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Abstract: Geographical information systems (GIS) are a kind of location intelligence 

technology that supports systematic collection, integration, analysis and sharing of spatial 

data. They provide an effective tool for characterising and visualising geographical 

distributions of recyclable resources or materials dispersed across urban environments in 

what may be described as “urban mines”. As logistics can be a key barrier to recycling, 

GIS are critical for capturing and analysing location intelligence about the distribution and 

values of recyclable resources and associated collection systems to effectively empower 

and inform the policy makers and the broader community with comprehensive, accurate 

and accessible information. This paper reviews the functionality of modern GIS, discusses 

the potential role of GIS in urban mining studies, and describes how GIS can be used to 

measure, report, analyse and visualise the spatial or geographical characteristics of 

dispersed stocks of recyclable waste and their collection and recovery systems. Such 

information can then be used to model material flows and assess the social and 

environmental impacts of urban mining. Issues and challenges in the use of GIS for urban 

mining are also to be addressed. 
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1. Introduction 

Rather than referring to mining in urban areas, urban mining is the process of reclaiming recyclable 

resources, including compounds and elements, from buildings, urban infrastructure, consumer products 

and waste dispersed across urban environments [1–4]. More specifically, it involves extracting the 

precious metals (such as copper, gold and platinum) from urban waste, including electronic waste or  

e-waste (e.g., old televisions, cell phones and computers). Urban mine stocks are a growing reservoir 
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of valuable resources and have a tremendous potential for future recycling [1,5]. According to the 

Australian Bureau of Statistics (ABS), 17 million televisions and 37 million computers had been sent 

to landfill up to 2008. E-waste is more than 95 percent recyclable. For example, the amount of gold 

recovered from one tonne of electronic scrap from personal computers is more than that recovered 

from 17 tonnes of gold ore [6]. However, of the 15.7 million computers that were ready for end of life 

management in Australia in 2007–2008, only 1.5 million (less than 10%) were recycled. In 2009, the 

Council of Australian Governments endorsed the National Waste Policy [7]. The policy sets 

Australia’s waste management and resource recovery direction to 2020 in six key areas and identifies 

16 priority strategies. One of the key areas is to provide access by decision makers to meaningful, 

accurate and current national waste and resource recovery data and information to measure progress 

and educate and inform the behaviour and the choices of the community. Strategy 16 covers the design 

and development of an online, accessible and up-to-date National Waste Data System (NWDS) for 

Australia, to support a periodic (three yearly) National Waste Report. NWDS provides statistics of 

waste and recyclables, as well as household’s attitudes and behaviours of recycling [8]. The National 

Waste Reports provide data on the quantities of waste and recyclables. However, the data and 

information on where waste and recyclables are located and where electronic appliances reaching the 

end of their useful life are potentially distributed and geographically concentrated are more important. 

That is because location-based information or location intelligence about waste and recyclables and 

their potential stocks and values can help identify actions to build capacity, ensure an appropriate suite 

of services is available to communities and assist in site selection of waste collection facilities and the 

recycling industry in order to maximise economic benefits and minimise environmental impacts. 

Geographical information systems (GIS) are a proven technology for collecting, managing and 

analysing location-based data and information and producing location intelligence. Location-based 

data are also called place-based data, georeferenced data or, more commonly, spatial data. GIS are 

scale-independent and can be used for examining, exploring and analysing spatial data at global, 

continental, regional, urban and landscape scales. Therefore, GIS can provide an effective tool for 

characterising and visualising geographical or spatial distributions of waste and recyclable resources 

dispersed across urban environments and can be used to capture and analyse location intelligence 

about the spatial distribution and values of recyclable resources and associated collection systems to 

effectively empower and inform the policy makers and the broader community with comprehensive, 

accurate and accessible information. This paper reviews the functionality of modern GIS, examines the 

potential role of GIS in urban mining, describes how GIS can be used to measure, report, analyse and 

visualise the spatial or geographical characteristics of dispersed stocks of recyclable waste, and their 

collection and recovery systems, and discusses the issues and challenges in the use of GIS for urban 

mining. The discussions are based on a review of significant and representative literature in GIS and 

urban mining. 

