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Abstract: In hydrological modelling, it is important to consider the uncertainties related to a model’s
structures and parameters when different hydrological models are used to represent a system.
Therefore, an adequate analysis of daily discharge forecasts that takes into account the performance
of hydrological models can assist in identifying the best extreme discharge forecasts. In this context,
this study aims to evaluate the performance of three hydrological models—Lavras Simulation of
Hydrology (LASH), Variable Infiltration Capacity (VIC), and Distributed Hydrological Model (MHD-
INPE) in the Verde River basin. The results demonstrate that LASH and MHD can accurately simulate
discharges, thereby establishing them as crucial tools for managing water resources in the study
region’s basins. Moreover, these findings could serve as a cornerstone for future studies focusing on
food and water security, particularly when examining their connection to climate change scenarios.

Keywords: LASH; VIC; MHD-INPE; performance; hydrological models

1. Introduction

Hydrological models have proven to be effective instruments for enhancing the com-
prehension of hydrological phenomena in basins [1]. These models have versatile ap-
plications, including discharge prediction, the evaluation of water availability, and the
investigation of the impacts of climate and land-use modifications [2–5].

The selection of a hydrological model should be based on the intended application
since each model has its own assumptions and limitations. The use of conceptual and
distributed hydrological models is justified by their ability to satisfactorily represent the
physical processes occurring within a basin while accounting for the spatial variability of
physical and meteorological parameters [6,7]. Therefore, factors such as the availability
of data in a region, the number of required parameters, and the level of description of
hydrological processes must all be taken into consideration.

The Soil and Water Assessment Tool (SWAT) [8,9] and the Variable Infiltration Capacity
(VIC) models [10–12] are semi-distributed models utilized in hydrological simulations of
the Verde River basin in Minas Gerais state, Brazil [5,7]. These models have produced
satisfactory results at a monthly time step, suggesting the possibility of conducting further

Resources 2023, 12, 87. https://doi.org/10.3390/resources12080087 https://www.mdpi.com/journal/resources

https://doi.org/10.3390/resources12080087
https://doi.org/10.3390/resources12080087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/resources
https://www.mdpi.com
https://orcid.org/0000-0003-0826-3190
https://orcid.org/0000-0003-3900-0895
https://orcid.org/0000-0003-2761-3184
https://orcid.org/0000-0002-3798-5937
https://orcid.org/0000-0003-4534-9575
https://orcid.org/0000-0003-2597-8833
https://orcid.org/0000-0002-0695-2649
https://doi.org/10.3390/resources12080087
https://www.mdpi.com/journal/resources
https://www.mdpi.com/article/10.3390/resources12080087?type=check_update&version=2


Resources 2023, 12, 87 2 of 13

research to assess the impacts of climate and land-cover changes [7]. However, it is
important to acknowledge that these studies simplify some numerical processes, as their
objective is to evaluate hydrological impacts in average terms. In contrast, the estimation
of daily discharge is a more dynamic and complex process capable of representing extreme
discharge events and periods of drought on a daily basis. Therefore, ensuring good
performance of hydrological models at a daily time step is essential.

The Lavras Simulation of Hydrology (LASH) model has undergone testing in various
basins located in different states of Brazil, including Minas Gerais, Rio Grande do Sul,
Amazonas, and Tocantins, representing diverse biomes, scales, and edaphoclimatic condi-
tions. For instance, Viola et al. [13], Mello et al. [14], and Beskow et al. [15] have conducted
research using LASH concerning the headwaters of the Rio Grande basin. While various
applications of LASH can be highlighted, no study has yet been published comparing the
performance of different hydrological models (LASH, VIC, and MHD-INPE) at a daily
time step. Such a comparison could yield a more robust analysis of peak and recession
discharge magnitudes.

