sizing together
with Razor voltage scaling to distribute slack evenly in a power- and cost-efficient manner. However,
they retain metastability and hold buffer overheads of the speculative pipelines. Pulsed latches [30,31]
are used as a means to reduce power consumption, but just like other latch-based systems, it is difficult
to verify the design timing. Moreover, pulse width integrity issues and pulse generation overheads
need to be taken care of while using such systems. The latency issues inherent in run time techniques
makes them unsuitable for real-time applications [32,33]. For higher-reliability automotive markets,
we need alternative techniques that will allow full extraction of the power benefits without sacrificing
reliability [34].

Techniques that trade off critical path slack with non-critical slack such as path constraint
tuning [27] and SlackOptimizer [29] over constrain the critical logic and reclaim the power by under
constraining the non-critical logic. Our methodology is different in the fact that we under-design
the critical logic and thereby get more power and area reductions from the usual over constrained
counterparts. Compared to the existing speculative slack exploitation techniques like soft edge
flip-flops [16] and TIMBER, we use available slack in the design, thereby achieving PPA reductions

J. Low Power Electron. Appl. 2018, 8, 9 3 of 18

independent of timing error rates. The reclaimed slack for the proposed method remains constant
independent of the error rate, as shown in Figure 2. Moreover, the existing optimizations based on
retiming [22], skew scheduling [23] and gate sizing [25] do not fully reclaim the available slack to
be traded off with power/performance. They also limit the amount of time borrowed due to hold
violations. The proposed approach has significant slack gain compared to the existing techniques,
as shown in Figure 2. Our paper uses a design-time method, which uses a speculative hardware
similar to the runtime methods to allow better-than-worst-case operation. We use opportunistic
under designing to get rid of the area, power and error correction overheads associated with the
speculative hardware of runtime techniques. Runtime techniques show significant area overhead [33].
Table 1 compares the different cost-effective resilient design techniques, which shows that only the
proposed technique has zero area overhead.

J. Low Power Electron. Appl. 2018, 7, x 3 of 18

retiming [22], skew scheduling [23] and gate sizing [25] do not fully reclaim the available slack to be
traded off with power/performance. They also limit the amount of time borrowed due to hold
violations. The proposed approach has significant slack gain compared to the existing techniques, as
shown in Figure 2. Our paper uses a design-time method, which uses a speculative hardware similar
to the runtime methods to allow better-than-worst-case operation. We use opportunistic under
designing to get rid of the area, power and error correction overheads associated with the speculative
hardware of runtime techniques. Runtime techniques show significant area overhead [33]. Table 1
compares the different cost-effective resilient design techniques, which shows that only the proposed
technique has zero area overhead.

D

CLK

Q

ERROR

D

CLK

Q

ERROR

D

CLK

Q

ERROR

(a) (b) (c)

Flip-flop Latch

Data Path Data Path Data Path

Figure 1. Speculative techniques: (a) Razor I error detection with flip-flop as the data path [12], (b)
Razor II error detection with latch as the data path [13] and (c) TIMBER error masking with flip-flop
as the data path [17].

Razor

Sl
ac

k
re

cl
ai

m
ed

Error rate

TIMBER

Skew schedule

Tck/2

Tck/6

Proposed

Figure 2. Reclaimed slack vs. error rate for various resilience techniques.

Our paper relies on opportunistic better-than-worst-case design, which differs significantly from
traditional worst-case design and at the same time gives area and power savings. We use worst-case
design margins with respect to the delayed clock edge as shown in Figure 3, which categorically
makes it a better-than-worst-case technique. We take advantage of the opportunistic slack and
translate it into better-than-worst-case design margins while still achieving variation tolerance.
Opportunistic logic downsizing helps to reclaim power at design time rather than scaling voltage at
runtime. Therefore, we use the term “Opportunistic Better-Than-Worst-Case design” (OBTWC) to
differentiate it from traditional Worst-Case Design (WCD) and runtime Better-Than-Worst-Case
(BTWC) techniques. The proposed solution works in a conservative manner that guarantees “always
correct” computation and timing correctness of the circuit with respect to the delayed clock edge,
even in the worst-case scenario.

Figure 1. Speculative techniques: (a) Razor I error detection with flip-flop as the data path [12];
(b) Razor II error detection with latch as the data path [13] and (c) TIMBER error masking with flip-flop
as the data path [17].

J. Low Power Electron. Appl. 2018, 7, x 3 of 18

retiming [22], skew scheduling [23] and gate sizing [25] do not fully reclaim the available slack to be
traded off with power/performance. They also limit the amount of time borrowed due to hold
violations. The proposed approach has significant slack gain compared to the existing techniques, as
shown in Figure 2. Our paper uses a design-time method, which uses a speculative hardware similar
to the runtime methods to allow better-than-worst-case operation. We use opportunistic under
designing to get rid of the area, power and error correction overheads associated with the speculative
hardware of runtime techniques. Runtime techniques show significant area overhead [33]. Table 1
compares the different cost-effective resilient design techniques, which shows that only the proposed
technique has zero area overhead.

D

CLK

Q

ERROR

D

CLK

Q

ERROR

D

CLK

Q

ERROR

(a) (b) (c)

Flip-flop Latch

Data Path Data Path Data Path

Figure 1. Speculative techniques: (a) Razor I error detection with flip-flop as the data path [12], (b)
Razor II error detection with latch as the data path [13] and (c) TIMBER error masking with flip-flop
as the data path [17].

Razor

Sl
ac

k
re

cl
ai

m
ed

Error rate

TIMBER

Skew schedule

Tck/2

Tck/6

Proposed

Figure 2. Reclaimed slack vs. error rate for various resilience techniques.

Our paper relies on opportunistic better-than-worst-case design, which differs significantly from
traditional worst-case design and at the same time gives area and power savings. We use worst-case
design margins with respect to the delayed clock edge as shown in Figure 3, which categorically
makes it a better-than-worst-case technique. We take advantage of the opportunistic slack and
translate it into better-than-worst-case design margins while still achieving variation tolerance.
Opportunistic logic downsizing helps to reclaim power at design time rather than scaling voltage at
runtime. Therefore, we use the term “Opportunistic Better-Than-Worst-Case design” (OBTWC) to
differentiate it from traditional Worst-Case Design (WCD) and runtime Better-Than-Worst-Case
(BTWC) techniques. The proposed solution works in a conservative manner that guarantees “always
correct” computation and timing correctness of the circuit with respect to the delayed clock edge,
even in the worst-case scenario.

Figure 2. Reclaimed slack vs. error rate for various resilience techniques.

Our paper relies on opportunistic better-than-worst-case design, which differs significantly from
traditional worst-case design and at the same time gives area and power savings. We use worst-case
design margins with respect to the delayed clock edge as shown in Figure 3, which categorically
makes it a better-than-worst-case technique. We take advantage of the opportunistic slack and
translate it into better-than-worst-case design margins while still achieving variation tolerance.
Opportunistic logic downsizing helps to reclaim power at design time rather than scaling voltage
at runtime. Therefore, we use the term “Opportunistic Better-Than-Worst-Case design” (OBTWC)
to differentiate it from traditional Worst-Case Design (WCD) and runtime Better-Than-Worst-Case
(BTWC) techniques. The proposed solution works in a conservative manner that guarantees “always
correct” computation and timing correctness of the circuit with respect to the delayed clock edge,
even in the worst-case scenario.

J. Low Power Electron. Appl. 2018, 8, 9 4 of 18

Table 1. Comparison of cost-effective resilient design techniques. DSTB, Double Sampling with Time
Borrowing; TDTB, Detection with Time Borrowing; SBFF, Slack Balancing Flip-Flops.

Feature Speculative Non-Speculative

Techniques EVAL [26],
Blueshift [27]

Razor [12], DSTB, TDTB [14],
TIMBER [17], soft edge

flip-flop [16]

SlackOptimizer,
SkewOptimizer,
CombOpt [29]

Retiming [21],
skew scheduling [23],

gate sizing [24]

Proposed SBFF
+ logic

downsizing

Trade-off Error rate vs.
performance Error rate vs. power Error rate vs. power No No

Error handling Duplicate paths Duplicate Latch/FFs Duplicate Latch/FFs No error No error

Clock tree loading No Yes Yes No Yes

Short path padding No Yes Yes Yes No

Metastability Yes Yes Yes No No

Sequential overhead Large Large Large Small Large

Combinational overhead Large Small Large Small Small

Area overhead Yes Yes Yes Yes No

Margin relaxation Small Up to Tck/2 Tck/2 Small Tck/2

MS = Meta Stability, Tck = clock period.

J. Low Power Electron. Appl. 2018, 7, x 4 of 18

Table 1. Comparison of cost-effective resilient design techniques. DSTB, Double Sampling with Time
Borrowing; TDTB, Detection with Time Borrowing; SBFF, Slack Balancing Flip-Flops.

Feature Speculative Non-Speculative

Techniques
EVAL [26],

Blueshift [27]

Razor [12], DSTB,
TDTB [14],

TIMBER [17], soft
edge flip-flop [16]

SlackOptimizer,
SkewOptimizer,
CombOpt [29]

Retiming [21],
skew scheduling
[23], gate sizing

[24]

Proposed SBFF
+ logic

downsizing

Trade-off
Error rate vs.
performance

Error rate vs.
power

Error rate vs. power No No

Error handling
Duplicate

paths
Duplicate
Latch/FFs

Duplicate Latch/FFs No error No error

Clock tree
loading

No Yes Yes No Yes

Short path
padding

No Yes Yes Yes No

Metastability Yes Yes Yes No No
Sequential
overhead Large Large Large Small Large

Combinational
overhead

Large Small Large Small Small

Area overhead Yes Yes Yes Yes No
Margin

relaxation
Small Up to Tck/2 Tck/2 Small Tck/2

MS = Meta Stability, Tck = clock period.

Figure 3. Comparison of design margining techniques: (a) Worst-Case Design (WCD) margining and
(b) Opportunistic Better-Than-Worst-Case (OBTWC) design margining.

The proposed approach, which is an extension of our previous work [35], leverages the
underutilized slack present in processor pipelines after the tool-based optimizations. We use Static
Timing Analysis (STA) to look for near critical endpoints with sufficient consecutive slack after
placement and logic optimizations. The critical endpoints are then back annotated to the synthesis
tool, and we relax the timing margins of all the paths in the critical stage proportionate to the available
slack. After relaxing the path slacks, we resynthesize the critical fan-in logic and replace the endpoints
with Slack Balancing Flip-Flops (SBFF). SBFFs are designed to sample data at a delayed clock edge.
Re-synthesis with relaxed timing margins delays the long paths and pushes them towards the SBFF
delayed clock edge. The delayed data still maintain safe design margins with respect to the delayed
clock edge of the SBFF. This removes metastability issues prevalent in the speculative flip-flop
pipelines. The methodology relies on the critical wall of slack issues from the data path. Unlike the
in-situ techniques, the short paths converging to the SBFF also get delayed, which removes the hold
buffer overheads resulting from delayed data sampling. Re-synthesis downsizes and restructures the
logic gates in the critical fan-in stage, which gives significant power and area savings. This results in
the optimal power-aware design of the processor pipeline from the ground up without the failure
risks of runtime speculative operating point tuning. They are not limited by the gate sizing and skew
optimization constraints in typical combinatorial optimizations, which results in the maximum slack
power trade-off along the processor pipeline. The remainder of this paper is organized as follows.
Section 2 presents the motivation to use the proposed technique. Section 3 presents the proposed

Actual circuit delay
Lost performance/

energy

Clock

Process
Temperature Voltage Aging

(a) (b)

Actual circuit delay
Lost performance/

energy

Clock

Process
Temperature Voltage Aging

Area/power
savings

Figure 3. Comparison of design margining techniques: (a) Worst-Case Design (WCD) margining and
(b) Opportunistic Better-Than-Worst-Case (OBTWC) design margining.

