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Abstract: The energy crisis and depleting fossil fuel resources have always been the focus of re-
searchers. Fuel consumption of agricultural tractors is not an exception. Researchers have used
different methods to predict fuel consumption. With the development of artificial intelligence in
the last decade, all re-searchers’ attention has been directed towards it. Deep learning is a subset
of machine learning, which was inspired by the data processing patterns in the human brain. The
deep learning method has been used in research due to the advantages of high accuracy and gen-
eralization. So far, no research has used this method to predict fuel consumption. In this research,
field experiments were carried out in sandy clay loam and clay soils to model the temporal fuel
consumption and specific fuel consumption of an agricultural tractor using a convolutional neural
network (CNN), while having some parameters such as the soil type, soil conditions, tool parameters,
and operation pa-rameters. The experiments were conducted within each soil texture in a factorial
manner based on the randomized complete block design (RCBD) with three replicates. For each soil
texture, various moisture levels (8–17% for dry and 18–40% for moist soils), tractor forward speeds
(1.2, 1.6, 1.8, and 2.2 km h−1), working depths (30 and 50 cm), the number of passes (2 and 6), and tire
inflation pressure (20 and 25 psi) were selected, and cone index, dynamic load, and moisture content
were measured in each experimental section. The designed networks used to predict the instant
fuel consumption were of a CNN type. The results indicated that the network developed based on
the Sgdm algorithm outperformed the others, and thus it was selected for modeling purposes. The
network was evaluated based on R2 and MSE criteria. For the temporal fuel consumption, the best
results were obtained while using 8-510-510-1 architecture with R2 = 0.9729 and MSE = 0.0049. The
8-100-95-1 architecture also led to the best prediction of the specific fuel consumption with R2 of
0.9737 and MSE of 0.0054. The high prediction accuracy and low error in this research compared to
previous studies indicate the superiority of this method in order to predict fuel consumption. It was
also observed from the results that the input parameters, which include soil, tool, and operational
parameters, are all effective on fuel consumption. Proper management of some parameters, such as
working depth, tire inflation pressure, and forward speed, can help to optimize fuel consumption.

Keywords: temporal fuel consumption; specific fuel consumption; deep learning; convolutional
neural network

