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Abstract: This study performs an empirical orthogonal function (EOF) analysis to study the rela-
tionship between rice and maize productivities and the different time scales of the Standardized
Precipitation Evapotranspiration Index (SPEI), including 1-month, 6-month, and 12-month time
scales in Southeast Asia during the years 1970–2019. For the 1-month time scale, the averaged SPEI
values are in the range of −1.0 to 1.0, indicating a moderate degree of dryness and humidity. Both
6-month and 12-month time scales suggest that many countries in Southeast Asia are experiencing
mostly wet conditions, with SPEI values reaching up to 1.5. The relationship analysis by using EOF
was indicated by the first and second principal components (PC1 and PC2) suggesting that drought
events exhibit a positive orientation to crop productivity, especially maize in Southeast Asia. The
pattern of climate oscillations, such as the El Niño-Southern Oscillation (ENSO), is likely related to
crop productivity in Southeast Asia. The findings emphasize the importance of considering temporal
climatic patterns in agricultural decision-making, with implications for enhancing regional climate
resilience and ensuring sustainable food security in the face of global climate change.
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1. Introduction

Drought is one of the climate phenomena characterized by prolonged time duration,
extensive spatial coverage, and an impact on the economy, human well-being, and ecol-
ogy [1]. In the recent decade, there has been an increase in the attention paid to droughts,
with expectations of their exacerbation in the future [2]. There have been many studies
on drought and its effects in several countries across the globe. For example, Jung and
Chang [3] used the relative Standardized Precipitation Index (rSPI) and the relative Stan-
dardized Runoff Index (rSRI) to assess the potential of drought risk at the Willamette River
Basin in the United States. Their findings indicated that the vicinity near the Willamette
River Basin showed susceptibility to drought related to climate change. The phenomenon
of prolonged drought has significantly affected many regions across the globe, including
Australia, Brazil, China, Ethiopia, India, Spain, the Czech Republic, and Portugal [4,5].

There have been several studies of drought related to climate change in Southeast
Asia. For example, Lee et al. [6] studied the regional climate pattern in East Asia from 1980
to 2049 using the Seoul National University Regional Climate Model (SNURCM). Their
results indicate that the annual average surface temperature tends to increase by 1.8 ◦C,
along with a decline of 0.2 mm/day during precipitation. Loo et al. [7] suggest that there is
a relationship between the weather patterns in Southeast Asia, especially the monsoonal
rain patterns, and the Arctic oscillation, the Siberian high-pressure system, and the western
Pacific subtropical high-pressure system. Manton et al. [8] used the data from ground-
based measurements across 15 different countries to study the anomalous meteorological
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phenomena in Southeast Asia between 1961 and 1998. Their findings revealed that the
extreme precipitation trends exhibited a lower degree of spatial coherence in comparison
to the extreme temperature trends. Additionally, there has been a significant decrease in
the frequency of cold days and nights, along with a noticeable increase in the frequency
of hot days and warm nights. Masud et al. [9] suggest a significant positive correlation
between climate variables and the projected increase in the number of both summer days
and tropical nights. Amnuaylojaroen and Chanvichit [10] also highlighted a substantial
change in the temperature pattern, which contributed to the substantial drought event in
Southeast Asia.