The proposed approach, which is an extension of our previous work [35], leverages the
underutilized slack present in processor pipelines after the tool-based optimizations. We use Static
Timing Analysis (STA) to look for near critical endpoints with sufficient consecutive slack after
placement and logic optimizations. The critical endpoints are then back annotated to the synthesis
tool, and we relax the timing margins of all the paths in the critical stage proportionate to the available
slack. After relaxing the path slacks, we resynthesize the critical fan-in logic and replace the endpoints
with Slack Balancing Flip-Flops (SBFF). SBFFs are designed to sample data at a delayed clock edge.
Re-synthesis with relaxed timing margins delays the long paths and pushes them towards the SBFF
delayed clock edge. The delayed data still maintain safe design margins with respect to the delayed
clock edge of the SBFF. This removes metastability issues prevalent in the speculative flip-flop pipelines.
The methodology relies on the critical wall of slack issues from the data path. Unlike the in-situ
techniques, the short paths converging to the SBFF also get delayed, which removes the hold buffer
overheads resulting from delayed data sampling. Re-synthesis downsizes and restructures the logic
gates in the critical fan-in stage, which gives significant power and area savings. This results in the
optimal power-aware design of the processor pipeline from the ground up without the failure risks
of runtime speculative operating point tuning. They are not limited by the gate sizing and skew
optimization constraints in typical combinatorial optimizations, which results in the maximum slack
power trade-off along the processor pipeline. The remainder of this paper is organized as follows.
Section 2 presents the motivation to use the proposed technique. Section 3 presents the proposed design
methodology. Section 4 describes our proposed power optimization techniques, and experimental
results are illustrated in Section 5. Finally, Section 6 concludes the proposed work.

J. Low Power Electron. Appl. 2018, 8, 9 5 of 18

2. Motivation

Conventional design margining approaches are based on dynamic operating point tuning and in
situ error correction to trade off power and reliability. The operating conditions are tuned adaptively till
Point of First Failure (PoFF), which makes the near critical paths also timing critical. Figure 3 shows the
effect of voltage scaling on the slack histogram of critical paths in a processor pipeline. Figure 4a shows
the baseline designed for the worst case with a Worst Negative Slack (WNS) of 10 ps. However, with
the voltage scaling of 20 mV, 312 paths have negative slack, and the WNS becomes −600 ps (Figure 4b).
Similarly, 985 paths have negative slack and the WNS becomes −700 ps when the supply voltage is
scaled by 40 mV (Figure 4c). It is obvious that the paths with negative slack and the WNS increases
with voltage scaling. The newly-created critical paths also need to be error resilient, which creates
huge overheads in designs. Figure 5 plots the Total Negative Slack (TNS) of the processor pipeline
against the voltage scaling steps. Voltage scaling down to Va does not increase TNS. TNS slightly
increases between Va and Vb, but can be managed using in situ error correction techniques. Beyond
Vb, TNS increases rapidly, and the increased number of critical paths makes the error correction
cost enormous. In the event of high error rates, the system frequency has to be halved to recover
from errors.

Traditional timing-driven optimizations focus on the combinational logic and do not support
any tradeoffs between the logic paths separated by sequential elements. This results in a slack
imbalance in the pipeline stages. Based on our timing analysis of a delay-optimized processor pipeline,
we found that there is significant slack rebalance opportunity between the critical pipe_1 paths and the
consecutive pipe_2 paths, as shown in Figure 6. We leverage this slack to relax and resynthesize the
critical fan-in logic and sample the resulting delayed inputs using a slack balancing flip-flop. Instead
of reducing design margins at runtime using adaptive techniques, the proposed approach downsizes
the critical fan-in logic of the pipeline for power savings. Worst-case design margins are still met with
respect to the delayed clock edge of the slack balancing flip-flop, which helps to eliminate metastability
issue faced by adaptive in situ error correction schemes. Moreover, we also relax the short paths by
the same design margin, which eliminates the need for SBFF-induced short path buffer insertions
later in the design flow. In contrast to the existing slack redistribution techniques [21–27], we insert
intentional clock delays to fully balance the available slack at the critical endpoints and redesign the
whole critical logic stage with the relaxed time constraints. This results in a pipeline optimized for
low power without the need for runtime voltage speculation, which is vulnerable to critical operating
point behavior. The proposed method designs the processor to handle worst-case PVT margins. Logic
downsizing pushes the critical data towards the delayed clock edge, which is timed to maintain
worst-case margins with respect to the delayed clock edge. This makes the design resistant to static
and dynamic variations similar to traditional worst-case corner designs, but with lower power and
area. Razor and TIMBER depend on runtime voltage and frequency scaling to reclaim the design
margins associated with dynamic variations. Therefore, they require error handling circuitry and need
to tune the voltage or frequency back to the worst case operating corner depending on the error rate.
There is a significant risk and architectural latency involved in this runtime adaption, especially when
the error rate is high.

J. Low Power Electron. Appl. 2018, 8, 9 6 of 18
J. Low Power Electron. Appl. 2018, 7, x 6 of 18

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Slack (ps)

 #
 o

f p
at

hs

Slack histogram
at Vworstcase

0

20

40

60

80

100

120

-600 -500 -400 -300 -200 -100 0 100
Slack (ps)

 #
 o

f p
at

hs

Slack histogram with
20mV voltage scaling

Slack (ps)

 #
 o

f p
at

hs

Slack histogram with
40mV voltage scaling

(a) (b) (c)

0

50

100

150

200

250

300

350

400

-700 -600 -500 -400 -300 -200 -100 0 100

Figure 4. Slack histogram of the processor pipeline (a) in the worst case, (b) with 20-mV voltage
scaling and (c) with 40-mV voltage scaling.

TN
S

(n
s)

0

50

100

150

200

250

300

350

400

450

10 15 20 25 30 35 40

Voltage scaling step (mV)

va vb

Figure 5. Cost of resilience and voltage scaling trade-off.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Fetch stage

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 p
at

hs

Pipe2_slack (ps)

Fetch stage

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Decode stage

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 p
at

hs

Pipe2_slack (ps)

Decode stage

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Execute stage

of

 p
at

hs

Pipe2_slack (ps)

Execute stage

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6. Critical path slacks (pipe_1) and consecutive stage slacks (pipe_2) of the processor.

3. Proposed Variation Tolerant Pipeline Design

3.1. Slack Balancing Principle

To explain slack balancing, we consider a small circuit as shown in Figure 7 with four registers.
The timing graph shows nodes corresponding to the registers and edges corresponding to the
combinational paths. The maximum delay for each combinational path is shown beside the edges.
This circuit is optimized for a minimum feasible clock period T = 11. The combinational path (d, b)

Figure 4. Slack histogram of the processor pipeline (a) in the worst case, (b) with 20-mV voltage scaling
and (c) with 40-mV voltage scaling.

J. Low Power Electron. Appl. 2018, 7, x 6 of 18

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Slack (ps)

 #
 o

f p
at

hs

Slack histogram
at Vworstcase

0

20

40

60

80

100

120

-600 -500 -400 -300 -200 -100 0 100
Slack (ps)

 #
 o

f p
at

hs

Slack histogram with
20mV voltage scaling

Slack (ps)

 #
 o

f p
at

hs

Slack histogram with
40mV voltage scaling

(a) (b) (c)

0

50

100

150

200

250

300

350

400

-700 -600 -500 -400 -300 -200 -100 0 100

Figure 4. Slack histogram of the processor pipeline (a) in the worst case, (b) with 20-mV voltage
scaling and (c) with 40-mV voltage scaling.

TN
S

(n
s)

0

50

100

150

200

250

300

350

400

450

10 15 20 25 30 35 40

Voltage scaling step (mV)

va vb

Figure 5. Cost of resilience and voltage scaling trade-off.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Fetch stage

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 p
at

hs

Pipe2_slack (ps)

Fetch stage

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Decode stage

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 p
at

hs

Pipe2_slack (ps)

Decode stage

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Execute stage

of

 p
at

hs

Pipe2_slack (ps)

Execute stage

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6. Critical path slacks (pipe_1) and consecutive stage slacks (pipe_2) of the processor.

3. Proposed Variation Tolerant Pipeline Design

3.1. Slack Balancing Principle

To explain slack balancing, we consider a small circuit as shown in Figure 7 with four registers.
The timing graph shows nodes corresponding to the registers and edges corresponding to the
combinational paths. The maximum delay for each combinational path is shown beside the edges.
This circuit is optimized for a minimum feasible clock period T = 11. The combinational path (d, b)

Figure 5. Cost of resilience and voltage scaling trade-off.

J. Low Power Electron. Appl. 2018, 7, x 6 of 18

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Slack (ps)

 #
 o

f p
at

hs

Slack histogram
at Vworstcase

0

20

40

60

80

100

120

-600 -500 -400 -300 -200 -100 0 100
Slack (ps)

 #
 o

f p
at

hs

Slack histogram with
20mV voltage scaling

Slack (ps)

 #
 o

f p
at

hs

Slack histogram with
40mV voltage scaling

(a) (b) (c)

0

50

100

150

200

250

300

350

400

-700 -600 -500 -400 -300 -200 -100 0 100

Figure 4. Slack histogram of the processor pipeline (a) in the worst case, (b) with 20-mV voltage
scaling and (c) with 40-mV voltage scaling.

TN
S

(n
s)

0

50

100

150

200

250

300

350

400

450

10 15 20 25 30 35 40

Voltage scaling step (mV)

va vb

Figure 5. Cost of resilience and voltage scaling trade-off.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Fetch stage

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 p
at

hs

Pipe2_slack (ps)

Fetch stage

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Decode stage

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 p
at

hs

Pipe2_slack (ps)

Decode stage

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

of

 p
at

hs

Pipe1_slack (ps)

Execute stage

of

 p
at

hs

Pipe2_slack (ps)

Execute stage

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6. Critical path slacks (pipe_1) and consecutive stage slacks (pipe_2) of the processor.

3. Proposed Variation Tolerant Pipeline Design

3.1. Slack Balancing Principle

To explain slack balancing, we consider a small circuit as shown in Figure 7 with four registers.
The timing graph shows nodes corresponding to the registers and edges corresponding to the
combinational paths. The maximum delay for each combinational path is shown beside the edges.
This circuit is optimized for a minimum feasible clock period T = 11. The combinational path (d, b)

Figure 6. Critical path slacks (pipe_1) and consecutive stage slacks (pipe_2) of the processor.

3. Proposed Variation Tolerant Pipeline Design

3.1. Slack Balancing Principle

To explain slack balancing, we consider a small circuit as shown in Figure 7 with four registers.
The timing graph shows nodes corresponding to the registers and edges corresponding to the
combinational paths. The maximum delay for each combinational path is shown beside the edges.
This circuit is optimized for a minimum feasible clock period T = 11. The combinational path (d, b) has

J. Low Power Electron. Appl. 2018, 8, 9 7 of 18

a maximum delay of 11. In this critical path, time can be borrowed from the consecutive stage (b, d)
whose delay is nine. We replace the flip-flop b by the SBFF with a clock delay equal to the slack present
in the consecutive stage (b, d), which is two. Now, for the same clock period T = 11, we have an extra
margin of two in the fan-in paths (a, b) and (d, b). The extra margin is used to relax and downsize the
logic in the fan-in paths, making sure it does not create other timing violations. This procedure also
delays the short paths along the critical fan-in logic, thus eliminating the need for additional buffers
compared to other timing speculation techniques.

