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Abstract: This paper presents our experience obtained when mining the thick and steeply-inclined
Seam 510 in the Polish Kazimierz-Juliusz coal mine with the use of a unique mechanical face mining
system. Seam 510, which is 15–20 m thick and inclined at angles of 40◦–45◦, was initially treated as
uneconomical because effective mining systems were not available. However, to extract high-quality
coal resources, a completely mechanized variant of the sublevel caving system was designed based
on standard machines and equipment applied in coal mining. Extraction was conducted top-down at
the levels of the particular mining sub-level drifts with roof caving. The faces in the extracted coal
release areas were protected by a single pair of specially designed mechanized mining system sections.
One of the basic problems revealed during extraction of subsequent mining panels, was the observed
changeability of the resource mining rates. The extraction losses changed in the available resources
from less than 10% to about 50%. This paper presents two typical courses of changes in the extractable
resource mining rates. Similar rate changes occurred in both cases with continued mining of a single
seam section. Our analysis enabled deposit loss estimations and production output planning under
the sublevel caving systems applied in the extraction of seam deposits of similar structure.

Keywords: coal mining; thick and steep coal beds; sublevel caving; extraction effectiveness; deposit
extraction rate

1. Introduction

Mining of thick and steeply-inclined hard coal deposits is one of the most difficult engineering
challenges. These coal seams are mainly mined in China [1–3]. For that reason, the topic discussed in
this paper has been widely studied in that country [4–13]. Longwall mining with roof caving is the
predominant mining system applied to this type of seam; however, backfilling systems are exclusively
used for steep coal seams with a narrow or medium thickness [14].

Current underground mining relies on three types of extracting methods for thick and
steeply-inclined hard coal deposits. The first two methods are based on longwall top coal caving
(LTCC) technology. When the deposit’s dip angle is up to 50◦, LTCC is applied and adjusted to the
longwalls that are parallel to stratification, but only in Chinese mines (Figure 1) [4,8,15,16].

Resources 2020, 9, 138; doi:10.3390/resources9120138 www.mdpi.com/journal/resources

http://www.mdpi.com/journal/resources
http://www.mdpi.com
https://orcid.org/0000-0002-8617-6511
http://www.mdpi.com/2079-9276/9/12/138?type=check_update&version=1
http://dx.doi.org/10.3390/resources9120138
http://www.mdpi.com/journal/resources


Resources 2020, 9, 138 2 of 16

Resources 2020, 9, x FOR PEER REVIEW 2 of 16 

 

 
Figure 1. Diagram of an inclined wall mined by the longwall top coal caving (LTCC) system in 
the Dayuan Coal Mine [4]. 

The longwall height is usually about 2.5 m, and another 2–5 m of coal thickness is released 
from the roof. In this case, the fully mechanized longwall systems are additionally equipped with 
devices that stabilize the powered roof support and the longwall face conveyors. The mining of 
steeply inclined longwall faces is, however, associated with many problems mainly related to roof 
stability, as well as maneuvering with roof support, the conveyor, and the shearer. Work safety 
conditions require extensive worker experience and the use of advanced process solutions. For 
those reasons, mining of thick seams, whose inclination exceeds 40°, was abandoned in Poland. 

The second type of system requires coal seam subdivision into horizontal levels and mining of 
the particular level by subsequent longwall or shortwall top coal caving faces from top to bottom 
[17–20]. Levels of 2.5–3.5 m are mined with a shearer, followed by dropping the top coal whose 
thickness ranges from several to a dozen or so meters (Figure 2). 

 
Figure 2. Shortwall top coal caving method with the coal seam subdivided into horizontal levels. 

In this, typical mechanical systems are applied in the LTCC technology, which is why the 
method is fully mechanized. Such systems have been applied for several decades and several 
variations have been developed, e.g., the French sutirage or the Slovenian velenje [21–26]. The 
system has been used to extract steep coal seams 20–25 m thick in the Spanish province of Leon [27] 
using shortwall top coal caving. The shortwall fittings are a bit different there compared with 
typical solutions. The system uses a single-drum shearer and light sets of frame supports. Due to 
hardness of the coal, top coal dropping is preceded by layer destruction using blasting operations. 

Figure 1. Diagram of an inclined wall mined by the longwall top coal caving (LTCC) system in the
Dayuan Coal Mine [4].