The agricultural sector is directly influenced by climate change, especially temperature
and precipitation. These factors dominate the growth of crops, as well as the annual and
long-term yield of the cropping system [11]. The climate extremes have the potential to
exert adverse effects on crop production [12]. There has been a relative lack of investigation
of adaptive measures aimed at enhancing cropping practices to effectively mitigate the
negative consequences of drought on crop yields [12]. A significant drought event has the
potential to diminish crop yields due to the limited availability of water and soil moisture
for optimal crop growth. It is of utmost significance to comprehend the repercussions of
spatiotemporal fluctuations in drought for crop yield and cropping areas to strategize and
alleviate their plausible adverse consequences in the agricultural sector [13]. Southeast Asia,
a region of particular concern, is known to possess a substantial expanse of approximately
115 million hectares (ha) of agricultural land, primarily dedicated to the cultivation of staple
crops such as rice and maize [14–16]. It is noteworthy that a significant proportion, specifi-
cally 45%, of the region’s population relies on these crops as vital components of their daily
dietary intake [14]. The susceptibility of Southeast Asia (SEA) to climate change is a matter
of concern due to its geographical characteristics, which render it highly vulnerable [17].
In the past, there has been an absence of study inquiry dedicated to the examination and
evaluation of the ramifications stemming from alterations in climatic patterns in regard to
the agricultural output within the Southeast Asian region. According to a recent empirical
investigation conducted by Sekhar [18], it has been determined that alterations in precipita-
tion patterns possess the potential to exert an adverse impact on approximately half of the
rice production within the Southeast Asian (SEA) region. A report from the Food and Agri-
culture Organization (FAO) has presented findings that highlight the detrimental impacts
of heightened occurrences and magnitudes of droughts and floods on global food security
and livelihoods in various regions [19]. Within the realm of the agricultural domain, it is
noteworthy to acknowledge that droughts and floods contribute to a significant proportion
of crop damage, specifically accounting for 18% and 19%, respectively. The urgency of
investigating this issue is heightened by the susceptibility of the Southeast Asian region to
the extensive ramifications of climate change. In the context of the imminent threat posed
by global climate variability, the potential consequences for agricultural productivity within
the region assume significant proportions [20]. The dynamic fluctuations noticed in global
weather patterns possess the capacity to exert a profound and far-reaching influence on the
productivity of agricultural crops, thereby exerting a significant impact on the sustenance
and economic well-being of numerous individuals.

To effectively address the challenges posed by climatic stressors, it is crucial to thor-
oughly comprehend the temporal and spatial aspects of their impacts. This understanding
will enable the development of adaptive strategies aimed at enhancing resilience, as high-
lighted by Lesk et al. [21]. This study aims to analyze the impact of drought based on the
Standardized Precipitation Evapotranspiration Index (SPEI) on agricultural productivity
including rice and maize in Southeast Asia, covering the period from 1970 to 2019.

2. Materials and Methods

To understand the impact of drought on agricultural productivity, this study employed
the Empirical Orthogonal Function (EOF) to analyze the relationship between the SPEI and
the productivities of rice and maize in Southeast Asia from 1970 to 2019.
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2.1. Study Area

Southeast Asia is characterized by a wide range of geographical features and is situated
between the Indian Ocean and the Pacific Ocean (Figure 1). The geographical area under
scrutiny is characterized by its vast archipelagic topography, densely populated tropical
forests, and extensive variety of rivers, all of which play a significant role in fostering
various types of plants and animals, thereby giving rise to intricate ecological systems [22].
The climatic conditions prevailing in the region are primarily tropical in the environment,
exhibiting elevated temperatures and humidity levels, alongside substantial seasonal
precipitation patterns attributed to the monsoonal airflow. The prevailing environmental
circumstances in this region are favorable for agriculture, albeit accompanied by challenges
such as periodic flooding and sporadic drought. The relationship between agricultural
productivity in Southeast Asia and the monsoonal cycles is intricately interconnected, as
evidenced by the significant impact of fluctuations in the El Niño-Southern Oscillation
on precipitation patterns and, consequently, crop yields [23]. Rice plays a pivotal role in
the agricultural landscape of Southeast Asia, particularly in the Mekong and Red River
deltas, which are globally renowned for their highly concentrated cultivation of this staple
crop [24]. In contrast, the cultivation of maize, although not as widespread as that of rice,
assumes a pivotal role in regions where the climatic and soil conditions are less conducive
to rice production. Maize cultivation serves as a vital means to ensure food security and
also functions as a lucrative cash crop [25]. The investigation of the relationship between
climate and agricultural output in Southeast Asian countries is of great significance due to
the pivotal role that agriculture plays in the region’s economies and cultures.
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2.2. Data Description

