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Abstract: Microwave imaging can effectively image the evolution of a hemorrhagic stroke thanks to
the dielectric contrast between the blood and the surrounding brain tissues. To keep low both the
form factor and the power consumption in a bedside device, we propose implementing a microwave
imaging algorithm for stroke monitoring in a programmable system-on-chip, in which a simple
ARM-based CPU offloads to an FPGA the heavy part of the computation. Compared to a full-software
implementation in the ARM CPU, we obtain a 5× speed increase with hardware acceleration without
loss in accuracy and precision.

Keywords: biomedical imaging; embedded systems; system-on-chip; hardware accelerator;
field-programmable gate array

1. Introduction

Brain strokes, of either the hemorrhagic or the ischemic type, are among the most common causes
of death or permanent disability, with more than 15 million newly affected people worldwide every
year [1]. It is well known that rapidity of intervention and treatment are crucial for the effectiveness
of the therapy. Monitoring the effect of the treatment in the post-acute stage is also very important.
Monitoring is currently done with diagnostic techniques such as Magnetic Resonance Imaging (MRI)
and Computerized Tomography (CT). These imaging techniques are not appropriate for frequent
monitoring at the patient bedside. An appropriate monitoring device for the stroke follow-up would
be characterized by small form factor, low power consumption, and cost effectiveness. MRI and CT
do not possess these characteristics. In addition, frequently repeated exposure to ionizing radiations in
CT can be harmful for the patient. Therefore, there is a need for new imaging methods and tools.

Microwave Imaging (MI) is a biomedical imaging technique that senses local variations of
dielectric properties of tissues [2]. When tissues are hit by low-power electromagnetic microwaves
emitted by a set of antennas, the scattered electromagnetic field is first acquired by the same antennas
and then processed by algorithms that produce an image that highlight spatial changes in dielectric
properties. In the case of brain strokes, what can be imaged are the local dielectric changes caused by
the blood supply anomaly [3].

MI is safe as it uses low-power, non-ionizing microwaves. For this reason, MI has been proposed
as a complementary technique for frequent screening of breast cancer [4]. Previous work in this field
has shown that it is possible to leverage existing technology and commercial off-the-shelf components
to build low-cost MI systems for breast cancer detection with small form factor and low power
consumption [5–7].
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These previous results on MI for breast cancer and the recent work on the effectiveness of MI for
stroke monitoring (e.g., [8]) encouraged us to undertake the research endeavor that we report in this
paper. Here, we focus on one specific aspect of an MI system for stroke monitoring: how to design
the processing subsystem that elaborates the signals received from the antennas and generates the
medical images in such a way to keep low the power consumption, the form factor, and the cost while
guaranteeing a sufficiently fast response.

We found that a low-cost, low-power Programmable System-on-Chip (PSoC) in which the
processor offloads the heavy part of the computation to a hardware accelerator implemented in
a Field-Programmable Gate Array (FPGA) can perform the elaboration task at a speed 5× greater
than what the processor achieves without hardware acceleration. This is obtained without changes in
precision or accuracy. The coexistence of the processor and the accelerator in the same Xilinx Zynq
chip with shared memory and the use of Linux OS facilitate the programming tasks and the reuse of
code and software mathematical libraries. Compared to on a high-end Xeon Intel CPU, we obtain a
significant increase of the performance-per-watt figure of merit, about 3.7× better.

The paper is organized as follows. In Section 2, we present the MI system, the MI algorithm
and its software implementation. In Section 3, we present the design of the hardware accelerator. In
Section 4, we compare the results obtained in the software implementation with those obtained in
the hardware accelerated one. We review the related work in Section 5. Finally, Section 6 concludes
the paper.