In addition to the hydrological models mentioned (SWAT, VIC, and LASH), the Dis-
tributed Hydrological Model (MHD-INPE) is also a viable option for discharge forecasting.
The MHD-INPE [16] is a distributed model that was developed at the Instituto Nacional
de Pesquisas Espaciais (INPE), and it is an adaptation of the Large Basin Model that was
developed at the Instituto de Pesquisas Hidráulicas (MGB-IPH). The MHD-INPE has been
successfully applied to basins of varying sizes, ranging from 5 to 1.4 million km2, for
studies on land-use and land-cover changes, climate change and hydropower, discharge
forecasting, and water sustainability, for which it has consistently yielded satisfactory
results [17–21].

The Rio Verde watershed, covering an area of 4100 km2, is located in the southern
region of Minas Gerais, situated within the Atlantic Forest biome in the Serra da Man-
tiqueira. This basin forms part of the Serra da Mantiqueira Mountain range, which plays
a vital role in biodiversity conservation within the Atlantic Forest biome. The Serra da
Mantiqueira region encompasses several headwater regions that contribute to significant
rivers in terms of water supply, irrigation, and hydropower generation. Moreover, this
area offers considerable economic importance with respect to agricultural development,
especially regarding coffee production, in the southern part of the state of Minas Gerais.

Hydrological models may exhibit similar performance, but the average discharge
response can vary. Therefore, studies utilizing different hydrological models can uncover
potential sources of uncertainty in discharge forecasting arising from variations in cali-
bration methodologies, model structures, process equations, and input data availability,
among other factors. The novelty of this study lies in its assessment of the performance of
three hydrological models (LASH, VIC, and MHD) at a daily time step in the Verde River
Basin, a region of economic and biodiversity significance in Minas Gerais State, Brazil. The
study aimed to address three key questions: (i) Is there any difference in the performance of
the models? (ii) Can the models adequately simulate peak and low discharges in the Verde
River Basin? (iii) Are the models suitable for water resources management in the Verde
River Basin? These questions seek to uncover the performance of hydrological models in
the South of the state of Minas Gerais and their potential application across the region.

2. Material and Methods
2.1. Study Area

The Verde River Basin (VRB) is situated in the southern part of the state of Minas
Gerais (Figure 1), making it a crucial region with regard to biodiversity conservation. With
a drainage area of approximately 4100 km2 and an altitude range of 809 m to 2742 m,
the VRB encompasses 31 municipalities, of which 16 are entirely contained within the
basin. Furthermore, the VRB has a predominantly Cwb climate, and its average annual
temperature is 18 ◦C [22,23].
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The land use classification considered the MapBiomas Collection 5.0 data [24], which
include annual land cover data in Brazil from 1985 to 2019. Land cover in the VRB con-
sists of pasture (69.2%), native forest (21.3%), rock fields (1.7%), eucalyptus plantations
(0.2%), agriculture (7%), and urbanized landscapes (0.6%), as shown in Figure 1C. Al-
though a significant portion of the land use in the VRB (Verde River Basin) is dedicated to
pastures, the region’s economy revolves around coffee production; dairy farming; poul-
try farming; temporary crops such as corn, beans, and rice; tourism; and hydroelectric
energy production.

Regarding the soil classes in the VRB, Argisol (65.3%), Latosol (23.3%), and Cambisol
(8.9%) predominate (Figure 1B), with rocky (1.3%) and Neosol (1.2%) being less common.
The basin’s predominant land-use and land-cover patterns are as follows: pasture (69.2%),
native forest (21.3%), rocky field (1.7%), eucalyptus plantation (0.2%), agriculture (7%), and
urbanized land (6%).

For each specified soil class in the watershed, input information such as soil depth (Z),
soil moisture at saturation point (θs), and soil moisture at permanent wilting point (θpwp)
was incorporated. Table 1 presents the values of Z, θs, and θpwp according to the literature.

Table 1. Values adopted for depth, saturation point moisture (θs), and permanent wilting point
moisture (θpmp) for each soil class in the Rio Verde watershed.

