
Citation: Nour, M.M.; Tony, M.A. The

Environmental Oxidation of

Acetaminophen in Aqueous Media as

an Emerging Pharmaceutical

Pollutant Using a Chitosan Waste-

Based Magnetite Nanocomposite.

Resources 2024, 13, 47. https://

doi.org/10.3390/resources13030047

Academic Editor: Seong-Nam Nam

Received: 5 January 2024

Revised: 14 February 2024

Accepted: 19 February 2024

Published: 19 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

resources

Article

The Environmental Oxidation of Acetaminophen in Aqueous
Media as an Emerging Pharmaceutical Pollutant Using a
Chitosan Waste-Based Magnetite Nanocomposite
Manasik M. Nour 1,* and Maha A. Tony 2,3,*

1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz
University, Al-Kharj 11942, Saudi Arabia

2 Basic Engineering Science Department, Faculty of Engineering, Menoufia University,
Shibin El-Kom 32511, Egypt

3 Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Faculty of
Engineering, Menoufia University, Shibin El-Kom 32511, Egypt

* Correspondence: m.mohamednour@psau.edu.sa (M.M.N.); maha.shalaby@sh-eng.menofia.edu.eg or
dr.maha.tony@gmail.com (M.A.T.)

Abstract: Clean water is a precious and limited resource that plays a crucial role in supporting life
on our planet. However, the industrial sector, especially the pharmaceutical industry, significantly
contributes to water consumption, and this can lead to water body pollution. Fenton’s reagent was
introduced in the current investigation to oxidize acetaminophen as an emerging pollutant in such
effluents. Therefore, we employed a straightforward co-precipitation method to fabricate chitosan-
coated magnetic iron oxide, which is referred to in this study as Chit@Fe3O4. X-ray diffraction
spectroscopy (XRD), Fourier transform infrared (FTIR), diffuse reflectance spectra (DRS), scanning
electron microscopy (TEM), and transmission electron microscopy (TEM) were utilized to characterize
the sample. It is crucial to treat such effluents due to the rapid increase in emerging pollutants. In this
study, a photo-Fenton system was introduced as a combination of a Chit@Fe3O4 catalyst augmented
with hydrogen peroxide under ultraviolet (UV) illumination conditions. The results reveal that
only 1 h of irradiance time is efficient in oxidizing acetaminophen molecules. Doses of 20 and
200 mg/L of Chit@Fe3O4 and H2O2, respectively, and a pH of 2.0 were recorded as the optimal
operational conditions that correspondingly oxidize 20 mg/L of acetaminophen to a 95% removal
rate. An increase in the reaction temperature results in a decline in the reaction rate, and this, in
turn, confirms that the reaction system is exothermic in nature. The sustainability of the catalyst was
verified and deemed adequate in treating and oxidizing acetaminophen, even up to the fourth cycle,
achieving a 69% removal rate. A kinetic modeling approach is applied to the experimental results,
and the kinetic data reveal that the oxidation system conforms to second-order kinetics, with rate
constants ranging from 0.0157 to 0.0036 L/mg·min. Furthermore, an analysis of the thermodynamic
parameters reveals that the reaction is exothermic and non-spontaneous, predicting an activation
energy of 36.35 kJ/mol. Therefore, the proposed system can address the limitations associated with
the homogeneous Fenton system.

Keywords: chitosan/magnetite nanocomposite; photocatalyst; pharmaceutical product; wastewater;
acetaminophen

1. Introduction

Approximately four thousand pharmaceutical products exist and are accessible on
the market [1]. The release of such products into the environment is linked to industrial
spills, hospital discharge, and domestic waste disposal, and these may be released through
expired stock. Such discharge must be treated prior to disposal to conserve the plant [2,3].
Acetaminophen (N-(4-hydroxyphenyl) is one of the most accessible drugs in the market and
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has been detected in both surface and underground waters in some countries [4]. However,
its presence in aquaculture may cause severe damage to health, including hormone disrup-
tion, the inhibition of metabolic processes, and damage to the liver [5]. Acetaminophen,
originally synthesized in the mid-19th century, is commonly known as paracetamol. It
has gained extensive utilization as an easily accessible over-the-counter medication for
fever, headache, and postoperative pain relief, serving as an antipyretic and analgesic
remedy [2–4]. Acetaminophen has received extensive usage because of its significant thera-
peutic effectiveness and economic production expenses. A total of 50 tons of acetaminophen
per million inhabitants is consumed annually, reaching a total consumption exceeding
149,300 tons worldwide [5]. However, about 50 to 70% of this product is released into the
environment and damages aqueous systems. Acetaminophen has been detected in various
ecosystems due to incomplete metabolism and mineralization processes, thus posing a seri-
ous threat to aquaculture and human health [6]. Therefore, it is vital to implement effective
strategies are vital to prevent the persistent buildup of acetaminophen in natural water
environments and mitigate its detrimental impacts on public health and ecosystems [7,8].

Conventional wastewater treatment plants do not sufficiently provide since they do not
remove waste from water and also introduce problems, such as secondary wastes known
as toxic metabolic intermediates [9]. Advanced oxidation processes (AOPs) are promising
treatment methods for achieving the complete mineralization of wastewater. The Fenton
reaction system is an AOP that is considered a significant and effective approach due to its
several advantages which include its rapid high performance and complete degradation
of organic compounds while producing environmentally friendly end products [10]. Due
to their enhanced properties and effectiveness, the use of nanoscale photo-catalysts in
pharmaceutically polluted wastewater elimination has recently gained the attention of
researchers [11–13]. However, industrial-scale photocatalytic application techniques are
still limited in the field [14]. In this regard, it is necessary to conduct further research to
achieve more practical applications.