J. Low Power Electron. Appl. 2018, 7, x 7 of 18

has a maximum delay of 11. In this critical path, time can be borrowed from the consecutive
stage (b, d) whose delay is nine. We replace the flip-flop b by the SBFF with a clock delay equal to the
slack present in the consecutive stage (b, d), which is two. Now, for the same clock period T = 11, we
have an extra margin of two in the fan-in paths (a, b) and (d, b). The extra margin is used to relax and
downsize the logic in the fan-in paths, making sure it does not create other timing violations. This
procedure also delays the short paths along the critical fan-in logic, thus eliminating the need for
additional buffers compared to other timing speculation techniques.

91199
7

5

9

6
a b

c d

9

2 7
a

5 6
b

4
5

d

c

Figure 7. A circuit example and timing graph to explain slack balancing.

We compare the proposed technique with existing speculative error correction schemes.
Figure 8a shows conceptually how the slack margins are relaxed in a typical voltage scaling-based
error resilience scheme. We consider four timing paths P1, P2, P3 and P4 with different slack margins.
Here, we assume P3 to be a part of a non-critical fan-in logic and P1, P2 and P4 in the critical fan-in
logic with P1 being a critical short path. Energy can be reduced by scaling the supply voltage, which
increases the delay along these paths. The timing speculation window for a typical speculative error
resilience scheme is Tclk/2. Therefore, the paths are allowed to relax the delay margins by Tclk/2, as
shown in Figure 8b. Voltage scaling is done beyond PoFF until the critical operating voltage near
critical path P3 also becomes timing critical as depicted in Figure 8c. Moreover, runtime voltage
scaling causes the inputs to change close to the clock edges, creating metastability issues. They also
require additional buffers along P1 to ensure that it will not corrupt the delayed data and hence the
error generated. Even if timing speculation is not done till Tclk/2, we still need to insert buffers for an
equivalent delay of Tclk/2 to ensure that the error signal is not corrupted. Unless we use a fine-grain
voltage scaling, even non-critical paths like P3 will become critical. Furthermore, for
performance-driven design margin relaxation techniques, the slack relaxations are suboptimal as
shown in Figure 9b. Frequency scaling results in new critical path formations in P3, as shown in
Figure 9c, which makes the scaling bounded.

Slack margin Error correction FF allows
speculation by Tclk/2

Voltage scaled till
critical operating point

unused slack
margin(b)(a) (c)

P1

P2

P3

P4

new critical path

Figure 8. Speculative power-aware flip-flop: (a) slack margin at sign off, (b) slack margin relaxed with
timing speculation flip-flop and (c) slack margin traded off with power. P1, Path 1.

Figure 7. A circuit example and timing graph to explain slack balancing.

We compare the proposed technique with existing speculative error correction schemes.
Figure 8a shows conceptually how the slack margins are relaxed in a typical voltage scaling-based
error resilience scheme. We consider four timing paths P1, P2, P3 and P4 with different slack margins.
Here, we assume P3 to be a part of a non-critical fan-in logic and P1, P2 and P4 in the critical fan-in logic
with P1 being a critical short path. Energy can be reduced by scaling the supply voltage, which increases
the delay along these paths. The timing speculation window for a typical speculative error resilience
scheme is Tclk/2. Therefore, the paths are allowed to relax the delay margins by Tclk/2, as shown in
Figure 8b. Voltage scaling is done beyond PoFF until the critical operating voltage near critical path P3
also becomes timing critical as depicted in Figure 8c. Moreover, runtime voltage scaling causes the
inputs to change close to the clock edges, creating metastability issues. They also require additional
buffers along P1 to ensure that it will not corrupt the delayed data and hence the error generated.
Even if timing speculation is not done till Tclk/2, we still need to insert buffers for an equivalent
delay of Tclk/2 to ensure that the error signal is not corrupted. Unless we use a fine-grain voltage
scaling, even non-critical paths like P3 will become critical. Furthermore, for performance-driven
design margin relaxation techniques, the slack relaxations are suboptimal as shown in Figure 9b.
Frequency scaling results in new critical path formations in P3, as shown in Figure 9c, which makes
the scaling bounded.

J. Low Power Electron. Appl. 2018, 7, x 7 of 18

has a maximum delay of 11. In this critical path, time can be borrowed from the consecutive
stage (b, d) whose delay is nine. We replace the flip-flop b by the SBFF with a clock delay equal to the
slack present in the consecutive stage (b, d), which is two. Now, for the same clock period T = 11, we
have an extra margin of two in the fan-in paths (a, b) and (d, b). The extra margin is used to relax and
downsize the logic in the fan-in paths, making sure it does not create other timing violations. This
procedure also delays the short paths along the critical fan-in logic, thus eliminating the need for
additional buffers compared to other timing speculation techniques.

91199
7

5

9

6
a b

c d

9

2 7
a

5 6
b

4
5

d

c

Figure 7. A circuit example and timing graph to explain slack balancing.

We compare the proposed technique with existing speculative error correction schemes.
Figure 8a shows conceptually how the slack margins are relaxed in a typical voltage scaling-based
error resilience scheme. We consider four timing paths P1, P2, P3 and P4 with different slack margins.
Here, we assume P3 to be a part of a non-critical fan-in logic and P1, P2 and P4 in the critical fan-in
logic with P1 being a critical short path. Energy can be reduced by scaling the supply voltage, which
increases the delay along these paths. The timing speculation window for a typical speculative error
resilience scheme is Tclk/2. Therefore, the paths are allowed to relax the delay margins by Tclk/2, as
shown in Figure 8b. Voltage scaling is done beyond PoFF until the critical operating voltage near
critical path P3 also becomes timing critical as depicted in Figure 8c. Moreover, runtime voltage
scaling causes the inputs to change close to the clock edges, creating metastability issues. They also
require additional buffers along P1 to ensure that it will not corrupt the delayed data and hence the
error generated. Even if timing speculation is not done till Tclk/2, we still need to insert buffers for an
equivalent delay of Tclk/2 to ensure that the error signal is not corrupted. Unless we use a fine-grain
voltage scaling, even non-critical paths like P3 will become critical. Furthermore, for
performance-driven design margin relaxation techniques, the slack relaxations are suboptimal as
shown in Figure 9b. Frequency scaling results in new critical path formations in P3, as shown in
Figure 9c, which makes the scaling bounded.

Slack margin Error correction FF allows
speculation by Tclk/2

Voltage scaled till
critical operating point

unused slack
margin(b)(a) (c)

P1

P2

P3

P4

new critical path

Figure 8. Speculative power-aware flip-flop: (a) slack margin at sign off, (b) slack margin relaxed with
timing speculation flip-flop and (c) slack margin traded off with power. P1, Path 1.
Figure 8. Speculative power-aware flip-flop: (a) slack margin at sign off; (b) slack margin relaxed with
timing speculation flip-flop and (c) slack margin traded off with power. P1, Path 1.

J. Low Power Electron. Appl. 2018, 8, 9 8 of 18J. Low Power Electron. Appl. 2018, 7, x 8 of 18

Slack margin
clock skew and gate size
tuning ; slack relaxed <

Tclk/2
Frequency scaled till

critical operating point

unused slack
margin(b)(a) (c)

P1

P2

P3

P4

new critical path

Figure 9. Performance-aware optimizations: (a) slack margin at sign off, (b) slack margin relaxed with
clock skew scheduling and gate sizing and (c) slack margin traded off with frequency.

In our proposed technique, we use static time borrowing to trade off slack margin for power and
area gains. Figure 10a shows the slack margins of the baseline worst-case design. We look for positive
slack in the pipeline stages and replace the critical endpoints with SBFFs, which borrows a time TB
proportional to the available slacks as depicted in Figure 10b. As a result, the critical fan-in paths P1,
P2 and P4 are relaxed by TB. We re-synthesize the pipeline to downsize the fan-in logic of SBFF for
power and area reductions (Figure 10c). After resizing the logic, timing closure is done on the data
paths with respect to the delayed clock edges of SBFF. Our approach is deterministic and
non-speculative, unlike the usual dynamic operating point scaling techniques. Safe design margins
are kept with respect to the delayed clock edge of the SBFF, which prevents metastability issues in
the pipeline. Unlike conventional resilience schemes, the short path P1 is also delayed by the
corresponding TB window TB1. This eliminates the need for additional short path buffers along P1
to prevent it from corrupting the delayed data. Note that the time borrow window TB is fully utilized
for power and area reduction compared to other optimization techniques. Unlike clock skew
scheduling, which is mostly used for performance enhancements, the proposed method targets
critical logic power minimization by utilizing maximum available slack to downsize all logic paths
in the critical stage.

Slack margin
SBFF relaxes slack

margin by available slack
up to Tclk/2

TB1

TB3

TB4

Slack margin used to
downsize logic

(b)(a) (c)

P1

P2

P3

P4

Figure 10. Proposed SBFF: (a) slack margin at sign off, (b) slack margin relaxed with SBFF and
(c) slack margin used to downsize logic.

3.2. Slack Balancing Flip-Flop

The SBFF and the timing diagram are illustrated in Figure 11. SBFF is a simplified version of
TIMBER [17] without any error propagation logic. SBFF consists of the main latch, a shadow latch
and a clock control circuit. The data path has a main latch and a slave latch forming an edge-triggered
master-slave flip-flop. The proposed optimization technique downsizes the SBFF input logic for
power reduction. This delays the input data signal DATA, which is detected by the shadow latch
using a Delayed Clock (DCK). The delay amount decides the design margin improvement. The input
to the slave latch is switched between the master path and the shadow path using the control signals
(P0 and P1) to ensure that the delayed data pass through the slave latch. As shown in Figure 11, the
main latch samples the input data and transfers them to the output (Q) at the positive Clock (CK)
edge when TG0 is closed and TG1 is open. Similarly, the slave latch samples the data and passes them
to the output at the Delayed Clock edge (DCK) when TG1 is closed and TG0 is open. The data in the

Figure 9. Performance-aware optimizations: (a) slack margin at sign off; (b) slack margin relaxed with
clock skew scheduling and gate sizing and (c) slack margin traded off with frequency.

In our proposed technique, we use static time borrowing to trade off slack margin for power
and area gains. Figure 10a shows the slack margins of the baseline worst-case design. We look for
positive slack in the pipeline stages and replace the critical endpoints with SBFFs, which borrows
a time TB proportional to the available slacks as depicted in Figure 10b. As a result, the critical fan-in
paths P1, P2 and P4 are relaxed by TB. We re-synthesize the pipeline to downsize the fan-in logic of
SBFF for power and area reductions (Figure 10c). After resizing the logic, timing closure is done on
the data paths with respect to the delayed clock edges of SBFF. Our approach is deterministic and
non-speculative, unlike the usual dynamic operating point scaling techniques. Safe design margins
are kept with respect to the delayed clock edge of the SBFF, which prevents metastability issues
in the pipeline. Unlike conventional resilience schemes, the short path P1 is also delayed by the
corresponding TB window TB1. This eliminates the need for additional short path buffers along P1 to
prevent it from corrupting the delayed data. Note that the time borrow window TB is fully utilized for
power and area reduction compared to other optimization techniques. Unlike clock skew scheduling,
which is mostly used for performance enhancements, the proposed method targets critical logic power
minimization by utilizing maximum available slack to downsize all logic paths in the critical stage.