The longwall height is usually about 2.5 m, and another 2–5 m of coal thickness is released from
the roof. In this case, the fully mechanized longwall systems are additionally equipped with devices
that stabilize the powered roof support and the longwall face conveyors. The mining of steeply inclined
longwall faces is, however, associated with many problems mainly related to roof stability, as well
as maneuvering with roof support, the conveyor, and the shearer. Work safety conditions require
extensive worker experience and the use of advanced process solutions. For those reasons, mining of
thick seams, whose inclination exceeds 40◦, was abandoned in Poland.

The second type of system requires coal seam subdivision into horizontal levels and mining of the
particular level by subsequent longwall or shortwall top coal caving faces from top to bottom [17–20].
Levels of 2.5–3.5 m are mined with a shearer, followed by dropping the top coal whose thickness ranges
from several to a dozen or so meters (Figure 2).
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Figure 2. Shortwall top coal caving method with the coal seam subdivided into horizontal levels.

In this, typical mechanical systems are applied in the LTCC technology, which is why the method
is fully mechanized. Such systems have been applied for several decades and several variations have
been developed, e.g., the French sutirage or the Slovenian velenje [21–26]. The system has been used
to extract steep coal seams 20–25 m thick in the Spanish province of Leon [27] using shortwall top coal
caving. The shortwall fittings are a bit different there compared with typical solutions. The system
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uses a single-drum shearer and light sets of frame supports. Due to hardness of the coal, top coal
dropping is preceded by layer destruction using blasting operations.

The third system is called sublevel caving, which was the focus of this study. The system is widely
applied in underground ore mining [28,29]. Here, top coal is not dropped to the longwall or shortwall,
but rather to the excavation system called the “sub-level drift”, which has a cross-section ranging from
a dozen or so, to more than 20 m2. Depending on coal seam thickness, one to three sub-level drifts
are performed on each sub-level. Extraction is performed by dropping the previously mined coal
using fan-cut blasting pattern operations (Figure 3) [30–33]. Another method is based on hydro-cutting
instead of blasting. Water is used in the cutting process for both coal cutting and transportation [34–37].
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The sub-level height usually ranges from several meters to about 30 m. This system is characterized
by low capital investments into mine-face equipment and low operating costs. Sub-level drifts are
protected by steel supports that are dismantled before top coal dropping; thus, the supports can be reused
many times. Coal loading is performed either only by gravity or by scop feeders, with transportation
by chain and belt conveyors. Two to three miners are employed at the mine face. In this study,
we constructed a detailed coal-seam mining method and described a mechanization system. However,
much larger coal loss is another typical feature of the system in question. The coal loss usually does
not exceed 15% in the LTCC systems, but can be more than 50% in the sub-level caving systems.

We introduced a unique face mechanization method in the Kazimierz-Juliusz coal mine in Poland
to extract a bed about 20 m thick and inclined at more than 40◦. The Kazimierz-Juliusz coal mine in
Sosnowiec operated continually from 1884 to 2015. Starting in the 1990s, coal was extracted only from
the thick Seam 510. That seam had been mined by the longwall system in areas where inclination
did not exceed 30◦, with division into layers with roof caving or backfill. The coal resources were
almost completely extracted at the beginning of this century. Extraction of the remaining portion of
Seam 510, with an inclination of 35◦ to 50◦, was the object of designs and tests conducted jointly by the
researchers of the AGH University of Science and Technology, Faculty of Mining and Geoengineering,
in Kraków, and the engineers of the Kazimierz-Juliusz coal mine [32,38]. As a result, a completely
mechanized variant of the sub-level caving system was designed and applied with success from 2003
until the coal mine closed down in 2015.

The first part of this paper presents the geological conditions of Seam 510 in the area of extraction
conducted by the mechanized sub-level caving system, as well as the basic issues related to extraction
technology. We present an example of a method for making coal resources available and the
preparation of coal beds, followed by mining works mechanization and a short description of the
extraction technology. The second part of this paper contains the extractable resource mining rates.
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In this regard, certain repeatable relationships were identified in that area during about a dozen of
years of mining. Such relationships are illustrated on the basis of the results obtained in two typical
deposit fields.

2. Material and Methods

2.1. Geological Characteristics of the Research Area

Seam 510 of mine section M-3 was deposited in the form of a trough. The trough bottom was
about 500 m deep, with the deposit outcrop located at a depth of about 50 m in the trough wing.
Mine section M-3 was cut through and divided into northern and southern parts by a fault dropping
from 25 to 40 m. The coal seam inclination in the southern part, where the sub-level caving system
was implemented, was 45◦ (Figure 4). The seam thickness varied in that area from 16 to more than
20 m. A number of faults were present in the mine section, representing various drop and direction
parameters. Fault drops changed from several to about a dozen meters.