2. Stroke Monitoring Microwave Imaging System for Stroke Follow-Up Monitoring

The block scheme in Figure 1 shows the five main parts that compose our MI system for brain
stroke monitoring: (I) a helmet containing the antennas; (II) a switch matrix in charge of routing the
transmitted and received RF signals; (III) a Vector Network Analyzer (VNA) for transmitting and
receiving signals; (IV) a dedicated hardware enabling the processing of the acquired data; and (V) a
display showing the reconstructed image.

Tx/Rx
Processing

Antenna Switch

RF Signals

Figure 1. Hardware systems composed of a helmet with 24 antennas, a switch matrix for the routing of
Tx/Rx RF signals, and the processing unit for the image elaboration.

The helmet is made of plastic material and has many holes all around its surface, into which
24 antennas are wedged. The antennas are distributed all over the helmet surface to provide an
uniform irradiation to the patient’s head. The antennas can operate both as transmitters and receivers.
Indeed, the switching matrix has been designed to route the signal generated by the VNA to one
single antenna keeping all the others as receivers. Since the VNA has two ports (one transmitting
and one receiving), a controller configures the switch matrix in such a way that only one transmitter
and one receiver can be simultaneously active and connected to the VNA. From the ratio between
received and transmitted signals, the VNA derives the scattering parameters in terms of magnitude
(i.e., attenuation) and phase shift, which are ultimately converted into complex numbers with a real
part and an imaginary part.
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A complete scan requires iterating until all 24 antennas are configured as transmitters and,
for each of these iterations, 24 different received signals are recorded (including the reflection captured
by the same transmitting antenna). The scattering parameters obtained from a complete scan are stored
by the VNA as a 24× 24 matrix in a textual format. This file represents the input of the next stage: the
image reconstruction algorithm, which is executed by the yellow processing block in Figure 1.

2.1. MI Algorithm

When monitoring the evolution of the stroke, scattering data are acquired periodically. The image
reconstruction algorithm aims at detecting variations of the blood mass across two successive data
acquisitions. The algorithm casts these variations as dielectric contrast changes ∆χ, which in turn
determine variations ∆ES of the scattering matrices collected at two different time instants. Since such
variations are small with respect to the size of the investigated region, which is supposed not to change,
the imaging problem can be reliably linearized, by adopting the distorted Born approximation [9]:

∆ES
(
rp, rq

)
= L (∆χ) . (1)

In Equation (1), L is a linear and compact integral operator relating the differential data
∆ES

(
rp, rq

)
to the unknown of the problem ∆χ, while rp and rq denote the positions of the transmitting

and receiving antennas, respectively.
The kernel of the L operator is −jωεb/4 ∗ Eb

(
rm, rp

)
· Eb

(
rm, rq

)
, where rm is a point in the head,

which is the region of interest (ROI), and Eb
(
r, rp

)
is the “background” electric field radiated in each

point r of the ROI by the antenna located at rp when ∆χ (r) = 0.
To solve linear inverse problems, such as the one in Equation (1), the singular value decomposition

(SVD) of L is commonly used as the first step [9].
Since data are always affected by noise, the truncated SVD (TSVD) of the operator L is used as an

effective and regularized inversion strategy to reach a stable solution and avoid error amplification [9].
In particular, let S = {σn} be the singular values of L and U = {un} and V = {vn} the vectors of its
singular functions (U and V are complex numbers, while S are real numbers); the unknown differential
contrast ∆χ in each point r of the ROI is obtained as:

∆χ(r) =
m

∑
n=1

1
σn

< ∆ES, un > vn(r), (2)

where m is a threshold that corresponds to the index at which the TSVD summation is truncated. It is
worth noting that the singular functions V = {vn} represent a basis for the object space, i.e., the space
of the unknown of the imaging problem. Since TSVD restricts the object space to the one spanned by
the first m singular functions, one would use a threshold as large as possible to improve the accuracy
of the approximation. However, since this may lead to error amplification, one might consider a low
value of m, which assures the stability of the solution against the amount of noise affecting the data.
Clearly, the threshold has to be chosen in such a way to assure a good trade-off between accuracy
and stability. Since it is difficult to know in advance the best threshold value, the algorithm is run
with different values of m and different corresponding images are generated. For more details on the
algorithm, we refer the reader to Reference [10].

