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Abstract: This paper describes the use of a unique spatio-temporally resolved precipitation and
temperature dataset to assess the spatio-temporal dynamics of water resources over a period of
almost seven decades across the Sierra Nevada mountain range, which is the most southern Alpine
environment in Europe. The altitude and geographical location of this isolated alpine environment
makes it a good detector of climate change. The data were generated by applying geostatistical
co-kriging to significant instrumental precipitation and temperature (minimum, maximum and
mean) datasets. The correlation between precipitation and altitude was not particularly high and
the statistical analysis yielded some surprising results in the form of mean annual precipitation
maps and yearly precipitation time series. These results confirm the importance of orographic
precipitation in the Sierra Nevada mountain range and show a decrease in mean annual precipitation
of 33 mm per decade. Seasonality, however, has remained constant throughout the period of the study.
The results show that previous studies have overestimated the altitudinal precipitation gradient in
the Sierra Nevada and reveal its complex spatial variability. In addition, the results show a clear
correspondence between the mean annual precipitation and the NAO index and, to a much lesser
extent, the WeMO index. With respect to temperature, there is a high correlation between minimum
temperature and altitude (coefficient of correlation = −0.84) and between maximum temperature
and altitude (coefficient of correlation = −0.9). Thus, our spatial temperature maps were very
similar to topographic maps, but the temporal trend was complex, with negative (decreasing) and
positive (increasing) trends. A dynamic model of snowfall can be obtained by using the degree-
day methodology. These results should be considered when checking the local performance of
climatological models.

Keywords: high mountain climatology; orographic rainfall; alpine environment; temperatures; snow;
NAO index; WeMO index; rain gauges; co-kriging

1. Introduction

Mountains play an important role in the Earth System and the availability of water
resources. They cover 25% of the global land surface, provide living space for 26% of the
world’s population [1,2], supply freshwater resources to surrounding lowlands, and host a
significant amount of biodiversity. Mountain environments are highly sensitive to changes
in climate [3] and are sensors for early detection of climate change [4]. The high sensitivity
of mountain environments to climate change has generated significant research to improve
climate observations at high elevations [5]. The alpine regions of the Mediterranean are
among the most climatically sensitive areas in the world [6]. In many areas of the world,
climate monitoring in high altitude regions continues to be sparse and of low quality;
observation networks are deficient and climate values are estimated by extrapolating from
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low-altitude data. This can be particularly misleading when extrapolating precipitation.
There appears to be a general positive correlation between precipitation and altitude [7,8],
but it is not as simple and direct as the high (negative) correlation between temperature
and altitude [9,10].

The focus of the work presented here is a study on the spatio-temporal dynamics
of precipitation and temperature in the high-altitude Sierra Nevada mountain range in
Southern Spain in order to evaluate the spatio-temporal dynamics of water resources in
the form of rainfall and snow. There have been many studies on precipitation in Southern
Spain. For example, various aspects of precipitation in the Mediterranean region of Spain
are considered in [11,12]. The authors of [13] studied daily precipitation in Spain for the
period of 1951 to 2002 using data from 22 sites. The authors of [14] studied seasonal trends
in precipitation in the Mediterranean Iberian peninsula from 1951 to 2000. The authors
of [15] studied dry periods over the pluviometric gradient (from Gibraltar to Almeria)
in Mediterranean southern Spain. The authors of [16] provided a database of gridded
precipitation and temperature in Spain for the 1950–2003 period, but the grid spacing they
used had a horizontal resolution of approximately 20 km.

These and other previous studies have estimated precipitation and temperature over
large regions, such as the entire Mediterranean region or the whole of the Iberian Peninsula,
without any altitudinal restriction. The work presented here focuses on precipitation
and temperature within the high-altitude area of the Sierra Nevada mountain range, and
specifically, on the connected region with altitudes from 1500 m above sea level (asl) to
almost 3500 m asl, which comprises the most southern alpine environment in Europe.
The objective was to build a database of daily precipitation and temperature within this
high-altitude area and to interpret it by using various statistical analyses, as explained
in the following sections. This database reveals the spatio-temporal evolution of water
resources in the studied area.