Over the last few decades, the remediation of emerging pollutants via the Fenton
oxidation reaction revealed “Green” features, providing great advantages in terms of its
harmless end-product reaction (involving CO2 and H2O), which is both harmless and
results in complete mineralization [15,16]. This process is also considered a technology of
viable economic value since its operating and maintenance costs are minimal compared to
other traditional wastewater treatment technologies [17]. However, these limitations still
hinder real-life applications [17]. For instance, sludge is produced following the reaction
process conducted using a homogenous Fenton catalyst source, which is difficult to separate
from reclaimed water, and this is a considerable disadvantage of this procedure. Thus, the
Fenton catalyst source could be substituted with a heterogeneous candidate.

Therefore, recent advances in research have been applied to combat these limita-
tions [18,19]. A classical Fenton reagent is classified in the literature as a type of homoge-
nous Fenton technology, which comprises H2O2 and iron ions [20]. Iron is signified as the
rate-limiting step in a catalytic cycle [21]. in H2O2 also presents some disadvantages, in-
cluding its explosive and toxic qualities as well as the harm it poses on human health when
consumed in a concentrated solution [22,23]. Furthermore, iron can be precipitated into
Fe3+ in solutions with a pH level higher than 3.0, forming iron sludge [24]. Additionally,
iron precipitate is difficult to separate from the medium, which is classified as one of the
limitations of the classical Fenton system [25]. This drawback not only reduces the reaction
rate, since it loses iron activity in the reaction, but also represents secondary pollutants.
The research on various scenarios for achieving a viable Fenton’s process cost is still in the
works. A heterogeneous catalyst has been introduced to establish the leading research in
this field and to overcome the disadvantages of using a homogenous Fenton system [26].
From this perspective, searching for an iron material as a supporting heterogeneous carrier
is significant; for instance, previously, zeolite was applied as a Fenton support material [18].
Furthermore, other studies introduced oxalic acid augmented with an iron catalyst to
prevent iron precipitation [19].
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Chitosan is a natural polymer that possess good mechanical strength; it is also a harm-
less substance that is economically efficient, has high water permeability, and can chemical
transform to become a nanocomposite subsequent to the addition of metal oxides [27–29].
Chitosan is extensively used in the field as an adsorbent material in the removal of pollu-
tants from wastewater since it has hydroxyl and amino functional groups [30–33]. These
functional groups could be protonated in acidic solution, generating considerable electro-
static attraction to anionic molecules. Nevertheless, according to the literature [34–38], its
applications as a photocatalytic material remains limited. Additionally, although chitosan
is an effective component for water treatment, the catalyst separation that occurs after
treatment remains a difficult issue. Hence, to achieve better separation of pollutants from
aqueous media after treatment, the combination of chitosan with magnetite nanoparticles
is recommended, yielding an easy recoverable and recyclable catalyst. Thus, this composite
is non-toxic and environmentally friendly. Currently, hybrid substances formed from chi-
tosan and nanoparticles, such as metal–chitosan substances, are attracting more attention
in research concerning the removal of toxic pollutants from aqueous media since they act
as efficient adsorbents. In previous research, chitosan composites were augmented with
carbon nanoparticles [39], with the use of chitosan/hematite as an adsorbent material [40]
and chitosan impregnated with titanium dioxide as an adsorbent material for the purpose
of toxic pollutant removal [41]. To illustrate this concept further, carbon nanoparticles aug-
mented with chitosan were prepared using a one-step hydrothermal technique, and their
fluorescence properties indicated the scavenging effect of chitosan/carbon nanoparticles
for the removal of heavy metal ions from polluted wastewater. This composite can form a
stable complexion wherein heavy metal ions are eliminated from the water via the process
of sedimentation [39]. The thermal decomposition method was used to synthesize hematite-
impregnated chitosan nanoparticles and applied as an antibacterial agent to investigate
the antibacterial activity of magnetic nanoparticles [40]. Titanium-dioxide-impregnated
chitosan beads were used to eliminate chromium heavy metal from wastewater through
the photo-reduction technique [41]. However, according to the literature, this method has
not been applied on a wide scale for oxidizing a pollutant as one of the Fenton’s reagent
oxidation tests in a photocatalytic reaction. It is worth mentioning that magnetic chitosan
possesses valuable properties, including low costs, biodegradability, the capacity to be
extracted from green sources, and high magnetic intensity. These characteristics of mag-
netic chitosan reveal the great potential of the catalyst as an economic and operationally
beneficial material since it can be separated and sustained for successive use. Additionally,
magnetic nanoparticles are superior when integrated with chitosan since they offer the
benefits of the incorporation of the functional layer with chitosan, reducing aggregation
and improving biocompatibility [39].

The aim of this work is to assess the feasibility of a chitosan polymer conjugate with
Fe as an efficient hetro-junction composite and photocatalyst. The catalyst was used as
a source of heterogamous Fenton reaction to assess the sustainability and environmental
friendliness of this composite. This material is used for the elimination of acetaminophen,
one of the most widely used anti-inflammatory drug [35]. However, it possesses high
toxicity, high persistence, and carcinogenic effects. Acetaminophen appears after its dis-
posal in domestic sewage and, thus, release into the environment, which might affect the
usual behavior of active sludge. Thus, a composite of chitosan and magnetite is introduced
herein as a heterogeneous novel photo-Fenton catalyst system for oxidizing acetaminophen
from aqueous effluent. Furthermore, the system parameters were investigated to com-
prehensively evaluate the performance of the photocatalytic reaction. First, a magnetic
chitosan photocatalyst was prepared; then, the structure and morphology were character-
ized and analyzed via X-ray diffraction (XRD), scanning electron microscopy (SEM), and
transmission electron microscopy (TEM). Different catalyst and hydrogen peroxide dosages,
initial acetaminophen concentrations, system pH values, and temperatures were applied,
and the maximum removal performance was assessed. Also, thermodynamic and kinetic
modeling were performed to assess potential practical applications. The recyclability of



Resources 2024, 13, 47 4 of 21

this hetro-junction composite was also evaluated. Furthermore, the possible oxidation
mechanism was proposed in this study.