We initially implemented the TSVD algorithm in C++ and included the Eigen libraries to simplify
the matrix manipulations required by the algorithm [11]. The pseudo-code of the algorithm is reported
in Algorithm 1. The main parameters of the algorithm and the data types are listed in Tables 1 and 2,
respectively. Note that all variables are complex numbers except for σi and θ, which are real numbers.
The output of the computation is R in the pseudo-code and corresponds to an image that can be
plotted, highlighting the variation of the contrast in each point of the ROI.
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Algorithm 1 Pseudo-code of the original software implementation

1: (U, S, V) = SVD(L); . Singular Value Decomposition of L operator, computed offline
2: E←measured variation of scattered field
3: θ = θmin;
4: while θ < θmax do
5: m = index of singular value σm ∈ S closer to θ;
6: R = 0;
7: for i = 1 to m do
8: x = E ·Ui;
9: y = x/σi;

10: T = yVi;
11: R = R + T;
12: end for
13: storage← R; . R stored in flash SD memory
14: θ = θ + ∆;
15: end while

Note that the TSVD threshold is not set explicitly as a specific index of the singular value,
but rather as a value in decibel, θ in Algorithm 1 and Table 1. This value expresses the relative
magnitude of the threshold singular value with respect to the first and most important singular value.
This requires that the singular values S are first sorted in decreasing magnitude and that the index m
is found as the index of the singular value σ ∈ S whose relative magnitude is closest to the threshold
(Line 5 of Algorithm 1). As shown in Table 2, there are up to |S| = 576 singular values. This number is
obtained as the product of the number of transmitters NM and the number of receivers NV (in this
case both are 24, hence 576).

Table 1. Algorithm parameters.

Parameter Value Note

NV 24 Number of transmitter antennas
NM 24 Number of receiver antennas
NC 18,690 Total grid points in 3D volume
θmin −80 dB Minimum threshold
θmax −10 dB Maximum threshold
∆ 10 dB Threshold step

Table 2. Data type and dimensions.

Data Type Size (FP)

E Complex Vector 2× NM2 = 1152
S Real Vector NM× NV = 576
U Complex Matrix (2× NM2, 2× NM2) = (1152, 1152)
V Complex Matrix (2× NC, 2× NM2) = (37,380,1152)
R Complex Vector 2× NC = 37, 380

Note also that the while loop runs from minimum threshold θmin up to maximum threshold θmax

with step ∆, whose values are in Table 1. This is how various images are generated, as discussed above.
In Figure 2, an example of reconstructed image obtained with a threshold value of −80 dB is

given. With this threshold, the first 299 singular values out of 576 are used. The different slices in
the figure, which represent the different sections in the axial plane of the three-dimensional ROI
of a head, show with a yellow color the blood mass inside a blue background. Figure 3 is another
example of imaging obtained with a threshold value of −20 dB, which corresponds to selecting the
first 120 singular values. Clearly, this value of the threshold cannot properly reconstruct the image.
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Figure 2. Example of reconstructed images obtained with a threshold value of −80 dB.
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Figure 3. Example of reconstructed images obtained with a threshold value of −20 dB.

3. Hardware Implementation

3.1. Speeding Computation Up With a Specialized Accelerator

Figure 4a,b illustrates two different implementations of the yellow processing block of Figure 1.
In Figure 4a, labeled “P only”, a processor (P) communicates with the memory (M) through a bus.
In Figure 4b, labeled “P & A”, an accelerator (A) is also connected to the bus and accesses the memory
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via DMA. Figure 4c sketches the timing diagrams of execution time for the two configurations. In the
“P only” case, the processor runs from the beginning till the end (brown bar), while, in the “P & A”
case, the accelerator is invoked at some point and runs for a certain amount of time (green bar) before
handing over the execution again to the processor. Note that the initial and final parts of the execution
time are the same in the two cases: in the “P & A” case the accelerator replaces the “slow” section of
the code with a “fast one”.

texe

(b) (c)(a)

0

P only P & A

0 texe

P only

P & A

Execution Time

slowM

P A

DMA

t

t

M

P fast

Figure 4. Comparison between processing systems implemented: as a general purpose processor alone
(a); or with an accelerator (b); and related timing diagrams (c).