2. GIS 

In general terms, GIS are computer systems for collecting, storing, managing, manipulating, 

analysing and visualizing geographical or spatial data [9]. They can be considered as “a special case of 

information systems where the database consists of observations on spatially distributed features, 
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activities or events, which are defined in space as points, lines, or areas. A GIS manipulates data about 

these points, lines, and areas to retrieve data for ad hoc queries and analyses” [10]. GIS use features to 

organise, manage and manipulate spatial data. Using a GIS involves capturing the spatial distribution 

of features by the measurement of the world or of maps. Urban mines, waste collection facilities and 

the recycling or recovery industry and other related infrastructure are all spatially distributed and, so, 

can be studied using a GIS.  

The functionality of GIS can be described at three levels with an increasing complexity. The first 

level of functionality is cartographic representation or spatial visualisation. It is the simplest and most 

basic function of GIS. A map is a basic form of spatial visualisation and representation of spatial data. 

Maps in GIS are in digital form and called digital maps. A digital map in GIS is a set of data recording 

the properties or attributes of the features depicted (e.g., stocks of copper, capacity of a waste 

collection facility, etc.) and their geographical locations (often recorded as latitude and longitude, or  

x, y coordinates in a particular coordinate system). A GIS provides a rich set of map symbols and 

colours for users to choose to make maps. Map making and geographical analysis are not new, but GIS 

perform these tasks faster and with more sophistication than do traditional manual methods. Current 

GIS technology also allows users to make 3D and animated maps.  

The second level of functionality is spatial data management. Spatial data are typically organised in 

what is commonly referred to as data layers. A data layer is a digital map of a particular theme. For 

example, a commonly defined data layer is one containing city streets with pertinent tables of 

attributes associated with each street. A collection of data layers constitutes a spatial database. Figure 1 

shows an example spatial database for urban mining studies. GIS manage a spatial database with 

specialised database management systems and support a spatial query that retrieves features based on 

their locations and spatial relationships among the features (e.g., adjacency, inclusion, connectivity and 

direction). For example, spatial query functions in GIS can be used to search for local government 

areas (LGA) with more than 5000 kg/km
2
 of in-use zinc stock within Victoria State or to find all waste 

collection facilities within 200 m from highway exits. GIS integrate common database operations, such 

as a query, and statistical analysis with the unique spatial visualisation and geographical analysis 

benefits offered by maps.  

It is worth noting that data layers in GIS are represented using either a vector data model, in which 

features are conceptualised as points, lines or areas (polygons) plotted as coordinates in space (i.e., 

they are defined by their geographical location), or by using a raster data model, in which features are 

conceptualised as elements of a continuous surface represented by a grid of cells of a particular size 

(Figure 2). Virtually all modern GIS are able to manipulate both types of data layers, and the choice of 

vector or raster data model is based on the appropriateness of the model for representing the 

phenomenon in question and the forms of analysis to which the model is suited.  

The third level of functionality is spatial analysis and modelling. Spatial analysis and modelling is 

location based, and the results of spatial analysis are also dependent on the locations of the features 

being analysed. Spatial analysis and modelling functions in GIS allow users to define and execute 

spatial and attribute procedures to conduct analysis in space and about place (here, space is regarded 

largely as a dimension within which matter is located, and a place is a location in space). The 

functionality of this level is commonly thought of as the heart of a GIS. Generally, GIS provide a large 

range of analysis capabilities that will be able to operate on the spatial aspects of the spatial data, on 
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the non-spatial attributes of these data or on both. They range from simple geometric measurements 

(e.g., measuring shape, area, perimeter and length), proximity analysis (e.g., measuring distance and 

generating buffer zones of a certain width), network analysis (e.g., calculating distances along 

transport networks and finding the shortest routes and nearest facilities), spatial statistics (e.g., 

statistical summaries, spatial clustering and geographically weighted regression analysis) to integrated 

analysis (e.g., overlay analysis for combining a number of maps and map algebra for implementing 

mathematical models using maps as input and output variables). These abilities distinguish GIS from 

other information systems and make them valuable for a wide range of applications, for explaining 

events, simulating complex processes, predicting outcomes and planning strategies. 