2. Experimental Investigation
2.1. Chitosan-Magnetite Composite Preparation

Chitosan polymer augmented magnetite nanoparticles, Chit@Fe3O4 nanocomposite
were synthesized via simple co-precipitation technique. This method was selected due to its
various benefits, such as high yield, high product purity, and the lack of a need for organic
solvents. This method offers significant advantages in terms of preparation and small
particle size distribution [3]. The Chit@Fe3O4 sample is prepared via the co-precipitation
technique followed by hydrothermal treatment [36]. Firstly, 1% wt. of chitosan powder
(carboxymethyl chitosan, degree of deacetylation ≥ 90%, and molecular weight of 543.5)
was dissolved in a few droplets of the CH3COOH solution; then, 50 mL of distilled water
was added while stirring. Next, ferrous sulfate and ferric chloride salts of a 1:2 molar
ratio were individually dissolved in 50 mL of water. Subsequently, the three resulting
solutions were combined, and hydroxide solution was added to elevate the pH of the
mixture to 10. The mixture was then subjected to heating at 90 ◦C for one hour. Afterward,
the resulting precipitate was washed with distilled water until a pH of 7.0 was achieved.
Finally, the clean precipitate was dried overnight at 105 ◦C; thus, the catalyst was ready for
use and labeled as Chit@Fe3O4. Therefore, the prepared sample was ready for the catalytic
oxidation tests of acetaminophen in aqueous effluents.

2.2. Methodology

To begin, acetaminophen obtained from Sigma Aldrich was utilized as the source of
synthetic pharmaceutical effluent. Acetaminophen powder was directly used without any
additional treatment or purification. A stock solution of 1000 mg/L from acetaminophen
was prepared and then subjected to successive dilutions to obtain the required concentra-
tion. The prepared acetaminophen concentration was then subjected to treatment.

Then, 100 mL of acetaminophen aqueous effluent was transferred to a glass vessel,
and the initial pH of the solution was adjusted as necessary. For pH adjustment, a digital
pH meter (model AD1030, Adwa instrument, Szeged, Hungary) was employed, and di-
luted H2SO4 and/or NaOH solutions were applied to attain the required concentration.
Subsequently, the Chit@Fe3O4 catalyst was added to the solution, and then the mixture is
subjected to ultrasonic vibration for 5 min to assure catalyst dispersion. Afterward, the Fen-
ton reaction was initiated using hydrogen peroxide (30% w/v). Furthermore, the operating
parameters were investigated, such as hydrogen peroxide (ranged from 50 to 400 mg/L),
Chit@Fe3O4 in the range of (5 to 100 mg/L), and pH value 2–6, while the acetaminophen
concentration ranged from 20 to 100 mg/L. Additionally, the temperature was changed
from room temperature (26 ◦C) to 60 ◦C to investigate its effect. To check the significance
of each parameter, a one-factor-at-a-time factor effect analysis was applied by changing
the range of each parameter while keeping the other factors constant. Then, the solution
containing acetaminophen and reagents was exposed to ultraviolet illumination through a
sleeved jacked (UV lamp, 15 W, with 253.7 nm) to introduce the photo-oxidation reaction.
Then, after treatment, the samples were subjected to analysis. Accordingly, the samples
were filtered through a microfilter (0.45 µm) and then subjected to periodic analysis through
spectrophotometric analysis at the maximum wavelength of acetaminophen (243 nm). The
analysis was conducted using a visible spectrophotometer (Unico UV-2100, Peabody, MA,
USA). The analysis was conducted in three replicates for all experiments, and the data
displayed are the average value. The graphical illustration of the experimental set-up and
treatment steps is shown in Figure 1.
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Figure 1. Graphical illustration of the experimental procedure.

2.3. Characterization of Chit@Fe3O4

The X-ray diffraction (XRD) pattern of the Chit@Fe3O4 nanoparticles was examined
using a Bruker–Nonius Kappa CCD diffractometer (Baton Rouge, LA, USA) equipped with
CuKα radiation (λ = 1.5406 Å). The XRD analysis covered a 2θ range of 10 to 80◦.

To investigate the morphology of the Chit@Fe3O4 composite, a transmission electron
microscope (TEM) (Tecnai G20), Beijing, China, FEI, and a field-emission scanning electron
microscope (SEM) (Quanta FEG 250) were utilized. In the TEM analysis, typical magnifica-
tion values of ×8000 and ×60,000 were employed. Additionally, SEM investigation was
complemented by energy dispersive X-ray spectroscopy (EDX) for elemental composition
analysis of the samples. The particle size distribution of the Chit@Fe3O4 composite was
determined using the IMAGEJ 1.48 V program.

Furthermore, the Fourier transform infrared (FTIR) analysis was conducted in the
wavenumber region of 400–4000 cm−1 using a Jasco FTIR-4100 spectrometer (Darmstadt,
Germany). Also, the FTIR analysis was performed in the region of 400–4000 cm−1 using
Jasco FTIR-4100 spectrometer. Also, diffuse reflectance spectroscopy (DRS) was used to
investigate the optical characteristics of the photocatalyst.