2. Methodology

Estimating precipitation in mountainous areas is a problem of recent interest [17,18].
There are particular solutions to the general problem of evaluating the areal distribution of
precipitation using limited precipitation records (see for example [19,20] for urban areas).
However, geostatistics has proved to be the optimal technique for estimating daily precipi-
tation and daily temperature using altitude as a secondary variable [21–23], among others.
Altitude data are readily available from digital elevation models (DEMs) which provide
complete coverage of an area. Rainfall data, however, are limited to sparsely located rain
gauges. Temperature data are even more sparse, although they show a higher (negative)
correlation with altitude. There are various geostatistical kriging procedures for incorporat-
ing altitude as a secondary variable. The most widely used is co-kriging [24], which is a
multivariate geostatistical interpolator [25]. Essentially, the relative scarcity of the directly
measured data for the primary variable (precipitation or temperature) is compensated
for by using its spatial correlation with the more abundant secondary variable (altitude).
The application of co-kriging requires estimates of the direct variogram (or covariance) of
precipitation (or temperature), the direct variogram (or covariance) of altitude, and the
cross-variogram (or cross-covariance) of precipitation and altitude (or temperature and
altitude). These three estimated variograms are modelled by fitting permissible models,
of which the most widely used is the linear co-regionalisation model [26]. Co-kriging is
used to estimate daily precipitation and temperature on a regular grid, and seasonal and
annual averages are estimated by summing the days contained in the chosen time period
(or support in geostatistical terminology) of estimation (e.g., one month, one season, one
year). As the number of rain gauges and temperature stations available for any particular
day may be small, a climatological variogram is used [27,28]. The shape and range of the
climatological variogram remains constant, while the nugget variance and partial sill are
updated with daily precipitation and temperature statistics [28]. The mathematical basics
of co-kriging are considered next.
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Co-kriging is a geostatistical method for optimal multivariate spatial interpolation [26].
In geostatistics, spatial variable Z(u) at spatial location u, representing, for example rainfall,
minimum temperature, maximum temperature, etc., is modelled as a random variable.
The set of all random variables Z(u) in region χ of the space, u ∈ χ, comprises a random
function or random field Z(u). With χ ⊂ <d and d = 2, the problem is two-dimensional,
as is the case in the work presented here for precipitation or temperature and elevation.
Thus, Z(u) represents precipitation or temperature and is the variable of interest that is to
be estimated by co-kriging.

It is assumed that Z(u) is second-order stationary with constant spatial mean

E{Z(u)} = mZ, (1)

and the two-point statistics, the covariance, and the variogram functions depend only on
vector h:

CZ(u, u + h) = CZ(h) = E{Z(u)Z(u + h)} −m2
Z , (2)

γZ(h) = CZ(0)− CZ(h) , (3)

CZ(0) = σ2
Z. (4)

where mZ, σ2
Z, γZ(h) and CZ(h) are, respectively, the mean, variance, variogram, and

covariance of the random function Z(u) and E{.} is the mathematical expectation operator.
In the simplest form of co-kriging, a variable of interest, or primary variable (e.g.,

temperature or precipitation), is estimated based on the experimental values of the variable
and the experimental values of a secondary variable (e.g., altitude) that is correlated with
the primary variable. The co-kriging estimator of the precipitation (or temperature) at any
given geographical location u0 = {x0, y0}, where {x0, y0} are the easting and northing
coordinates respectively, can be expressed as:

Z × (u0) =
n

∑
i=1

λ0
i Z(ui) +

m

∑
j=1

β0
j Y
(
uj
)
. (5)

where:
Z(u) is the primary variable, precipitation or temperature, at location u, and Y(u) is

the secondary variable, altitude, at location u.
n and m are the number of values of variables Z(u) and Y(u), respectively, used in

the estimation in Equation (5). Usually, these data are inside a neighbourhood centred on
estimation location u0.

The optimal weights for the linear estimation in Equation (5) are obtained by solving
the corresponding co-kriging system; see for example, refs. [25,29]. If only the primary
variable is used, ordinary co-kriging reduces to ordinary kriging of the primary variable.
The same applies if there is no correlation between the primary and secondary variables.

For co-kriging, the direct variograms of the two variables and the cross-variogram (or
direct covariances and cross-covariance) between the two variables must be estimated from
the experimental data.

The unbiasedness of the co-kriging estimator in Equation (5) implies that the mean
estimation error is zero:

E{Z × (u0)− Z(u0)} = 0. (6)

This is achieved by including the following conditions in the co-kriging system:

n

∑
i=1

λ0
i = 1, (7)
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and
m

∑
k=1

β0
k = 0, (8)

The variance of the estimation error can be written as:

Var{Z × (u0)− Z(u0)} =
n
∑

i=1

n
∑

j=1
λ0

i λ0
j CZ

(
hij
)
+

m
∑

i=1

m
∑

j=1
β0

i β0
j CY

(
hij
)

+
n
∑

i=1

m
∑

j=1
λ0

i β0
j CZY

(
hij
)
+

m
∑

j=1

n
∑

i=1
β0

j λ0
i CYZ

(
hji
)

−2
n
∑

i=1
λ0

i CZ(hi0)− 2
m
∑

j=1
β0

j CY
(
hj0
)
+ CZ(h00),

(9)

The co-kriging system is obtained by minimising the estimated variance in Equation (1),
subject to the unbiasedness conditions, which, in matrix form [30], is:

Cλ = B, (10)

with:

C =



CZ(h11) · · · CZ(h1n)
...

. . .
...

CZ(hn1) · · · CZ(hnn)

CZY(h11) · · · CZY(h1m)
...

. . .
...

CZY(hn1) · · · CZY(hnm)

1 0
...

...
1 0

CYZ(h11) · · · CYZ(h1n)
...

. . .
...

CYZ(hm1) · · · CYZ(hmn)

CY(h11) · · · CY(h1m)
...

. . .
...