i. Weather data

The SPEI data utilized in this study are derived from the digital repository hosted
by the esteemed Spanish National Research Council (Consejo Superior de Investigaciones
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Científicas, CSIC), which can be accessed through the following link: https://digital.csic.
es/handle/10261/332007 (accessed on 1 February 2024). The details of the dataset were
described in Vicent-Serrano et al. [26]. The dataset was compiled using meteorological
variables, including precipitation, and temperature, from the Climatic Research Unit (CRU)
TS 4.07 dataset [27,28], which is produced by the Climatic Research Unit at the University
of East Anglia with a grid resolution of 0.5◦ latitude by 0.5◦ longitude. There have been sev-
eral updates in this version. For example, the database for ground-based measurement was
upgraded by enhancing data quality and coverage across several decades up to December
2022 [28]. At the same time, the primary meteorological variables, such as temperature,
and precipitation, were also produced without significant change in methodology [28].
High-resolution gridding techniques were applied, converting anomalies to actual val-
ues [28]. The upgrade facilitated the estimation of the synthetic values for the secondary
variables, increasing transparency and potentially reducing low-quality estimates from
remote observation data [28]. The dataset also provided an improvement in methodology
for estimating synthetic vapor pressure (VAP) data using temperature (TMP) and diurnal
temperature range (DTR) station anomalies, which enhance the gridded distribution and
accuracy of VAP data by generating artificial irregularities at the station level. Moreover,
the interpolation method utilizes angular distance weighting (ADW) instead of the tri-
angulation routines utilized in previous versions [28]. The SPEI utilizes the dry and wet
classifications, which are consistent with the categories employed by the Standardized
Precipitation Index (SPI) as presented in Table 1.

Table 1. The Standardized Precipitation Evapotranspiration Index (SPEI) drought index reproduced
from [29].

Drought Severity Classification Definition

Extreme wet A scenario where SPEI values are higher than 2.0, indicating
notably higher moisture than normal.

Severe wet A scenario where SPEI values are between 1.50 and 1.99,
indicating moisture levels considerably above normal.

Moderate wet A scenario where SPEI values are between 1.00 and 1.49,
indicating slightly higher than normal moisture levels.

Normal A scenario where SPEI values are between −0.99 and 0.99,
indicating balanced moisture conditions

Moderate drought
A scenario where SPEI values are between −1.00 and −1.49,

indicating that the onset of dry conditions could lead to
drought if prolonged

Severe drought
A scenario where SPEI values are between −1.50 and −1.99,

indicating a serious drought condition that requires attention
to prevent worsening impacts

Extreme drought
A scenario where SPEI values are less than −2.00, indicating

extremely low moisture levels that characterize extreme
drought conditions

ii. Crop production data

The crop production data, including for rice and maize, employed in this study
were obtained from the Food and Agriculture Organization (FAO) [30], an internationally
renowned organization committed to the compilation and distribution of agricultural and
food-related statistical information. The primary data source comprises official statistics
from FAO-participating countries, collected from annual production questionnaires (APQ),
national publications, or official country websites. The source data could originate from
surveys, administrative records, and expert observations. The type of source used by
countries greatly impacts the reliability and comparability of data. Official production data
provided by countries is typically recorded as reported by the country. When no data are

https://digital.csic.es/handle/10261/332007
https://digital.csic.es/handle/10261/332007
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available from official or unauthorized sources, the data are estimated. Data are marked in
all instances. Countries typically utilize sample surveys, although administrative records
are also employed in some instances. The aggregates are computed upon the completion
of a statistical operation. The total sum for a collection of units is calculated by adding up
the recorded values. The yield for the aggregated group is calculated by dividing the total
output by the total input. The study used an average per capita production for both rice and
maize, dividing the total harvested production of rice and maize by the entire population
in the study area or period [30]. This dataset potentially provides agricultural productivity
and food availability per person, indicating the efficiency of production and its potential
effect on food security [30]. It also enables evaluating agricultural performance according to
population needs, which is essential for comprehending food sustainability [30]. Moreover,
the reliability of both rice and maize data used in this study is followed by the standard of
FAO data-gathering procedures that sample surveys should encompass a minimum of 95%
of the entire area and land dedicated to the specific crops being studied.