The main reasons a specialized accelerator in the P & A case can be faster than a general purpose
processor in the P-only case are: (i) the use of specialized arithmetic units; (ii) the higher level of
computation parallelism; and (iii) the higher level of pipelining that can be achieved through a careful
design. Another factor to consider is the clock frequency. Especially in the case of a programmable
SoC on FPGA, where the processor is often a fixed hardwired component, whereas the accelerator is
synthesized from register-transfer level (RTL) code and implemented in the programmable logic part
of the SoC, the clock frequency of the accelerator is not as high as the processor one. Nevertheless,
the accelerator can typically speed up the computation thanks to the higher parallelism and pipelining
and the use of specialized units.

A last factor to consider is the speed of data communication, which basically boils down to
evaluating how fast the accelerator can access the data stored in memory. Clearly, if the data transfer
time alone in the P & A case exceeds by far the time spent by the processor for the computation in the
P-only case, there is no point in using the accelerator. When data transfer time and computation time
are comparable, a way to hide the latency of data communication consists in overlapping data transfer
and data processing.

We return to these important design aspects below after the description of the hardware platform
in which we implemented our processing system.

3.2. Hardware Platform

The processing block in yellow in Figure 1 is mapped to an embedded system consisting of
a Xilinx Zynq programmable SoC with external memory (DDR3 and NAND Flash) and standard
peripherals for connectivity (WiFi, USB) and display (HDMI, VGA). For development and testing,
we used the Digilent Zedboard, a low-cost board that contains a Zynq XC7Z020, 512-MB low power
DDR3 DRAM memory, 4-GB flash in a removable SD card, as well as the mentioned peripherals. We
let a version of Linux run on the Zynq, based upon Ubuntu LTS 16.04 for ARM [12].

The Zynq SoC chip is split in two parts. In the Processing System (PS) part, the Zynq sports
primarily a dual-core ARM Cortex A9 with its own L1 and L2 cache. In the Programmable Logic (PL)
part, it features an Artix-7 Xilinx FPGA.

Figure 5 shows the processing block and highlights the connections between the PS and PL
parts through an AXI bus. It also shows a hypothetical accelerator implemented in the PL part,
which communicates with the PS by means of FIFOs and of a direct memory access (DMA) controller.
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Figure 5. Detail of the processing system implemented in a Xilinx Zynq SoC.

In the pseudo-code in Algorithm 1, we can identify two main sections: the computation of the
SVD (line 1) and computation associated with the for loop (Lines 7–12). The other parts are irrelevant
from the computational point of view. The computation of the SVD, however, can be done offline and
the results stored in the SD card, so that they can be retrieved from there sufficiently quickly before
executing the rest of the code. Therefore, we designed an accelerator to speed up the computation of
the for loop.

3.3. Accelerator Design

One of the challenges in this accelerator design is the need for floating-point (FP) computation
to keep the same precision of the software implementation. The design complexity is reduced to a
certain extent thanks to the various pre-designed FP blocks available in the Xilinx Vivado design tool,
e.g., multipliers, adders, dividers, etc. These blocks support the AXI stream protocol, which simplifies
their composition. They are also fully pipelined, which makes them interesting for our acceleration
application in which input data arrays (primarily U and V) are streamed at high speed via DMA and
need to be processed right away.