CY(hm1) · · · CY(hmm)

0 1
...

...
0 1

1 · · · 1
0 · · · 0

0 · · · 0
1 · · · 1

0 0
0 0


(11)

λ =



λ0
1
...

λ0
n

β0
1

...
β0

m
µ1
µ2


, B =



CZ(h10)
...

CZ(hn0)
CZY(h01)

...
CZY(h0m)

1
0


(12)

where µ1 and µ2 are Lagrange multipliers or parameters that are used to include the
constraints given in Equations (7) and (8).

The solution of the co-kriging system:

λ = C−1B, (13)

provides the weights required in the estimator in Equation (5).
In the geostatistical literature, the form of co-kriging summarised above is known as

“ordinary co-kriging” to distinguish it from “simple co-kriging”, in which the mean mZ in
Equation (1) is known [26,29,31].

3. Case Study

The isolated Sierra Nevada mountain range (Figure 1), in the Andalucía region of
southern Spain, has an E–W orientation and dimensions of around 70 km in the E–W
direction and a mean of 20 km in the N–S direction, although its width decreases from West
to East. The total area of the mountain range is around 1360 km2. The Mulhacen Peak, at
3479 m asl, is the highest altitude in the Iberian Peninsula and is located at longitude 3.312◦
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W and latitude 37.053◦ N. This mountain range is at an ideal location to monitor climate
change because it is an isolated alpine environment at, for Europe, a relatively low latitude.
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Figure 1. Geographical location of the study area, the Sierra Nevada (SN) mountain range in southern
Spain. (A). General location of SN in southern Spain. The white rectangle represents the area shown
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in (B) and the black rectangle represents the area shown in (C). (B). Digital elevation model of the
regional context of the Sierra Nevada mountain range in the middle of the image enclosed by the
dashed black rectangle. The colour scale represents altitude in metres above sea level. The black
dots represent the locations of rain gauges where the experimental data were measured. (C). Digital
elevation model with the colour scale representing altitude above sea level in metres. This area
represents the estimation grid comprising 201 columns and 90 rows with a spacing of 500 m in the
E–W direction and 500 m in the N–S direction. A black polygon encloses the connected area that has
an altitude higher than 1500 m. This polygon is the high-altitude area of Sierra Nevada from which
areal or integrated values were obtained from the grid estimates. The geographical coordinates in
Figure 1C are in the Universal Transverse Mercator (UTM) projection.

Almost seven decades (67 years from 1951 to 2017) of precipitation and tempera-
ture data, measured at 247 stations (rain gauges and temperature stations), are shown in
Figure 1B. Not all the stations were in operation for the entire period, and the network
has changed over time. For example, Figure 2 shows the evolution over time of the mean
number of operating precipitation (rain gauges) and temperature stations. The number of
operating rain gauges increased steadily during the 1950s and 1960s and reached a mean
number of around 70 rain gauges during the 1970s and 1980s, increasing thereafter to a
mean of 90 rain gauges from the 1990s until the last year of the study, i.e., 2017. Over
the last 20 years of this sequence, there was a high degree of variability in the number
of operating rain gauges, but the total number was never less than 50. The number of
operating temperature stations has also increased steadily since 1951, but usually their
number is around a third of the number of rain gauges.
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Figure 2. Mean annual number of precipitation and temperature monitoring stations from 1951 to
2017. The locations of the precipitation stations are shown in Figure 1B as solid black dots.

Daily precipitation and temperature were estimated for the 67 years of the study,
which involved the spatial estimation of these variables for 24,471 days. The estimation
network has a spacing of 500 m in each of the X and Y directions. The estimation network
has 201 columns and 90 rows (Figure 1C) but the statistics were calculated for the area
of the Sierra Nevada mountain range, restricted to the black polygon in Figure 1C and
representing a connected area with altitudes higher than 1500 m. This altitude of 1500 m
was selected on the basis that it delineates very well the isolated alpine massif of Sierra
Nevada, as can be seen in Figure 1C.
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4. Results

Geostatistical co-kriging was applied to the database of experimental precipitation and
temperature data. The linear regionalisation model was used with a spherical variogram
model with a range of 30 km and a nugget variance and partial sill that were updated each
day according to the daily variance of precipitation and temperature, i.e., following the
methodology of the climatological variogram. The result is a new database comprising
daily precipitation and temperature (minimum, maximum and mean) for 67 years on a
500 m × 500 m spatial grid (Figure 1C).

Using the new database, various averages in space and time can be calculated to
highlight the spatio-temporal dynamics of precipitation and temperature for the Sierra
Nevada mountain range. As shown in Figure 1C, the mountain range has been defined by
including all points of the estimation grid that have an altitude greater than 1500 m and
that yield a connected polygon that clearly defines the Sierra Nevada mountain range.