iii. Data processing

The data processing steps were crucial for preparing the datasets for further analysis,
allowing for additional investigations into the correlation between climate factors and
crops in Southeast Asia. The data processing methodology included multiple essential
processes to prepare the datasets for analysis. At first, netCDF was used to retrieve the
Standardized Precipitation Evapotranspiration Index (SPEI) data, whereas CSV was used
for crop productivity data. Xarray and netCDF4 Python packages were utilized to extract
relevant details about SPEI values and spatial characteristics from the SPEI data saved
in netCDF format. The crop production data in CSV format were processed using the
Pandas package to read and preprocess the data, including managing missing values and
maintaining data consistency.

A decision was reached to remove missing values from the datasets. This choice
was made to preserve the reliability and accuracy of the data in subsequent analyses.
Eliminating observations with missing values reduced the probability of bias or mistakes
being triggered by imputation procedures. The dropna() method in the Pandas library
efficiently filtered away rows with missing values in all columns, ensuring that only
complete and reliable data were retained for analysis. This method was considered better
since it reduced the possible influence of missing data on the analysis results, thereby
improving the strength and dependability of the conclusions. Both the SPEI and agricultural
productivity datasets were standardized to address the issue of differing scales among
variables. The standardization method entailed adjusting the data to have a mean of 0 and
a standard deviation of 1, ensuring that variables that had different scales had equal impact
on the subsequent analysis.

2.3. SPEI

In this study, the meteorological variables including precipitation, and temperature
with a resolution of 0.5◦ from the Climatic Research (CRU) TS3 dataset were used to estimate
the SPEI from the difference (D) between precipitation (P) and potential evapotranspiration
(PET) following Thornthwaite [31], in Equation (1)

D = P − PET (1)

where P is the monthly precipitation (mm),

PET = 16(
L
12

)(
N
30

)(
10Td

I
)α (2)

where Td is the monthly temperature from the daily data (◦C), N is the number of days in
the month, and L is the average day length of the month,

α =
(

6.75 × 10−7
)

I3 −
(

7.71 × 10−5
)

I2 +
(

1.792 × 10−2
)

I + 0.492 (3)
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where I is the heat index as described in Equation (4),

I = ∑12
i=1 (

Tmi

5
)1.514 (4)

where Tmi is the 12 monthly average temperatures.
While the estimation of the SPEI at difference time scale (Dk

n) was calculated as follows
in Equation (5),

Dk
n = ∑k−1

i=0 (Pn−i − PETn−i), n ≥ k (5)

where k is the time scale of the aggregation, and n is the number of the estimation.

2.4. Empirical Orthogonal Function (EOF)

This study utilized Empirical Orthogonal Function (EOF) analysis to examine the
spatiotemporal dynamics of the impact of drought on agricultural productivity by investi-
gating the relationship between the Standardized Precipitation Evapotranspiration Index
(SPEI), and crop productivities for rice and maize in Southeast Asia. EOF is a statistical
methodology employed to decompose a dataset comprising multiple variables into mu-
tually perpendicular components. It is a commonly utilized method in climate research
and meteorology to examine spatiotemporal patterns and variability. Also, this analysis
could reduce dimensions while preserving the variability of the data, which is beneficial
for handling complex variables such as climate and crops. It also provides insights into the
distribution and temporal evolution of climatic influences on crops in Southeast Asia.