Soil Class Depth (cm) θs
(m3m−3)

θpwp

(m3m−3)

Cambisol (CX) 100 0.597 0.171
Latosol (LVA) 110 0.555 0.240
Argisol (PVAD) 80 0.45 0.19
Neosol (RY) 20 0.574 0.183
Rock (AR) 0 0 0

Source: Adapted from Junqueira Junior [25].

The vegetation attributes required by the models include leaf area index (LAI), rooting
depth, albedo, surface resistance, and height. Table 2 presents the parameters extracted
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from the literature for each vegetation cover class. By utilizing land use map information,
the system allows for the identification of parameters associated with vegetation required by
the LASH hydrological model, namely, albedo, vegetation canopy height, surface resistance,
rooting depth, and leaf area index.

Table 2. Parameters extracted from the literature for each vegetation cover class and their
respective references.

Vegetation LAI
m2m−2

Height
(m) Albedo

Surface
Resistance

(sm−1)

Rooting
Depth (mm)

Agriculture 0.3–7.0 0–1.52 0.15–0.20 40 500
Pasture 1.86–3.99 0.5 0.20–0.26 70 600
Florest 6.25 10 0.13–0.18 100 2000
Cerrado 1.9 5 0.13–0.18 150 2000
Eucalyptus 3.5 5 0.13–0.18 100 1500
RockField 0 0 0.10–0.35 545.3 500

Source: Viola [26].

2.2. Hydrology Models

The Lavras Simulation of Hydrology (LASH) model is a semi-distributed hydrological
model that uses the modified SCS-CN model [27] as its basis. The model incorporates the
equation of Brooks and Corey to estimate subsurface flows and base flows along with the
Muskingum-Cunge linear model for drainage network routing [28]. LASH operates on the
principle of the water balance equation (Equation (1)):

At − At−1

∆t
=

[(P + Dt − ETR − DB − DSS − DS)]

∆t
(1)

where At denotes current soil water storage at time t; At−1 denotes soil water storage in
the time interval immediately preceding t; P is average precipitation (discounted from
interception (IT)); Dt denotes capillary rise; ETR is the actual evapotranspiration; DB
denotes base runoff; DSS denotes subsurface runoff; DS denotes surface runoff; and ∆t is
the time interval.

Variable Infiltration Capacity (VIC) is a distributed hydrological model comprising
two modules: (i) a rainfall runoff transformation module [10–12] and (ii) a base discharge
routing module [29,30] that utilizes linearized Saint–Venant equations to propagate base
discharge. The VIC model’s underlying principle is based on the variable infiltration curve
(Equation (2)):

i = im ∗
[
1− (1−A)1/bi

]
(2)

where i is the point infiltration capacity and im is the maximum soil infiltration capacity; A
is the fractional soil area with an infiltration capacity less than i; and bi is the infiltration
shape parameter.

The Distributed Hydrological Model of the National Institute for Space Research
(MHD-INPE) was developed by Rodriguez and Tomasella [16] and Siqueira Júnior et al. [31],
and it comprises four modules: (i) vertical water balance in the soil; (ii) evapotranspiration;
(iii) surface, subsurface, and groundwater flows; and (iv) propagation in channels. The
MHD-INPE model considers the following variables: groundwater flux (Qsub) estimated via
Equation (3), subsurface flux (Qss) from this layer estimated via Equation (4), and aquifer
recharge (Qr) estimated via Equation (5).

QSub =
Tsub ∗ tanβ

λ
µ
µ

[
1− Smax − St

Smax(1− ξ)

]µ

=
Tsub tanβ

λ
µ
µ

[
St − ξSmax

Smax(1− ξ)

]µ

(3)
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Qss =
α D1Ksstan β

λ
η
η

(
SSt

SSmax

)η

(4)