1. Introduction

Population growth and global demand for food have increased the use of tractors to
enhance efficiency. Therefore, improvement of the performance of tractors has become
a main research topic. Field tractors demand a huge deal of energy; thus, optimization
of their performance can dramatically decline the energy loss in agricultural processes.
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Studies have shown that about 20–55% of tractor power is wasted due to the reaction
between the surface soil under the tractor wheels and the tractor wheels. Such a great
loss can increase the fuel consumption [1–3]. Regarding the limited and non-renewable
sources of fossil fuels and the environmental consequences of greenhouse gas emissions,
optimization of the tractor performance and enhancing its efficiency are highly essential.
For the cases were the equations are complicated and nonlinear, some soft computing
techniques, such as neural networks, can be employed to model the process. Numerous
researchers have reported the better ability of artificial neural networks (ANNs) compared
to regression methods. A limited number of studies have used an ANN to predict the fuel
consumption of a tractor. Abed Dhahad et al. [4] developed an intelligent technique for
predicting internal combustion performance, emissions, and combustion characteristics of
diesel engines. Experimental investigations were conducted on a direct injection, water-
cooled four cylinder, in-line, natural-aspirated Fiat diesel engine. The engine was run at
a firm speed of 1500 rpm with a regular fuel injection pressure at 400 bars but varying
operation loads. They used a multi-layer feedforward artificial neural network with
particle swarm optimization (PSO) to model the relationship among engine emissions and
operating parameters of direct injection diesel engines. Fuel type and operating loads
were input parameters to predict the consumption of brake-specific fuel consumption,
thermal efficiency, carbon monoxide, unburnt hydrocarbon, nitrogen oxide, and smoke
concentrations. Statistical criteria (R and RMSE) were used to check the performance of
the network. The output of the intelligent system showed that the predicted and practical
results are convergent. Therefore, this work highlighted the effectiveness of using the
proposed intelligent system in predicting exhaust emissions and evaluated the performance
of the tested engine for various types of fuel blends. For brake-specific fuel consumption,
the highest correlation coefficient was 0.999 and the lowest RMSE was 1.47. In another
study, Mustayen et al. [5] developed a single-zone thermodynamic model to predict the
engine performances such as brake power (BP), torque, brake thermal efficiency (BTE),
brake-specific fuel consumption (BSFC), and ignition delay (ID) times for diesel and jojoba
biodiesel. The experiments were conducted on a fully automated, 4-cylinder, 4-stroke,
liquid-cooled direct injection 3.7 L diesel engine fueled with diesel (D100) and three jojoba
blends (JB5, JB10, and JB20) to validate the model. The performance simulation results
agreed with experimental data for all tested fuels at 1200 to 2400 rpm speed and 25, 50,
75, and 100% loading operation. The minimum error (3.7%) was observed for BP for
D100 at 2000 rpm and 100% load, and the maximum error (19.2%) was found for JB10 at
1200 rpm and 25% loading operation. The results of the research showed that the BSFC
increased with increasing speed due to increased friction power and more fuel consumption.
BSFC then decreases with increasing load because of higher combustion efficiency and
more BP produced at higher load operation. In addition, jojoba–diesel blends show a
higher BSFC than diesel fuel due to their high density and lower calorific value. Rahimi
and Abbaspour [6] predicted the fuel consumption of a tractor. Their results indicated
the better prediction performance of the ANN compared to the multi-stage regression
method. Almaliki et al. [7] also employed an ANN to evaluate fuel consumption. The input
parameters included engine speed, forward speed, working depth, tire inflation pressure,
moisture, and cone index. For the temporal fuel consumption, 6-7-1 architecture with R2 of
0.969 and MSE of 0.13427 showed the best prediction performance. Concerning the specific
fuel consumption, 6-10-1 architecture with R2 of 0.935 and MSE pf 0.012756 showed the
best prediction performance. In a study, Igoni et al. [8] predicted the fuel consumption of
a tractor while moving on a sandy loam soil in a humid tropical climate. The parameters
affecting fuel consumption included draught, speed, depth of cut, soil moisture content,
cone index, and width of cut. The model equation was formulated using the Buckingham
pi theorem. The model showed that tractor fuel consumption during ridging is directly
proportional to the draught, ridging speed, height of ridge, and moisture content, and
inversely proportional to the penetration resistance and width of cut. The model was
validated by graphical comparison and with a root mean square error and paired t-Test.
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The results obtained showed that there was no significant difference between the measured
and predicted values at 95 and 99% confidence limits; and the model can accurately predict
tractor fuel consumption during ridging operations using a disc ridger. The coefficient
of determination, R2, for the equation was established as 0.9488, which is an indication
of a proper correlation between measured and predicted data. A study was conducted
by Siddique et al. [9] to simulate fuel consumption based on engine load level of a 95 kW
partial power-shift transmission tractor. The PTO dynamometer was installed to measure
the engine load and fuel consumption at various engine load levels (40, 50, 60, 70, 80, and
90%), and verify the simulation model. The regression equations show that there was
an exponential relationship between the fuel consumption and engine load levels. The
regression equations of the SFC of both simulation and measured models with respect to
the engine throttle levels represented that the SFC of both simulation and measured models
was increased by almost 13.66 and 13.94 g/kWh, respectively, for each 10% increase in
engine load. The R-squared of both simulation and measured SFC was found to be almost
0.9831 and 0.9835, respectively. The analysis results show that there was no significant
difference between the simulation and measured SFC, whereas the standard error (SE) was
1.14. The R-squared value was 0.99, whereas the RMSE and RD were approximately 1.89
and 2.54%, respectively. In another study [10], a model of the process of the machine unit
performance was developed, considering the operation of the rear linkage system of the
implement with the force control adjustment system. The model was developed to predict
tractor fuel consumption based on operational requirements and traction conditions, and
the application was demonstrated. In order to analyze the system, a mathematical model
of the system function was built: tractor–implement–soil, defining the physical connections
and interdependencies between the individual subsystems of the system. Based on this
model, a simulation model was developed and implemented in the MATLAB/Simulink
environment. The Simulink package was used to test the performance of the machine set.
The efficiency indicators according to the adopted criteria were calculated in the evaluation
block. To evaluate the process, the technical and operational parameters of the tractor, the
type and parameters of the tool, and soil properties were taken into account. The results
of simulation studies obtained on a validated model are consistent with experimental
data from appropriate soil conditions. The deep learning computational pattern has been
recently considered a golden standard in the machine learning field. Deep learning is
a subset of machine learning which was inspired by the data processing patterns in the
human brain. Deep learning does not require human-designed rules for operation as it
utilizes a huge amount of data for mapping the inputs to specific labels [11,12]. Deep
learning refers to multi-layer neural networks which learn the features by several layers.
Moreover, deep learning simultaneously employs conversion functions and curve-fitting
technologies to form multi-layer learning models. A convolutional neural network (CNN)
is one of the most popular and common deep learning networks [13,14]. A CNN is a form
of ANN in which the neurons react to the overlapped regions in a visual region. This type
of network has been inspired by biological processes and can be regarded as a type of
multi-layer perceptron network with a special design to minimize the pre-processing. A
CNN is usually composed of a convolution layer, size-reducing layer (pooling), or fully
connected layer. Convolution operations refer to the extraction of features from the input
layer. The dimension reduction operation refers to finding the macro-scale features and
reducing the dimension of the features [15,16]. The fully connected layer re-organizes the
extracted features to be connected to the final output. High accuracy and generalization,
non-supervised spontaneous feature learning, multi-layer feature learning, software and
hardware support, and the potential for further capabilities are among the important
advantages of these networks. As an effective regression tool, deep learning has recently
succeeded in quantifying soil features [17,18].
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In the studies conducted by different researchers, different methods have been used to
predict fuel consumption—from analytical methods to new artificial intelligence methods.
Due to the lack of a specific relationship between the effective parameters in predicting
fuel consumption and the advantage of high accuracy and speed of the artificial neural
network method, this method has gained many supporters today. In this research, the deep
learning method was used to predict fuel consumption. The best features of this method
are high accuracy, generalization, automatic feature learning, multi-layer feature learning,
and software and hardware support. Today, this method has many applications in speech
processing, robotics, machine vision, medicine, and data mining.