The analysis of EOF provided a thorough evaluation of the spatiotemporal structure
inherent in the dataset, facilitating the discernment of prevailing patterns in the relation-
ship between drought and agricultural productivity. Each of these components serves to
represent a unique mode of variation inherent within the dataset [32,33]. The methodology
in controversy bears resemblance to Principal Component Analysis (PCA), albeit with a
distinct focus on the analysis of spatiotemporal datasets [34–37]. Prior to the application of
the EOF analysis, the datasets on the Standardized Precipitation Evapotranspiration Index
(SPEI) and crops underwent a process of standardization.

To ensure uniform contribution from variables with differing scales and units, firstly,
the SPEI and crop production data during 1970 to 2019 were combined. Subsequently,
Singular Value Decomposition (SVD) was employed to decompose the data matrix into
three matrixes as follows:

X = U · Σ · VT

where U is the left singular vectors, Σ is the diagonal matrix of singular values, and VT

is the right singular vector. To analyze the EOF patterns, they are shown in terms of the
principal components (PCs) derived from the matrix, VT .

3. Results and Discussion
3.1. SPEI in Southeast Asia during 1970–2019

Figure 2 shows SPEI values at different time scales of 12 months, 6 months, and
1 month across Southeast Asia during the years 1970 to 2019. Notably, SPEI-12 exhibits the
most fluctuation with an increase of 0.1 ± 0.05 per decade. While the decadal fluctuations
of the SPEI across 12-, 3-, and 1-month time scales show a persistent and prevailing wet
pattern in the Southeast Asian (Table 2), the decadal fluctuations of SPEI values were
across a range of (−0.12)–(0.08), (−0.25)–(0.19), and (−0.35)–0.27 for 1 month, 6 months,
and 12 months, respectively. In contrast, Southeast Asia faced dry episodes from 1980 to
1989 and 1990 to 1999. Meanwhile, the year 2000 was characterized as a wet episode. The
decadal variation in SPEI values in Figure 3 across countries including Thailand, Myanmar,
Laos, Cambodia, Vietnam, Malaysia, the Philippines, and Indonesia during the years 1970
to 2019 reveals a multifaceted and heterogeneous climate pattern in Southeast Asia. In
the 1970s, the SPEI showed different levels of moisture in different parts of the country.
Meanwhile, the 1980s were shown to exhibit a consistent continuation of a pattern where
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several countries had a tendency towards dry conditions, possibly indicating localized
changes in the climate pattern. For the 1990s, there was a diverse pattern of precipitation,
with some nations experiencing a slight rise in rain, some countries experiencing a slight
increase in the rain, and others continuing to show a trend towards dryness. During the
period of 2000 to 2009, there were noticeable variations in the SPEI in different counties.
The variability persisted consistently from 2010 to 2019, with no clear dominant trend
developing in terms of either increased drought or heightened precipitation levels.

Table 2. Decadal variability in Standardized Precipitation Evapotranspiration Index (SPEI) values on
12-, 6-, and 1-month time scales in Southeast Asia.

Decade 1-Month 6-Month 12-Month

1970–1979 0.08 0.14 0.19
1980–1989 −0.01 0.00 −0.01
1990–1999 −0.12 −0.25 −0.35
2000–2009 0.05 0.19 0.27
2010–2019 −0.01 0.03 0.08
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Based on the above result, it suggests that there was noticeable variation in the moisture
levels across Thailand and Malaysia over 1 month, indicating a dynamic weather pattern
that likely implies short-term shifting of climate [38,39]. Particularly in the 1990s, a 6-month
analysis revealed a drying pattern likely due to El Niño, which strongly influences weather
patterns in Southeast Asia [40,41]. In addition, using a mesoscale perspective could reduce the
temporary oscillations within 1 month, providing a thorough portrayal of the season of water
resources and agriculture [42] by revealing decreased volatility in temporal trends, including
the impact of prolonged weather conditions on agricultural cultivation and harvesting [43].
Also, the results indicate that many countries, including Indonesia and the Philippines have
significant fluctuations in climate, suggesting a tendency for the annual oscillations within a
12-month period. This is likely due to the connections between oceanic-atmospheric dynamics
and global climate changes, therefore affecting the trends of rainfall and temperature [26]. The
1990s experienced a significant lack of rainfall, likely due to the strong El Niño phenomena
of 1997 to 1998, which substantially impacted local weather patterns; the SPEI provides a