The first important result is the mean annual precipitation in the Sierra Nevada for the
period from 1951 to 2017, which is represented in Figure 3. Figure 3A shows a raster colour
map and Figure 3B shows lines of equal precipitation (isohyets) overlaying the raster DEM
in Figure 1C. The most surprising result is the strong orographic influence in the spatial
distribution of the mean annual precipitation. The most striking fact is that the dome of
maximum precipitation has an NW–SE orientation rather than the E–W main topographical
orientation of the Sierra Nevada orographic dome, as reported in most previous studies.
The second interesting result is that the maximum coincides with the summit of the range
but is in the upper part of the main valley of the southern slope. The third surprising result
is that there is a second relative maximum (2 in Figure 3A) in the eastern part of the Sierra,
also located on the southern slope. There is also a second maximum of annual rainfall (3 in
Figure 3A), but it is located outside, and northwest of, the Sierra Nevada mountain range.

The estimated map of mean annual precipitation (Figure 3A) is consistent with Figure
2 of Sumner et al. (2003) [32], which represents the average annual precipitation (mm)
for 1964–1993, but not with the detail given in the work presented here. In addition, the
Confederación Hidrográfica del Guadalquivir (Water authority for the management of the
Guadalquivir river basin) reported a mean precipitation of 618 mm in the river basin of the
Canales dam (with a surface of 176 km2). A similar estimate of 633 mm was obtained for
the areal value for the same river basin in the map in Figure 3A.

Another interesting result is the map of mean precipitation for the 1951–2017 period,
but instead of integrating time for the year, it is integrated for each season: Spring (April,
May, June), Summer (July, August, September), Autumn (October, November, December),
and Winter (January, February, March). The results are shown in Figure 4 and can be
interpreted as a decomposition of the mean annual precipitation in Figure 3 to produce the
mean precipitation by season. This map should be assessed in conjunction with the results
shown in Table 1, which shows the mean precipitation by month and season. Table 1 shows
that, climatologically, the driest month is July, with less than 1% of the annual precipitation,
while the wettest month is December, with 15% of the yearly precipitation. August is also a
dry month, with 1.2% of the annual precipitation, while June and September, with 3.1%
and 4.9% respectively of the annual precipitation, can be considered intermediate months.
The remaining months, from October to May, can be considered humid months that define
the rainy season. The seasons, from wettest to driest, are Autumn, Winter, Spring and
Summer, with 39%, 34%, 20% and 7% respectively of the annual precipitation. The mean
annual precipitation for Sierra Nevada for the 1951–2017 period is 575 mm with a standard
deviation of 191 mm; this implies a high variability from year to year.
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Figure 3. (A). Spatial distribution of the mean annual precipitation for the 1951–2017 period. There
are three precipitation maxima: 1 and 2 inside the Sierra Nevada mountain range; 3 is the maximum
outside the mountain range and 4 is the region of shadow precipitation on the lee side of the mountain.
(B). Same as (A) but as isohyets (solid white lines) overlying the topography map. The black polygon
in (A,B) encloses the area of the Sierra Nevada mountain range. Geographical coordinates in the
figure are in the Universal Transverse Mercator (UTM) projection.
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Figure 4. Spatial distribution of the mean seasonal precipitation for the 1951–2017 period. (A). Spring
(AMJ), (B). Summer. (JAS). (C). Autumn (OND). (D). Winter (JFM). The letters in parentheses are the
initials of the consecutive months used to define each season. Geographical coordinates in the figure
are in the Universal Transverse Mercator (UTM) projection.
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Table 1. The mean annual precipitation in Sierra Nevada for the 1951–2017 period is 575 mm, with
a standard deviation of 191 mm. The table shows the way in which this annual precipitation is
distributed by months and by seasons.

Month
Mean
Precipitation
(mm)

% of Annual
Precipitation Season

Mean
Precipitation
(mm)

% of Annual
Precipitation

January 68.0 11.8
Winter
(JFM) 197.9 34.4February 67.5 11.7

March 62.4 10.8

April 55.8 9.7
Spring
(AMJ) 115.5 20.1May 41.7 7.2

June 18.0 3.1

July 3.9 0.7
Summer
(JAS) 39.1 6.8August 7.0 1.2

September 28.1 4.9

October 58.7 10.2
Autumn
(OND) 222.9 38.7November 77.7 13.5

December 86.5 15.0

Figure 4 shows that the wettest seasons (Autumn in Figure 4C and Winter in Figure 4D)
reproduce the annual mean precipitation shown in Figure 3. The general spatial trend of
the annual precipitation in Figure 3 is also reproduced in the other two seasons (Spring
and Summer) but with the difference that the maximum precipitation in Spring occurred
outside the target area in the north-western sector (number 3 in Figure 3A), while the
maximum precipitation in Summer occurred in the second maximum of precipitation
inside the target area, located in the eastern part of the Sierra (number 2 in Figure 3A). This
behaviour was due to the orographic effect and the provenance of the humid winds, as
explained in the discussion section.