J. Low Power Electron. Appl. 2018, 7, x 8 of 18

Slack margin
clock skew and gate size
tuning ; slack relaxed <

Tclk/2
Frequency scaled till

critical operating point

unused slack
margin(b)(a) (c)

P1

P2

P3

P4

new critical path

Figure 9. Performance-aware optimizations: (a) slack margin at sign off, (b) slack margin relaxed with
clock skew scheduling and gate sizing and (c) slack margin traded off with frequency.

In our proposed technique, we use static time borrowing to trade off slack margin for power and
area gains. Figure 10a shows the slack margins of the baseline worst-case design. We look for positive
slack in the pipeline stages and replace the critical endpoints with SBFFs, which borrows a time TB
proportional to the available slacks as depicted in Figure 10b. As a result, the critical fan-in paths P1,
P2 and P4 are relaxed by TB. We re-synthesize the pipeline to downsize the fan-in logic of SBFF for
power and area reductions (Figure 10c). After resizing the logic, timing closure is done on the data
paths with respect to the delayed clock edges of SBFF. Our approach is deterministic and
non-speculative, unlike the usual dynamic operating point scaling techniques. Safe design margins
are kept with respect to the delayed clock edge of the SBFF, which prevents metastability issues in
the pipeline. Unlike conventional resilience schemes, the short path P1 is also delayed by the
corresponding TB window TB1. This eliminates the need for additional short path buffers along P1
to prevent it from corrupting the delayed data. Note that the time borrow window TB is fully utilized
for power and area reduction compared to other optimization techniques. Unlike clock skew
scheduling, which is mostly used for performance enhancements, the proposed method targets
critical logic power minimization by utilizing maximum available slack to downsize all logic paths
in the critical stage.

Slack margin
SBFF relaxes slack

margin by available slack
up to Tclk/2

TB1

TB3

TB4

Slack margin used to
downsize logic

(b)(a) (c)

P1

P2

P3

P4

Figure 10. Proposed SBFF: (a) slack margin at sign off, (b) slack margin relaxed with SBFF and
(c) slack margin used to downsize logic.

3.2. Slack Balancing Flip-Flop

The SBFF and the timing diagram are illustrated in Figure 11. SBFF is a simplified version of
TIMBER [17] without any error propagation logic. SBFF consists of the main latch, a shadow latch
and a clock control circuit. The data path has a main latch and a slave latch forming an edge-triggered
master-slave flip-flop. The proposed optimization technique downsizes the SBFF input logic for
power reduction. This delays the input data signal DATA, which is detected by the shadow latch
using a Delayed Clock (DCK). The delay amount decides the design margin improvement. The input
to the slave latch is switched between the master path and the shadow path using the control signals
(P0 and P1) to ensure that the delayed data pass through the slave latch. As shown in Figure 11, the
main latch samples the input data and transfers them to the output (Q) at the positive Clock (CK)
edge when TG0 is closed and TG1 is open. Similarly, the slave latch samples the data and passes them
to the output at the Delayed Clock edge (DCK) when TG1 is closed and TG0 is open. The data in the

Figure 10. Proposed SBFF: (a) slack margin at sign off, (b) slack margin relaxed with SBFF and (c) slack
margin used to downsize logic.

3.2. Slack Balancing Flip-Flop

The SBFF and the timing diagram are illustrated in Figure 11. SBFF is a simplified version of
TIMBER [17] without any error propagation logic. SBFF consists of the main latch, a shadow latch and
a clock control circuit. The data path has a main latch and a slave latch forming an edge-triggered
master-slave flip-flop. The proposed optimization technique downsizes the SBFF input logic for power
reduction. This delays the input data signal DATA, which is detected by the shadow latch using
a Delayed Clock (DCK). The delay amount decides the design margin improvement. The input to
the slave latch is switched between the master path and the shadow path using the control signals
(P0 and P1) to ensure that the delayed data pass through the slave latch. As shown in Figure 11,
the main latch samples the input data and transfers them to the output (Q) at the positive Clock (CK)
edge when TG0 is closed and TG1 is open. Similarly, the slave latch samples the data and passes

J. Low Power Electron. Appl. 2018, 8, 9 9 of 18

them to the output at the Delayed Clock edge (DCK) when TG1 is closed and TG0 is open. The data
in the master latch are compared with those in the slave latch by an XOR gate. The xor gate output
signal XOR_OUT becomes ‘1’ when they are different. Figure 12 shows the simulation results of
the SBFF. XOR_OUT is sampled by P1 to filter any glitches and fake transitions in the SBFF and
generates a sampled signal XOR_OUT_SAMPLED. It shows that the delayed DATA are detected by the
delayed clock DCK of the SBFF. The XOR output is also used to generate the monitor signal ACTIVITY
MONITOR. Depending on whether a data transition happens in the clock cycle, the master latch and
shadow latch will sample the same value or a different value. This will be handy in the pre-silicon or
post-silicon stage to disable the time borrowing in the event of low data activity rates, which results in
further power reduction. In Figure 13a, the monitor signal is triggered only once, which shows a low
data rate. The monitor signal is triggered continuously in all the clock cycles as shown in Figure 13b
for high data rates.

J. Low Power Electron. Appl. 2018, 7, x 9 of 18

master latch are compared with those in the slave latch by an XOR gate. The xor gate output signal
XOR_OUT becomes ‘1’ when they are different. Figure 12 shows the simulation results of the SBFF.
XOR_OUT is sampled by P1 to filter any glitches and fake transitions in the SBFF and generates a
sampled signal XOR_OUT_SAMPLED. It shows that the delayed DATA are detected by the delayed
clock DCK of the SBFF. The XOR output is also used to generate the monitor signal ACTIVITY
MONITOR. Depending on whether a data transition happens in the clock cycle, the master latch and
shadow latch will sample the same value or a different value. This will be handy in the pre-silicon or
post-silicon stage to disable the time borrowing in the event of low data activity rates, which results
in further power reduction. In Figure 13a, the monitor signal is triggered only once, which shows a
low data rate. The monitor signal is triggered continuously in all the clock cycles as shown in Figure
13b for high data rates.

DATA

R

CK

CK

DCK

DCK

CK

CK

DCK

DCK

R

CK

CK

Q

P0

P1

P0

P1

P1

ACTIVITY
MONITOR

L0

L1

XOR_OUT

Main Latch

Shadow Latch DCK

P0

P1

P0

P1

CK

TG0

TG1

(a)

EN

TG2

L0 samples
DATA

TG0 open

L1 samples
DATA

L0 drives input to output

L1 drives input to output

TG1 open
CK

DCK

(b)

Slave Latch

L0: Main Latch
L1: Slave Latch

Figure 11. (a) SBFF and (b) timing diagram. DCK, Delayed Clock.

TIME (a.u.)

Glitch

Fake
transition

Delayed data
detectionDATA

Q

CK

DCK

LATCH0

LATCH1

XOR_OUT

XOR_OUT
_SAMPLED

Delayed clock
edge

Figure 12. SBFF simulation result.

CK

DCK

D

ACTIVITY
MONITOR

CK

DCK

D

ACTIVITY
MONITOR

(a) (b)
Figure 13. Data activity monitoring in SBFF. (a) Intermittent triggering of the activity monitor with
low data activity and (b) continuous triggering of activity monitor with high data activity.

Figure 11. (a) SBFF and (b) timing diagram. DCK, Delayed Clock.

J. Low Power Electron. Appl. 2018, 7, x 9 of 18

master latch are compared with those in the slave latch by an XOR gate. The xor gate output signal
XOR_OUT becomes ‘1’ when they are different. Figure 12 shows the simulation results of the SBFF.
XOR_OUT is sampled by P1 to filter any glitches and fake transitions in the SBFF and generates a
sampled signal XOR_OUT_SAMPLED. It shows that the delayed DATA are detected by the delayed
clock DCK of the SBFF. The XOR output is also used to generate the monitor signal ACTIVITY
MONITOR. Depending on whether a data transition happens in the clock cycle, the master latch and
shadow latch will sample the same value or a different value. This will be handy in the pre-silicon or
post-silicon stage to disable the time borrowing in the event of low data activity rates, which results
in further power reduction. In Figure 13a, the monitor signal is triggered only once, which shows a
low data rate. The monitor signal is triggered continuously in all the clock cycles as shown in Figure
13b for high data rates.

DATA

R

CK

CK

DCK

DCK

CK

CK

DCK

DCK

R

CK

CK

Q

P0

P1

P0

P1

P1

ACTIVITY
MONITOR

L0

L1

XOR_OUT

Main Latch

Shadow Latch DCK

P0

P1

P0

P1

CK

TG0

TG1

(a)

EN

TG2

L0 samples
DATA

TG0 open

L1 samples
DATA

L0 drives input to output

L1 drives input to output

TG1 open
CK

DCK

(b)

Slave Latch

L0: Main Latch
L1: Slave Latch

Figure 11. (a) SBFF and (b) timing diagram. DCK, Delayed Clock.

TIME (a.u.)

Glitch

Fake
transition

Delayed data
detectionDATA

Q

CK

DCK

LATCH0

LATCH1

XOR_OUT

XOR_OUT
_SAMPLED

Delayed clock
edge

Figure 12. SBFF simulation result.

CK

DCK

D

ACTIVITY
MONITOR

CK

DCK

D

ACTIVITY
MONITOR

(a) (b)
Figure 13. Data activity monitoring in SBFF. (a) Intermittent triggering of the activity monitor with
low data activity and (b) continuous triggering of activity monitor with high data activity.

Figure 12. SBFF simulation result.

J. Low Power Electron. Appl. 2018, 7, x 9 of 18

master latch are compared with those in the slave latch by an XOR gate. The xor gate output signal
XOR_OUT becomes ‘1’ when they are different. Figure 12 shows the simulation results of the SBFF.
XOR_OUT is sampled by P1 to filter any glitches and fake transitions in the SBFF and generates a
sampled signal XOR_OUT_SAMPLED. It shows that the delayed DATA are detected by the delayed
clock DCK of the SBFF. The XOR output is also used to generate the monitor signal ACTIVITY
MONITOR. Depending on whether a data transition happens in the clock cycle, the master latch and
shadow latch will sample the same value or a different value. This will be handy in the pre-silicon or
post-silicon stage to disable the time borrowing in the event of low data activity rates, which results
in further power reduction. In Figure 13a, the monitor signal is triggered only once, which shows a
low data rate. The monitor signal is triggered continuously in all the clock cycles as shown in Figure
13b for high data rates.

DATA

R

CK

CK

DCK

DCK

CK

CK

DCK

DCK

R

CK

CK

Q

P0

P1

P0

P1

P1

ACTIVITY
MONITOR

L0

L1

XOR_OUT

Main Latch

Shadow Latch DCK

P0

P1

P0

P1

CK

TG0

TG1

(a)

EN

TG2

L0 samples
DATA

TG0 open

L1 samples
DATA

L0 drives input to output

L1 drives input to output

TG1 open
CK

DCK

(b)

Slave Latch

L0: Main Latch
L1: Slave Latch

Figure 11. (a) SBFF and (b) timing diagram. DCK, Delayed Clock.

TIME (a.u.)

Glitch

Fake
transition

Delayed data
detectionDATA

Q

CK

DCK

LATCH0

LATCH1

XOR_OUT

XOR_OUT
_SAMPLED

Delayed clock
edge

Figure 12. SBFF simulation result.

CK

DCK

D

ACTIVITY
MONITOR

CK

DCK

D

ACTIVITY
MONITOR

(a) (b)
Figure 13. Data activity monitoring in SBFF. (a) Intermittent triggering of the activity monitor with
low data activity and (b) continuous triggering of activity monitor with high data activity.