Resources 2020, 9, x FOR PEER REVIEW 4 of 16 

 

dozen of years of mining. Such relationships are illustrated on the basis of the results obtained in 
two typical deposit fields. 

2. Material and Methods 

2.1. Geological Characteristics of the Research Area 

Seam 510 of mine section M-3 was deposited in the form of a trough. The trough bottom was 
about 500 m deep, with the deposit outcrop located at a depth of about 50 m in the trough wing. 
Mine section M-3 was cut through and divided into northern and southern parts by a fault dropping 
from 25 to 40 m. The coal seam inclination in the southern part, where the sub-level caving system 
was implemented, was 45° (Figure 4). The seam thickness varied in that area from 16 to more than 20 
m. A number of faults were present in the mine section, representing various drop and direction 
parameters. Fault drops changed from several to about a dozen meters. 

 
Figure 4. Cross-section of Seam 510 in mine section M-3 of the Kazimierz-Juliusz coal mine. 

The average thermal coal properties of the mined coalbed are as follows: 3.5% ash, 0.4% 
sulphur, and 32.5% volatiles, with a calorific value of 5800 Kcal/kg and a density of 1.3 kg/m3. The 
coal of Seam 510 was characterized by an average uniaxial compressive strength (Rc) of more than 20 
MPa, with the maximum value exceeding 35 MPa. The compressive strength of the sandstones 
occurring in the roof range from 30 to more than 70 MPa. The roof mudstone displayed strength 
ranging from 20 to more than 30 MPa, while the strength of sandy schist ranged from 30 to 40 MPa. 

Seam 510 was classified as a Category I methane hazard (on a four-degree scale). However, the 
methane content of Seam 510 did not exceed 0.1 m3/Mgcsw (0.1 m3 of methane in one ton of dry and 
clean coal substance) in the area of the sub-level caving operation. The coal from Seam 510 across the 
whole coal mine was categorized as a Group V ignition temperature (on the five-degree scale of fire 
hazards), representing coal with a very high tendency to self-ignite. The self-ignition indicator of 
mine section M-3 coal was determined to be 179 °C/min, with an activation energy of 37 kJ/mol. The 
fire incubation time amounted to ca. 30 days. 

The coal deposit level was categorized as a Degree II water hazard (on a three-degree scale). 
The aquifer located within the sandstone, lying above Seam 510, was the main source of water 
hazard. Coal workings and cutting operations caused water dripping and local leaks. Increased 
inflow was observed at the final stage of mining, with small influx from Tertiary sands. 

Seam 510 was assigned to Degrees I and II of rock-burst hazard (on a three-degree scale). Coal 
mining by the sub-level caving method was performed in accordance with the regimes specific for 
Degree III rock-burst hazard due to the novelty of the mining method and the intention to ensure 
safety and obtain rock-mass data from the mining field. For that reason, the number of detectors 
(seismometers and geophones) was increased in the mining areas. 

Figure 4. Cross-section of Seam 510 in mine section M-3 of the Kazimierz-Juliusz coal mine.

The average thermal coal properties of the mined coalbed are as follows: 3.5% ash, 0.4% sulphur,
and 32.5% volatiles, with a calorific value of 5800 Kcal/kg and a density of 1.3 kg/m3. The coal of Seam
510 was characterized by an average uniaxial compressive strength (Rc) of more than 20 MPa, with the
maximum value exceeding 35 MPa. The compressive strength of the sandstones occurring in the roof
range from 30 to more than 70 MPa. The roof mudstone displayed strength ranging from 20 to more
than 30 MPa, while the strength of sandy schist ranged from 30 to 40 MPa.

Seam 510 was classified as a Category I methane hazard (on a four-degree scale). However,
the methane content of Seam 510 did not exceed 0.1 m3/Mgcsw (0.1 m3 of methane in one ton of dry
and clean coal substance) in the area of the sub-level caving operation. The coal from Seam 510 across
the whole coal mine was categorized as a Group V ignition temperature (on the five-degree scale of
fire hazards), representing coal with a very high tendency to self-ignite. The self-ignition indicator
of mine section M-3 coal was determined to be 179 ◦C/min, with an activation energy of 37 kJ/mol.
The fire incubation time amounted to ca. 30 days.

The coal deposit level was categorized as a Degree II water hazard (on a three-degree scale).
The aquifer located within the sandstone, lying above Seam 510, was the main source of water hazard.
Coal workings and cutting operations caused water dripping and local leaks. Increased inflow was
observed at the final stage of mining, with small influx from Tertiary sands.

