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Abstract: Jordan faces a sincere water crisis. Groundwater is the major water resource in 

Jordan and most of the ground water systems are already exploited beyond their estimated 

safe yield. The Amman Zarqa Basin is one of the most important groundwater systems in 

Jordan, which supplies the three largest cities in Jordan with drinking and irrigation water. 

Based on new data the groundwater drawdown in the Amman Zarqa Basin is studied. This 

basin is the most used drainage area in Jordan. Groundwater drawdown in eight central 

representative monitoring wells is outlined. Based on almost continuous data for the last 15 

years (2000–2015) an average drawdown for the whole basin in the order of 1.1 m·a−1 is 

calculated. This result is in accordance with results of previous studies in other areas in 

Jordan and shows that, until now, no sustainable water management is applied. 

Groundwater management in such a basin presents a challenge for water managers and 
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experts. The applicability of satellite data for estimating large-scale groundwater over 

exploitation, such as gravity products of the Gravity Recovery and Climate Experiment 

(GRACE) mission, along with supplementary data, is discussed. Although the size of the 

basin is below the minimum resolution of GRACE, the data generally support the 

measured drawdown. 
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1. Introduction 

Aim of this study is to present new data about the groundwater depletion in the Amman Zarqa Basin 

in Jordan during 2000–2015. In addition to scattered and relatively sparse well data observations, GRACE 

satellite data are evaluated to find out if a general groundwater loss is reflected in these gravity measurements. 

1.1. Study Area 

The Jordanian part of Amman Zarqa Basin (Figure 1) covers an area of 3739 km2 compared to  

310 km2 in Syria [1]. This basin represents the transitional area between western hills and eastern 

desert. The climatological conditions change from humid to arid leading to different land use patterns. The 

western hilly areas are relatively densely populated, whereas the southeast areas are deserts and almost 

without population. More than 60% of the population of Jordan [2] is located inside the basin. In the 

areas of upper Zarqa, Baqa’a, Dhulail, and Jerash the groundwater is mainly used for irrigation. 

According to [3] different agriculture products exist (cereals, vegetables, fruit trees). According to [4] 

in 2010 22% of the land cover are urban, mixed rain-fed areas sum up to 37% and irrigated areas sum 

up to 2.4%. 

 

Figure 1. A simplified map of Jordan showing the location of the study area, the Amman 

Zarqua Basin, and of the studied wells. 
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The three main aquifers in the Amman Zarqa Basin are formed by (1) a basaltic eruption at the top, 

(2) a limestone aquifer in the middle, and (3) a sandstone aquifer at the bottom. The upper two aquifers 

are hydraulically connected. They are underlain by a 20–35 m thick marl formation. The limestone 

formation, called Amman—Wadi As Sir (B2/A7), is the most important aquifer in the basin. It has a 

large and continuous extent together with a high hydraulic conductivity. It is considered as the main 

source of fresh water for domestic, as well as irrigated agricultural, uses. The Amman Zarqa Basin is 

underlain by the sandstones of the Kurnub-Ram Formations, which form a deeper aquifer system. The 

Ajlun marl aquitard separates the sandstones from the Basalt Aquifer Complex [5]. 

The uppermost basaltic aquifer which is formed by highly vesicular lava flows has, based on 

pumping tests, transmissivity values in the range from 5.0 × 10−5 to 5.4 × 10−1 m2·s−1, the average is 

about 8 × 10−2 m2·s−1, corresponding to a mean hydraulic conductivity of 2.3 × 10−4 m·s−1. The 

transmissivity of the limestone aquifer (B2/A7) varies between 5.4 × 10−5 and 2.5 × 10−2 m2·s−1, the 

average is about 5 × 10−3 m2·s−1, corresponding to a mean hydraulic conductivity of 8.1 × 10−5 m2·s−1 [6]. 

Mean discharge rate values in different areas of the basin are between 1 and 40 m3·h−1 corresponding with 

transmissivity values of shallow basalt aquifer between 3.47 × 10−4 and 1.50 × 10−2 m2·s−1. 

The basalt sequence has a thickness of 100 m–300 m. Transmissivity values are estimated at around 

1.0 × 10−2 m2·s−1 with corresponding mean hydraulic conductivity of 2 × 10−4 to 6 × 10−4 m·s−1 [5]. 