We used such composable blocks to design the accelerator in Figure 5, which implements the
functions corresponding to Lines 7–12 of Algorithm 1. Figure 6 is a detailed view of the accelerator’s
datapath (the connections with the control unit are not shown for better clarity). The figure shows:

• A first subblock computes the dot product x between complex vectors Ui and E (fetched from an
on-chip memory), resulting in variables Re(x) and Im(x) stored in proper registers (see Line 8 in
Algorithm 1).

• A second divider subblock computes Re(y) and Im(y) starting from Re(x) and Re(y) and from
the singular value σi (Line 9). The singular values are stored in and loaded from an on-chip
memory within the PL part of the Zynq, as shown in figure.

• A third subblock accumulates R values with the newly computed Re(T) and Im(T) (Lines 10–11).
The values of R are also stored in their own on-chip memory.

As we previously pointed out, the accelerator leverages higher parallelism and deeper pipelining
than the general purpose processor. In fact, both for the dot product x and the accumulation R, four FP
multiplications are computed in parallel and are concurrent with various FP additions or subtractions
thanks to pipelining. Moreover, the concurrency of control and datapath operation in the accelerator
removes the control overhead for handling the loop in Algorithm 1, whereas the processor may incur
such loop overheads.

Figure 5 also shows the data FIFOs used for the communication between the PS and the PL
parts. In particular, two FIFOs are used for transferring first E and S arrays, which get stored in the
respective on-chip memories shown in Figure 6, and then for transferring the columns of U. Two more
FIFOs are used for transferring only the columns of V. Two FIFOs in the reverse direction are used for
transferring back real and imaginary values of R.
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The reason the same FIFOs are used to transfer real and imaginary parts of E, S, and U is because
E and S can be transferred once and for all before the while loop in Algorithm 1, and then U’s columns
can be transferred one at a time at each loop iteration. Therefore, there would not be any advantage in
using individual FIFOs for each of these arrays. Since each column of U is used only once per iteration,
there is no need to store them in on-chip memory as it happens for E and S, which instead get reused
at every iteration.

The control unit in Figure 5 handles the repetition of the computation performed by the datapath
according to the number of loop iterations m in Algorithm 1. This number is transferred to the control
unit via the command FIFO prior to starting the data transfer of U and V columns. For each of these
m iterations, the control unit reads data from the FIFOs and orchestrates the execution of the three
subblocks in the datapath, as in Figure 6.

T product & R accumulator
Division

<U ,E> Dot Producti

Re(R)

FIFO

acc

re
g

re
g

Re(E)

mem

Im(E)

mem

Re(U,E,S)

FIFO

FIFO

Im(U,E)

acc

re
g

re
g

mem

S
Re(V)

FIFO

Im(V)

FIFO

Re(R)

mem

Im(R)

mem

Im(R)

FIFO

Figure 6. Datapath of the accelerator.

The control unit is a Finite State Machine (FSM) whose evolution is represented by the state
transition diagram in Figure 7. The state change occurs based on explicit commands sent by the
processor to the accelerator via the command FIFO (e.g., cmd = START and cmd = STOP) or on internal
events, such as the terminal count raised after completion of reading E, S, U, and V from their FIFOs
(e.g., cntr = UMAX) or flags indicating the completion and so the validity of the computation (e.g.,
valid DOT). Note that the green colored states belong to the loop that is repeated m times. The diagram
clearly shows that E and S are transferred before the beginning of the loop so that their FIFOs can be
reused for sending U values.

CLR
START EMAX cntr=

SMAX

UMAX VMAX

valid Rvalid DOT

reset

cntr=RMAX

WAIT

U

WAIT

DOT

WAIT

V

WAIT

R

CHECK

CMD

iter < m

iter = m

cmd = CLR

cntr = cntr =

cmd = cntr =WAIT

CLR

WAIT

START

WAIT

E

WAIT

S

WRITE

R

Figure 7. State transition diagram for the finite state machine that controls the accelerator’s datapath.