Another important result is the mean annual temperature (minimum, maximum, and
mean) in the Sierra Nevada for the period from 1951 to 2017, which is represented in
Figure 5A–C, respectively. Because of the high negative correlation between temperature
and altitude, the temperature maps in Figure 5 clearly resemble the map of altitudes in
Figure 1C. The spatial distribution of temperatures can be calculated for any temporal
interval as, for example, in Figure 5D, which shows the minimum January temperature for
the 1951–2017 period.
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Figure 5. Spatial distribution of the mean temperature for the 1951–2017 period. (A): annual mini-
mum; (B): annual maximum; (C): annual mean; (D): minimum for January. Geographical coordinates
in the figure are in the Universal Transverse Mercator (UTM) projection.

Figure 6A shows the spatial variability of the total annual snow obtained by assuming
that the daily precipitation when the minimum daily temperature was below zero degrees
Celsius would fall in the form of snow. Figure 6B shows that the percentage of total
precipitation that fell in the form of snow increased with altitude and, within the Sierra
Nevada mountain range, varied from 4.2% to 78.7%, with a mean of 24.9%.
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Figure 6. (A). Spatial distribution of the mean annual snow fall for the 1951–2017 period, obtained by
considering that daily precipitation was in the form of snow if the daily mean temperature was below
0 ◦C. (B). Spatial distribution of snow as a percentage of precipitation. Geographical coordinates in
the figure are in the Universal Transverse Mercator (UTM) projection.

Another interesting result is the time series of the areal average of the annual precipita-
tion for Sierra Nevada (black polygon in Figure 1C) for the 1951–2017 period, i.e., a period
of 67 years or almost seven decades. The estimated time series is shown in Figure 7A. The
mean annual precipitation of 575 mm is represented as a horizontal, large-dashed line.
The high variability of annual precipitation over the years is reflected in a time series with
a standard deviation of 191 mm. Despite this high variability, the annual precipitation
decreased linearly at a rate of 33 mm of precipitation per decade. The negative slope is sta-
tistically significant (i.e., differs from zero), with a confidence level of 95%. The fitted linear
trend is shown as a solid red line in Figure 7A. This decrease can be seasonally decomposed
as a decrease of 15 mm in Winter precipitation, 12 mm in Autumn precipitation, and 6 mm
in Spring precipitation, while there was no significant change in Summer precipitation. In
addition, the years with the lowest precipitation coincided with droughts in southern Spain
or in the entire Iberian Peninsula and have been marked with blue arrows in Figure 7A. It
is clear from the Figure that the number of droughts increased with time, and it is estimated
that a mean precipitation in Sierra Nevada of less than 440 mm is indicative of a drought in
the region. A different aspect is the evolution of seasonality, defined here as the percentage
of annual precipitation comprising Autumn precipitation. The result is shown in Figure 7B,
in which it is clear that seasonality has remained unchanged over the 1951–2017 period.
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Seasonality has been defined as the percentage of annual precipitation occurring in Au-
tumn, because Autumn is the main wet season in the area, recording, on average, 40% of
the precipitation of the whole year.
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Although Figure 7A shows the time series of the mean total rainfall over the Sierra
Nevada mountain range, the same time series can be calculated on a pixel basis to show
the spatial variability of the slope of the total rainfall as in Figure 8A. It can be seen that
inside the Sierra Nevada limits, the slope is always negative (rainfall decreasing with time),
but it is statistically significant (at the 95% confidence level) in the western part and on the
northern side of the eastern part.
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Figure 8. (A) Spatial variability of the slope of the linear trend of mean annual rainfall for the
1951–2017 period. (B) Statistical significance (at the 95% level) of the slope shown in (A). Blue
colour (0) implies that the slope is not statistically significant. Green colour (1) implies a statistically
significant positive slope, while red colour implies a statistically significant negative slope. The figure
shows that there is a decreasing trend in rainfall which may be statistically significant on the western
and northern sides of the eastern part of Sierra Nevada. Geographical coordinates in the figure are in
the Universal Transverse Mercator (UTM) projection.

A spectral analysis of the time series of mean annual precipitation may reveal hidden
periodicities or cycles in precipitation. The maximum entropy method [33,34] was applied
to the time series in Figure 7A and the estimated power spectrum is shown in Figure 9.
There are important cycles lasting around 12 years, related to sunspot cycles. A cycle of
83 years is also related to solar activity but is less reliable because it is longer than the
length of the time series of the available data. The cycles of 6.5, 3.4, and 2.7 years are related
to the North Atlantic Oscillation (NAO) index.
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Figure 9. Maximum entropy power spectrum of the time series shown in Figure 5A. There is an
important power at 12 years associated with sunspot cycles; 83 years is associated with variability in
insolation and with cycles with periods of 6.5, 3.4, and 2.7 years, which have been associated with the
NAO index.

The previous suggestion that there may be a relationship between annual precipitation
and the annual NAO index has been investigated further. Both variables (annual precipita-
tion and the annual NAO index) are plotted in Figure 10A, in which there is an obvious
correspondence of wet years with a negative NAO index, whereas dry years are related to
a positive NAO index. This negative relationship can be more clearly seen by comparing
the polynomial trends fitted to both time series (thick solid line in Figure 10A). This clear
relationship between precipitation in the Sierra Nevada and the NAO index is considered
further in the discussion section, as is the issue of the altitudinal precipitation gradient.