Figure 13. Data activity monitoring in SBFF. (a) Intermittent triggering of the activity monitor with low
data activity and (b) continuous triggering of activity monitor with high data activity.

J. Low Power Electron. Appl. 2018, 8, 9 10 of 18

3.3. Pipeline Design Flow Using SBFF

We use standard CAD tools and custom add-on scripts for SBFF insertion and logic optimization
for the proposed pipeline design. A standard cell library with 20 different flavors of SBFFs was
developed using library characterization tools to replace the normal flip-flops. The library has four
sets of non-scan flip-flops with two different drive strengths and four sets of scan flip-flops with three
different drive strengths. Custom scripts are used to enable slack analysis, time budgeting and SBFF
replacement. Figure 14 shows the proposed design flow using SBFF. It starts with filtering the critical
paths based on post-placement and optimization STA results. In this work, we consider ~10% of
the total flip-flops that are most critical, whose slack is less than 2% of the clock period. In the next
step, we search for the critical endpoints with sufficient consecutive slacks. These endpoints are back
annotated to the synthesis engine. The timing for all the critical fan-in paths is relaxed proportionate
to the available slack. The pipeline is then resynthesized with the new timing constraints. We then
replace the endpoints by SBFFs and run the placement and clock tree. The clock delays for the SBFFs
are inserted after the clock tree is built. This helps to preserve the traditional tool-based optimizations.
We limit the inserted clock delay to TB1 = Tclk/8, TB2 = 2Tclk/8, TB3 = 3Tclk/8 and TB4 = 4Tclk/8 for
simplicity. The pipeline is then signed off, keeping worst-case design margins.

J. Low Power Electron. Appl. 2018, 7, x 10 of 18

3.3. Pipeline Design Flow Using SBFF

We use standard CAD tools and custom add-on scripts for SBFF insertion and logic optimization
for the proposed pipeline design. A standard cell library with 20 different flavors of SBFFs was
developed using library characterization tools to replace the normal flip-flops. The library has four
sets of non-scan flip-flops with two different drive strengths and four sets of scan flip-flops with three
different drive strengths. Custom scripts are used to enable slack analysis, time budgeting and SBFF
replacement. Figure 14 shows the proposed design flow using SBFF. It starts with filtering the critical
paths based on post-placement and optimization STA results. In this work, we consider ~10% of the
total flip-flops that are most critical, whose slack is less than 2% of the clock period. In the next step,
we search for the critical endpoints with sufficient consecutive slacks. These endpoints are back
annotated to the synthesis engine. The timing for all the critical fan-in paths is relaxed proportionate
to the available slack. The pipeline is then resynthesized with the new timing constraints. We then
replace the endpoints by SBFFs and run the placement and clock tree. The clock delays for the SBFFs
are inserted after the clock tree is built. This helps to preserve the traditional tool-based optimizations.
We limit the inserted clock delay to TB1 = Tclk/8, TB2 = 2Tclk/8, TB3 = 3Tclk/8 and TB4 = 4Tclk/8 for
simplicity. The pipeline is then signed off, keeping worst-case design margins.

Report slackRTL &
constraints Synthesize Place & optimize

design

Filter critical
endpoints with

slack < Th

Report
consecutive slack

of all endpoints

Relax stage1 logic
of the endpoints

by TB
Synthesize again

Place & optimize
design

Clock tree
synthesis

Replace critical
endpoints with

SBFF

Route &sign off

end

Delay insertion for
SBFFs

Filter endpoints
with stage2 slack >

TB

SBFF insertion and timing
correction

Figure 14. Design flow using SBFF.

3.4. Metastability and Hold Issues

Speculative techniques relax max delay and constrain min delay by Tclk/2. The max delay savings
is minimal if we consider error handling and min delay overheads. For a typical speculative pipeline
shown in Figure 15, the max delay, Tmax can be speculated up to Tclk/2 till the falling edge of the clock
and is calculated as:

Tmax = Tclk + Tclk/2 − Tsu,clk-f , (1)

where Tsu,clk-f represents the setup timing of the speculative flip-flop clock falling edge. The effective
max delay improvement Tmax,eff is limited by the critical operating point and is calculated as:

Tmax,eff = Tclk + Tcop − Tsu,clk-f , (2)

where Tcop represents the effective amount by which max delay is relaxed till the critical operating
point. The min delay requirement, Tmin, for Razor is tightened by Tclk/2 and is calculated as:

Tmin = Tclk/2 + Th,clk-f , (3)

Figure 14. Design flow using SBFF.

3.4. Metastability and Hold Issues

Speculative techniques relax max delay and constrain min delay by Tclk/2. The max delay savings
is minimal if we consider error handling and min delay overheads. For a typical speculative pipeline
shown in Figure 15, the max delay, Tmax can be speculated up to Tclk/2 till the falling edge of the clock
and is calculated as:

Tmax = Tclk + Tclk/2 − Tsu,clk-f, (1)

where Tsu,clk-f represents the setup timing of the speculative flip-flop clock falling edge. The effective
max delay improvement Tmax,eff is limited by the critical operating point and is calculated as:

Tmax,eff = Tclk + Tcop − Tsu,clk-f, (2)

where Tcop represents the effective amount by which max delay is relaxed till the critical operating
point. The min delay requirement, Tmin, for Razor is tightened by Tclk/2 and is calculated as:

J. Low Power Electron. Appl. 2018, 8, 9 11 of 18

Tmin = Tclk/2 + Th,clk-f, (3)

where Th,clk-f represents the hold timing requirement of the speculative clock falling edge.
Thus, for a max delay improvement of Tcop, there is a min delay buffer overhead of Tclk/2.

J. Low Power Electron. Appl. 2018, 7, x 11 of 18

where Th,clk-f represents the hold timing requirement of the speculative clock falling edge. Thus, for a
max delay improvement of Tcop, there is a min delay buffer overhead of Tclk/2.

(a)

 MSFF Razor FF

tcomb

terr-path

out

err
clk

tsu

tsu
clk

clk

D

D

clk

out

tres

tcomb

tsu tclk2err

Tsu,clk-f

D

clk

err

(b) (c)
tclk2out

Tsu,clk-r

terr-path+ tres

Figure 15. (a) Speculative flip-flop pipeline, (b) data path metastability and (c) error path metastability.

SBFF relaxes the max delay and tightens the min delay of the critical fan-in logic by TB
proportional to the consecutive stage slack as shown in Figure 16. The SBFF max delay, Tmax,SBFF, is
calculated as:

Tmax,SBFF = Tclk + TB − Tsu,clk_del-r , (4)

where Tsu,clk_del-r represents the setup time constraint with respect to SBFF delayed clock rising edge.
The max delay improvement of TB gives extra room for power, area and performance improvement.
For high performance designs, the extra margin can be used to scale frequency. For low power
designs, the extra margin can be used to under design the logic to achieve power and area savings.
The logic downsizing makes sure that the short path delay also increases by TB, thus eliminating the
need for additional hold buffers. The SBFF min delay, Tmin,SBFF, is calculated as:

Tmin,SBFF = TB + Th,clk_del-r , (5)

where Th,clk_del-r represents the hold timing requirement with respect to the SBFF delayed clock edge.
As long as the TB constraint is satisfied, the D input meets the worst-case setup timing of the delayed
clock. This eliminates the need for error correction. We can represent the maximum delay constraint
on TB as:

TBmax,SBFF ≤ Tclk/2 − Tsu,clk_del-r , (6)

Runtime dynamic timing speculation techniques have metastability risks at the clock edges
along the data path and error path. Data path metastability will arise if D input changes too close to
the positive clock edge due to voltage scaling or PVT variations, as depicted in Figure 15b. As a
statistical measure of the reliability from metastable errors, we express the Mean time between
failures, MTBFdata-path, as:

MTBFdata-path = exp(tres⁄τc)⁄(fdata. T0. fclk), (7)

Here, tres represents the resolution time to exit the metastable state; T0 is the metastability window; τc
is the metastability resolution time constant; fdat is the frequency of data transition; and fclk is the clock
frequency. The metastability resolution time tres can be calculated as:

tres = Tclk − tclk2out − tcomb − tsu, (8)

Here, tclk2out is the clock to output delay of the flip-flop; tcomb is the combinational logic delay of the
succeeding stage; and tsu is the setup time constraint of the subsequent flip-flop as shown in
Figure 15b. A higher tres amounts to better protection from metastable errors. For the speculative
flip-flop, tclk2out is worse than the conventional flip-flops due to the redundant latch, which makes tres
smaller. This introduces additional constraints on the combinational delay of the next pipeline stage.
The error path is also prone to metastability because the dynamic voltage scaling pushes the data too
close to the negative clock edge, as shown in Figure 15c. The corresponding mean time between
failures, MTBFerr-path, is represented as:

MTBFerr-path = exp(tres⁄τc)⁄(fdata. T0. fclk), (9)

Figure 15. (a) Speculative flip-flop pipeline, (b) data path metastability and (c) error path metastability.

SBFF relaxes the max delay and tightens the min delay of the critical fan-in logic by TB proportional
to the consecutive stage slack as shown in Figure 16. The SBFF max delay, Tmax,SBFF, is calculated as:

Tmax,SBFF = Tclk + TB − Tsu,clk_del-r, (4)

where Tsu,clk_del-r represents the setup time constraint with respect to SBFF delayed clock rising edge.
The max delay improvement of TB gives extra room for power, area and performance improvement.
For high performance designs, the extra margin can be used to scale frequency. For low power designs,
the extra margin can be used to under design the logic to achieve power and area savings. The logic
downsizing makes sure that the short path delay also increases by TB, thus eliminating the need for
additional hold buffers. The SBFF min delay, Tmin,SBFF, is calculated as:

Tmin,SBFF = TB + Th,clk_del-r, (5)

where Th,clk_del-r represents the hold timing requirement with respect to the SBFF delayed clock edge.
As long as the TB constraint is satisfied, the D input meets the worst-case setup timing of the delayed
clock. This eliminates the need for error correction. We can represent the maximum delay constraint
on TB as:

TBmax,SBFF ≤ Tclk/2 − Tsu,clk_del-r, (6)

Runtime dynamic timing speculation techniques have metastability risks at the clock edges
along the data path and error path. Data path metastability will arise if D input changes too
close to the positive clock edge due to voltage scaling or PVT variations, as depicted in Figure 15b.
As a statistical measure of the reliability from metastable errors, we express the Mean time between
failures, MTBFdata-path, as:

MTBFdata-path = exp(tres/τc)/(fdata. T0. fclk), (7)

Here, tres represents the resolution time to exit the metastable state; T0 is the metastability window;
τc is the metastability resolution time constant; fdat is the frequency of data transition; and fclk is the
clock frequency. The metastability resolution time tres can be calculated as:

tres = Tclk − tclk2out − tcomb − tsu, (8)

Here, tclk2out is the clock to output delay of the flip-flop; tcomb is the combinational logic delay of
the succeeding stage; and tsu is the setup time constraint of the subsequent flip-flop as shown in
Figure 15b. A higher tres amounts to better protection from metastable errors. For the speculative

J. Low Power Electron. Appl. 2018, 8, 9 12 of 18

flip-flop, tclk2out is worse than the conventional flip-flops due to the redundant latch, which makes
tres smaller. This introduces additional constraints on the combinational delay of the next pipeline stage.
The error path is also prone to metastability because the dynamic voltage scaling pushes the data
too close to the negative clock edge, as shown in Figure 15c. The corresponding mean time between
failures, MTBFerr-path, is represented as:

MTBFerr-path = exp(tres/τc)/(fdata. T0. fclk), (9)

Here, tres represents the resolution time to exit the metastable state; T0 is the metastability window;
τc is the metastability resolution time constant; fdat is the frequency of data transition; and fclk is the clock
frequency, all with respect to the error path. The error path metastability can be fatal especially since
speculative designs rely on the error signal timing for proper error recovery. Here, the metastability
resolution time tres can be expressed as:

tres = Tclk − TB − tclk2err − tcomb − tsu, (10)

Here, tclk2err is the clock to output delay for the error output signal with respect to the negative
clock edge. As shown in Figure 15c, the tres window for the error path is too small, and this puts
additional constraints on the error path delay terr-path. Resolution time can extend up to three clock
cycles, which means the error signal will take three clock cycles to resolve fully in the event of
metastability. Any timing issues along the error path will affect the error recovery process, and the
system may not be able to get back to the normal error-free state. The mean time between failures for
the SBFF data path can be represented as:

MTBFdata-path,SBFF = exp(tres/τc)/(fdata. T0. fclk), (11)

Here, tres represents the resolution time to come out of the metastable state; T0 is the metastability
window of the delayed clock edge; τc is the metastability resolution time constant; fdata is the
frequency of data transition; and fclk is the clock frequency. The metastability resolution time tres

can be calculated as:
tres,SBFF = Tclk − tclk_del2out − tcomb − tsu, (12)

Here, tclk_del2out is the clock to output delay of the SBFF; tcomb is the combinational logic delay succeeding
the SBFF; and tsu is the setup time constraint of the subsequent flip-flop, as shown in Figure 16b. Timing
constraints in (6) make sure that the setup constraints are met with the delayed clock edge, and so,
the probability of metastable errors is very low. The absence of metastability makes tclk_del2out smaller
than tclk2out of speculative FF, which results in more resolution time for SBFF in the event of any timing
upset. The design margin improvement using the proposed non-speculative approach is reliable and
predictable, which results in less overhead compared to real-time design margin speculation.

J. Low Power Electron. Appl. 2018, 7, x 12 of 18

Here, tres represents the resolution time to exit the metastable state; T0 is the metastability window; τc
is the metastability resolution time constant; fdat is the frequency of data transition; and fclk is the clock
frequency, all with respect to the error path. The error path metastability can be fatal especially since
speculative designs rely on the error signal timing for proper error recovery. Here, the
metastability resolution time tres can be expressed as:

tres = Tclk − TB − tclk2err − tcomb − tsu, (10)

Here, tclk2err is the clock to output delay for the error output signal with respect to the negative clock
edge. As shown in Figure 15c, the tres window for the error path is too small, and this puts additional
constraints on the error path delay terr-path. Resolution time can extend up to three clock cycles, which
means the error signal will take three clock cycles to resolve fully in the event of metastability. Any
timing issues along the error path will affect the error recovery process, and the system may not be
able to get back to the normal error-free state. The mean time between failures for the SBFF data path
can be represented as:

MTBFdata-path,SBFF = exp(tres⁄τc)⁄(fdata. T0. fclk), (11)

Here, tres represents the resolution time to come out of the metastable state; T0 is the metastability
window of the delayed clock edge; τc is the metastability resolution time constant; fdata is the frequency
of data transition; and fclk is the clock frequency. The metastability resolution time tres can be
calculated as:

tres,SBFF = Tclk − tclk_del2out − tcomb − tsu, (12)

Here, tclk_del2out is the clock to output delay of the SBFF; tcomb is the combinational logic delay succeeding
the SBFF; and tsu is the setup time constraint of the subsequent flip-flop, as shown in Figure 16b.
Timing constraints in (6) make sure that the setup constraints are met with the delayed clock edge,
and so, the probability of metastable errors is very low. The absence of metastability makes tclk_del2out
smaller than tclk2out of speculative FF, which results in more resolution time for SBFF in the event of
any timing upset. The design margin improvement using the proposed non-speculative approach is
reliable and predictable, which results in less overhead compared to real-time design
margin speculation.

(a)

MSFF SBFF

tcomb
out

monitorclk_del

tsu

clk

D

D

clk

out

Tsu,clk_del-r

tsu

(b)
tclk_del2out

tcomb
TB

clk_del

Figure 16. (a) SBFF pipeline and (b) data path timing.

4. Power Optimization Algorithm

Slack balancing flip-flops help to redistribute available slack in the design to the critical stages.
Once we replace the critical endpoints with SBFFs, we can leverage the additional slack to under
design the critical fan-in logic. The proposed power optimization approach uses the available slack
margin to downsize the critical fan-in logic. There is an area reduction and delay increase when we
downsize the gates. However, the critical endpoints absorb this delay increase because the delayed
data are safely captured by the delayed clock of the SBFF. This results in fewer resources along the
critical fan-in logic, leading to power and area savings with respect to the baseline design. To realize
this, we propose a slack analysis and downsizing (SizeOpt) algorithm as described in Algorithm 1.

Figure 16. (a) SBFF pipeline and (b) data path timing.

J. Low Power Electron. Appl. 2018, 8, 9 13 of 18

4. Power Optimization Algorithm

Slack balancing flip-flops help to redistribute available slack in the design to the critical stages.
Once we replace the critical endpoints with SBFFs, we can leverage the additional slack to under
design the critical fan-in logic. The proposed power optimization approach uses the available slack
margin to downsize the critical fan-in logic. There is an area reduction and delay increase when we
downsize the gates. However, the critical endpoints absorb this delay increase because the delayed
data are safely captured by the delayed clock of the SBFF. This results in fewer resources along the
critical fan-in logic, leading to power and area savings with respect to the baseline design. To realize
this, we propose a slack analysis and downsizing (SizeOpt) algorithm as described in Algorithm 1.
The procedure takes an input netlist to calculate slack available in the logic stages. Based on the
timing analysis results, we filter the critical endpoints whose slack margin is less than a predefined
threshold (Th). We set Th as two percent of the clock period in this work. Our timing analysis showed
enormous slack presence in the logic stages. Here, the time borrowing capability of a critical path is
solely based on the slack present in the consecutive stage. Therefore, we divided the available slack
into four time borrow bands TB = {TB1, TB2, TB3, TB4}, which are multiples of Tclk/8 and take values
TB1 = Tclk/8, TB2 = 2Tclk/8, TB3 = 3Tclk/8 and TB4 = 4Tclk/8, respectively. Depending on whether the
consecutive slack in the second stage falls in TB1, TB2, TB3 or TB4, we relax the endpoint’s fan-in logic
by the respective TB. This is done by adjusting the path delay during synthesis. Once the path delay is
adjusted, we resynthesize the pipeline, which results in logic downsizing. The critical endpoints in
the netlist are then replaced by an SBFF using custom scripts. Clock delays for the SBFFs are decided
based on their time borrowing capability TB. For the best overall power/area savings, we start from
the paths with the highest slack in the range of TB4. We replace those paths with SBFFs and relax their
timing with path adjust commands in the synthesis stage. This process is continued until there is no
more critical path that has at least TB1 slack from which to borrow. This makes sure that the design
undergoes a path relaxation proportional to the maximum slack available.

Algorithm 1: Slack Analysis and Downsizing (SizeOpt)

Input: Initial Netlist
Output: Netlist with SBFF and optimized cells

1 Procedure SizeOpt (Initial Netlist)
2 Run STA to find critical paths P and consecutive slacks;
3 P = ∅;
4 for all timing endpoints p in the netlist do
5 if slack(p) < Th then
6 P = P ∪ {p};
7 end if
8 end for
9 for all TB = TB4, TB >= TB, TB = TB − TB1 do
10 for all p do
11 if consecutive slack (p) >= TB and < 2TB do
12 Replace endpoint regsiter by SBFF with DCK = TB;
13 Adjust timing of fan-in logic by TB;
14 Downsize fan-in and close timing with respect to DCK;
15 end if
16 Calculate power and area savings;
17 end for
18 end for
19 return (NetlistTB);

J. Low Power Electron. Appl. 2018, 8, 9 14 of 18

5. Results and Analysis

In order to enhance the processor pipeline, we developed 16 different flavors of SBFFs, as shown
in Table 2. We characterized the SBFFs and compared the power, area and setup-hold time metrics with
the corresponding master-slave flip-flops. Figure 17 shows the power and area comparison between
the different flip-flop pairs from MSFF and SBFF library. It is evident that SBFFs consume higher
power and area compared to their MSFF counterparts. However, the proposed logic downsizing helps
to convert the power and area overheads to gains, unlike other resilient techniques. Figure 18 shows
the timing comparison between the flip-flop pairs of the SBFF and MSFF library. The setup time and
hold time are also slightly high for the SBFF cells.

Table 2. SBFF flavors used in the proposed design methodology.

Reference Drive Strength Description

FF_1, FF_2 1X, 2X D-flip-flop, positive-edge triggered, q-only
FF_3, FF_4, FF_5 1X, 2X, 8X D-flip-flop, positive-edge triggered, q-only

FF_6 1X D-flip-flop, positive-edge triggered, low-asynchronous-clear, q-only
FF_7, FF_8, FF_9 1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear, q-only

FF_10, FF_11 1X, 2X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, q-only
FF_12, FF_13, FF_14 1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, q-only

FF_15, FF_16 1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, sync hold, q-only

J. Low Power Electron. Appl. 2018, 7, x 14 of 18

Table 2. SBFF flavors used in the proposed design methodology.

Reference
Drive

Strength
Description

FF_1, FF_2 1X, 2X D-flip-flop, positive-edge triggered, q-only
FF_3, FF_4, FF_5 1X, 2X, 8X D-flip-flop, positive-edge triggered, q-only

FF_6 1X D-flip-flop, positive-edge triggered, low-asynchronous-clear, q-only
FF_7, FF_8, FF_9 1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear, q-only

FF_10, FF_11 1X, 2X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, q-only
FF_12, FF_13,

FF_14
1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, q-only

FF_15, FF_16 1X, 2X, 8X
D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, sync hold, q-

only

0

2

4

6

8

10

12

14

16

18

A
re

a
(u

m
2)

MSFF

SBFF

0

1

2

3

4

5

6

7

8

9

MSFF

SBFF

In
te

rn
al

 P
ow

er
 (p

W
)

(a) (b)

Figure 17. (a) Power comparison between MSFF and SBFF standard cells and (b) area comparison
between MSFF and SBFF standard cells.

Error resilience experiments were conducted on a 40-nm embedded processor with a three-stage
pipeline. The whole design flow is carried out at the worst-case PVT corner using a 3σ process library,
a temperature of 125 °C and a worst-case voltage of 0.99 V. The conventional worst-case corner design
was used as the baseline to compare the power and area. The processor has a three-stage
fetch-decode-execute pipeline, and it does more in each stage to increase the overall performance.
There are no critical clock gates in the design. The processor implementation details and complexity
are depicted in Table 3.

0

20

40

60

80

100

120

140

160

MSFF

SBFF

C
to

 Q
 d

el
ay

 (n
s)

0

20

40

60

80

100

120

140

MSFF

SBFF

Se
tu

p
tim

e
(n

s)

(a) (b)

Figure 18. (a) Setup time comparison between MSFF and SBFF standard cells and (b) hold time
comparison between MSFF and SBFF standard cells.

Figure 17. (a) Power comparison between MSFF and SBFF standard cells and (b) area comparison
between MSFF and SBFF standard cells.