Figure 1. A spatial database for urban mining studies. 

 

Figure 2. Feature types and their representations in two spatial data models. 
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3. GIS in Urban Mining  

Urban mining involves material collection, separation, sorting and processing [2]. Collection is 

essential to success, as it is the first step in recycling. However, collection needs to be based on an 

understanding of stocks and flows in an urban environment at various levels. GIS can be employed to 

answer the questions of how much urban mines are present, where the stocks are located and how they 

are distributed. The answers can be used for evaluation of the economic values of the resources, the 

social and environmental impacts of mining these resources and the effectiveness of existing and 

future collection and recovery systems. Figure 3 depicts the major applications of GIS in the urban 

mining process. 

Figure 3. Major applications of geographical information systems (GIS) in urban mining. 

 

3.1. Material Flow Analysis 

Material flow analysis is used to systematically assess the flows and stocks of materials within a  

socioeconomic system in a specific geographical area during a particular period of time [11]. It is the 

first step of every lifecycle assessment for estimating the amount of the resources consumed. 

According to the first law of thermodynamics (the law of the conservation of mass) [11], total inputs 

must, by definition, equal total outputs, plus net accumulation of materials in the system. Material flow 

analysis links the sources, the pathways and the transitional and final sinks of a material. The inflows 

include extracted or imported materials to be used within the system, and the outflows comprise all 

materials released to the environment as wastes and those materials that are recycled or exported to 

outside of the geographical/system boundary. Through balancing inputs and outputs, material flow 
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analysis identifies the flows of materials and their sources, as well as the accumulation of material 

stocks during a specific period in time. Material flow analysis is traditionally conducted at the national 

level. GIS allow for the examination, estimation and prediction of material inflows, outflows and 

stocks at various levels, from the national to regional and local level. The major role of GIS in material 

flow analysis is to provide a spatial database and spatial analysis and modelling tools. Particularly, GIS 

have the ability to integrate data and information from a wide range of sources. For example, GIS 

enable data and information from one sector (e.g., construction minerals in the building sector) to be 

combined with data and information from other sectors (e.g., materials in the power grids and 

consumer goods and those in the transport sector) to provide a comprehensive material accounting (see 

Section 3.3) in any given area. It also allows the integration of georeferenced building data collected 

from local governments with construction material intensity data from the building industry to estimate 

site-specific material stocks by using GIS measurement and statistical summary tools. 

Material intensity is often measured as material input per service unit, which is used to quantify the 

lifecycle-wide requirement of primary materials for products and services [12]. The input of primary 

raw materials is measured in physical units (kilograms). Material intensity is essentially a function of 

the type of use, time of use, lifetime of use and geographical location. The data of all these parameters 

can be stored in a spatial database in GIS. As illustrated in Figure 1, a typical spatial database for 

material flow analysis in an urban area may comprise base data layers, including street networks, urban 

district boundaries and different levels of statistical area units, and data layers representing spatial 

distributions of different types of material uses (such as buildings, power grids, power stations and 

road networks) at different stages of the lifecycle and their associated properties, as well as  

socioeconomic and demographic statistics. The material inflow layers can be derived by calculating 

the material stocks in new uses based on their spatial distribution, size and material intensity and 

summarised at different levels of statistical area units or to the urban districts. The material outflow 

layers can be derived by calculating the material stocks in the uses near the end of their lifetime based 

on their spatial distribution, size, material intensity and material recovery rates, and summarised at 

different levels of statistical area units or to the urban districts. The material stocks are mainly derived 

based on the spatial distribution or configuration of the major uses of the subject materials and their 

material intensities, which is to be discussed in detail in the following section. All the calculations can 

be conducted in a GIS environment. 