With respect to temperature, Figure 11 shows, for the Sierra Nevada mountain range,
the time series of minimum, maximum, and mean temperatures for the 1951–2017 period.
It is clear from the figure that the slope is negative, which implies that temperature is
decreasing at a rate of around 0.1 ◦C every 10 years, which seems paradoxical in a global
warming context. However, it can be shown that all three slopes are statistically significant
with a confidence level of 95%. Again, it is instructive to assess the time series of the
different temperatures for the different pixels, i.e., the spatial variability of the trend across
space, as shown in Figure 12. Figure 12A shows minimum temperature, Figure 12C shows
maximum temperature, and Figure 12B,D shows the statistical significance of the different
slopes. For both minimum and maximum temperatures, there are positive and negative
trends, together with areas that are not statistically significant (at the 95% confidence level),
areas that have positive slopes that are statistically significant, and areas that have negative
slopes that are statistically significant. For both minimum and maximum temperatures, the
statistically significant positive slopes (increasing temperature with time) are in the eastern
part of the mountain range, while the statistically significant negative slopes (decreasing
temperature) are in the western part of the mountain range.
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Figure 10. (A) The thin orange solid line is the Hurrell (1995) annual NAO index (based on the 
difference between the normalised sea level pressure (SLP) at Lisbon, Portugal and 
Stykkisholmur/Reykjavik, Iceland). The thin solid blue line is the mean annual precipitation (Figure 
7A). The polynomial fitted trends are the solid thick lines, orange for the NAO index and blue for 
the precipitation. The joint variation of the two variables is clear from the figure with high annual 
precipitation corresponding to high negative NAO indices and vice versa. (B) The thin solid orange 
line is the Martin-Vide and Lopez-Bustins (2006) annual WeMO index (WeMO is based on the 
difference between the normalised sea level pressure (SLP) at San Fernando, Spain, and Padua, 
Italy). The thin solid blue line is the mean Summer precipitation. The polynomial fitted trends are 
the solid thick lines, orange for the WeMO index and blue for the precipitation. The figure suggests 
a weak joint variation of the two variables, with high Summer precipitation corresponding to high 
WeMO indices and vice versa. 

Figure 10. (A) The thin orange solid line is the Hurrell (1995) annual NAO index (based on the
difference between the normalised sea level pressure (SLP) at Lisbon, Portugal and Stykkishol-
mur/Reykjavik, Iceland). The thin solid blue line is the mean annual precipitation (Figure 7A).
The polynomial fitted trends are the solid thick lines, orange for the NAO index and blue for the
precipitation. The joint variation of the two variables is clear from the figure with high annual precip-
itation corresponding to high negative NAO indices and vice versa. (B) The thin solid orange line is
the Martin-Vide and Lopez-Bustins (2006) annual WeMO index (WeMO is based on the difference
between the normalised sea level pressure (SLP) at San Fernando, Spain, and Padua, Italy). The thin
solid blue line is the mean Summer precipitation. The polynomial fitted trends are the solid thick
lines, orange for the WeMO index and blue for the precipitation. The figure suggests a weak joint
variation of the two variables, with high Summer precipitation corresponding to high WeMO indices
and vice versa.
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Figure 11. Time series of the minimum, maximum, and mean annual temperatures from 1951 to
2017 in Sierra Nevada. The dashed lines represent the fitted linear trend. In all three cases, the
slope is negative and shows a decrease of 0.1 ◦C every 10 years. However, this negative slope
is not statistically significant at the 95% significance level, (i.e., it is not statistically different to
zero), and thus, the negative trend in temperature can be neglected when considered over the entire
mountain range.
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Figure 12. (A) Spatial variability of the slope of the linear trend of the minimum (A) and maximum
(C) annual temperatures for the 1951–2017 period. (B,D) show the statistical significance (at the
95% level) of the slopes shown in (A,C), respectively. Blue colour (0) indicates that the slope is not
statistically significant. Green colour (1) indicates a statistically significant positive slope, while
red colour implies a statistically significant negative slope. The figures show that, for the Sierra
Nevada mountain range, the trends in annual minimum and maximum temperatures have a complex
behaviour, with increasing and decreasing trends. In the eastern part of the Sierra Nevada mountain
range, there is a statistically significant increase in minimum and maximum annual temperatures,
while in the western part, there are areas of statistically significant decreases in the minimum and
maximum annual temperatures. The geographical coordinates in the figure are in the Universal
Transverse Mercator (UTM) projection.

Finally, the equivalent product for snow can be obtained by using a simple snow
precipitation and melting model. The adopted model is precipitation in the form of snow
when the minimum temperature is below zero degrees Celsius. The melting model used is
the temperature index of the snow melt model [35], formulated as:

If F1(i, j, t) ≤ F2 → Snow (i, j, t) = Precipitation(i, j, t)
If F3(i, j, t) ≤ F4 → Snow(i, j, t) = Snow(i, j, t− 1)− F5(i, j, t)F6

F1, F3, F5 ∈ {Tmin, Tmax, Tmed}
F2, F4, F6 ∈ R

where {Tmin, Tmax, Tmed} are the daily minimum, maximum, and mean temperature,
respectively.