Qr = Kss

(
SRt

SRmax

)η

(5)

where Tsub is the transmissivity when the water table is at the surface; tan β is the slope of
the local topography; µ is a parameter that defines the shape of the relationship between
transmissivity and soil depth; ξ is the drainable porosity; Smax is the maximum capacity
of water storage in the cell; and λµ is the average contribution area per contour unit,
assuming a potential profile for transmissivity. The topographic parameter, λµ, is solved
independently for each regular grid cell. Smax is solved for the bottom soil layer in the
model while considering its depth, D3, and soil porosity, ϕ. KSS is the saturated hydraulic
conductivity in the upper soil layer; D1 is the thickness of the top soil layer; SSmax is the
maximum water storage capacity in this layer; η is the Brooks–Corey parameter; α accounts
for the soil anisotropy in the equation; SSt is the average water storage in the upper layer;
λη is the average value of the contribution area per contour unit raised to the 1/η potency;
SRmax is the maximum storage capacity in the middle tier; and SRt is the average storage in
the middle tier grid at time t.

2.3. Observed Data

Meteorological data were obtained from the National Institute of Meteorology [32]
and were taken from three conventional stations (Figure 1A): São Lourenço station (SL;
22◦ 07′48′′ S and 45◦ 02′24′′ W) located within the VRB and Machado (MA; 21◦ 40′48′′ S;
45◦ 56′24′′ W) and Lavras (LV; 21◦ 13′34′′ S, 44◦ 58′47′′ W) stations located outside the
basin’s boundaries. Fluviometric data were collected from the Três Corações station (TC;
−21◦ 42′11′′ S and 45◦ 14′51′′ W) by the National Water and Basic Sanitation Agency. The
LASH, VIC, and MHD models require the maximum and minimum daily temperature
(◦C), wind speed (ms−1), precipitation (mm), global solar radiation (MJ/day.m−2), relative
humidity, dew point temperature (◦C), and surface-level atmospheric pressure (mb) as
inputs. Therefore, we used meteorological and discharge gauge station data for the period
from 1990 to 2005 for prospection.

A Digital Elevation Model was obtained from the Shuttle Radar Topography Mission
(SRTM), providing altitudes ranging from 835 to 2742 m for the VRB. The spatialization
of the basin’s soil classes was determined based on the new map of Brazil [33]. To input
the required vegetation parameters in the LASH, VIC, and MHD models, we gathered
data from the literature [19–21,28,34–40] on leaf area index, root depth, albedo, surface
resistance, and height. Notably, the vegetation parameters were kept constant throughout
the model calibration process.

In terms of the LASH model, we divided the study basin into 57 sub-basins, each
with a drainage area ranging from 1.14 km2 to 215.65 km2. We defined upper and lower
limits for each parameter during calibration using the SCE-UA algorithm [41], as outlined
by Beskow et al. [15]. The model’s seven most-sensitive parameters were identified as
follows: (a) the initial abstraction coefficient (λ); (b) hydraulic conductivity of the shallow
saturation zone reservoir (KB); (c) hydraulic conductivity of the subsurface reservoir (KSS);
(d) maximum flow returning to soil via capillary rise (KCR); (e) response time parameter of
the surface reservoir (CS); (f ) response time parameter of the subsurface reservoir (CSS);
and (g) baseflow recession time (CB). The λ parameter is directly linked to initial rainfall
abstraction, which corresponds to the portion of rainfall loss that occurs before direct surface
runoff generation [15]. We emphasize that the results of this prospection are published in
this scientific article for further analysis and discussion.

For VIC modeling, the basin’s surface was represented by grid cells, for which a
resolution of 0.01◦ was defined (3768 grid cells). VIC calibration was conducted manually
by changing each parameter individually according to the methods of Gao et al. [42] and
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Liang et al. [10]. The following parameters were considered for calibration: Ds (fraction
of maximum baseflow velocity where non-linear baseflow begins), Ws (fraction of maxi-
mum soil moisture where non-linear baseflow occurs), bi (variable infiltration curve), h3
(thickness of the third layer), C (kinematic wave celerity), and D (kinematic wave diffusion
coefficient).