The present study is aimed at (1) prediction of tractor fuel consumption (instant and
specific fuel consumption) as affected by tire inflation pressure, tillage working depth,
tractor forward speed, dynamic load on the front axle, number of wheel passes, soil
cone index, and soil moisture, and employing soft computing techniques, particularly a
convolutional neural network (2) evaluation of the developed model based on statistical
criteria. Proper management of some parameters such as plowing depth, tire inflation
pressure, and forward speed can help to optimize fuel consumption.

2. Materials and Methods
2.1. Equipment

The fuel consumption during the tillage process was measured by two current sensors
of OVAL M-III type (LSF 40; Kamiochiai 3-chome Shinjuku-ku, Tokyo; Japan). One of the
sensors was employed to measure the input fuel to the injector pump while the second
one measured the amount of fuel returning from the fuel cycle to the fuel tank. Both
sensors were connected to a temporal fuel consumption display (FM101-50, Tehran, Iran)
(Figure 1). This display was connected to the data acquisition system using a cable. The
fuel consumption was obtained based on two fuel consumption indices: temporal fuel
consumption (TFC) and specific fuel consumption (SFC) using the following equation:

SFC =
TFC
Pdb

(1)

Pdb: drawbar power (kW)
TFC: Temporal fuel consumption (L/h)
SFC: specific fuel consumption (L/h·KW)
A manual conic penetrometer (CP40II, RIMIK electronic, Rimik, 1079 Ruthven St,

Toowoomba, QLD 4350, Australia RIMIK Electronic) was used to measure the cone index.
The cone index was calculated based on the force measured to push a cone with a cross-
section of 133 mm2 with a tip angle of 30◦ into the soil. The operator could tune the speed
of cone penetration and continuously obtain the cone index in the depth range of 0 to 50
cm. The data acquisition system included a digital programmable data logger (ATRON,
AL-8G Tehran, Iran) with 8 channels (Figure 2), and a laptop (Dell Inspiron 1545, Beijing,
China) which was located inside the driver chamber. The moisture content of the soil was
measured after sampling the soil from different depths using a sensitive electronic balance,
followed by their drying at 105 ◦C for 24 h. Afterward, the soil samples were remeasured,
and their moisture content was determined by the following equation:

Mc =

(
WW − Wd

Wd

)
× 100 (2)

where Ww and Wd, respectively, show the wet and dry weight of the soil in grams.
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A conventional tillage system comprising a C-shaped two-branch subsoiler (Taka, 220,
Arak, Iran) and a 75-horse power FWD tractor (MF-285, Tabriz, Iran) with a tire specification
of 18.4/15–30 (ten layers) was used which was equipped with precise measurement tools.
Forward speed, temporal fuel consumption, and dynamic load on the front wheels were
measured during the tillage process. The specifications of the tractor and subsoiler are
shown in Tables 1 and 2. The precise measurement system was equipped with a fifth wheel
velocity measurement sensor, a sensor to measure the dynamic load (strain-gauges on the
frontal axis), two fuel sensors, and a data acquisition system (Figures 2 and 3).
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Figure 3. Tractor equipped with the precise measurement system and (a) strain-gauges installed on
the frontal excel of the tractor.

Table 1. Specifications of Massey Ferguson tractor (MF285).

Item Parameters

Manufacturer Motor manufacturer’s company
Type Diesel with direct injection
Number of cylinders 4
Compression ratio 16:1
Firing order1 1-3-4-2
Maximum power at 2000 rpm 75 hp
Maximum torque at 1300 rpm 278 N·m
Type of injector pump Rotary
Fuel tank capacity 90 L
Transmission Gears
Lifting capacity 2227 kg
Type of steering system Mechanical-hydraulic
Type of cooling system Liquid-cooled
Type of injector pump Rotary
Distance to the ground 380 mm
Front tire size 12.4–24 inch
Rear tire size 18.4/15–30 inch
Disc weights on the rear wheel 180 kg
Bag weights in front of the tractor 192 kg
Front weight 1350 kg
Rear weight 1820 kg
Total weight 3170 kg
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Table 2. Specifications of subsoiler.

Model Taka 220

Working width 1.3 m
Maximum working depth 50 cm
Power required 75 hp
Number of branches 2
Branch spacing 35–65 cm
The weight of the device 300 kg
The length of the device 90 cm
Device height 120 cm
The width of the device during transportation 120 cm

2.2. Field Experiments

Field experiments were carried out in the research and education fields of Mohaghegh
Ardabili University for two soil types: sandy clay loam and clay. The tests were designed
in a factorial manner based on RCBD in triplicates. For each soil texture, various moisture
contents (8–17% for dry and 18–40% for moist soils), forward speeds (1.2, 1.6. 1.8, and
2.2 km h−1), working depths (30 and 50 cm), the number of passes (2 and 6), and tire
inflation pressure (20 and 25 psi) were considered, and cone index, dynamic load, moisture
content, and TFC were measured for each section. The data were then analyzed after being
transferred to the computer.

2.3. Neural Network Design

A CNN was used to predict the fuel consumption of the tractor. The results of the
current study indicated that the neural network developed based on the Sgdm algorithm
outperformed the others; thus, it was selected for modeling. Multi-layer networks have
shown promising outcomes in terms of prediction if they have a sufficient number of
neurons in their hidden layer. There is no general consensus on the number of the hidden
layers and their neuron population. The decision on the number of the neurons in the
middle layers is based on trial and error. In this work, the number of hidden layers and
their neurons were selected relative to the number of neurons in the middle layers based on
comparing the performance of the networks. A linear transfer function was employed due
to its better performance. The designed model has eight inputs and one output. Figure 4
shows a schematic of the network architecture. The input and output data were normalized
in the range of −1 to 1 to increase the accuracy and speed of the model:

Xn = 2
X − Xmin

Xmax − Xmin
− 1 (3)

where Xn and X, respectively, denote the normalized and raw input variables. Xmin and
Xmax also show the minimum and maximum input variables, respectively.