3. Results and Discussion
3.1. Characterization of the Prepared Chit@Fe3O4 Composite
3.1.1. XRD Analysis of Chit@Fe3O4

The X-ray diffraction (XRD) pattern of the composite substance was investigated and
compared with that of the pristine magnetite material. JCPDS card No. 19-0629 was used
as a reference of the magnetite substance. Commonly, the standard pattern of magnetite
peaks at 30.06◦, 35.29◦, 43.05◦, 53.05◦, 57.15◦, and 62.61◦ correspond to the (220), (311),
(400), (422), (511), and (440) planes, respectively, of Bragg’s reflections for FCC structures.
The data displayed in Figure 2 show the main phases of both the chitosan and magnetite
nanoparticles in the composite material. The diffraction peaks at relative intensities of 2θ
(18.30, 30.05, 35.49, 43.22, 53.63, 57.06, 62.48, and 74.24◦) reflect the presence of magnetic
nanoparticles. Such diffraction peaks correspond to the planes [(111), (220), (311), (400),
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(422), (511), (440), (533)], respectively. Thus, according to the graph of the Fe3O4 phase,
these planes and relative intensities confirm the presence of magnetite in the composite.
Moreover, it is noteworthy to mention that sample is characterized as highly crystalline
in nature, and the peak broadening demonstrates the small particle size of the material.
The crystallite size was estimated to be 26.48 nm via the Scherrer equation using the width
of the most extensive XRD peak. Also, the amorphous nature of chitosan is apparent in
the sample and is revealed at the 2θ of 20. Notably, amorphous chitosan material was
decorated with Fe3O4 nanoparticles without changes in the magnetite phase.
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Figure 2. XRD pattern of the synthesized Chit@Fe3O4 nanoparticle composite substance.

3.1.2. TEM Analysis and Particle Size of Chit@Fe3O4

Transmission electron microscopy (TEM) was employed to investigate the morphology
of the Chit@Fe3O4 composite. Also, the particle size distribution was investigated via digital
TEM images and the IMAGEJ 1.48 V program. The images in Figure 3a display the TEM
micrograph of the chitosan-augmented magnetite nanoparticles. The magnetite particles
display a spherical shape with a predominant size of 12.5 nm (Figure 3b). The dark, dense
spheres indicate the crystalline magnetite phase, whereas the bright areas correspond to
amorphous chitosan. It is noteworthy that some particles are agglomerated together since
the attraction forces between the magnetite particles consists of dipole forces. In addition,
to confirm the presence of chitosan in the composite, a TEM image of pristine magnetite
nanoparticles is presented in Figure 3c. This image displays dark, dense spherical particles
without the presence of bright areas that reflects chitosan.
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3.1.3. SEM Morphology of Chit@Fe3O4

The morphology of the prepared Chit@Fe3O4 photocatalyst was assessed through
SEM analysis, and the images are displayed in Figure 4a,b. The SEM pictures with different
magnifications exhibit agglomerated nanoparticles. Chitosan crosslinker plays a significant
role in investigating the better spherical morphology of nanoparticles. The spherical shape
of the nanoparticles corresponds to the narrow grain size distribution of magnetite. Also,
the chitosan was loaded with spherical particles of magnetite, as shown in the SEM image.
For the purposes of comparison and verifying the presence of chitosan in the sample, an
SEM image of the pure magnetite sample is presented in Figure 4c. These images illustrate
the differences between the composite (Figure 4a) and pure magnetite (Figure 4c) in the
presence of chitosan particles since the rough surface of the magnetite nanoparticles is more
clearly visible in the pure magnetite image.

In addition, the elemental composition of the prepared sample was attained through
energy dispersive X-ray spectroscopy (EDX) analysis; the shares of iron, oxygen, and carbon
are 53.13, 32.86, and 45.14%, respectively (Figure 4d). The results obtained confirmed no
other impurities have been detected in the prepared composite (Chit@Fe3O4), verifying the
presence of a nanoparticle composite matrix comprising only iron, oxygen, and carbon.



Resources 2024, 13, 47 8 of 21Resources 2024, 13, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. SEM images of the synthesized Chit@Fe3O4 nanoparticles composite substance at different 
imaginations (a,b), magnetite nanoparticles (c), and EDX analysis (d). 

3.1.4. FTIR Analysis and Optical Characteristics 
The FTIR spectra of the prepared sample Chit@Fe3O4 is evaluated to verify the encap-

sulation of Fe3O4 nanoparticles by chitosan and the formation of the composite. The spec-
tral data shown in Figure 5a depict the range from 400 to 4000 cm−1. The infrared (IR) 
spectrum of chitosan exhibited distinct absorption bands, such as a peak at 3429 cm−1, 
which corresponds to the stretching vibrations of the –NH or –OH groups. Additionally, 
the peaks observed at 2919 cm−1 and 1469 cm−1 were attributed to the stretching vibrations 
of the –CH groups in the chitosan copolymer. The presence of chitosan was further con-
firmed by the appearance of the amide II bands at 1632 cm−1 (–NH bending) and 1469 cm−1 
(CN stretching). Furthermore, the characteristic peak observed at 558 cm−1 indicates the 
stretching vibration of iron oxide nanoparticles, specifically the Fe–O stretching vibration. 
Another notable peak can be observed at 2919 cm−1, which corresponds to the stretching 
vibration of –CH groups [25]. 

UV–Vis DRS studies were conducted on the Chit@Fe3O4 composite to examine the 
optical characteristics of the catalyst. The DRS of the sample is defined by a main band 
with a maximum band peak at around 260 nm (Figure 5b). This peak was assigned to a 
surface plasmon resonance typical of magnetite nanoparticles [7]. 

Figure 4. SEM images of the synthesized Chit@Fe3O4 nanoparticles composite substance at different
imaginations (a,b), magnetite nanoparticles (c), and EDX analysis (d).