With the data on collection and recovery facility locations and their capacities (see Section 3.4) and 

the spatial distributions of material stocks (see Section 3.2), material flows within waste and resource 

management systems can be modelled and mapped. In addition, GIS can be used to map material 

import and export intuitively. Maps can effectively present information in a comprehensive form to 

decision makers and analysts, who otherwise may not be able to analyse all the data and information 

from the pages of a tabular report. 

3.2. Material Stock Analysis 

Material stock analysis mainly involves the quantification of stocks of urban mines in a particular 

form (e.g., in use or hibernation). There are two approaches to material stock analysis: “bottom up” 

and “top down” [2]. The bottom up approach quantifies material stocks by measuring the stocks 
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directly. It first identifies the major uses of a given type of materials (e.g., copper) , second, determines 

the material intensity, i.e., the typical amount of the materials in each unit of use (e.g., the amount of 

copper per metre of a power line), then measures the size of each use (e.g., the total length of the 

power grid), next calculates the material stock for each type of use and, finally, computes the total 

stock of the materials in a particular urban area. The top down approach measures the size of the stocks 

indirectly by examining the inflows and outflows to the stock for a certain period of time or first 

determining the flows of the material into each major use over a certain period of time and then estimating 

the material stocks according to the product lifetime. With the top down approach, the estimated material 

stocks at the national or state level are then scaled down to urban regions on the basis of per capita gross 

domestic product.  

The top-down approach involves scaling down the data at a higher level, which may introduce a lot 

of uncertainty in terms of spatial distribution. In other words, spatial variations cannot be accurately 

characterised at a certain level by disaggregating the data at a higher level. Therefore, GIS are not well 

suited for this approach. However, GIS are well suited for implementing the bottom up approach. 

Much of the ability of GIS to analyse material stocks with the bottom up approach is founded on their 

core spatial database, which stores and relates map data within a common spatial framework (i.e., 

within a specific map projection, like Universal Transverse Mercator/UTM, or a national, regional or 

locally-defined Euclidean grid system). As discussed above, such a spatial database may contain 

detailed map data layers describing the spatial distribution, configuration and properties of urban 

infrastructure (e.g., road and sewer networks), the spatial distribution or configuration of the major 

uses of the subject materials (such as buildings, power grids, power stations and solar panels) and other 

socioeconomic and demographic statistical data (e.g., population density, lifestyles, socioeconomic 

status, etc.). After a comprehensive spatial database is built, GIS measurement and statistical tools can 

be used to spatially calculate and allocate material stocks by combining the content of the subject 

materials per unit of each use with corresponding spatial information, and spatial visualisation 

functions are then used to map the spatial distribution of the stocks.  

For example, Tanikawa and Hashimoto [1] applied GIS technology to estimate construction 

material stocks over time with spatio-temporal data. Their study involved the use of a spatial database 

of an urban area containing spatial data of individual buildings (their locations, shape, area, floor 

space, structure and material stock per area of building classified by structure), roadways or railways 

(their locations, structure, length, width and material stock per area of roadway/railway classified by 

structure) and sewer networks (locations, structure, length, diameter and material stock per length of 

sewer classified by structure and diameter). They built spatial databases for two urban study areas. 

Using the spatial databases, they estimated the construction material stocks of buildings, roadways and 

railways, analysed the spatial distribution and variations of stocked materials, estimated the demolition 

curve of buildings based on their characteristics at different locations and calculated material 

accumulation with vertical location, such as materials above and below ground, from the viewpoint of 

recyclability. The same authors and their research team reported similar work on the estimation of 

material stocks in buildings and infrastructure in [13–15]. 