Seam 510 was assigned to Degrees I and II of rock-burst hazard (on a three-degree scale).
Coal mining by the sub-level caving method was performed in accordance with the regimes specific
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for Degree III rock-burst hazard due to the novelty of the mining method and the intention to ensure
safety and obtain rock-mass data from the mining field. For that reason, the number of detectors
(seismometers and geophones) was increased in the mining areas.

2.2. Sub-Level-Caving Mining Method—Assumptions and Practical Aspects

The high strength parameters of coal found at Seam 510 in the Kazimierz-Juliusz coal mine
necessitated the use of blasting works for coal mining. Due to the changing coal seam thickness and its
extent, the longwall or shortwall top caving methods were not used. Instead, a typical sub-level caving
system with a single sub-level drift was applied in this coal seam.

2.2.1. General Description of the Sub-Level Caving System Applied in the Kazimierz-Juliusz
Coal Mine

Mining panels were designed by dividing Seam 510 into horizontal blocks, determined by the
planes perpendicular to the roof and bottom. The blocks, or mining panels, were shaped as cross-section
squares with a vertically-situated diagonal. The square side length of the panel cross-section was
close to the seam thickness in the given mining area, i.e., usually from 16 to 24 m [32,38]. The panel
arrangement diagram for Seam 510 is shown in Figure 5.
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Figure 5. Subdivision of Seam 510 into mining panels with extraction sequence [32].

One working, called the sub-level drift, was cut out from the transportation ramp in each mining
panel at particular mine levels. These workings were cut out nearly horizontally, observing the
direction of the seam extent at the seam’s bottom, starting with the lowest mining panel. The drift was
cut out from the transportation ramp to the field boundary in the given deposit wing.

Once the sub-level drift reached the assumed mining panel boundary and after the drift was fitted,
mining was conducted by caving. The mining operations continued by regularly repeated drilling of
a fan-shaped blasting borehole arrangement, explosive charging and blasting, gravitational release,
and coal removal with conveyors and reloading systems in the sub-level drift.

Mining was completed at the run out once the stopping line was reached, usually at the protection
pillar location designed for the transport ramp. The face equipment was relocated to the subsequent
panel before the final liquidation of the previous panel by placing an insulation plug. A diagram of the
sub-level caving system applied in the Kazimierz-Juliusz coal mine is presented in Figure 6.
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Figure 6. Sub-level caving system diagram.

The details of the particular engineering stages of the sub-level caving mining technology applied
for Seam 510 of the Kazimierz-Juliusz coal mine are provided in the sections below.

2.2.2. Development

The connection of the mining and ventilation workings within the coal seam inclined at 45◦

(with a difference in height of ca. 110 and 170 m) was performed by cutting a series of stepped
ramps. Such ramps were composed of fairly short sections (usually ca. 60 m each) situated diagonally
with respect to the coal seam extent and with an inclination angle of 25◦ (Figure 7). This inclination
of the stepped ramps allowed for cutting the workings with roadheader technology using typical
mining equipment. Maintaining the 25◦ inclination allowed for deliveries of materials, including heavy
support systems, chain conveyor components, and steel stands, as well as coal delivery by conveyors.
The ramps were placed under arched supports composed of V25 sections.

Sub-level drifts constituted the last link in the preparatory working arrangement designed for the
sub-level caving system. The workings were cut from stepped ramps with a slight elevation of up to 5◦

along the coal seam bottom in the places determined by the field subdivision into particular mining
panels (Figure 5). The distances between the operating drifts depended on the coal seam thickness;
they were usually similar to seam thickness but no shorter than ca. 15 m.
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Similar to stepped ramp cutting, the sub-level drifts were cut out by the roadheader technology
using typical transportation machines and equipment. The sub-level drifts were executed with
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rectangular supports in compliance with the shape of the powered support set used in the mining
face at the mining works stage. A diagram of the rectangular sub-level drift support is presented in
Figure 8.
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2.2.3. Mining Face Equipment

The face of the sub-level drift was equipped with a system of three basic installations used for
support, coal haulage, and borehole drilling as follows: powered roof support (PRS) powered roof
support (BME Novaky, Novaky, Slovakia), Nowomag PZ-1000 chain conveyor (Famur, Katowice,
Poland) and VPS-01 portable drilling machine (InterCupro, Ostrava, Czech Republic).