3.1.4. FTIR Analysis and Optical Characteristics

The FTIR spectra of the prepared sample Chit@Fe3O4 is evaluated to verify the en-
capsulation of Fe3O4 nanoparticles by chitosan and the formation of the composite. The
spectral data shown in Figure 5a depict the range from 400 to 4000 cm−1. The infrared
(IR) spectrum of chitosan exhibited distinct absorption bands, such as a peak at 3429 cm−1,
which corresponds to the stretching vibrations of the –NH or –OH groups. Additionally, the
peaks observed at 2919 cm−1 and 1469 cm−1 were attributed to the stretching vibrations of
the –CH groups in the chitosan copolymer. The presence of chitosan was further confirmed
by the appearance of the amide II bands at 1632 cm−1 (–NH bending) and 1469 cm−1

(CN stretching). Furthermore, the characteristic peak observed at 558 cm−1 indicates the
stretching vibration of iron oxide nanoparticles, specifically the Fe–O stretching vibration.
Another notable peak can be observed at 2919 cm−1, which corresponds to the stretching
vibration of –CH groups [25].

UV–Vis DRS studies were conducted on the Chit@Fe3O4 composite to examine the
optical characteristics of the catalyst. The DRS of the sample is defined by a main band
with a maximum band peak at around 260 nm (Figure 5b). This peak was assigned to a
surface plasmon resonance typical of magnetite nanoparticles [7].
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Figure 5. FTIR spectrum of Chit@Fe3O4 composite (a) and UV-Vis DRS absorption spectrum (b).

3.2. Application of Chit@Fe3O4 Composite in Acetaminophen Oxidation
3.2.1. Effect of Reaction Time in Different Systems

Figure 6 is jointly exhibits the reaction time of oxidation via various treatment systems.
The catalytic oxidation of acetaminophen by the modified oxidation Fenton system based
on the Chit@Fe3O4 nanocomposite is compared to that induced by the solo system of
Chit@Fe3O4 as well as the pristine H2O2 systems under the ultraviolet irradiance. In
addition, the augmented H2O2/Chit@Fe3O4 was further investigated regarding its role
as a dark oxidation system for comparison with the photo-Fenton system and to clarify
the role of this modified photo-Fenton reaction. Furthermore, to illustrate the role of the
Fenton reaction, an adsorption test using such material (Chit@Fe3O4) was also conducted
using the applied catalyst without hydrogen peroxide addition or ultraviolet radiation. The
efficacy of such treatment was tested in the terms of acetaminophen removal.

The results displayed in Figure 6 illustrate that 52% of removal was associated with
the H2O2/Chit@Fe3O4 subjected to ultraviolet irradiance. However, the removal value de-
duced to 35, 21, and 8% when the acetaminophen removal was attained through H2O2/UV,
Dark Chit@Fe3O4, and Chit@Fe3O4/UV treatments, respectively. It is noteworthy that in
all systems, the initial removal rate is significant and then steadily decreases. However, the
removal rate reaches its peak of 52% when the Fenton system is applied under UV irradi-
ance. This could be illustrated by Fe2+/3+, which is exhibited in this composite and was
augmented by hydrogen peroxide, resulting in a Fenton system that generates oxidizing
hydroxyl radical species. However, the solo system catalyst and hydrogen peroxide can
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only lead to limited hydroxyl radical generation [21]. Hence, the number of OH radicals
produced via the Fenton-based Chit@Fe3O4 is higher, and this might provide a positive
effective in acetaminophen treatment and the oxidation reaction. In addition, it is essential
to mention that the nanoscale size particle size helps in improving oxidation since the
available surface area is increased and hence the amount of OH generated is maximized.
Thus, the overall reaction yield using nanosized particles is high. Furthermore, the use of
the Chit@Fe3O4 as an adsorbent material under the same conditions results in a reduction
of only 4%. These data indicate the capability of this material to be a photocatalyst, while
it could also be an adsorbent material. In summary, the effect of material porosity in the
adsorption test was greater than that in the oxidation reaction. This could be due to the
mesoporous material exhibiting higher stability compared to the microporous substances.
Pollutants have a tendency to become highly adsorbed within micropores, which can
eventually lead to blockages and render them unavailable for subsequent use.
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However, it is noteworthy that the pores size and diameter might have a minor effect
on the oxidation reaction compared to the adsorption treatment. This minor effect on the
oxidation reaction linked to the available pores in the catalyst is due to the faster diffusion
of H2O2 within the pores of the material [26,27].

3.2.2. Effect of Acetaminophen Loading

To achieve practical applications, it is essential to investigate the acetaminophen
concentration [9]; in this regard, initial acetaminophen concentration was varied, and the
effect of pollutant loading on the oxidation performance was tested. The results shown in
Figure 7 demonstrate the effectiveness of the modified Fenton oxidation (Chit@Fe3O4/UV)
system with various acetaminophen loadings ranging from 10 to 100 mg/L, whereas all
the other working variables were kept constant (20 and 200 mg/L for Chit@Fe3O4 and
H2O2, respectively, and a pH of 2.0). The maximum removal efficacy with respect to
acetaminophen from the aqueous solution reached 95% when the pollutant concentration
was only 20 mg/L. However, when the acetaminophen increased (100 mg/L), the removal
rate reduced to only 28%. This phenomenon was illustrated when the doses of Chit@Fe3O4
and H2O2 were kept constant in all experiments, whereas the acetaminophen increased.
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Thus, the reduction and oxidation rate declined. It is noteworthy that the same trend of an
initial rapid oxidation rate was observed for all pollutant loading; this is due to the high
oxidation rate, which is linked to the abundant of hydroxyl radicals at the beginning of
the reaction. However, with the progression of the reaction, the hydrogen peroxide was
consumed, thereby reducing the number of OH radicals. The yield of •OH radicals was
not sufficient to oxidize the pollutant in high concentration. Furthermore, the accessible
active vacant adsorbent sites on the surface of Chit@Fe3O4 are not sufficient for adsorbing
high load. Also, the Chit@Fe3O4 active sites being crowded with acetaminophen resulted
in the effective number of •OH radicals being diminished. Similar results is previously
reports in literature [27] for treating chloride using a Fenton oxidation system.
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3.2.3. Effect of Chit@Fe3O4 Concentration

The strong oxidative radical (˙OH) is the main responsible for oxidizing acetaminophen
in the modified Fenton reaction; however, this radical’s production is mostly dependent on
different Fenton variables. ˙OH radicals should be maximized to attain a high oxidation
capacity. Also, since ˙OH radicals are responsible for a high oxidation rate, and their
presence is linked to the optimal dose of a reagent, the predominant radical in the optimal
reagent is the ˙OH radical.