Resources 2024, 13, 44 8 of 18

comprehensive, long-term perspective on this pattern by considering annual cycles in order to
identify extended periods of drought or excessive moisture, indicating potential associations
with the El Niño-Southern Oscillation phenomena [17,44,45].
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Figure 4 displays the spatial pattern of the SPEI across time scales of 1 month, 6 months,
and 12 months in Southeast Asia during the years 1970 to 2019. For the 1-month time scale,
the averaged SPEI values are in the range of −1.0 to 1.0, indicating a moderate degree of
dryness and humidity in many countries such as Thailand, Myanmar, Laos, Vietnam, Cam-
bodia, Malaysia, and the Philippines. Conversely, Borneo and Sumatra islands experience
predominantly dry conditions. The results indicate that the variation in the SPEI across differ-
ent countries reflects the variability in monthly meteorological conditions [38], which enables
the efficient development of timely solutions for agricultural planning, allocation of water
resources, and the establishment of early warning systems for extreme weather events [46].
Both the 6-month and 12-month time scales suggest that many countries in Southeast Asia are
experiencing mostly wet conditions, with SPEI values reaching up to 1.5. In contrast, Myanmar
is unique in its phenomenon of dry conditions, as indicated by a SPEI value of −1.0. The
6-month SPEI indicates an understanding of the effects of extended wet or dry periods on
crop cycles with significant seasonal fluctuations in precipitation [47]. A 12-month time frame
enables the detection that extended periods of drought are higher than normal [48,49].
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3.2. Rice and Maize Productivity in Southeast Asia during 1970–2019

Figure 5 shows the spatial distribution of the average rice and maize productivities in
Southeast Asia from 1970 to 2019. Many countries in mainland Southeast Asia, especially
Thailand, Myanmar, Laos, Vietnam, and Cambodia, show a significant level of rice produc-
tion, ranging from 0.4 to 0.5 tons per capita. Thailand and Indonesia show the maximum
maize production, with a value of 0.1 tons per capita. Regions that have higher maize yields
are likely related to locations that have optimal climate conditions for maize planting, such
as regions with drier conditions or well-drained soils [50,51]. Figure 6 shows the analysis
of the decadal variability in rice and maize production from 1970 to 2019. During the 1970s,
there were significant differences in rice and maize production across the countries. In
the 1980s, there was an increase in production in several countries. This is likely due to
developments in agricultural technology and improved farming techniques [52–54]. In the
1990s, many countries showed a substantial increase in productivity, which continued to re-
inforce the existing trend. In the 2000s, there was a pattern that some countries experienced
an increase in production. The variability could be related to multiple factors, including
domestic agricultural policies, and economic and climate impacts, such as fluctuations in
rainfall patterns [50]. In the 2010s, there were variations in the rice and maize productivities.
These oscillations are likely due to the complicated interaction of several factors such as
climate change, population, and agriculture technology [55].
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3.3. Relationship between SPEI, RICE, and MAIZE in Southeast Asia