In addition, the mining faces were equipped with small tools such as pneumatic hammers,
pneumatic or hydraulic screwdrivers, pneumatic blasters, burst charge and clay wad devices, and other
blasting equipment. The protection of working areas at the face was provided by the PRS system.
The set was composed of two specially-designed powered roof supports whose main task was to
protect the area against dropping rocks or uncontrolled relocation of coal or waste rocks (Figure 9).

1 
 

 
Figure 9. Internal and external sides of a powered roof support (PRS). 1—internal cover of the canopy,
2—external cover of the base, 3—external cover of the canopy, 4—internal cover of the base, 5—internal
protection against caving, and 6—external protection against caving.

The locations of PRS and PZ-1000 are presented in Figures 10 and 11, respectively.
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Figure 10. Locations of the PRS and PZ-1000 in the mining face.

The PZ-1000 conveyor was used for the transport of coal released from the roof, i.e., by gravitational
loading, directly after charge blasting. The conveyor structure allowed for retaining the conveyor
crossover within the caving area ca. 5 m from the PRS protection system, facilitating transportation of
coal released in the caving area.

The VPS-01 hydraulic drilling machine was installed at the mining face. That device was designed
for drilling small-diameter blasting boreholes in coal and rock using the rotation method.

Resources 2020, 9, x FOR PEER REVIEW 8 of 16 

 

 
Figure 10. Locations of the PRS and PZ-1000 in the mining face. 

The PZ-1000 conveyor was used for the transport of coal released from the roof, i.e., by 
gravitational loading, directly after charge blasting. The conveyor structure allowed for retaining the 
conveyor crossover within the caving area ca. 5 m from the PRS protection system, facilitating 
transportation of coal released in the caving area. 

The VPS-01 hydraulic drilling machine was installed at the mining face. That device was 
designed for drilling small-diameter blasting boreholes in coal and rock using the rotation method. 

 
Figure 11. PZ-1000 conveyor, with a sliding station and PRS. 1—PRS, 2—PZ-1000 conveyor, 
3—another chain conveyor, 4—PZ-1000 drive, 5—sliding equipment. 

2.2.4. Coal Cutting Method 

The mining technology based on the sub-level caving system design applied in the 
Kazimierz-Juliusz coal mine involved three separate stages: installation of face equipment, mining, 
and sub-level drift liquidation (backfill of drift end). The following sections of this paper only 
describe the mining proper, which consisted of a typical sub-level caving system application, with 
regularly repeated operations: drilling, explosive charging, and blasting, followed by gravitational 
release of coal, haulage, and relocation of the face equipment. 

2.2.5. Blasting Works 

Each time when mining started in the sub-level drift, the start-up blasting works were 
conducted using a different procedure than the standard method applied during regular mining. 
After completion of the start-up blasting works (i.e., after full caving in the whole cross-section of the 
given mining panel), the coal seam was extracted upon borehole drilling, explosive charging, and 
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chain conveyor, 4—PZ-1000 drive, 5—sliding equipment.

2.2.4. Coal Cutting Method

The mining technology based on the sub-level caving system design applied in the
Kazimierz-Juliusz coal mine involved three separate stages: installation of face equipment, mining,
and sub-level drift liquidation (backfill of drift end). The following sections of this paper only describe
the mining proper, which consisted of a typical sub-level caving system application, with regularly
repeated operations: drilling, explosive charging, and blasting, followed by gravitational release of
coal, haulage, and relocation of the face equipment.

2.2.5. Blasting Works

Each time when mining started in the sub-level drift, the start-up blasting works were conducted
using a different procedure than the standard method applied during regular mining. After completion
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of the start-up blasting works (i.e., after full caving in the whole cross-section of the given mining panel),
the coal seam was extracted upon borehole drilling, explosive charging, and blasting, in accordance
with one of the blasting procedures designed for regular coal mining. Figure 12 presents a sample
diagram of blasting borehole distribution. Blasting boreholes were drilled for mining purposes using
one VPS-01 portable stand drilling machine. Usually, the boreholes for mining blasting had a diameter
of 45 mm and the length of up to 30 m. Barbaryt 4HM explosive (Nitroerg, Bieruń, Poland) was
mainly used in blasting works; it is a nitroglycerine-based material applied in coal deposit blasting
in the presence of methane. The boreholes were plugged by clay wads packed in paper containers.
Detonations were conducted with the use of the Nitrocord 8 pentrite detonation cord (Nitroerg, Bieruń,
Poland) initiated by either Ergodet 0,.5AN instant or Ergodet 0o45A25M millisecond electric detonators
(Nitroerg, Bieruń, Poland).
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At the beginning, mining blasting was performed using traditional coal rock mass cutting methods,
i.e., using up to 20 m long and up to 45 mm diameter blasting boreholes, with manual explosive
charging and stemming. With time, however, pneumatic explosive charging was also applied in
parallel, although the latter method required 75 mm diameter blasting boreholes, which allowed
for shortening the charging process by half. A vinyl hose and a pneumatic blaster were used for
pneumatic charging.