Transition metal alteration in the Fenton system has a significant role in the oxidation
reaction. According to studies performed by various authors [14,19], the Fenton reaction’s
yield is mainly dependent on the catalyst dose. Consequently, to ensure the function
of the chitosan polymer and magnetite nanoparticles in the Chit@Fe3O4 composite in
our modified Fenton system, different concentrations of the catalyst source, Chit@Fe3O4,
ranging from 5 to 40 mg/L, were examined, whereas all other system parameters were kept
at constant values of a pH of 3.0, 200 mg/L of H2O2, and room temperature. According to
the data displayed in Figure 8, ˙OH radical production is associated with the amount of
Chit@Fe3O4 in the reaction medium. The reaction rate is enhanced with the increase in the
content of the catalyst. Acetaminophen removal is enhanced from 60 to 75 and 95% as the
Chit@Fe3O4 concentration increases from 5 to 10 and 20 mg/L, respectively. However, a
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further increase in the Chit@Fe3O4 concentration to 40 mg/L results in a reduction in the
reaction rate, providing a removal rate of only 44%. This might be linked to the OH radicals
becoming trapped by the excess Chit@Fe3O4 catalyst ions [28]. Remarkably, an excess
concentration of the Chit@Fe3O4 reagent results in adverse effects of increased magnetite
and chitosan doses on the reaction medium as the excess catalyst, especially the iron species
in the aqueous media, impacts the reactive species of ˙OH radicals’ functioning. A similar
trend was previously reported in the literature [29,30]. Furthermore, Wulandari and his
co-workers [22] verified that the critical dose of chitosan-coated Fe3O4 nanoparticles might
affect treatment efficiency.
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3.2.4. Effect of H2O2 Concentration

The hydrogen peroxide concentration in the Fenton system media has diverse effects
on hydroxyl radical production and thus on the Fenton reaction’s yield. Based on this
concept, the hydrogen peroxide concentration in the reaction was set to be within the range
from 50 to 400 mg/L to inspect the influence of this reagent on the current modified system
(for 20 mg/L of Chit@Fe3O4 catalyst and a pH of 3.0), and the data of this experiment series
are presented in Figure 9. The results reveal that acetaminophen oxidation increased from
40% to 84% with the elevation of the H2O2 dose from 50 to 200 mg/L, respectively. This
increase can produce an extra yield of ˙OH radicals, which are the main responsible for
the oxidation system. Hence, this increase in acetaminophen oxidation was predictable.
However, further elevation indicates that this reagent can reduce the oxidation yield. This
might be associated with a decline in the yield of ˙OH radicals since excess H2O2 results in
the production of HO2 radicals rather than OH radicals. These radicals reduce the oxidation
rate rather than enhancing acetaminophen reduction. Also, the excess HO2 radicals present
in the reaction media react with the hydroxyl radicals and minimize their effect, thereby
further lowering the overall reaction rate [31,32]. These findings were previously confirmed
by Laib et al. (2021) [16] in treating reactive blue 19 using an oxidation reaction via a
heterogeneous photo-Fenton catalyst.
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3.2.5. Effect of pH

The initial aqueous medium pH plays a significant role in the Fenton oxidation reac-
tion. Conventionally, Fenton reaction is conducted at a highly acidic pH system, but this
might change according to the reaction and catalyst type. In this regard, to examine the
optimal operational pH value, the initial pH of the aqueous acetaminophen wastewater
was assessed by changing the wastewater pH from 2.0 to 6.0. An investigation of the data
displayed in Figure 10 demonstrated that the acidic range is preferable. Decreasing the
pH to 2.0 revealed the optimal oxidation pH, corresponding to 95% compared to 89% at a
pH of 6.0. This means although thane acidic pH is favorable, the current modified system
could work at various pH values. It is noteworthy that H3O2

+ may be formed at an acidic
pH, which might lead to an increase in peroxide stability. However, FeOOH is precipitated
with an increase in the pH value, thus affecting the production yield of OH radicals [32,33].
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3.2.6. Effect of Temperature

From the industrial and practical perspectives, it is crucial to establish the effect of
temperature, since in real-scale applications, the discharge is attained at various temper-
atures. To establish the optimal working temperature, the temperature of the aqueous
solution containing acetaminophen was altered with the temperature range from 26 to
60 ◦C, and the results of these experiments are exhibited in Figure 11. The rise in tempera-
ture indicated a significant deterioration in acetaminophen oxidation, with a subsequent
reduction in the reaction yield. Room temperature provided the highest reaction oxidation
yield, corresponding to the highest acetaminophen reduction, reaching 95%. This may
be attributed to the high temperatures exceeding than room temperature resulting in a
reduction in the oxidation efficiency due to the rapid reduction of H2O2 to O2 and H2O [34].
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3.2.7. Kinetics and Thermodynamic Profile

The objective of investigating the effects of temperature on the oxidation system is
twofold: to establish the overall kinetics and to consider the Arrhenius-type dependency of
the global kinetic constant on temperature. This exploration is vital for large-scale treatment
facilities [35], as it provides crucial information for reactor design and process economics.