The pseudo-code in Algorithm 2 shows the code modifications with respect to Algorithm 1 that
are required to support the accelerator. From the processor side, the workload consists primarily in
controlling the data transfer from/to the external memory and from/to the accelerator. The actual
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computation is performed by the accelerator after it receives the “start” command (Line 10 of
Algorithm 2).

Note that putdata and putcmd operations are non-blocking, therefore the two columns Ui and
Vi are streamed simultaneously. Moreover, the control unit lets the datapath start as soon as the
first data are available at the output of the FIFOs, hence enabling a complete overlap of data transfer
and computation.

Algorithm 2 Pseudo-code of the hardware-accelerated implementation

1: (U, S, V) = SVD(L); . Singular Value Decomposition of L operator, computed offline
2: putdata(S); . S sent to the accelerator via FIFO data queue
3: E←measured variation of scattered field
4: putdata(E); . E sent to the accelerator via FIFO data queue
5: θ = θmin;
6: while θ < θmax do
7: m = index of singular value σm ∈ S closer to θ;
8: putcmd(m); . m sent to the accelerator via FIFO command queue
9: putcmd(reset(R)); . “reset R” command sent via FIFO command queue

10: putcmd(start); . “start” command sent via FIFO command queue
11: for i = 1 to m do
12: putdata(Ui); . ith column of U sent via FIFO data queue
13: putdata(Vi); . ith column of V sent via FIFO data queue
14: end for
15: getdata(R); . R retrieved from FIFO data queue
16: storage← R; . R stored in flash SD memory
17: θ = θ + ∆;
18: end while

4. Results

We designed the accelerator and its FIFO interfaces at register-transfer level (RTL) using VHDL
hardware description language and implemented it with Vivado 2016.1, which performs logic synthesis
and place and route targeting the FPGA of the XC7Z020 Zynq device. The accelerator uses a single
clock running at 100 MHz. The utilization of the various FPGA resources is reported in Table 3.

Table 3. FPGA resources utilized by the accelerator in the Xilinx XC7Z020 Zynq device.

Resource Utilization

LUTs 19.04%
FFs 14.2%

BRAM 100%
DSPs 14.55%
IOBs 38%

Note that the accelerator uses less than 20% of the logic resources—look-up tables (LUTs),
flip-flops (FFs), and digital signal processing blocks (DSPs). The Block RAMs (BRAMs) saturate
the utilization limit because all the FIFOs use this type of resource: 70% of BRAM resources are used
by FIFOs, whereas the accelerator uses the remaining 30% to store E, S, and R.

Since computation and communication overlap, as shown in the sketched timing diagram in
Figure 8, the overall execution time is determined by the data-transfer time from the processor to the
accelerator and back. The total time is primarily determined by the time to transfer the columns of U
and V at each iteration of the for loop, given that the E, S, and R are transferred only once.

The AXI bus clock is 100 MHz and one floating point value can be transferred at each bus clock
cycle in burst mode. As a result, columns of U and V are transferred each in 1152/100 = 11.52 µs and
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37380/100 = 373.8 µs, respectively. Typical number of iterations for the for loop are around 300 for
thresholds between −80 and −50 dB, while this value tends to decrease for higher threshold values,
as shown in Figure 9a.

computation

iUi UiVi Vi Vi
U

x T & R
y

x T & R
y

SE

communication

1st iteration 2nd iteration

x T & R
y

3rd iteration

R

last iteration

Figure 8. Timing diagram showing concurrency of communication (between processor and accelerator)
and computation (within the accelerator).
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Figure 9. (a) Number of iterations; and (b) execution time.

The corresponding total execution time is shown in Figure 9b where the blue and red curves
represent the software case in the ARM processor and the hardware-accelerated case, respectively.
A 5× improvement is observed when the accelerator is used. The purple curve represents instead the
software case for an Intel Xeon Processor E5-2650. Notice that there is a significant performance gap
between our accelerator and the powerful Xeon CPU (7× less speed). This performance advantage is
obtained, however, at a significant power cost because the Xeon power consumption is on the order
of 100 W.