(i, j, t): is the cell with spatial location (i, j) for day (t).
F2, F4, F6 are real numbers. The first two are temperature thresholds and the third is

a multiplicative melting factor.
The parameters were selected using a simple calibration that gave the following:

F1 = Tmin, F2 = 0, F3 = Tmin, F4 = 1, F5 = Tmin and F6 = 5.
Figure 13 shows the experimental snow thickness data given in [36,37]. The thin

line represents the point measurements of the changing thickness of snow over a four-
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year period at a point located in the Refugio de Poqueira (Sierra Nevada). The thick line
represents the pixel measurements of snow from the dataset used in the work presented
here and the previous simple model. The changing thickness results are similar but not
identical because of the different supports (point and pixel) on which they are measured.
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Figure 13. Different aspects of snow dynamics can be obtained by using a simple snow-degree 
model for melting and assuming that daily precipitation was in the form of snow if the daily 

Figure 13. Different aspects of snow dynamics can be obtained by using a simple snow-degree model
for melting and assuming that daily precipitation was in the form of snow if the daily minimum
temperature was below zero degrees Celsius. Snow depth (m) at a point location from Herrero et al.
(2016) [37] compared with the 500 × 500 m pixel that contains that point from the fields of rainfall
and minimum temperature.

Figure 14 shows the changing area of snow cover in the Sierra Nevada mountain
range over the 1951–2017 period. Days on which the entire mountain range was covered
by snow are recorded as 100% snow cover. The detail of the snow-covered area is given
in Figure 15. Figure 16 shows the thickness of snow in the cell that contains the ski resort
town of Pradollano.
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5. Discussion

Three important issues in the spatio-temporal dynamics of precipitation in the Sierra
Nevada have been identified in this study: (1) the importance of orographic precipitation [38]
in understanding the spatial variability of mean annual precipitation; (2) the decreasing
trend in the mean annual precipitation of 33 mm per decade; and (3) the NAO influence
on mean annual precipitation. Other minor issues that have been revealed are (4) the
persistence of seasonality over the almost seven decades studied and (5) the complex issue
of the altitudinal precipitation gradient.
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The precipitation patterns over the Sierra Nevada mountain range for the period of
this study can be interpreted physically by considering the orographic effect and the main
provenance of humid flows from the Atlantic and, to a lesser extent from the Mediterranean,
that affect the Iberian Peninsula in general and the study area in particular. The authors
of [12] distinguished atmospheric patterns with a clear distinction between Atlantic and
western Mediterranean disturbances that produce characteristic precipitation patterns
over southern Spain. Most of the annual precipitation is drawn from the Atlantic Ocean
and is mainly influenced by North Atlantic climatic processes [39], such as the polar
cyclone (Iceland Low), and hence the North Atlantic Oscillation (NAO) [40]. Annual
precipitation is sourced to a lesser extent from the Mediterranean and is mainly influenced
by the Western Mediterranean Oscillation (WeMO) [41]. Isotopic studies [39] revealed
two main sources of humidity that influence precipitation in the Mediterranean part
of the Iberian Peninsula. Convective precipitation events from the Mediterranean are
isotopically enriched and prevail during Summer (Figure 10). In contrast, precipitation
with lower isotopic values is transported along Atlantic storm tracks, which dominate
during Winter [42]. The authors of [12] distinguished atmospheric patterns (synoptic
types) with a clear distinction between Atlantic and western Mediterranean disturbances
that produce characteristic precipitation patterns in Mediterranean Spain. In addition,
from the synoptic types they obtained, The authors of [12] summarised the main general
scenarios that produce significant precipitation in Mediterranean Spain. The first scenario
is a large-scale disturbance located to the west of the Iberian Peninsula and producing
humid Atlantic flows that induce precipitation in western Andalucia. A second scenario is
the passage of cold fronts over the Iberian Peninsula associated with higher latitude, low
pressure systems that encourage precipitation in the mountainous areas of Andalucia. In
a third scenario, relatively small lows at 500 hPa are found in the southern part of Spain,
and the associated low-level flux over the Mediterranean from the east-southeast is warm
and humid. This configuration leads to precipitation over the eastern flank of Spain [12].
These three scenarios generated the three maxima in mean annual precipitation shown in
Figure 3A.

The observed decreasing trend, at a rate of 33 mm per decade, in mean annual pre-
cipitation in Sierra Nevada for the 1951–2017 period is consistent with findings by other
authors. A general decreasing trend in precipitation in southern Spain from 1960 onwards
was observed by [43]. The authors of [32,44], among others, have also identified this de-
creasing trend of precipitation in southern Spain. Here, we have shown this decrease in the
mean areal value of the high Sierra Nevada mountain range. The authors of [45] studied
the evolution over almost 100 years of the Azores high (the “centres of actions” for the
weather in the Iberian Peninsula) and concluded that blocking anticyclones have become
more prevalent over western Europe, which could explain the decrease in rainfall over the
Iberian Peninsula in general and in the Sierra Nevada in particular.