Figure 7 shows the annual rice and maize productivities, along with the SPEI in
different time scales (1 month, 6 months, and 12 months) from 1970 to 2019. It shows that
there has been an upward trend in both rice and maize production. The maxima for rice
and maize productivities are 0.40 and 0.05 tons per capita, respectively. The production of
both crops aligns with a positive trend in the SPEI across different time scales (12 months,
3 months, and 1 month), with values ranging from 0.1 to 0.4. Figure 7b shows the effect of
the time scale on the reduction in the monthly oscillation, reflecting the significant effect of
long-term climate change. Figure 7c also illustrates a summary of the climate pattern, with
the 12-month SPEI effectively representing the annual climate patterns. It is crucial to take
a broad view to properly understand the overall climate conditions over a year and how
they collectively affect agricultural production [56].
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The SPEI and crop productivities for maize and rice of the eight countries in Southeast
Asia from 1970 to 2019 were obtained by performing an empirical orthogonal function (EOF)
(Figure 8). The two primary components, namely PC1 and PC2, serve as the indicators of
the prevailing patterns of the dataset. PC1 displayed variability across different countries
and crops, including a positive orientation for rice and maize in Thailand, suggesting
the heterogeneous nature of climate influences and a potential positive relationship with
the SPEI. A difference in the magnitude of PC1 between the two crops is likely due to
a differential susceptibility to the factors. The PC1 value pertaining to maize shows a
statistically significant increase in comparison to rice, which suggests that maize production
is more vulnerable to fluctuations in climate conditions as represented by the SPEI. For
example, if the PC1 value is positive for maize and negative for rice, it suggests that maize
agriculture is expected to do well under higher moisture levels, but rice development may
be negatively impacted by similar conditions. PC2 showed a predominantly positive value
for maize and rice, particularly in Myanmar and Malaysia. A significant PC2 score for
rice cultivation may indicate rice production’s ability to resist specific climatic fluctuations
that have a very minor impact, such as changes in seasonal precipitation patterns or
temperature variances. Conversely, the PC2 values in Indonesia and the Philippines
consistently show negativity, especially for maize. The positive PC2 values observed in
Myanmar and Malaysia, as opposed to the negative values observed in Indonesia and
the Philippines, highlight the regional differences in how secondary climatic factors affect
agricultural productivity.
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PC1 explained around 63% of the total variance in the Standardized Precipitation
Evapotranspiration Index (SPEI) data, indicating its significant role in capturing the main
patterns of variability in the climate of Southeast Asian countries. The significant variation
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ratio emphasizes the importance of PC1 in representing the main source of variability in
the SPEI data and its impact on crop productivity. PC2 accounted for 19% of the in-general
variance, providing additional comprehension of secondary patterns and relationships.
Although PC2 explained less variance than PC1, its contribution is nonetheless significant
in enhancing our comprehension of the complex relationships between climatic factors and
agricultural results in the area.
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Figure 9 shows the temporal analysis of PC1 and PC2 from the SPEI and crop pro-
ductivities from 1970 to 2019. The results illustrate that PC1 displayed a repetitive pattern
for the entire time series, suggesting the pattern of climate oscillations, such as the El
Niño-Southern Oscillation (ENSO) [3]. The periodic oscillations indicate a repetitive ampli-
fication and attenuation in the influence of climatic variables on agricultural yields [38].
The increase in PC1 for maize production in Vietnam suggests a positive correlation with
improved crop yields, potentially related to La Niña phenomena [23]. In contrast, the
upward trends in PC1 potentially signify intervals characterized by El Niño episodes.
These climatic conditions have been known to have detrimental effects on rice cultivation
in Cambodia [57]. The temporal patterns in PC1 serve to emphasize the imperative for
agricultural systems to effectively adjust and accommodate the inherent fluctuations in
climatic conditions [58]. Additionally, the optimization of irrigation practices may serve to
ameliorate the effects of climatic variability [59,60].

PC2 displayed a pattern characterized by moderate fluctuations. The dynamics serve
as discernible indicators of intricate climate interaction that exert an influence on the
cultivation of crops [61]. For the Philippines, the correlation between the temporal dynamics
of PC2 and rice production potentially attributed to regional climate anomalies, specifically
the localized manifestations of the southwest monsoon or the ramifications of typhoon
patterns on the archipelago [62,63]. In contrast, in Indonesia, the PC2 trend pertaining to
maize production could potentially shed light on the significant impact exerted by soil
moisture regimes, which play a crucial role in determining the viability of maize cultivation
beyond paddy systems [64,65]. This underscores the need for resilience in the agricultural
sector to effectively withstand the multifaceted impacts of climate change [66].
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This study’s use of several primary components is beneficial because they are capable
of capturing a variety of variances in the data. The fact that PC1 accounts for about 63%
of the overall variation in the Standardized Precipitation Evapotranspiration Index (SPEI)
data shows how important it is for understanding how climates change in Southeast
Asian countries. PC2 explains an additional 19% of the variance. This indicates that
PC2 captures additional or specific climate fluctuations that PC1 is not able to capture.
Secondary patterns could be crucial for comprehending climatic occurrences, anomalies, or
geographical variations that may have substantial consequences for crop yield.