Wallsten et al. [3] used GIS to quantify and spatially localise hibernating metal stocks of copper, 

aluminium and iron (including steel) in infrastructure systems for AC and DC power, 

telecommunication, town gas and district heating in the city of Norrköping, Sweden. With a spatial 
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database containing maps representing cables and pipes, as well as buildings, they divided the city into 

a number of city districts, identified different types of building (older, single-family housing, newer, 

single-family housing, multi-family housing, industrial and the city centre), estimated metal 

concentrations per housing unit for each type of building, differentiated the active and inactive 

infrastructure systems and calculated active and inactive metal stocks for the metals concerned based 

on information about the copper and aluminum concentrations of the different types of cable (feeder 

and distribution cables, as well as service and ground wire) and different types of pipes with various 

diameters and thicknesses. The hibernating metal stocks were summarised in terms of the urban 

districts and mapped using urban districts as the area unit.  

With a similar GIS-based approach, Krook et al. [4] used spatial data to characterise the power 

grids in the cities of Gothenburg and Linköping in Sweden with regard to their total cable length, 

voltage levels, locations and operational status, estimated in-use and hibernating stocks of copper 

situated in these local power networks by multiplying the cable length with an average copper 

concentration and assessed the economic conditions for the recovery of cables in hibernation located in 

the urban environment. 

Van Beers and Graedel [16] took a different approach. They characterised the spatial patterns of the 

in-use stocks of copper and zinc at four spatial scales (central city, urban region, states/territories and 

country) using a combination of GIS and exploratory spatial analysis (techniques for describing, 

discovering and visualising geographical or spatial distributions). The study estimated in-use stocks by 

deriving suitable average copper and zinc contents for several selected proxy indicators (including the 

type of buildings, the number of motor vehicles, the length of electrified railway track, the household 

income, etc.), multiplying these factors by the quantities of the proxy indicators within a geographical 

area of interest and aggregating the results. The proxy data are spatially distributed, and they were 

mainly derived from the Australian census data. In this study, the in-use copper and zinc stocks were 

investigated in more than thirty four thousand census collection districts, about six hundred local 

governmental areas and eight states/territories. Maps were produced with GIS to show how the 

densities of the in-use stocks at one spatial level manifest themselves at higher spatial levels. 

Compared with the studies by Wallsten et al. [3] and Tanikawa and Hashimoto [1], van Beers and 

Graedel [16] mainly relied on area aggregated statistical data, literature review, personal 

communication, informed estimates and empirical models, rather than on a detailed spatial database 

containing spatial distributions and configurations of the urban elements stocked with the materials 

under investigation. Their results are less accurate, having the accumulated uncertainties of about 40% 

for copper and −40%/+50% for zinc of the estimated total stocks. Nevertheless, they provide useful 

information for identifying high spatial density areas for recovering and reusing metals in Australia. 

Their research also highlights the importance of a comprehensive and detailed spatial database and 

selection of appropriate proxy indicators for accurate material stock analysis. 

Van Beers and Graedel [17] also quantified and mapped end-of-life flows of copper and zinc in 

Australia at the level of local government areas, based on existing and anticipated in-use stocks, their 

residence times and their historical and anticipated future evolution. The research demonstrated that 

the integration of GIS with material stock analysis enabled the comparison of end-of-life copper and 

zinc in geographical areas with different demographic and industrial characteristics and provided 

useful information for the optimization of copper and zinc recycling.  
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3.3. Material Accounting 

Material accounting is the regular updating of the measurements of the key flows and stocks 

resulting from material flow analysis. GIS can be used to build a material accounting system, which 

records, produces, updates and manages data about material flows, stocks and concentrations in a 

particular urban area and allows the analysis of spatio-temporal changes in material stocks (in terms of 

the mass of the stock, as well as the rate of change of the stock per unit time) and the detection and 

prediction of trends. The data acquisition, storage, retrieval and management functions of GIS allow 

systematic accounting of all materials crossing sector and/or geographical boundaries. Such a material 

accounting system can be updated constantly, and statistical summaries and maps can be made instantly. 