The board where we implemented our processing system consumes instead only 3.8 W, i.e.,
around 26 times less. Therefore, the performance-per-watt figure of merit of our system is about
3.7× greater than that of the Xeon CPU. Unfortunately, the board allows us to measure only the
overall power, which includes several other larger contributions than what the ARM processor and the
accelerator actually consume. As a result, we were not able to separate the processor contribution from
the accelerator one. Nevertheless, the order of magnitude is perfectly compatible with the requirements
of low power and, as a consequence, also of of small form factor (no need for large heat sinks or power
supply units).

5. Related Work

Research groups working on MI applied to the brain stroke have focused either on the
development of specific MI algorithms and their numerical evaluation (e.g., [3,10,13–15]), or on
the implementation of prototype systems (e.g., [8,16–20]).

Due to the similarity between MI applied to breast cancer detection and to brain stroke monitoring,
we believe that some of the concepts, methods, and designs developed for the former application will
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hold for the latter. In particular, thanks to the availability of commercial off-the-shelf components in
the RF bandwidths used for these applications, we are confident that it is possible to keep low the cost
of these MI systems, as shown in References [5–7].

The approach described in this paper has commonalities in particular with the work in
Reference [6]. Even if the biomedical application is different, a Xilinx Zynq SoC is used to accelerate an
MI algorithm in both works. The imaging algorithm used in the present work, however, is significantly
different and is based on the TSVD approach rather than on the Interferometric MUSIC algorithm [21].
This means that signals are acquired at a single frequency rather than in time domain or at multiple
frequencies, which simplifies both the acquisition and the processing. The computation is also simpler
because there is no need to compute the propagation Green functions, which require the hardware
implementation of non-trivial functions (e.g., exponential).

To the best of our knowledge, this is the first work to address the problem of accelerating
an MI algorithm applied to brain stroke detection or monitoring. This is because the application
of microwaves to this medical imaging problem is relatively new. There have been previous
works, however, on accelerating MI algorithms, especially for breast cancer detection. In [22],
the authors proposed accelerating the MI algorithms on a Cell broadband engine processor. In [23,24],
the researchers suggested GPU acceleration. A GPU accelerator may not the best implementation
choice for power-constrained or form-factor limited embedded systems. An accelerator implemented
in FPGA or ASIC technology is in general more appropriate for these scenarios [25–27].

In general, MI applications do not escape the rule for which increase of performance and reduction
of power and cost need more customization. Domain-specific computing architectures are the
appropriate response to a call for ever increasing computing needs with power limitations. This is well
exemplified, for instance, in Reference [28], which shows how several medical imaging applications can
benefit from a domain-specific FPGA platform architecture. Another key medical imaging application
where FPGAs help reduce cost and power is ultrasound, as shown by References [29,30]. Our work
confirms this general trend.

6. Conclusions

In this paper, we describe the design of a low-cost low-power processing subsystem used in a
microwave imaging system for brain stroke monitoring. The processing subsystem consists primarily
of a Xilinx Zynq SoC device, which features an ARM-based CPU as well as an FPGA connected with
the CPU through AXI bus interfaces. By implementing in the FPGA a hardware accelerator in charge of
executing the heavy part of the computation, we obtain a 5× acceleration of the imaging code without
losing precision with respect to full software execution.
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Abbreviations

The following abbreviations are used in this manuscript:

MI Microwave Imaging
SVD Singular Value Decomposition
TSVD Truncated SVD
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FPGA Field Programmable Gate Array
PSoC Programmable System-on-Chip
CPU Central Processing Unit
DMA Direct Memory Access
FP Floating Point
PS Processing System
PL Programmable Logic
FIFO First-in First-out
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