Combining the two components provides a more thorough understanding. PC1 likely
indicates widespread trends such as extended climate change or regular drought. On the
other hand, PC2 can capture complex patterns of climate conditions in specific regions
that may impact agricultural production. These differences are crucial for establishing
a strong analytical framework that could help policymakers and farmers devise more
efficient strategies for agricultural planning and adapting to climatic fluctuations. PC1 is
important for finding the main source of variation, while PC2 is also important for finding
other patterns that, while not adding much to the overall variation, could reveal important
details about how climate change affects agriculture.

4. Conclusions

This study aims to investigate the effect of drought on crop productivity by analyzing
the relationship between the SPEI and crop productivity, including rice and maize, using
an empirical orthogonal function (EOF) in Southeast Asia during 1970–2019. The analysis
of the SPEI indicates a noticeable variation in the moisture level in some countries, such
as Thailand and Malaysia, within a 1-month time scale. A 6-month time scale also shows
a noticeable trend, indicating a steady transition toward dryness throughout the specific
time intervals, especially in the 1990s. Within a 12-month time scale, the results show a
clear trend line, indicating significant changes in the climate patterns. Simultaneously,
there were significant differences in rice and maize production across the countries during
the 1970s. While an increase in crop production was found in many countries during
the 1980s, a substantial increase in crop production was observed during the 1990s. The
relationship analysis by using EOF suggests a potential positive correlation between the
two crops and the climatic factors encapsulated by the SPEI. Especially maize production
is more vulnerable to fluctuations in climate conditions, as represented by the SPEI. Also,
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the temporal analysis of the SPEI and crop productivity from 1970 to 2019 illustrates
a repetitive pattern for the entire time series. This suggests that the pattern of climate
oscillations, such as the El Niño-Southern Oscillation (ENSO), dominates agricultural
yields in Southeast Asia.

Future research ought to encourage the employing of high-resolution regional climate
models to predict future climate conditions and their possible effects on agriculture, per-
mitting the development of more specific adaptation methods. Comprehensive studies
regarding numerous staple and profitable crops should be conducted to comprehend the
wider effects of climate variability on agricultural variety and food security. Studying the
effectiveness of different adaptation and mitigation measures in agriculture to mitigate
the negative impacts of climate change is necessary, with a focus on sustainable practices
including water-efficient irrigation, drought-resistant crop types, and integrated pest man-
agement. Meanwhile, policymakers are encouraged to enhance rural infrastructure to
promote effective water usage, decrease post-harvest losses, and improve market access.
This will strengthen the agricultural value chain in the face of climatic variability. The
skills and knowledge of farmers and agricultural stakeholders should be enhanced by
providing education and training programs focused on climate-smart agriculture practices
and technologies. To address the difficulties of climatic variability and drought, farmers
should proactively implement multiple strategies to preserve their agricultural yield and
secure their livelihoods. It is crucial to adopt climate-smart agricultural methods, such as
diversifying crop varieties with drought-resistant and early-maturing species, and using
agricultural conservation techniques. Effective water management techniques, such as
using drip irrigation systems and building rainwater gathering structures, are essential for
maximizing the exploitation of limited water resources. Crop diversification and rotation
tactics can reduce risks by decreasing the reliance on a single crop and controlling pests and
diseases, leading to more stable yields. Considering different ways of making a living, such
as agroforestry or working off the farm, can offer extra sources of income, better protecting
farmers against uncertainties caused by climate change.
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