The performance of the trained neural network was investigated by comparing the
actual outputs with the predicted ones. The choice of the best training method and compar-
ison of the developed networks were based on MSE and R2 values of the linear fitting of
the actual and predicted data. The following equations show how the mentioned statistical
parameters are determined:

MSE =
1
n

n

∑
i=1

(
Ypredicted − Yactual

)2
(4)

R2 =
∑n

i=1

(
Ypredicted − Yactual

)2

∑n
i=1

(
Ypredicted − Ymean

)2 (5)

where Yactual and Ypredicted are the actual and predicted values, respectively.
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2.4. Data Used in the Designed CNN

The choice of the data for training the network is the most important factor in the
design of neural networks. The elements of the input vectors should be selected such that
they can describe the conditions governing the system well. As the aim of the ANN in this
research was to predict the temporal and specific fuel consumption, the input vectors were
selected among the effective parameters. In this study, the input parameters of the ANN
include soil moisture content, forward speed of the tractor, cone index of the soil, working
depth of the blade, the number of the pass of the tractor wheel, tire inflation pressure, and
dynamic load on the front wheels. The data obtained from the field experiments were used.
In this study, 70% of the data were employed to train the network while 15% of the data
were utilized for validation. The remaining 15% were used for testing.

3. Results and Discussion

As mentioned earlier, a CNN was applied in this research to model the temporal
and specific fuel consumption of the tractor wheels. The results indicated that the neural
network developed based on the Sgdm algorithm outperformed the others; therefore, it was
utilized for modeling the results. MATLAB 2021a was employed to program the designed
CNN, while R2 and MSE were considered for evaluation.

3.1. Temporal Fuel Consumption

Figure 5 shows the results of the best regression model with an 8-510-510-1 algorithm
for prediction of the temporal fuel consumption with R2 of 0.9716 and 0.9729 and MSE of 0.
0047 and 0.0049 for the training and test steps, respectively. The proximity of the real and
modeled data confirms the accuracy of the CNN model. Abed Dhahad et al. [4] obtained
similar results. They developed an intelligent technique for predicting internal combustion
performance, emissions, and combustion characteristics of diesel engines. They used
a multi-layer feedforward artificial neural network with particle swarm optimization to
model the relationship among engine emissions and operating parameters of direct injection
diesel engines. For brake-specific fuel consumption, the highest correlation coefficient was
0.999 and the lowest RMSE was 1.47. In another study, Mustayen et al. [5] developed
a single-zone thermodynamic model to predict the engine performances such as brake
power (BP), torque, brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC),
and ignition delay (ID) times for diesel and jojoba biodiesel. The performance simulation



Resources 2023, 12, 46 9 of 14

results agreed with experimental data for all tested fuels at 1200 to 2400 rpm speed and
25, 50, 75, and 100% loading operation. The minimum error (3.7%) was observed for
BP for D100 at 2000 rpm and 100% load, and the maximum error (19.2%) was found for
JB10 at 1200 rpm and 25% loading operation. The results of the research showed that
the BSFC increased with increasing speed due to increased friction power and more fuel
consumption. BSFC then decreases with increasing load because of higher combustion
efficiency and more BP produced at higher load operation. In addition, jojoba–diesel blends
show a higher BSFC than diesel fuel due to their high density and lower calorific value.
Almaliki et al. [7] reported similar results in prediction of the temporal fuel consumption
of a Massey Fergusson 285 tractor equipped with a moldboard plow using an ANN.
The 6-7-1 architecture with the Levenberg–Marquart training algorithm showed the best
performance in prediction of the temporal fuel consumption with R2 = 0.969 and MSE
= 0.1342. Fathollahzedeh et al. [19] examined the temporal fuel consumption of a John
Deere tractor (3140) equipped with a moldboard plow in various work depths. They
reported a linear relationship between the fuel consumption and working depth with R2

= 0.987. In another study by Moitzi et al. [20], the effects of the depth, slippage, engine
speed, and forward speed were evaluated on the fuel consumption of a four-wheel tractor
equipped with several agricultural tools (reversible moldboard plow, short disc harrow,
universal-cultivator, subsoiler). The highest R2 values (0.999) were for the short disc harrow
and reversible moldboard plow for depth-fuel consumption rate (Lh−1). The difference
between the results of this research with other studies can be assigned to the high number
of input parameters and hence the complexity of the CNN. This study indicated that all the
input parameters of the CNN can affect the temporal fuel consumption. Figures 6 and 7
compare the experimental and modeled values of temporal fuel consumption for the test
and training stages, respectively. These diagrams confirm the consistency between the real
and CNN-modeled values during the experiments in the test stage.
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3.2. Specific Fuel Consumption