For MHD, a resolution of 0.0450 was defined (166 grid cells). The automatic calibration
process utilized the Hydrologic Response Unit (HRU) derived from the combination of
land-use and soil type data [17]. Calibration was performed using the Strength Pareto
Evolutionary Algorithm-SPEA2 method [43]. Ten parameters were adjusted during the
calibration process, including soil layer depths (D1, D2, and D3), the hydraulic conductivity
multiplier of the upper layer, maximum transmissivity of the bottom layer (Tsub), the decay
of transmissivity with the thickness of the saturated zone (µ), the ratio of field capacity to
porosity (ξ), the coefficient of anisotropy (α), and the routing water storage parameter for
surface and subsurface flows (Csup) and baseflow (Csub).

2.4. Application, Calibration, and Validation of the Hydrological Models

A hydrological simulation in the VRB using LASH, VIC, and MHD was conducted
for the period between 1990 and 2005, for which calibration was performed between 1993
and 1999 and validation was performed between 2000 and 2005. The initial hydrological
conditions had uncertainties; therefore, the first three years were considered to be a warm-
up period. The simulated discharges were compared with the observed discharges using
statistical indices such as the Nash–Sutcliffe index [44], the logarithmic version of LNASH,
R2 [45], and PBIAS [46] (Equations (6)–(9), respectively):

NASH = 1−
∑n

i=1

(
Qoi −Qsi)

2

∑n
i=1 (Q oi −QO)

2 (6)

LNASH = 1− ∑n
i=1 (log(QOI)− log(Q si))

2

∑n
i=1(log(QOI)− log(QO))

2 (7)

R2 =

 ∑n
i=1
(
Qoi − Q0

) (
Qsi −Qs

)
∑n

i=1

[(
Qoi −Qo

)2
]0,5[(

Qsi − Qs
)2
]0,5


2

(8)

PBIAS =
∑n

i=1 Qsi−∑n
i−1 Qoi

∑n
i=1 Qoi

∗ 100 (9)

where Qsi is the simulated discharge at time I, Qoi is the observed discharge at time i, Qo is
the average observed discharge, Qs is the average simulated discharge, and n denotes the
total number of observed data.

The NASH coefficient is used to determine a model’s ability to reproduce observed
discharge series and has a strong influence on maximum discharges, whereas LNASH
is more influenced by minimum discharges. The R2 value indicates the degree of corre-
lation between simulated and observed values [16,17,47]. PBIAS measures the average
tendency of the simulated discharge to either overestimate or underestimate the observed
discharge [45]. PBIAS values close to zero indicate that a model shows no tendencies, nega-
tive values indicate underestimated discharges, and positive values indicate overestimated
discharges [46]. Generally, hydrological model performance can be classified according to
the information in Table 3 proposed by Moriasi et al. [48].
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Table 3. Classification of statistical indices for evaluating hydrological models’ performance.

Statistical
Indices

Range
Performance Classification

Very Good Good Satisfactory Unsatisfactory

NASH and
LNASH −∞–1 >0.80 0.70–0.80 0.50–0.70 ≤0.50

R2 0–1 >0.85 0.75–0.85 0.60–0.75 <0.60
PBIAS −∞–100 <±5% ±5–±10% ±10–±15% >±15%

Source: adapted from Moriasi et al. [48].

3. Results and Discussion

Table 4 presents the optimized parameters utilized in the VIC, LASH, and MHD hy-
drological models. The parameters used for calibration were determined to be the most sen-
sitive based on the studies by Gao et al. [42] and Liang et al. [10] for VIC, Beskow et al. [15]
for LASH, and Rodriguez and Tomasella [16] and Siqueira Júnior et al. [31] for MHD.
Following calibration, a validation process was carried out by utilizing the optimized
parameters obtained in the calibration phase.

Table 4. Calibration parameters of the VIC, LASH, and MHD hydrological models as well as their
physical meaning and final values.