There are clear correlations between the NAO index and the annual precipitation in
the Sierra Nevada and between the NAO index and Autumn and Winter precipitation. This
is because 73% of the annual precipitation occurs in Autumn and Winter. To a lesser extent,
there is a correlation between the precipitation in Sierra Nevada and the WeMO index.
The positive phase of the NAO reflects below-normal heights and pressures across the
high latitudes of the North Atlantic and above-normal heights and pressures in the central
North Atlantic [46]. Hence, there is a northward shift of the axis of maximum moisture
transport [47], and thus, there is a decrease in precipitation over southern Europe in general
(including Spain) and in the Sierra Nevada in particular.

Despite the variability of the total annual precipitation and its decreasing trend, there
was variability, although there was no trend, in the seasonality for the observed 1951–
2017 period. Here, seasonality has been defined as the percentage of annual precipitation
comprising Winter precipitation. The conclusion is that, irrespective of the trend in annual
precipitation, Winter precipitation will be the main seasonal precipitation contribution to
the total annual precipitation.
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Finally, there is the issue of the complex spatial gradient of mean annual precipitation
with altitude. The altitudinal gradient between locations A and B can be defined as:

GAB =
RA − RB
HA − HB

, with HA > HB

where RA is the mean annual precipitation at location A and HA is the altitude of location
A. Given that the order of the locations is HA > HB, a positive gradient means that
precipitation increases with altitude. It is clear from Figure 3B that the altitudinal gradient
of precipitation for Sierra Nevada will be complex. Because of the orographic effects shown
in Figure 3, in the best case (considering the windward side of the Sierra Nevada mountains),
there will be an altitudinal gradient in the mean annual precipitation of 15 mm/100 m.
There will be a gradient of 10 mm/100 m in the mean annual precipitation for the best
location on the lee side of the Sierra Nevada mountains. However, in general, the altitudinal
gradients will be smaller if any two arbitrary locations are considered. These altitudinal
gradients in precipitation are significantly different to some of the values reported in the
literature for the Sierra Nevada mountain range, e.g., 170 mm/100 m reported by [48],
among others.

With respect to the spatio-temporal dynamics of temperature in the Sierra Nevada,
there are several points that have been identified in this study:

(1) The spatial distribution of temperature is highly correlated with altitude, with correla-
tion coefficients of 0.85 and 0.9 for minimum and maximum temperature, respectively.

(2) The annual temperature trend has a negative slope but, as it is not statistically sig-
nificant, the annual temperature in the Sierra Nevada cannot be considered to be
decreasing, even in terms of the minimum, maximum, or mean temperatures.

(3) The spatial variability of the trend in annual temperatures is complex. There are areas
that show an increasing trend while others show a decreasing trend and others are
undefined, as the trend is not statistically significant.

(4) By using a simple degree-day model, it is possible to evaluate the evolution of the
Sierra Nevada snowpack by assessing a large number of spatial and temporal statistics.
For example, the transient seasonal snowline could be evaluated.

6. Conclusions

A significant database of daily precipitation and temperature on a regular square grid
with a spatial resolution of 500 m has been obtained by geostatistical co-kriging, together
with an important instrumental record of precipitation and temperatures. The study area
for this work is the Sierra Nevada mountain range in southern Spain, restricted to the
area with altitude above 1500 m asl, which corresponds to what is generally understood
to be the Sierra Nevada mountain range. The main results, based on the precipitation
and temperature dynamics of the Sierra Nevada mountains and obtained by a statistical
analysis of the high-resolution precipitation database, are the importance of orographic
precipitation and the influence of the NAO on the total amount of annual precipitation. The
orographic precipitation explains the spatial distribution of the mean annual precipitation
with maximum precipitation on the windward side of the mountain. This implies that
the highest precipitation is not at the summit of the mountain, as had previously been
assumed and which has led to over-estimates of the altitudinal gradient of precipitation for
Sierra Nevada. Seasonality has not changed over the 1951–2017 period, for which there are
almost seven decades of precipitation records for the most southern alpine environment
in Europe. This implies that, irrespective of the total amount of precipitation, most of it
will fall in Autumn and Winter. Smith (2019) [49] anticipated that mountain meteorology
research would require special attention because of the altered distribution of precipitation,
orographic effects, and physical mechanisms by which mountains modify precipitation
patterns in different climate zones. Temperature (minimum, maximum, and mean) shows
a more predictable spatial behaviour because it is well correlated with altitude. However,
the spatial variability of the temperature trend is complex, which makes it difficult to draw
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any conclusions about global warming, at least in this area. To address this issue would
require a more exhaustive monitoring of mountainous areas and their water resources.

The work reported here is a contribution to the climatological study of alpine environ-
ments and should encourage further research in the meteorology and climatology of high
mountain areas which store strategic water resources.
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