To date, there has been no reported material accounting system built and maintained using GIS 

technology. Indeed, a GIS-based material accounting system will be able to integrate data on urban 

infrastructure, urban land use and spatial patterns of various uses of different types of materials. When 

changes occur in the magnitude and spatial pattern of one or more uses of a particular type of material, 

the accounting system may re-calculate the material inputs, outputs and stocks and update the database 

automatically. It will also allow for allocating material flow and land use data to economic sectors and 

analysing the resource and land use intensities of different economic activities simultaneously to 

establish the relation between material flows and land uses. Therefore, a GIS-based material 

accounting system will present an opportunity to study the spatial distribution of material flows and the 

implications of changes in the metabolic profile of urban areas for urban land use changes and to 

utilise land use intensity (e.g., building density, road density or the concentration of other land use 

activities in an area) as a criterion to evaluate different types of material flows. 

3.4. Infrastructure Assessment and Planning for Urban Mining 

Collection and recovery are vital to the success of urban mining. It is important to proactively 

consider how the recyclable materials stocked in an urban environment are managed once they reach 

the end of their life span. The infrastructure for urban mining mainly encompasses the collection or 

transfer stations, landfills and recycling or recovery facilities. To implement an efficient and 

sustainable recovery system for materials, such as from e-waste, requires adequate capabilities for 

collection, recovery, recycling and refining and sufficient control over their material quality and the 

environmental and social impacts of the related processes. It may involve answering the  

following questions: 

 Where is the existing infrastructure for collection and recovery distributed? 

 To what extent is the existing infrastructure utilised and how can it be optimised? 

 Is new infrastructure required? 

 Where will new infrastructure be deployed? 

 What are the environmental, social and economic impacts of the infrastructure and its operations? 

GIS can be applied to address these questions. Data on the current collection and recovery 

infrastructure (including operators, regulatory and planning status, capacities, types of processes and 

wastes processed, types of transport and cost information), together with the material stocks and their 

spatial distribution data derived from material stock analysis, can be compiled into a spatial database 
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managed in a GIS and analysed using spatial analysis functions, including proximity analysis, network 

analysis and location allocation modelling. In general, material stock and flow analysis should precede 

the planning of the collection and recycling facilities. Distance measurement is basic in the spatial 

analysis of infrastructure for urban mining. From a waste collection perspective, a longer distance 

between stocks and collection and recovery facilities means a less likely recovery, due to increased 

transport cost. On the other hand, distance from collection and recovery sites to communities is one of 

the indicators of how vulnerable the communities are to possible toxic material leaching.  

For example, Goe et al. [18] applied GIS to analyse infrastructure for recycling solar photovoltaics 

(PV) materials in New York State, USA. They collected PV installation and recovery infrastructure 

data. PV installation data are point data recording PV panel locations, capacities and costs. By using 

spatial interpolation techniques in GIS, a heat map was produced based on the PV installation point 

data to show the likely PV installations (used as a proxy indicator of potential stocks of solar panel 

waste) at every location in the state. The map was then compared to the spatial distribution of the 

current recovery infrastructure to identify the locations with high potential that are far away from 

recovery facilities. The map could also be used to estimate how much material would potentially need 

to be handled at the collection recovery facilities. To further assess the existing collection and recovery 

infrastructure, the study calculated the collection route distance between each PV installation site and 

the collection and recovery points along the transport network using the network analysis functions in 

GIS and developed an optimisation model constrained by PV material stock, facility cost, capacity and 

collection route distances to minimise cost. The model was used to assess whether the existing 

collection and recovery infrastructure could, at a minimal cost, achieve collection and recovery at or 

above municipal solid waste recycling rates for all PV wastes. It also built a site selection model using 

overlay analysis functions in GIS to identify suitable sites for new collection and recovery facilities 

based on multiple criteria, including land use, elevation, population and distance from communities, 

schools and wetlands (all represented in data layers in the spatial database) in order to minimise 

potential negative environmental and social impacts. The collection route distances from the newly 

identified collection and recovery facilities were computed and fed into the optimisation model to 

determine which of these new facilities would be part of a minimum cost system of solar panel 

recovery. This study demonstrated how GIS can be used to estimate potential stocks, assess the 

environmental, social and economic implications of the existing infrastructure for collection and 

recovery and to plan new infrastructure to meet future demand.  