Parameter Description Unit Range Final Values

VIC

bi Variable Infiltration Curve - 0.001–0.4 0.35

DS
Fraction of maximum velocity of baseflow where

non-linear baseflow begins Fraction 0.001–0.99 0.01

WS
Fraction of maximum soil moisture where non-linear

baseflow occurs Fraction 0.001–0.99 0.05

H3 Thickness of the third layer m 0.05–2 0.5
C Kinematic wave celerity m s−1 0.5–3 0.5
D Kinematic wave diffusion coefficient S m−1 200–400 2200

LASH

λ Initial abstraction coefficient - 0.01–0.5 0.07

KB
Hydraulic conductivity of shallow saturates zone

reservoir mm day−1 0.0–6 3.33

KSS Hydraulic conductivity of subsurface reservoir mm day−1 0–250 245.41
KCR Maximum flow returning to soil via capillary rise mm day−1 0–5 1.03
CS Response time parameter of the surface reservoir - - 84.45
CSS Response time parameter of the sub-surface reservoir - - 16,677.22
CB Baseflow recession time day - 105.46

MDH-INPE

D1 Thickness of the upper layer m 0–10 3.8
D2 Thickness of the intermediate layer m 0–10 0.35
D3 Thickness of the bottom layer m 0–30 0.09
KSS Saturated of hydraulic conductivity mm day−1 0.01–10 0.37
Tsub Maximum transmissivity of the bottom layer m2 day−1 0.01–1000 0.48

µ
Decay of transmissivity with the thickness of the

saturated zone - 0.01–4 0.0005

Csup
Routing water storage parameter for surface and

subsurface flows day 0.001–10 25.39

Csub Routing water storage parameter for baseflow day 0.001–2000 272.4252
ξ Ratio of field capacity to porosity -
α Coefficient of anisotropy - 1–10,000 394.7182

Table 5 presents the accuracy statistics results used to evaluate the performance of
the three hydrological models (LASH, VIC, and MHD-INPE). The results indicate that
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the LASH and MHD-INPE models performed better than the VIC model. All statistical
indices demonstrated satisfactory performance in terms of both calibration and validation
according to the classification proposed by Moriasi et al. [48]. The performance analysis
of the VIC model revealed that there was a significant challenge in simulating discharges
during the dry period, yielding LNASH values below 0.50. Although the PBIAS values
were satisfactory, they indicated a tendency to underestimate the observed discharge in both
calibration and validation. Overall, the NASH values indicated good performance for all
three hydrological models in simulating peak discharges, with the LASH and MHD-INPE
models demonstrating the best simulated peak discharge values.

Table 5. Statistical indices of the hydrological models regarding daily discharge.

Statistical Indices Calibration Validation

LASH VIC MHD LASH VIC MHD

NASH (CNS) 0.85 0.79 0.79 0.80 0.77 0.87
LNASH (logCNS) 0.89 0.22 0.84 0.81 0.35 0.86

R2 0.85 0.85 0.79 0.85 0.85 0.88
PBIAS 0.60 −14.85 0.80 6.80 −14.48 −7.30

Table 5 shows that the hydrological models MHD and LASH achieved satisfactory
results in relation to the VRB. Similar results were also reported by other authors who
evaluated hydrological model performance in the southern region of the state of Minas
Gerais. Melo et al. [19] obtained satisfactory results at a daily time step using the MHD-
INPE and DHSVM models, reporting NASH, LNASH, and Pbias values of 0.80, 0.75, and
−8.0, respectively. Zackia et al. [20] also reported NASH values above 0.7 for MHD-INPE
for calibration and validation at a daily time step. Viola et al. [49] applied LASH to four
headwater catchments (Aiuruoca River, Grande River, Sapucai River, and Verde River) and
reported NASH values between 0.7 and 0.86 for monthly simulations.