Figure 8 depicts the best regression model for training and testing specific fuel con-
sumption. As can be seen, the data are scattered around a line with high approximation.
The proximity of the real and modeled data confirms the accuracy of the CNN. The best
structure of a CNN with architecture of 8-100-95-1 led to R2 values of 0.9603 and 0.9737
and MSE of 0.0055 and 0.0054 for the training and test steps, respectively. These results
are similar to the reports by Almaliki et al. [7] who predicted the SFC of a Massey Fergu-
son 285 tractor equipped with a moldboard plow using an ANN. The best structure was
obtained with the architecture of 6-10-1 with the Levenberg–Marquart training algorithm
with the R2 value of 0.935 and MSE of 0.0127. Küçüksarıyıldız et al. [21] predicted the
specific fuel consumption of a 60 hp front-wheel drive tractor using an artificial neural
network. The independent parameters included the dynamic load on the axle (1796, 2076,
2276, and 2476 daN), tire inflation pressure (80, 120, and 160 KPa), and traction force (500,
1000, 1500, and 2000 daN). For a constant dynamic load level and constant tire inflation
pressure, they obtained a relationship between specific fuel consumption and traction force
as a second-order curve (with R2 = 0.97). Regarding the large number of input parameters
in this research, the obtained results are rational and reasonable compared to the results
of others. The results also reflect that all input parameters affect the fuel consumption.
Figures 9 and 10 show the curve fitting for the target values against the output values
of the CNN for the specific fuel consumption for the test and training data, respectively.
They demonstrate the consistency between the actual and the modeled values during the
number of experiments in the test phase by the convolutional neural network.
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4. Conclusions

The current research shows the prediction of temporal fuel consumption and specific
fuel consumption of a tractor by a convolutional neural network. MSE and R2 statistical
criteria were used to assess the performance of the model. The results of this research
showed the better performance of the neural network developed based on the Sgdm;
therefore, this algorithm was used for modeling. The best performance for temporal
fuel consumption was obtained with the 8-510-510-1 architecture with R2 of 0.9729 and
MSE of 0.0049. Furthermore, for the specific fuel consumption, 8-100-95-1 architecture
showed the best performance with R2 of 0.9737 and MSE of 0.0054. The difference between
the results of this research and other studies can be attributed to the large number of
input parameters and the complexity of the convolutional neural network. Table 3 shows
the sensitivity analysis of the input parameters and its effects on the output parameters.
Moreover, the results proved that all network input parameters affect the instant fuel
consumption and specific fuel consumption. The results also indicated that convolutional
neural networks can learn the relationship between the input and output variables of tractor
fuel consumption well. Regarding the complexity between the variables and the absence
of a specific relationship between the parameters, this network with its large number of
hidden layers and neurons can be used for prediction and modeling. As these networks
are generally used for image classification, they can be used for modeling and predicting
features by removing the convolution layers and the dimension reduction layers. So far, no
research has used this method to predict fuel consumption. The high prediction accuracy
and low error in this research compared to previous studies indicate the superiority of this
method in order to predict fuel consumption. It was also observed from the results that
the input parameters, which include soil and operational parameters, are all effective on
fuel consumption. Proper management of some parameters, such as plowing depth, tire
inflation pressure, and forward speed, can help to optimize fuel consumption.

Table 3. Sensitivity analysis of parameters affecting fuel consumption.

Input Parameters Value TFC
(L·h−1)

SFC
(L·kw−1·h−1)

Soil Moisture
Dry 17.6 2.21
Wet 19.47 2.24

Soil Texture
sandy clay loam 17.2 2.14
clay 19.87 2.19

Working Depth 30 cm 17.01 2.02
50 cm 20.05 2.28

Forward Speed

1.2 km h−1 15.58 2.74
1.6 km h−1 16.9 1.73
1.8 km h−1 20 2.47
2.2 km h−1 21.6 1.73

Number of Passes
2 19.48 2.32
6 17.6 2.01

Inflation Pressure
25 psi 16.79 1.99
20 psi 20.28 2.34

Cone Index

2.377 MPa 16.11 1.98
1.776 MPa 17.91 2.1
2.822 MPa 19.52 2.23
2.039 MPa 21.01 2.35

Dynamic Load

5817.31 N 18.04 2.19
6380.31 N 20.91 2.44
6254.46 N 15.39 1.89
6728.93 N 19.17 2.14
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It is expected that future research, at the same time as predicting the amount of tractor
fuel consumption in different load conditions, will also deal with the amount of pollution
and suspended particles.
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