1.2. Water Availability 

Water availability is an important factor controlling human’s wealth and prosperity, especially  

in arid and semi-arid regions [7]. Jordan has a water scarcity probably more serious than other  

countries in the Middle East [8,9]. This shortage is due to many reasons, such as low rainfall of  

100–150 mm·a−1 [9,10] with an annual rainfall decrease at an average rate of 1.2 mm [9], uneven water 

distribution, high water volume losses due to evaporation, and an increasing demand on drinking and 

agricultural water due to population growth [11]. Surface water resources are very limited in Jordan; 

therefore, groundwater is the main water resource [6]. As a result, extensive groundwater pumping is 

taking place in the Jordanian groundwater systems with the use of public and private wells. Rimawi 

and Al Ansari [12] found that groundwater salinity in the upper aquifer complex in the north-eastern 

part of the Al Mafraq area (Figure 1) has increased in the last decades. This is due to intensive 

exploitation of groundwater for irrigation purposes. Salameh [13] showed the lowering trend for  

some selected wells within the Jordanian area. He concluded that the major Jordan basins may be 

beyond restoration. 

El-Naqa et al. [14] found that Azraq Basin (the southeastern neighbor basin of Amman Zarqa 

Basin) is suffering from groundwater drawdown due to extensive overexploitation. Bajjali et al. [15] 

found that, in the central part of Amman Zarqa Basin, the groundwater level is declining 

approximately one meter per year. 

Ta’any et al. [1] applied geostatistics to analyze the spatial and temporal variations of groundwater 

level fluctuations in 33 wells scattered in the Amman Zarqa Basin. They have been analyzed for the 

period of 2001–2005. The annual drawdown in wells of [1] is ranging from 0.47 to 1.68 m. Five wells 

of this study are common with the work of Ta’any et al. [1]. 
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New groundwater level data from eight wells in the Amman Zarqa Basin have been studied. The 

study area is about 28 km NE of Zarqa city (Figure 1), the second largest city in Jordan. Many 

industrial infrastructures are located in the basin, such as the Jordanian Free Zone Areas, the refinery 

of Jordan, and the Al Hussain power station; the main power station in Jordan. It is the largest 

industrial city in Jordan. It is considered the most polluted area in Jordan. 

In general, the water level is declining in almost all wells in the basin. The Ministry of Water and  

Irrigation [16] reported that the declines in water level of the limestone aquifer (B2/A7) range between 

0.67 m and 2.0 m per year. Al Mahamid [6] predicted that the maximum accumulative drawdown will 

reach more than 70 m in the year 2025. He forecasted that some wells between Al Khalidiyya and 

Umm Al Jimal—located in the middle basin area—will become completely dry. Margane et al. [17] 

reported, too, that the exploitation of the limestone aquifer (A7/B2) has increased over the past decade, 

so that water levels are rapidly declining in about 2 m·a−1. 

The following recent data show that a continuous water level decline is happening in the upper 

basaltic aquifer of Amman Zarqa Basin. 

Remote sensing is a powerful technique for studying groundwater at regional scales [18]. In this 

study the result of the field data is compared with GRACE satellite data. 

2. Methods and Data 

2.1. Well Data 

The wells discussed in the following are located in the northeastern Jordanian desert in the center of 

the Amman Zarqa Basin (Figure 1). Their records refer to the water level of the upper aquifer in 

Amman Zarqa Basin. As this aquifer is an unconfined aquifer, a dropping water level, therefore, 

reflects an actual decrease in reserves. 

Eight monitoring wells which have complete water level records (Ministry of Water and Irrigation 

MWI [19]) over the last fifteen years (Table 1) were selected in the area (Figures 1 and 2). 

The wells are located in the central part of the basin under the largest unprotected industrial zone in 

Jordan. The data were gathered for the last 15 years (2000–2015) and give detailed information about 

the condition and operation of the wells. 

Table 1. Groundwater drawdown in the studied wells. 

Well Name 
Total Cumulative 

Drawdown (m) 
Well Observation 

Period 
Total Time 

(a) 
Mean Annual Drawdown 
from 2000 Till 2015 (m) 

AL 1043 31.11 01/2000–03/2015 15.17 2.05 
AL 1926 28.09 01/2000–02/2015 15.10 1.86 
AL 2698 18.25 01/2000–02/2015 15.10 1.21 
AL 3384 14.28 01/2000–02/2015 15.10 0.95 
AL 1022 10.98 03/2000–01/2014 13.83 0.79 
AL 3387 10.75 06/2001–03/2015 13.80 0.78 
AL 1041 59.79 01/2000–01/2013 13.00 4.60 
AL 1040 11.33 01/2000–05/2013 13.30 0.85 
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Figure 2. A simplified geological map of the upper aquifer of the Jordanian Harrat basalt 

showing the long-term monitoring wells discussed in this study, together with all other 

available wells (coordinates UTM 36 North). 