Figures 2 and 3 present the daily discharge simulated by LASH, VIC, and MHD,
as well as the observed discharge, for both the calibration and validation periods. The
recession periods demonstrated that the hydrological models MHD and LASH successfully
reproduced the storage processes present in the watershed, as indicated by the recession
curve extending over time intervals equivalent to the observed flows. This resulted in a
very good evaluation of the logCNS coefficient. The results of this coefficient confirmed the
models’ high reliability in simulating the recession periods of the hydrograph according to
the classifications by Moriasi et al. [48]. In contrast, the simulated flows produced using VIC
could not accurately represent the observed data during the dry period, indicating a certain
limitation and underestimation of flows during the recession period. The adjustment of the
VIC hydrological model may be related to the inherent difficulties of the manual calibration
process, which requires longer processing times.

In Figure 3, during the validation phase, the hydrological models MHD-INPE, LASH,
and VIC showed good agreement between simulated and observed data as assessed
via the NASH coefficient (CNS), which is associated with the efficiency of peak flow
estimation in the hydrograph. The following results were obtained: 0.87, 0.80, and 0.77,
respectively, which are considered very good according to the classification scheme devised
by Moriasi et al. [48] When analyzing the minimum flows, logCNS only yielded satisfactory
results for the MHD-INPE and LASH models, which were able to reproduce the observed
daily flows. Therefore, the results obtained for the VRW confirm that the MHD-INPE and
LASH models were able to adequately represent the values of minimum and maximum
flows during the calibration and validation periods. The obtained Pbias values were−7.30%,
6.80%, and 14.48% for MHD-INPE, LASH, and VIC, respectively, indicating satisfactory
performance. Similar results were obtained by Carvalho et al. [5], who achieved good
performance using the LASH model, and Melo et al. [19], who used the MHD-INPE model
in a headwater watershed.
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Overall, when compared to the observed data, the daily discharge simulated using
the LASH and MHD-INPE models showed better results than those simulated via VIC.
The poorer performance of VIC may be attributed to the manual calibration process used,
as this calibration method requires a significant amount of processing time to achieve the
best parameter combination, which is assessed individually. Moreover, manual calibration
requires an inter-parameter analysis, which is typically performed by fixing one parameter
and altering the others to determine which parameter is more sensitive. In general, when
comparing the adjustment of the observed and simulated values, the result was better for
the MHD-INPE and LASH models compared to that of the VIC model. These differences in
the simulated flow results obtained using the MHD-INPE, LASH, and VIC models indicate
the need to assess the uncertainties of hydrological simulations obtained from different
hydrological models. Singh and Marcy [50] and Orth et al. [6] emphasized that performance
evaluation across different hydrological models can reduce uncertainties stemming from
the different structures and complexities of the chosen hydrological models.

Figure 4 depicts the behavior of the flow duration curve for the observed and simulated
flows provided by the three models used. The flow duration curve provides an estimate of
the time frequency at which a given flow is equaled or exceeded. In this context, considering
water resources management, it is an important tool for representing the frequency of
maximum and minimum reference flows simulated by the hydrological models. It can be
observed that both models exhibited a frequency distribution similar to that of the observed
data. The MHD-INPE and LASH models demonstrated better performance and closely
approximated the observed flow values for lower flows. On the other hand, it is evident
that the minimum flows from the curve representing the VIC model deviated from the
observed flows. Overall, the VIC model tended to underestimate the flow values.
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The minimum discharges estimated by the VIC model were found to be underesti-
mated compared to the observed discharges. For instance, the observed Q90 (the flow that
was exceeded or matched 90% of the time) value was 35.03 m3s−1, while the simulated
Q90 discharges for the LASH, VIC, and MHD models were 43.87 m3s−1, 18.03 m3s−1, and
35.89 m3s−1, respectively. Similarly, the observed Q10 (the flow that was exceeded or
matched 10% of the time) value was 151.61 m3s−1, while the Q10 simulated using LASH,
VIC, and MHD were 162.78 m3s−1, 144.84 m3s−1, and 147.17 m3s−1, respectively. Overall,
the permanence curve of the daily discharges simulated by LASH and MHD provided the
best fit. The MHD-INPE and LASH models have been assessed in several studies regarding
their accuracy in estimating the flow duration curve, consistently demonstrating good
performance with minimal discrepancies in minimum flows [15,19,35].