Error resilience experiments were conducted on a 40-nm embedded processor with a three-stage
pipeline. The whole design flow is carried out at the worst-case PVT corner using a 3σ process
library, a temperature of 125 ◦C and a worst-case voltage of 0.99 V. The conventional worst-case corner
design was used as the baseline to compare the power and area. The processor has a three-stage
fetch-decode-execute pipeline, and it does more in each stage to increase the overall performance.
There are no critical clock gates in the design. The processor implementation details and complexity
are depicted in Table 3.

Based on the slack analysis, we found an opportunity to relax the slack margin in the data
path modules shown in Figure 19. The design has ~20 K logic cells with 720 critical endpoints and
7000 flip-flops. Sixty percent of the critical endpoints have sufficient slack and can be replaced by
SBFFs. The execute stage has the maximum number of critical endpoints, and ~326 paths in the execute
stage are relaxed by a maximum slack margin of TB4.

J. Low Power Electron. Appl. 2018, 8, 9 15 of 18

J. Low Power Electron. Appl. 2018, 7, x 14 of 18

Table 2. SBFF flavors used in the proposed design methodology.

Reference
Drive

Strength
Description

FF_1, FF_2 1X, 2X D-flip-flop, positive-edge triggered, q-only
FF_3, FF_4, FF_5 1X, 2X, 8X D-flip-flop, positive-edge triggered, q-only

FF_6 1X D-flip-flop, positive-edge triggered, low-asynchronous-clear, q-only
FF_7, FF_8, FF_9 1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear, q-only

FF_10, FF_11 1X, 2X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, q-only
FF_12, FF_13,

FF_14
1X, 2X, 8X D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, q-only

FF_15, FF_16 1X, 2X, 8X
D-flip-flop, positive-edge triggered, low-asynchronous-clear/set, sync hold, q-

only

0

2

4

6

8

10

12

14

16

18

A
re

a
(u

m
2)

MSFF

SBFF

0

1

2

3

4

5

6

7

8

9

MSFF

SBFF

In
te

rn
al

 P
ow

er
 (p

W
)

(a) (b)

Figure 17. (a) Power comparison between MSFF and SBFF standard cells and (b) area comparison
between MSFF and SBFF standard cells.

Error resilience experiments were conducted on a 40-nm embedded processor with a three-stage
pipeline. The whole design flow is carried out at the worst-case PVT corner using a 3σ process library,
a temperature of 125 °C and a worst-case voltage of 0.99 V. The conventional worst-case corner design
was used as the baseline to compare the power and area. The processor has a three-stage
fetch-decode-execute pipeline, and it does more in each stage to increase the overall performance.
There are no critical clock gates in the design. The processor implementation details and complexity
are depicted in Table 3.

0

20

40

60

80

100

120

140

160

MSFF

SBFF
C

to
 Q

 d
el

ay
 (n

s)

0

20

40

60

80

100

120

140

MSFF

SBFF

Se
tu

p
tim

e
(n

s)

(a) (b)

Figure 18. (a) Setup time comparison between MSFF and SBFF standard cells and (b) hold time
comparison between MSFF and SBFF standard cells.

Figure 18. (a) Setup time comparison between MSFF and SBFF standard cells and (b) hold time
comparison between MSFF and SBFF standard cells.

Table 3. Implementation details of the proposed design.

Technology Node 40 nm

Std. cells: ~50 K-gates
Flip-flops ~7000
Memory: 32 KB ISRAM, 32 KB DSRAM

4 KB ROM
Max. Frequency 180 MHz

Typ. Voltage 1.1 Volts

J. Low Power Electron. Appl. 2018, 7, x 15 of 18

Table 3. Implementation details of the proposed design.

Technology Node 40 nm
Std. cells: ~50 K-gates
Flip-flops ~7000
Memory: 32 KB ISRAM, 32 KB DSRAM

 4 KB ROM
Max. Frequency 180 MHz

Typ. Voltage 1.1 Volts

Based on the slack analysis, we found an opportunity to relax the slack margin in the data path
modules shown in Figure 19. The design has ~20 K logic cells with 720 critical endpoints and 7000
flip-flops. Sixty percent of the critical endpoints have sufficient slack and can be replaced by SBFFs.
The execute stage has the maximum number of critical endpoints, and ~326 paths in the execute stage
are relaxed by a maximum slack margin of TB4.

0

50

100

150

200

250

300

350

TB1=Tclk/8 TB2=2Tclk/8 TB3=3Tclk/8 TB4=4Tclk/8

of

 r
el

ax
ed

 p
at

hs

Slack (ps)

Execute stage
Fetch stage

Figure 19. Slack improvement in the pipeline stages.

The proposed power optimization approach down-sizes the critical data paths that have SBFFs
by a predefined set of relaxation margins. Here, the actual power and area savings depend on how
many endpoints are relaxed and for which particular relaxation margin. Tables 4 and 5 summarize
the power and area savings of the proposed approach. Using our algorithm, we get a maximum
power savings of ~12% as shown in Figure 20a. We get the maximum power savings in the execute
stage, which has the maximum number of paths beings relaxed by TB4. On the contrary, a typical
speculative error resilience approach like TIMBER [17] suffers from a power overhead of 39% due to
the speculative hardware. We get an area savings of ~8% with the proposed approach, as shown in
Figure 20b. TIMBER hardware has an area overhead of ~1.7%. Again, the area savings predominantly
comes from the execute stage path relaxations. It is evident that the higher relaxation margins of TB4
give more optimization opportunity and reduce the overheads, which results in power and area
savings.

Table 4. Power savings of the proposed design methodology.

Power (nW)
Baseline TIMBER [17] Proposed

#Cells Leakage Dynamic Total #Cells Leakage Dynamic Total #Cells Leakage Dynamic Total
Fetch 1976 1463 265,127 266,590 2014 1481 482,389 483,870 1751 1103 401,268 402,372

Decode 1874 920 149,114 150,034 1900 805 154,762 155,567 1796 573 162,912 163,485
Execute 16,414 14,825 1,307,869 1,322,695 16,356 14,714 1,777,447 1,792,162 15,053 11,039 941,299 952,339

Figure 19. Slack improvement in the pipeline stages.

The proposed power optimization approach down-sizes the critical data paths that have SBFFs by
a predefined set of relaxation margins. Here, the actual power and area savings depend on how many
endpoints are relaxed and for which particular relaxation margin. Tables 4 and 5 summarize the power
and area savings of the proposed approach. Using our algorithm, we get a maximum power savings
of ~12% as shown in Figure 20a. We get the maximum power savings in the execute stage, which has
the maximum number of paths beings relaxed by TB4. On the contrary, a typical speculative error
resilience approach like TIMBER [17] suffers from a power overhead of 39% due to the speculative
hardware. We get an area savings of ~8% with the proposed approach, as shown in Figure 20b.
TIMBER hardware has an area overhead of ~1.7%. Again, the area savings predominantly comes from
the execute stage path relaxations. It is evident that the higher relaxation margins of TB4 give more
optimization opportunity and reduce the overheads, which results in power and area savings.

J. Low Power Electron. Appl. 2018, 8, 9 16 of 18

Table 4. Power savings of the proposed design methodology.

Power (nW)
Baseline TIMBER [17] Proposed

#Cells Leakage Dynamic Total #Cells Leakage Dynamic Total #Cells Leakage Dynamic Total

Fetch 1976 1463 265,127 266,590 2014 1481 482,389 483,870 1751 1103 401,268 402,372
Decode 1874 920 149,114 150,034 1900 805 154,762 155,567 1796 573 162,912 163,485
Execute 16,414 14,825 1,307,869 1,322,695 16,356 14,714 1,777,447 1,792,162 15,053 11,039 941,299 952,339

Table 5. Area savings of the proposed design methodology.

Area (µm2)
Baseline TIMBER [17] Proposed

#Cells Cell Area Net Area Total #Cells Cell Area Net Area Total #Cells Cell Area Net Area Total

Fetch stage 1976 4980 6714 11,695 2014 5217 6928 12,145 1751 4391 6236 10,627
Decode stage 1874 3316 6640 9955 1900 3264 6677 9940 1796 2768 6430 9199
Execute stage 16,414 44,741 62,899 107,639 16,356 46,919 62,784 109,702 15,053 39,790 58,245 98,034

J. Low Power Electron. Appl. 2018, 7, x 16 of 18

Table 5. Area savings of the proposed design methodology.

Area (µm2)
Baseline TIMBER [17] Proposed

#Cells Cell Area Net Area Total #Cells Cell Area Net Area Total #Cells Cell Area Net Area Total
Fetch stage 1976 4980 6714 11,695 2014 5217 6928 12,145 1751 4391 6236 10,627

Decode stage 1874 3316 6640 9955 1900 3264 6677 9940 1796 2768 6430 9199
Execute stage 16,414 44,741 62,899 107,639 16,356 46,919 62,784 109,702 15,053 39,790 58,245 98,034

0

500000

1000000

1500000

2000000

2500000

3000000

Fetch Decode Execute Total
0

20000

40000

60000

80000

100000

120000

140000

160000

Fetch Decode Execute Total

Po
w

er
 (n

W
)

A
re

a
(u

m
2)

Baseline
TIMBER
Proposed

+39%

-12%

Baseline
TIMBER
Proposed

+1.7%
-8.4%

Pipeline stages Pipeline stages
Figure 20. SizeOpt power optimization technique. (a) Power savings and (b) area savings with respect
to the worst-case design.

6. Conclusions

In this paper, we propose a non-speculative pipe-line design methodology to relax the slack
margins proportionate to the available slack using Slack Balancing Flip-Flops (SBFFs). The proposed
design methodology handles worst-case variations by sampling the data at a delayed clock edge. The
additional slack margin obtained from SBFFs is used to downsize the critical fan-in logic for power
and area savings. Existing speculative error detection schemes have critical operating point behavior,
and their effectiveness largely depends on the error rate at any given point of time. The proposed
approach is non-speculative, which eliminates the critical wall of slack behavior. The speculative
techniques need to be periodically tuned to adapt to the ambient operating conditions and workload.
They rely on run-time voltage scaling, which results in metastability issues and compromises the
functionality of the chip. The deterministic timing closure used in the proposed approach eliminates
metastability and error correction overheads. Moreover, the proposed logic downsizing eliminates
the need for hold buffers. Experimental results of the proposed design methodology show a power
and area savings of 12% and 8%, respectively, compared to the worst-case design.

With the aim to maximize power and area benefits, the resilient design proposed can be
improved using dynamic variation tolerance approaches. In the future, the proposed design time
resilience technique can be combined with runtime voltage/frequency scaling to reap more benefits.
Furthermore, we can train the circuit to enable or disable time borrowing depending on the data
activity rates. This will help to reduce the redundancy overheads associated the with the time
borrowing hardware.

Acknowledgments: This work was supported by EDB-Industrial Post-graduate Programme, Singapore, and
NXP Semiconductors, Singapore.

Author Contributions: The main author, Mini Jayakrishnan, carried out the experiments and writing of the
paper. Alan Chang recommended the idea/topic and provided the necessary platform to conduct the
experiments. Tony Tae-Hyoung Kim guided the main author in the research and documentation.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 20. SizeOpt power optimization technique. (a) Power savings and (b) area savings with respect
to the worst-case design.