About 1 kg of the explosive material was pumped into a 1 m long and up to 45 mm diameter
blasting borehole. For the 75 mm diameter boreholes, the quantity of the explosive material was about
5 kg per 1 m of borehole. With the progression of extraction, the results of cutting were analyzed
and experience allowed for selection of a proper blasting procedure. In particular, the distribution,
lengths, and diameters of boreholes, as well as charge sizes, were optimized. Both the number of
boreholes in the fan arrangement and their distribution changed depending on the local conditions
of the coal seam location (mainly its thickness, tectonics, and coal Rc). On average, 16–19 mining
boreholes were drilled for one blasting operation. The boreholes were arranged in three fans, with
each row of the fans inclined at a different angle, and the boreholes were of various lengths (Figure 12).
Four undercutting boreholes were drilled within the drift walls (two on each side). According to
Polish mining law, blast holes had to be fired simultaneously. The borehole length did not reach the
full mining panel height, i.e., boreholes were not drilled and blasted directly under the coal seam
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roof or under the higher panel caving zone. A coal shelf about 2 m thick was left, which delayed
the roof caving process. Although the process caused loss of a certain coal quantity, it reduced the
loss in quality. When coal was still hanging after blasting and top coal release, additional boreholes
were blasted. A unit charge (or the quantity of explosive in one borehole) weighed from 5 to 20 kg
depending on the borehole length. During a single face blasting job (with the total charge blasted),
100 to nearly 300 kg of explosives were fired. The average consumption of the explosives amounted to
~0.29 kg per ton of coal.

2.2.6. Coal Release and Delivery

After blasting and drift face ventilation, the miners released the top coal. The process consisted of
the transportation of the coal using a PZ-1000 conveyor whose crossover station was located within
the release zone (Figures 13 and 14).
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The conveyor supplied the coal to subsequent chain and belt conveyors that were arranged
in series in the sub-level drift and other workings toward the shaft. Released coal streaming was
controlled by opening and closing of the internal protection against the caving of the PRS section
(Figure 9).

The periods of coal release were diverse and usually continued for several dozens of minutes.
During that process, the face miners properly opened the PRS internal protection against caving
(Figure 9, Item 5) to control the feed to the conveyor and prevent jamming of the face zone under the
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PRS. The miners were also responsible for observation of the coal stream and stopping delivery when
oversize coal boulders fell. Such boulders would be cut by pneumatic hammers or crushers mounted
on the PZ-1000 conveyor. Occurrence of oversize coal boulders depended on the effectiveness of the
blasting procedure applied. When blasting works were poor, the conveyor had to be stopped often,
which caused reduced face yield and output.

The essential experience gain from coal release in the Kazimierz-Juliusz coal mine was the direct
roof caving behind PRS, which was also associated with the extent of blasting works. The effect was
visible in the void created after the release of cut coal. Roof caving delay also contributed to the very
low losses in coal quality. The roof caving occurred periodically and the goaf often filled the whole
excavation void behind the PRS. When that was the case, the continuation of coal extraction and
release works were usually not justified because of quality losses. The losses were mainly caused by a
considerable difference between the coal density (1.3 Mg/m3) and the roof rock density (2.5 Mg/m3),
which was transported quickly in the released coal stream. In such cases, once a large roof caving
was observed and rocks were found on the PZ-1000 conveyor, regular operation was stopped at the
mining face. Instead of drilling boreholes, the face equipment was relocated by 3–5 m, followed by the
replacement of the collected steel stands with wooden ones. Consequently, a small coal pillar was left,
separating the face in the new position away from the roof caving site. That operation was followed by
regular mining until another full roof caving. The necessity of using protection pillars increased with
the progress of mining in the given mining field. Consequently, the deposit use indicator gradually
reduced with the progress of extraction in the mining field. Coal left in the gob zone and pillars
constituted the mining losses of extractable resources. Together with the progress of mining operations
in the coal mine, such losses increased until the loss rate of 50% was achieved. The course of the
extractable resource mining rate changes is described in the next section.