4. Conclusions: Issues and Challenges 

This paper provides an overview of the applicability of GIS to urban mining. GIS offers a useful 

platform for data management, visualisation and analysis of the spatial patterns and relationships that 

comprise the basic datasets used in some urban mining studies. Although urban mining has many 

issues related to spatial analysis, GIS applications in urban mining have been largely focused on 

material stock analysis and infrastructure planning. One of the key issues is the data accessibility. At 

the national level, some data on recyclable wastes can be obtained directly from statistical bureaus in 

published form. Almost all material input and trade data in physical units are accessible. However, at 

the regional and urban level, data accessibility is limited. Data are generally dispersed among several 
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organisations and firms. They may be commercial-in-confidence, such as mobile phone sale data and 

utility network data. It is expected that the sources of data for urban mining studies will be different 

across institutions. This may make it difficult to produce a consistent urban-wide set of data sources 

and methods. 

The second issue is the data availability. Many data required may not be available. Industrial wastes 

often contain specialized materials and are one of the major waste streams with high recycling rates. 

They are an important component of potential urban mines. However, there is generally no single, 

definitive, national information source on industrial wastes. The data about industrial wastes are 

patchy. The estimated quantity of recyclable wastes reported by a range of agencies, including various 

industry information sources, often tells us little about who is generating which wastes and in which 

parts of the country. It is also very challenging to study the spatially distributed magnitude and  

flow of e-waste at the urban scale, as the relevant data are often unavailable, or incomplete or 

incommensurable. For example, electronic items, such as mobile phones and TV sets, may transfer 

from first users to second-hand users or may be traded in when purchasing a new item from a retailer. 

Sometimes, they are disposed together with municipal solid waste to landfills. The average life of these 

items is also not static. In other words, electronic items bought in one particular year would not 

necessarily become obsolete at the end of the average lifecycle, depending on the usage of the devices 

and the changes and innovation of technology. There is a need to have an effective and efficient 

method to track flows of such electronic items until they reach their end-of-life or end-of-use. So far, 

there has been no reported study on the spatial analysis of e-waste using GIS. 

In addition, data may not be available in physical units for a number of material flows and, 

therefore, may have to be estimated from more general data (e.g., load volume data and sales data). 

This is particularly so for wastes generated by consumers. An approach to overcome this knowledge 

gap may be to study individual consumers and examine their spatio-temporal consumption pattern 

based on socioeconomic variables, such as population, households, mobility, employment, lifestyle, 

income and floor space. This attempts to account for consumption patterns on the basis of the impact 

of final demand for consumer goods and services [19]. By relating the spatio-temporal consumption 

pattern to the demand for consumer goods and services, the potential material stocks and flows may be 

estimated at a spatially disaggregated level. Spatial disaggregation is downscaling. It is the process by 

which information at a coarse spatial scale is translated to finer scales, while maintaining consistency 

with the original dataset. 

To address the data issues, a specific national spatial data infrastructure should be built to support 

urban mining. As discussed above, spatial data on material stocks and flows and infrastructure are 

dispersed and fragmented. They may be inconsistent in terms of data formats, data items, measurement 

units and geographical scales. These problems make it difficult to identify, access and to use available 

data from different sources. Spatial data infrastructure delivers to users integrated spatial information 

services. These services should allow for identifying and accessing spatial data for urban mining 

studies from a wide range of sources in an interoperable way for a variety of uses. A common 

framework of standards and tools based on these standards needs to be developed to maximise the use 

of the total available resources for spatial data infrastructure through cooperation among stakeholders 

concerning urban mining. 
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A recyclable resource GIS is recommended, which can provide a spatial database supported by a 

national spatial data infrastructure and analytical functions for urban mining studies, as well as tools 

for effectively communicating the values of recyclable resources to the broader community. A web 

mapping portal interfaced to the recyclable resource GIS is a particularly powerful medium for 

engaging with stakeholders and the general public. Access to meaningful, accurate and current waste 

and resource recovery data and information can increase capacity in communities to manage waste and 

recover and reuse resources. GIS can be used to help provide such information. 
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