2.2. Remote Sensing 

Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) is routinely providing 

satellite-based estimates of changes in total water storage (TWS, known as a vertical integration of 

water changes due to vegetation changes, surface water, soil moisture, and groundwater changes) 

within the Earth’s system. Using GRACE data it is possible to quantify amounts of groundwater usage [20]. 

GRACE monthly gravity products have been recently used in few studies to explore hydrological 

patterns within the Middle East. For instance, Longuevergne et al. [21] and Voss et al. [22] showed a 

pattern of water storage loss over a large area of Northwest Asia, including the Tigris River Basin (Iraq 

and Syria), extending to Northwestern Iran, including the Urmia Basin. Forootan et al. [23] showed that 

the extension of groundwater changes can be estimated using GRACE and complementary products 

within a joint inversion technique. The proposed method is adopted in this study to estimate the  

large-scale extension of groundwater drawdown over the study area. 
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Total water storage (TWS) data within a rectangular box (between 28° to 34° N and 34° to 40° E) 

that includes Jordan, is extracted from each monthly GRACE-TWS map, which was computed using 

the Release 5 products of the Center for Space Research (CSR, University of Texas, Austin), over 

January 2003 to July 2014, following the approach in [24]. Degree one and two coefficients have been 

replaced by the satellite laser ranging products following the advice given by the GRACE team [25,26]. 

Correlated errors in GRACE-derived TWS products were reduced using the de-correlation filter of 

DDK3 [27]. The signal damping due to the application of the DDK3 filter was accounted by 

computing a single scale factor (4/3 in this study) that is derived as the ratio of the spatial average of a 

homogenous TWS field (filled by 1 mm within the box area) to the spatial average of the same field 

after application of the DDK3 filter. Figure 3 shows the linear rate of TWS changes over January 2003 

to July 2014. Please note that the scale of TWS changes is 1 mm in a 100 km × 100 km area; thus, the 

vertical changes cannot be directly compared to the estimated groundwater changes from in situ wells. 

 

Figure 3. Linear trend over January 2003 to July 2014 derived from GRACE-TWS maps 

(geographic coordinates). 

Over the same period, gridded altimetry data (representing surface water storage changes) derived 

from the Environmental Research Division’s Data Access Program, while the terrestrial water storage 

changes, including the summation of canopy and soil moisture changes, were derived from the output  

of the Global Land Data Assimilation System (GLDAS [28]). The dominant independent patterns of 

altimetry (including the Dead Sea and the Mediterranean Sea) and GLDAS were estimated using the 

independent component analysis technique [29] and the spatial patterns were introduced as known  

(base-functions) to separate GRACE-TWS maps in a least squares adjustment (LSA) procedure 

(similar to [23]). This procedure makes the best use of all available datasets in a LSA framework and 

reduces the leakage impact due to the implementation of mandatory filtering. Once the base-functions 

(from altimetry and GLDAS) were adjusted to GRACE-TWS observation, they were used to remove 

the contribution of surface and terrestrial water storage changes from TWS time-series and compute 

groundwater changes. The inversion step adopts temporal variability of GLDAS to what is likely 

reflected in GRACE-TWS. Therefore, it accounts for the resolution mismatch between GLDAS and 
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GRACE data. It should be mentioned here that the steric level changes in the Mediterranean Sea was 

accounted for using sea surface temperature (SST) data as in [22], therefore, the steric changes due to 

salinity changes was neglected. No SST was found over the Dead Sea; thus, the estimated volume 

changes were considered as mass variability. 

Groundwater signal estimated from GRACE observations might be contaminated with signals 

originating from regions outside the region of interest, or the signal of the target area might be moved 

out as a result of filtering that is used to post process GRACE estimations. Both effects are known as 

the spatial leakage problem in GRACE related studies. However, various studies indicate that GRACE 

observations can be used over small regions when care is taken of this leakage problem (see e.g., [30]). 

In this study, a new methodology was applied, which allows one to mitigate the possible effect of 

leakage by inversion. This method has already been used to study water storage changes over the 

Middle East and the results have been evaluated with groundwater observations [23]. 

3. Study Results 

3.1. Well Data 

The groundwater level change shown in Figure 4 and Table 1 extends from different dates where  

the pumping has started up to early of 2015. The average drawdown was calculated to be 1.64 m·a−1 in 

the last 15 years. 