3. Results and Discussion—Extractable Resource Mining Rate

During about a dozen years of extraction of Seam 510, a repeatable changeability of the extractable
resource mining rate changes was identified. Our priority was to maintain a low level of quality
losses during coal extraction. The level of extracted coal contamination with gangue did not exceed
about 3%, and maintaining the required regime was associated with the generation of quality losses.
As mentioned in Section 2.2.6, the appearance of a continuous gangue stream on a conveyor ended
each time with immediate interruption of coal release. When large-volume gangue appearing in the
gob zone created a stream, it prevented further coal release. Our observations were confirmed by
model testing [39]. The continuous mining procedure would cause losses of coal remaining in the gob
zone (unreleased coal) and losses of coal remaining in the pillar (3–5 m thick). On each lower sub-level
drift, extraction losses increased, affecting the extractable resource mining rate. Simultaneously, typical
models of rate changes were observed. That phenomenon presented in two mining fields: Fields A
and B. These two fields were selected due to the regularity of seam locations within their areas and,
primarily, the lack of significant faults at the end of sub-level drifts that would have obviously distorted
the results of observations of the extractable resource mining rate changes. The seam inclination was
constant in both fields (ca. 45◦), with the seam thickness ranging from 16 to 24 m. The mining panel
length (or sub-level drift length) generally did not exceed 200 m in the two fields. The mining depth
ranges from 280 to 550 m. Tables 1 and 2 describe the particular sub-level drifts in both fields together
with their extractable resources, extracted resources, and percentage rates of extractable resource
mining. The sub-level drifts are arranged in the tables in accordance with the mining sequence or from
the shallowest to the deepest drifts.
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Table 1. Extractable resource mining rates in Field A.

Sub-level
Drift No.

Sub-Level Drift
Length (m)

Extractable
Resources (Mg)

Output
(Mg)

Extractable Resource
Mining Rates (%)

A/1 82 27,211 23,891 87.8
A/2 84 27,848 27,208 97.7
A/3 120 45,738 44,063 96.3
A/4 134 41,459 27,309 65.9
A/5 136 54,264 32,261 59.5
A/6 170 66,640 40,921 61.4
A/7 172 75,852 45,921 60.5
A/8 186 84,369 37,974 45
A/9 142 60,832 33,908 55.7
A/10 161 71,520 39,550 55.3
A/11 174 69,950 38,850 55.5

Σ Field A 1561 625,683 391,856 av. 67.3

Table 2. Extractable resource mining rates in Field B.

Sub-Level
Drift No.

Sub-Level Drift
Length (m)

Extractable
Resources (Mg)

Output
(Mg)

Extractable Resource
Mining Rate (%)

B/1 107 31,158 26,794 86
B/2 142 41,350 29,977 72.5
B/3 155 58,590 31,389 53.6
B/4 169 67,431 41,594 61.7
B/5 191 74,872 50,712 67.7
B/6 200 84,000 53,337 63.5
B/7 178 65,789 29,031 44.1
B/8 179 67,662 38,030 56.2
B/9 185 66,245 35,520 53.6
B/10 187 69,881 38,554 55.2

Σ Field B 1693 626,978 374,938 av. 61.4

Figure 15 presents the extractable resource mining rate changes in both fields. Our analysis
considered 11 subsequent mining panels (or sub-level drifts) in Field A and 10 in Field B. The exploitable
resources were recognized in particular fields, at both the sub-level drifts cutting and mining operations
stages. The seam thickness was determined by the drilling method.
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Consequently, a high accuracy of resource recognition was attained. In both cases, at the initial
stage of field mining (in the first sub-level drifts), the extractable resource mining rate exceeded 80%
(and even 90% in Field A).

In the fourth sub-level drift of Field A and the third in Field B, we observed a considerable increase
in resource losses. The rate dropped to ca. 66% and 54%, respectively. Later, rate stability was observed
at the level of more than 60% in both sub-level drifts. This was followed by a sudden drop in the rate
(below 45%) in both mining fields and, again, rate stability at a level exceeding 50%. The average
extractable resource mining rates of those fields were 67.3% and 61.4%, respectively.