Figure 5 displays the cumulative daily runoff data, with the data simulated by LASH
and MHD showing high levels of agreement when compared to the observed data. The
cumulative runoff values were 7.036 mm (observed), 7.252 mm (simulated via LASH),
7.016 mm (simulated via MHD), and 5.892 mm (simulated via VIC). At the end of the
evaluation period, the values simulated via LASH were slightly above the observed values.
On the other hand, the values of the data simulated using VIC were generally below those
of the observed data.

Table 6 displays the results of the observed and simulated annual vertical water
balance components obtained using the LASH, VIC, and MHD hydrological models. The
simulated evapotranspiration-to-precipitation ratios averaged from 44 to 57%, 53 to 78%,
and 37 to 64% for LASH, VIC, and MHD, respectively. The higher average values of
annual evapotranspiration simulated via VIC may indicate an underestimation of runoff.
These findings align with the study by Alvarenga et al. [7], which showed reasonable
performance in discharge simulation in the Verde River basin using SWAT and VIC. The
authors reported average annual values of evapotranspiration ranging from 57.9 to 65.7%
of precipitation. The cited paper revealed that VIC outperformed SWAT. In contrast, this
study demonstrated that LASH and MHD performed better than VIC.

Table 6. Annual water balance components (1993–2005) in the VRB.

YEAR
P

(mm)

LASH VIC MHD

ET
(mm)

P-ET
(mm)

ET/P
(mm)

ET
(mm)

P-ET
(mm)

ET/P
(mm)

ET
(mm)

P-ET
(mm)

ET/P
(mm)

1993 1451.60 733.93 717.67 0.51 841.37 610.23 0.58 764.67 686.93 0.53
1994 1348.97 653.72 695.26 0.48 888.92 460.05 0.66 754.17 594.80 0.56
1995 1504.59 744.24 760.35 0.49 995.91 508.67 0.66 772.98 731.61 0.51
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Table 6. Cont.

YEAR
P

(mm)

LASH VIC MHD

ET
(mm)

P-ET
(mm)

ET/P
(mm)

ET
(mm)

P-ET
(mm)

ET/P
(mm)

ET
(mm)

P-ET
(mm)

ET/P
(mm)

1993 1451.60 733.93 717.67 0.51 841.37 610.23 0.58 764.67 686.93 0.53
1994 1348.97 653.72 695.26 0.48 888.92 460.05 0.66 754.17 594.80 0.56
1995 1504.59 744.24 760.35 0.49 995.91 508.67 0.66 772.98 731.61 0.51
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4. Conclusions

A performance analysis of the LASH, MHD, and VIC hydrological models was con-
ducted in the Verde River basin. The models’ performance can vary greatly depending
on the hydrological conditions, such as floods and droughts. Overall, the hydrological
models were able to simulate the average daily discharges in the basin. During calibration
and validation, LASH and MHD demonstrated better performance when compared to
VIC, which encountered significant problems in simulating the dry period. As a result, the
results of LNASH were less than 0.5 in this case.

Several aspects regarding the results obtained via VIC reflect the calibration type (man-
ual and with defined limits), as well as uncertainties related to different model structures,
which led to unsatisfactory results. Nevertheless, the model can potentially be used as a
tool for the prediction of peak flows and may be important for decisions regarding support
for flood management.

The findings reveal that LASH and MHD simulations effectively replicated discharges
with a remarkable degree of accuracy, rendering them invaluable tools for water resource
management in the studied basins. Moreover, these outcomes can serve as a foundation for
forthcoming research focused on food and water security, particularly in relation to climate
change scenarios. Consequently, these models hold significant promise for advancing our
understanding and preparedness with respect to addressing potential challenges in the
study region and beyond.
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