Upon analyzing the data presented in Figure 10, it was observed that an increase in
temperature had a negative impact on acetaminophen removal. The relationship between
different operating temperatures and the reaction rates of zero-order, first-order, and
pseudo-second-order kinetics is illustrated in Figure 12a–c, respectively. Table 1 presents
the kinetic constants and parameters of the zero-order, first-order, and second-order kinetic
models. The model with the highest R2 value is considered the best fit, as a regression
coefficient (R2) close to 1 indicates a good fit to the proposed kinetic model.

Notably, the correlation coefficient R2 values mentioned in previous studies [36,37]
range from 0.933 to 0.9157 and from 0.9872 to 0.9962, further supporting the suitability of
the kinetic models chosen for this study. Based on these findings, it can be inferred that the
drug was transported from the studied systems through various mechanisms.
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Table 1. Kinetic parameters for different reaction order models for acetaminophen treatment in
aqueous media *.

Kinetic Model Parameters
T

299 313 323 333

Zero-order
Ct = Co − kot ko (min−1) 0.125 0.104 0.102 0.092

t1/2 36.60 44.35 46.13 47.39
R2 0.85 0.82 0.85 0.88

First-order
Ct = Co − ek1t k1 (min−1) 0.038 0.022 0.018 0.017

t1/2 40.76 38.5 31.5 18.241
R2 0.99 0.93 0.93 0.94

Second-order(
1
Ct

)
=

(
1

C0

)
− k2t k2 (L/gm.min) 0.0157 0.0054 0.004 0.0036

t1/2 6.96 20.07 26.56 31.85
R2 0.95 0.97 0.98 0.99

* Co and Ct: initial and at time t acetaminophen concentration (mg/L)); t: time (min); k0, k1, and k2: kinetic rate
constants of zero-, first-, and second-orders kinetic models.

Based on the data presented in Figure 12 and Table 1, it is evident that the regression
coefficients (R2) attained from Figure 12 and displayed in Table 1 are the highest for the
second-order reaction model, which effectively represents the experimental data. The
second-order reaction rate constants range from 0.0157 to 0.0036 L/mg.min as the temper-
ature increases. Additionally, the half-life time (t1/2) increases with higher temperatures.
The shortest (t1/2) for acetaminophen oxidation was calculated at a temperature of 26 ◦C.
Therefore, the second-order model accurately predicts the oxidation yield within the tem-
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perature range up to 26 ◦C. Previous studies [35] have also reported that the Fenton reaction
is governed by second-order kinetics, supporting these findings.

Thermodynamic variables were verified to further support the oxidation of the modi-
fied Fenton system, and the data are tabulated in Table 2. Based on the second-order kinetic
rate constant, the Arrhenius principle ( k2 = Ae

−Ea
RT

)
could be written in the linearized form

( ln k2 = ln A − Ea
RT

)
, where A and R are constants of the pre-exponential factor and gas

constant; T is the temperature; and Ea is the activation energy attained from the linear
correlation of lnk2 and −1/T, corresponding to 36.35 kJ/mol. Hence, this result of minimal
energy confirms that the acetaminophen oxidation proceeds at a low energy barrier. Vari-
ous authors [36,37] have recorded similar results in treating textile dying wastewater and
petroleum refinery effluents, respectively, using a Fenton system. Furthermore, Eyring’s

relation, k2 = kBT
h e(−

∆G′
RT ) [37], was applied to estimate the Gibbs free energy of activation

(∆G′), where kB and h are constants of Boltzmann and Planck’, respectively. Also, both the
enthalpy (∆H′) and entropy (∆S′) of activation were explored according to the following
relations:

∆H′ = Ea − RT and ∆S′ =
(
∆H′ − ∆G′)/T,

respectively [38], and the data displayed in Table 2. According to the data demonstrated
in Table 2, the positive values of ∆G′ that increased with the temperature indicate the
non-spontaneous nature of the reaction. Also, the positive values of ∆H′ indicate the
exothermic nature of the reaction. ∆S′ is negative which confirms the non-spontaneity
of the reaction. These results indicate that a decline in the degrees of freedom of the
acetaminophen molecules, in addition to a high production yield of the OH radicals, thus
increasing the oxidation rate. Pervious results in the literature are in accordance with these
data [38].

Table 2. Thermodynamic data of acetaminophen oxidation via Chit@Fe3O4 based Fenton system.

T/◦C

26 ◦C 40 ◦C 50 ◦C 60 ◦C

Ea (kJ/mol) 36.35
∆G′ (kJ/mol) 83.56 90.37 94.15 97.43
∆H′ (kJ/mol) 33.87 33.75 33.67 33.59

∆S′ (kJ/mol.K) −166.18 −180.88 −187.23 −191.74

3.2.8. Catalyst Stability and Reusability

Since chitosan augmented magnetite nanoparticles are a heterogeneous catalyst source,
their recovery from aqueous media is possible [8]. It is essential to verify a catalyst’s stability
to ensure the sustainability of a given approach. In this regard, the cyclic use of Chit@Fe3O4
was conducted. After use, the catalyst is collected and then subjected for successive uses
and then washed with distilled water in three washing cycles prior to being dried (1 h at
105 ◦C). Afterwards, the retrieved material was then used for acetaminophen oxidation at
the optimal reagent doses of 20 and 200 mg/L of Chit@Fe3O4 and H2O2, respectively, and
a pH of 2.0. The results displayed in Figure 13 explore the successive use of Chit@Fe3O4,
demonstrating a reduction in catalyst activity. Catalyst reactivity was reduced, achieving
an acetaminophen removal of only 69% in the fourth cycle compared to 95% for the fresh
catalyst use, as seen in Figure 13. However, it is notable that even though the activity of
the catalyst was reduced, it could still oxidize the acetaminophen material. Thus, these
results verify the catalyst sustainability. Also, they confirm the catalyst’s stability since
chitosan-augmented magnetite nanocomposites exploits physicochemical stability [41].
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3.2.9. Oxidation Mechanism