6. Conclusions

In this paper, we propose a non-speculative pipe-line design methodology to relax the slack
margins proportionate to the available slack using Slack Balancing Flip-Flops (SBFFs). The proposed
design methodology handles worst-case variations by sampling the data at a delayed clock edge.
The additional slack margin obtained from SBFFs is used to downsize the critical fan-in logic for power
and area savings. Existing speculative error detection schemes have critical operating point behavior,
and their effectiveness largely depends on the error rate at any given point of time. The proposed
approach is non-speculative, which eliminates the critical wall of slack behavior. The speculative
techniques need to be periodically tuned to adapt to the ambient operating conditions and workload.
They rely on run-time voltage scaling, which results in metastability issues and compromises the
functionality of the chip. The deterministic timing closure used in the proposed approach eliminates
metastability and error correction overheads. Moreover, the proposed logic downsizing eliminates the
need for hold buffers. Experimental results of the proposed design methodology show a power and
area savings of 12% and 8%, respectively, compared to the worst-case design.

With the aim to maximize power and area benefits, the resilient design proposed can be improved
using dynamic variation tolerance approaches. In the future, the proposed design time resilience
technique can be combined with runtime voltage/frequency scaling to reap more benefits. Furthermore,
we can train the circuit to enable or disable time borrowing depending on the data activity rates.
This will help to reduce the redundancy overheads associated the with the time borrowing hardware.

Acknowledgments: This work was supported by EDB-Industrial Post-graduate Programme, Singapore, and NXP
Semiconductors, Singapore.

J. Low Power Electron. Appl. 2018, 8, 9 17 of 18

Author Contributions: The main author, Mini Jayakrishnan, carried out the experiments and writing of the paper.
Alan Chang recommended the idea/topic and provided the necessary platform to conduct the experiments.
Tony Tae-Hyoung Kim guided the main author in the research and documentation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borkar, S.; Karnik, T.; Narendra, S.; Tschanz, J.; Keshavarzi, A.; De, V. Parameter Variations and Impact on
Circuits and Microarchitecture. In Proceedings of the 40th Annual Design Automation Conference (DAC),
Anaheim, CA, USA, 2–6 June 2003.

2. Ghosh, S.; Roy, K. Parameter variation tolerance and error resiliency: New design paradigm for the
nanoscale era. Proc. IEEE 2010, 98, 1718–1751. [CrossRef]

3. Asenov, A.; Brown, A.R.; Davies, J.H.; Kaya, S.; Slavcheva, G. Simulation of intrinsic parameter fluctuations in
decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices 2003, 50, 1837–1852. [CrossRef]

4. Nassif, S.R. Modeling and analysis of manufacturing variations. In Proceedings of the Custom Integrated
Circuit Conference, San Diego, CA, USA, 9 May 2001.

5. Borkar, S. Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability
and Degradation. IEEE Micro 2005, 25, 10–16. [CrossRef]

6. Bowman, K.A.; Duvall, S.G.; Meindl, J.D. Impact of Die-to-Die and With-in-Die Parameter Fluctuations on
the Maximum Clock Frequency Distribution for Gigascale Integration. IEEE J. Solid State Circuits 2002, 37,
183–190. [CrossRef]

7. Dreslinski, R.G.; Wieckowski, M.; Blaauw, D.; Sylvester, D.; Mudge, T. Near-Threshold Computing:
Reclaiming Moore’s Law through Energy Efficient Integrated Circuits. Proc. IEEE 2010, 98, 253–266.
[CrossRef]

8. Meijer, M.; Liu, B.; van Veen, R.; de Gyvez, J.P. Post-Silicon Tuning Capabilities of 45 nm Low-Power CMOS
Digital Circuits. In Proceedings of the Symposium on VLSI Circuits, Kyoto, Japan, 16–18 June 2009.

9. Kim, T.; Persaud, R.; Kim, C.H. Silicon odometer: An on-chip reliability monitor for measuring frequency
degradation of digital circuits. In Proceedings of the Very Large Scale Integration (VLSI) Circuits Symposium,
Kyoto, Japan, 14–16 June 2007.

10. Gupta, P.; Agarwal, Y.; Dolecek, L.; Dutt, N.; Gupta, R.K.; Kumar, R.; Mitra, S.; Nicolau, A.; Rosing, T.S.;
Srivastava, M.B.; et al. Underdesigned and Opportunistic Computing in Presence of Hardware Variability.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 8–23. [CrossRef]

11. Tschanz, J.; Bowman, K.; Walstra, S.; Agostinelli, M.; Karnik, T.; De, V. Tunable Replica Circuits and
Adaptive Voltage-Frequency Techniques for Dynamic Voltage, Temperature, and Aging Variation Tolerance.
In Proceedings of the Symposium on VLSI Circuits, Kyoto, Japan, 16–18 June 2009.

12. Ernst, D.; Kim, N.S.; Das, S.; Pant, S.; Rao, R.; Pham, T.; Ziesler, C.; Blaauw, D.; Austin, T.; Mudge, T.; et al.
Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation. In Proceedings of the 36th
Symposium on Microarchitecture (MICRO-36), San Diego, CA, USA, 3–5 December 2003.

13. Das, S.; Tokunaga, C.; Pant, S.; Ma, W.; Kalaiselvan, S.; Lai, K.; Bull, D.; Blaauw, D. Razor II: In Situ Error
Detection and Correction for PVT and SER Tolerance. IEEE J. Solid-State Circuits 2009, 44, 32–48. [CrossRef]

14. Bowman, K.; Tschanz, J.; Kim, N.; Lee, J.; Wilkerson, C.; Lu, S.; Karnik, T.; De, V. Energy-Efficient and
Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance. IEEE J. Solid-State Circuits 2009,
44, 49–63. [CrossRef]

15. Fojtik, M.; Fick, D.; Kim, Y.; Pinckney, N.; Harris, D.M.; Blaauw, D.; Sylvester, D. Bubble Razor: Eliminating
timing margins in an ARM cortex-M3 processor in 45 nm CMOS using architecturally independent error
detection and correction. IEEE J. Solid-State Circuits 2013, 48, 66–81. [CrossRef]

16. Joshi, V.; Blaauw, D.; Sylvester, D. Soft-edge flip-flops for improved timing yield: Design and optimization.
In Proceedings of the IEEF/ACM International Conference on Computer-Aided Design, San Jose, CA, USA,
5–8 November 2007.

17. Choudhury, M.; Chandra, V.; Mohanram, K.; Aitken, R. TIMBER: Time borrowing and error relaying for
online timing error resilience. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 8–12 March 2010.

http://dx.doi.org/10.1109/JPROC.2010.2057230
http://dx.doi.org/10.1109/TED.2003.815862
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/4.982424
http://dx.doi.org/10.1109/JPROC.2009.2034764
http://dx.doi.org/10.1109/TCAD.2012.2223467
http://dx.doi.org/10.1109/JSSC.2008.2007145
http://dx.doi.org/10.1109/JSSC.2008.2007148
http://dx.doi.org/10.1109/JSSC.2012.2220912

J. Low Power Electron. Appl. 2018, 8, 9 18 of 18

18. Bull, D.; Das, S.; Shivashankar, K.; Dasika, G.; Flautner, K.; Blaauw, D. A power-efficient 32-bit ARM processor
using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation.
IEEE J. Solid-State Circuits 2011, 46, 18–31. [CrossRef]

19. Das, S.; Roberts, D.; Lee, S.; Pant, S.; Blaauw, D.; Austin, T.; Flautner, K.; Mudge, T.T. A self-tuning DVS
processor using delay error detection and correction. IEEE J. Solid-State Circuits 2006, 41, 792–804. [CrossRef]

20. Austin, T.; Bertacco, V.; Blaauw, D.; Mudge, T. Opportunities and Challenges for Better Than Worst-Case
Design. In Proceedings of the Asia and South Pacific Design Automation Conference, Shanghai, China,
18–21 January 2005.

21. Liu, X.; Papaefthymiou, M.C.; Friedman, E.G. Maximizing performance by retiming and clock skew scheduling.
In Proceedings of the 36th Design Automation Conference, New Orleans, LA, USA, 21–25 June 1999.

22. Monteiro, J.; Devadas, S.; Ghosh, A. Retiming sequential circuits for low power. In Proceedings of the IEEE/
ACM International Conference on Computer-Aided Design, Santa Clara, CA, USA, 7–11 November 1993.

23. Neves, J.L.; Friedman, E.G. Optimal clock skew scheduling tolerant to process variations. In Proceedings of
the 33rd Annual Design Automation Conference, Las Vegas, NV, USA, 3–7 June 1996.

24. Sathyamurthy, H.; Sapatnekar, S.; Fishburn, J. Speeding up pipelined circuits through a combination of gate
sizing and clock skew optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1998, 17, 173–182.
[CrossRef]

25. Xi, J.G.; Dai, W.W.M. Useful-skew clock routing with gate sizing for low power design. In Proceedings of the
33rd Annual Design Automation Conference, Las Vegas, NV, USA, 3–7 June 1996.

26. Sarangi, S.R.; Greskamp, B.; Tiwari, A.; Torrellas, J. EVAL: Utilizing processors with variation-induced
timing errors. In Proceedings of the International Symposium on Microarchitecture, Lake Como, Italy,
8–12 November 2008.

27. Greskamp, B.; Wan, L.; Karpuzcu, W.R.; Cook, J.J.; Torrellas, J.; Chen, D.; Zilles, C. BlueShift: Designing
Processors for Timing Speculation from the Ground Up. In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture, Raleigh, NC, USA, 14–18 February 2009.

28. Patel, J. CMOS Process Variations: A Critical Operation Point Hypothesis. Available online: https://web.
stanford.edu/class/ee380/Abstracts/080402-jhpatel.pdf (accessed on 19 March 2018).

29. Kahng, A.B.; Kang, S.; Li, J. A New Methodology for Reduced Cost of Resilience. In Proceedings of the
GLSVLSI, Houston, TX, USA, 21–23 May 2014.

30. Alidash, H.K.; Oklobdzija, V.G. Low-power soft error hardened latch. J. Low Power Electron. Appl. 2010, 6,
218–226. [CrossRef]

31. Paik, S.; Nam, G.J.; Shin, Y. Implementation of pulsed-latch and pulsed-register circuits to minimize clocking
power. In Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, USA,
7–10 November 2011.

32. Sartori, J.; Kumar, R. Characterizing the Voltage Scaling Limitations of Razor-Based Designs; Technical Report;
Coordinated Science Laboratory, The University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2009.

33. Wirnshofer, M. A Variation-Aware Adaptive Voltage Scaling Technique Based on In-Situ Delay monitoring.
In Proceedings of the IEEE International Symposium on Design and Diagnostics of Electronic Circuits and
Systems, Cottbus, Germany, 13–15 April 2012.

34. Ghosh, S.; Martin, S.; Stelmach, S. Reliability for IoT and Automotive markets. In Proceedings of the
System-on-Chip Conference (SOCC), Munich, Germany, 5–8 September 2017.

35. Jayakrishnan, M.; Chang, A.; De Gyvez, J.P.; Hyoung, K.T. Slack-aware Timing Margin Redistribution
Technique Utilizing Error Avoidance Flip-Flops and Time Borrowing. In Proceedings of the IFIP/IEEE
International Conference on Very Large-Scale Integration (VLSI-SoC), Daejeon, Korea, 5–7 October 2015.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSSC.2010.2079410
http://dx.doi.org/10.1109/JSSC.2006.870912
http://dx.doi.org/10.1109/43.681267
https://web.stanford.edu/class/ee380/Abstracts/080402-jhpatel.pdf
https://web.stanford.edu/class/ee380/Abstracts/080402-jhpatel.pdf
http://dx.doi.org/10.1166/jolpe.2010.1073
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Proposed Variation Tolerant Pipeline Design
	Slack Balancing Principle
	Slack Balancing Flip-Flop
	Pipeline Design Flow Using SBFF
	Metastability and Hold Issues

	Power Optimization Algorithm
	Results and Analysis
	Conclusions
	References