A rate drop from 80–90% to the final stable level exceeding 50% was also observed in other
mining fields. Due to the seam distortions in the form of faults and local seam thickness reductions,
other local distortions appeared within the trends presented above, generally in the form of local drops
in the extractable resource mining rates. The observed course of the extractable resource mining rate
changeability may be associated with the effects of rock pressure. Upon extraction of each subsequent
mining panel, pressure on the undercut roof layers increased, followed by roof cracking and the
appearance of caving. The roof cracking intervals depended on the roof-rock strength parameters,
the span of the undercut roof, and the depth of the specific mining panel. Sub-level drift roof cracks
migrated toward the coal release area at the drift face, producing gangue streams on the conveyors in
cycles depending on the respective roof-rock strength parameters. Based on the experiences collected
in the Kazimierz-Juliusz coal mine, building a precise and general model of extractable resource losses
under the sub-level caving system would be difficult. However, we can assume that, in terms of
quality, the process will occur similarly to that identified in deposits of similar structure. The relevant
observations presented here should be useful in the production planning process and or prediction of
the extractable resource mining rates when using the sub-level caving system in the extraction of thick
and steeply inclined deposits.

4. Conclusions

The sub-level caving extraction system presented here constitutes a unique face mining
mechanization solution for extraction from thick and steeply inclined coal seams. In our opinion,
the system presented here should realistically allow for maintenance of the extractable resource mining
rate of 50–95%, depending on geological conditions. When designing mining operations, the increase
in mining losses to the level of even 50% should be considered, remembering that the final rate will
mainly depend on the roof-rock strength parameters and the mining depth.

The application of the proposed mining system conception allowed for extraction of more than
12 million tons of coal from Seam 510 in 2003–2015. The effective solutions regarding the face protection
systems, with maximum possible work mechanization, resulted in no serious accidents being recorded
in the mining areas. Although the coal from Seam 510 was classified as belonging to self-ignition
Group V, which is the highest in Poland, with a fire incubation time of about 30 days, no fire outbreaks
occurred. The coal resources remaining in gobs did not present any hazard due to the relatively fast
progress of face advance. In addition, the sub-level drift was ventilated by forced ventilation ducting.
This system blocked the air flow through the gobs and coal within because, otherwise, breeding fire
would be initiated. The ventilation performance was limited to the value of ca. 400 m3/min. Plugging
and sealing the entrances to the abandoned sub-levels was the other equally essential factor that
reduced the combustion hazard. A stopping system composed of mineral and cement binders was
applied. Consequently, no drafts occurred from active sub-levels to goafs. Despite the low output,
the coal mine obtained positive financial results each year due to the extraction of high-quality coal
from Seam 510 with relatively low operating costs and expenditures on drift-face protection systems.
In the initial mining period, the mine-face costs (i.e., the operating costs borne in a single sub-level drift),
including labor, materials, and electricity, were USD 11.8 per ton and the costs regularly decreased.
In the third year of mining, the costs were about USD 7.2 per ton and that level was maintained until
the end of the coal mine’s operation. The capital investment associated with the infrastructure in a
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single mine face, considering all the machines and equipment described in Section 2.2.3, was about
USD 520,000.

The mining method discussed here was subjected to regular modifications regarding machine,
equipment, and blasting operation designs during the first several years of mining. Gradual
improvements allowed the engineers to obtain a high level of system efficiency, except for one
component. Blast hole drilling was the weakest process, and it was never improved. The mine face
was equipped with only one VPS-01 portable drilling machine, which is why the drilling works
required a whole shift. Fitting the mine face with a mobile two-arm drilling machine, suspended on the
steel support of the sub-level drift, would considerably improve work efficiency. Even better results
could be obtained by the implementation of two independent compact crawler drilling machines.
Such machines could operate in parallel on two sides of the Nowomag PZ-1000 chain conveyor. In this
case, it would be necessary to increase the sub-level drift width from 4.5 to 5.5 m, which would slightly
increase the costs of preparatory works. The system has developmental potential. We therefore hope to
both improve system efficiency and reduce mining costs with respect to the values that were attained
in the Kazimierz-Juliusz coal mine.
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2011, 11, 9–17.

39. Klishin, S.V.; Klishin, V.I.; Opruk, G.Y. Modeling Coal Discharge in Mechanized Steep and Thick Coal Mining.
J. Min. Sci. 2013, 49, 932–940. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1134/S1062739149060130
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Geological Characteristics of the Research Area 
	Sub-Level-Caving Mining Method—Assumptions and Practical Aspects 
	General Description of the Sub-Level Caving System Applied in the Kazimierz-Juliusz Coal Mine 
	Development 
	Mining Face Equipment 
	Coal Cutting Method 
	Blasting Works 
	Coal Release and Delivery 


	Results and Discussion—Extractable Resource Mining Rate 
	Conclusions 
	References