 

Figure 4. Groundwater drawdown in all studied wells from January 2000 until April 2015. 

The report of the Ministry of Water and Irrigation [16] shows that since the early 1960s groundwater 

levels are declining in this basin. Each well shown in Figure 4 shows a clear water level declination. 

According to [6] recharge from rainfall is approximately 45 × 106 m3·a−1 and approximately  

62 × 106 m3·a−1 from lateral subsurface inflow. Accordingly, the outflow is in the order of 66 × 106 m3·a−1 

into Azraq Basin (neighboring in the south-east [31]) and 3.4 × 106 m3·a−1 into Yarmouk Basins 

(neighboring to the north [31]). The leakage into the lower aquifer is about 12 × 106 m3·a−1. In Mafraq 

and the Dhuleil—Hallabat area in the central Amman Zarqa Basin it was found that the groundwater is 

transferred laterally and vertically from the basalts to the lower Amman Wadi Sir limestone [32]. In 

addition there is an amount of 27 × 106 m3·a−1 underflow towards the Zarqa River. 
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The average drawdown trend observed at the studied wells with 1.64 m·a−1 for 15 years should not 

be considered as the representative trend for the Amman Zarqa Basin, since they are concentrated on 

the central basin. Furthermore, the hydrogeological settings of the Amman Zarqa Basin are complex 

due to numerous large fault systems. 

However, the presented results are in good agreement with previous data [1,5,6,13–17,33]. In 

average all these studies stated an annual groundwater level drawdown in the order of 0.65 m to 2.0 m. 

3.2. Remote Sensing 

Figure 5a shows the linear trend from GRACE adjusted terrestrial water storage (including soil 

moisture and vegetation changes) during January 2003 to July 2014. The results indicate a decrease in 

soil moisture (approximately −15 mm per year in water column) over the country, which is dominated 

mainly over the northeastern and western regions. A linear trend of groundwater is shown in Figure 5b), 

which indicates a decline of groundwater at the rate of up to approximately −10 mm per year in the 

water column concentrated over the study area. This value is equivalent with approximately 160 mm 

per year in groundwater change concentrated over the model area. 

It should be mentioned here that GRACE has usually been used for basins larger than 100,000 km2 [34]; 

thus, for basins such as the one studied here, estimations of terrestrial water storage might include a 

significant level of uncertainty. However, the results in Figure 5 are consistent with those of previous 

studies [23]. 

(a) (b) 

Figure 5. Linear trend over January 2003 to July 2014 derived from GRACE observations 

and complimentary data (compare with Figure 3). (a) From GRACE-adjusted terrestrial 

water storage products (showing the variability in soil moisture and biomass); and (b) side 

from groundwater storage maps (geographic coordinates). 

4. Discussion 

The groundwater resources in the Amman Zarqa Basin in Jordan are overused. The basin safe yield 

is 87.5 million·m3, while the actual pumping is 156.3 million m3, resulting in a groundwater depletion  
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of 68.8 million·m3 by the end of 2013 [35]. Numerous wells in the basin document for the evaluated  

15 years an average annual groundwater drawdown of 1.64 m·a−1. 

In addition to the over-usage of the groundwater, rainfall has notably declined since 1995 [9]. However, 

as no precise data of the total pumping exist and recharge rates are estimated [3], no valid hydrological 

water balance can be calculated. 

Although the basin’s size is beyond the resolution of the GRACE data, which inhibits detailed 

predictions, these satellite data also indicate severe groundwater depletion. 

Another indication for groundwater depletion, which can be detected by satellites, is subsidence. 

InSAR or GPS data (e.g., [36,37]) could be evaluated, even if the occurring subsidence may be in the 

order of the detection limit. 

5. Conclusions 

Decision-makers should finally recognize the serious groundwater overexploitation status in this 

area, which has not changed since the last data were published. The groundwater table is still slowly 

depleting. The urge to find more appropriate solutions for the groundwater management in Jordan is 

seriously needed. 

The major Jordan basins may have become beyond restoration. In any case groundwater extraction 

should be limited to yield the remaining groundwater resources of the basin. 

Measures have to be taken that the access to enough water resources is guaranteed for future 

generations. To preserve the groundwater resource for future generations all reasons for the 

groundwater depletion have to be studied carefully. The urgency to implement the necessary measures 

is, again, proven by this study which should be understood as a part within a framework of national 

and international investigations. 
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