The Fenton reaction system based on Chit@Fe3O4 basically comprises Fe2+ and Fe3+, as
well as chitosan. Conventionally, a catalyst is oxidized via the reagent H2O2 to generate the
•OH species (Equation (1)), which are the main species responsible for oxidation, initiating
the reaction between ions of iron and the hydrogen peroxide reagent. In this concept, the
produced radicals attack the aromatic ring in the acetaminophen material and oxidize it into
non-harmful end products, namely, CO2 and H2O. The presence of iron in this reaction acts
as the rate-limiting step. Also, further radicals are generated, i.e., OH− and OH•

2 , as well
as oxygen radicals that promote the cyclic reaction. However, H2O2 can decay due to the
presence of dissolved oxygen. The radicals’ mechanism is illustrated in Equations (1)–(8).
Additionally, the hydrolyzed iron ions in the reaction media help in the formation of further
radicals due to the reaction with hydrogen peroxide (Equations (9) and (11)). Moreover,
UV illumination results in the generation of additional ·OH radicals (Equations (13)–(15)).

Fe2+ + H2O2 → Fe 3+ + OH−+OH• (1)

Fe3++OH•
2 → Fe 2+ + O2 + H+ (2)

H2O2 + HO•→ H∓ + O •
2 + H2O (3)

Fe3+ + H2O2 → Fe 2+ + OH•
2 + H+ (4)

H2O2 + HO•→ HO •
2 + H2O (5)

Fe2++OH•→ Fe 3+ + OH− (6)

OH• + OH• → H2O2 (7)

2OH•
2 → H 2O2 + O2 (8)

Fe2++OH•
2 +H+ → Fe 3+

+ H2O2 (9)

OH• + Fe2+ → Fe3+ + OH− (10)

H2O2 + HO•
2 → H2O + O2 + HO• (11)

Fe2+ + H2O2 +hv → Fe 3+ + OH−+OH• (12)

Fe(OH)2++hv → Fe 2++H+ (13)

H2O2 + hv → 2OH• (14)
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HOO• + H2O2 → H2O + O2 + HO• (15)

Subsequently, due to the presence of hydroxyl radicals in the reaction medium, hydro-
gen is abstracted, and this provides a macro radical beside the chitosan, which results in
the growth of attached monomers. In addition, chitosan produce excess OH radicals due to
its chelating characteristics with respect to metals (Equations (16) and (17)) [42–46]. Thus,
overall, the generated radicals attack the aromatic ring of the acetaminophen and oxidize it
(Equation (18)).

OH• + polyssccharide − H → H2O + Polysaccharide• (16)

Polysaccharide• + Monomer → OH• + polyssccharide − g − polymer (17)
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Furthermore, to evaluate the significant species that control the oxidation in the
modified photo-Fenton system, various scavengers were tested and added to the reaction
medium (Figure 14). These scavengers were added independently and separately to trap
and remove specific active species. Initially, ammonium oxalate was added to the reaction
medium to reflect the deterioration of the holes (h+) present in the catalyst. This addition
results in a scavenging effect in the reaction, and the oxidation efficiency declined from
95% to 58%. Also, the addition of isopropanol was examined to investigate the scavenging
effect of the superoxide radical (•O2

−). The results of this test revealed that the reaction
oxidation efficiency of acetaminophen is also decreased to be 91%, which means that the
terminal effect of the superoxide radical affects the oxidation efficiency. Finally, the effect of
hydroxyl radical species on acetaminophen oxidation was investigated through the use
of the benzoquinone scavenger in the reaction medium. The results of this experiment,
leading to a massive scavenging effect, displayed only 15% oxidation. Such a dramatic
reduction in oxidation efficiency reflects the importance of the hydroxyl radicals (OH) in
the photo-oxidation activity. Hence, the presence of holes in the composite material affects
the reaction, but the major effect is linked to the hydroxyl radical. However, a minor effect
is related to the superoxide radical.
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4. Conclusions

Chitosan coated with magnetite nanoparticles, constituting an environmentally sus-
tainable catalyst, prepared through a co-precipitation route, and then augmented with
H2O2, is a promising photocatalyst. This type of Fenton system was applied to oxidize
acetaminophen, an emerging pollutant, in aqueous effluents. The oxidation reaction re-
vealed that catalyst and H2O2 concentrations limit the oxidation process. Although an
acidic pH is favorable, the oxidation process can proceed at a wide range of pH values.
The experimental results showed that the oxidation time was achieved after one hour
of illumination. Also, concentrations of Chit@Fe3O4 and H2O2 of 20 and 200 mg/L, re-
spectively, are essential to complete the oxidation reaction of acetaminophen at a pH of
2.0 to achieve 95% removal. The sustainability of the catalyst was verified, and a 69%
removal rate was reached in the fourth cyclic use. Furthermore, elevating the temperature
is unfavorable, and an ambient temperature is efficient in providing a high acetaminophen
oxidation rate. The kinetic modeling exhibiting that oxidation follows the second-order
kinetic rate, with a minimum value of activation energy. Thus, the suggested catalyst is
a viable option for treating pharmaceutical effluents in an environmentally benign way.
However, further research is still required to assess its real-world applications on a larger
scale. Moreover, to reach the scale of industrial practical applications, our results could
be scaled up for industrial wastewater treatment plants. Also, appropriate catalyst doses
could be statistically optimized for design and applications. More data are essential for
solar applications plants to satisfy the industrial sector. Finally, it is noteworthy that the
suggested system is a promising technology for the green treatment of emerging pollutants.
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